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Abstract
Metal-organic frameworks (MOFs) are nanoporous materials with good prospects as
recognition elements for gas sensors owing to their adsorptive sensitivity and selectivity. A
gravimetric, MOF-based sensor functions by measuring the mass of gas adsorbed in a MOF.
Changes in the gas composition are expected to produce detectable changes in the mass of gas
adsorbed in the MOF. In practical settings, multiple components of the gas adsorb into the
MOF and contribute to the sensor response. As a result, there are typically many distinct gas
compositions that produce the same single-sensor response. The response vector of a gas
sensor array places multiple constraints on the gas composition. Still, if the number of degrees
of freedom in the gas composition is greater than the number of MOFs in the sensor array, the
map from gas compositions to response vectors will be non-injective (many-to-one). Here, we
outline a mathematical method to determine undetectable changes in gas composition to which
non-injective gas sensor arrays are unresponsive. This is important for understanding their
limitations and vulnerabilities. We focus on gravimetric, MOF-based gas sensor arrays. Our
method relies on a mixed-gas adsorption model in the MOFs comprising the sensor array,
which gives the mass of gas adsorbed in each MOF as a function of the gas composition. The
singular value decomposition of the Jacobian matrix of the adsorption model uncovers (i) the
unresponsive directions and (ii) the responsive directions, ranked by sensitivity, in gas
composition space. We illustrate the identification of unresponsive subspaces and ranked
responsive directions for gas sensor arrays based on Co-MOF-74 and HKUST-1 aimed at
quantitative sensing of CH4/N2/CO2/C2H6 mixtures relevant to natural gas sensing.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Gas sensors [1] have a wide range of applications in the chem-
ical industry and in emerging domains such as air quality
monitoring [2], diagnosis of disease [3], food quality

∗ Author to whom any correspondence should be addressed.
5 Equal contribution.

assessment [4], detection of chemical warfare agents and
explosives [5, 6], and crop monitoring [7].

Metal-organic frameworks (MOFs) [8] are nanoporous
materials with high prospects as recognition elements for
enhanced gas sensors [9–12] owing to their adsorptive sen-
sitivity and selectivity. More, many MOFs exhibit chemical,
thermal, and mechanical stability, making them suitable for
sensing in practical conditions [13, 14]. MOFs offer large
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Figure 1. A gravimetric sensor comprised of a thin film of MOF
[25] (the recognition element), in this case HKUST-1 [37], mounted
on a QCM [24, 38] (the signal transducer). The QCM measures the
(total) adsorbed mass of gas, m, in the thin film of MOF. The
QCM-MOF functions as a sensor because changes in the gas
composition are expected to cause changes in m.

internal surface areas and, often, expose functional groups
and open metal sites to the pore space. As a result, gas
molecules concentrate inside the pores of the MOF by (selec-
tively) adsorbing onto the pore walls. The amount of gas
adsorbed in a MOF at thermodynamic equilibrium depends
upon the chemical potential of each component in the gas
phase (and the temperature). Therefore, observation of the
total mass of gas adsorbed in a MOF [15]—or some other
property that depends on the gas adsorbed in the MOF, such
as electrical resistance [16, 17], color [18], luminescence
[19, 20], or strain [21, 22]—provides information about the
composition of the gas. Figure 1 illustrates a miniaturized
gravimetric, MOF-based sensor composed of a quartz crys-
tal microbalance (QCM) coated with a thin film of MOF
[23, 24]—a surface-mounted MOF [25]. Nanogram-scale
changes in the adsorbed mass of gas in the MOF film can
be inferred from changes in the resonant frequency of the
piezoelectric quartz crystal, forced by an alternating voltage
[9, 10]. Several gravimetric, MOF-based sensors have been
experimentally demonstrated using QCMs [15, 26–32] and
surface acoustic wave devices [33–35] as electromechanical
signal transducers [36].

Cross-sensitivity plagues gas sensors in practical applica-
tions where the gas contains multiple components that vary
in concentration [39]. In the case of MOF-based gas sen-
sors, interfering gas species, in addition to the analyte species,
adsorb into the MOF and contribute to the response (i.e. the
total adsorbed mass of gas). As a consequence, the inverse
problem [40] of inferring the concentration of the analyte
from a single-sensor response is underdetermined [41]. To
address the problem of cross-sensitivity, one might propose
to design a MOF with a very high adsorptive selectivity for
the analyte. However, this strategy may be difficult or impos-
sible, and it requires a different MOF highly tailored to each
sensing task.

Gas sensor arrays tackle the issue of cross-sensitivity by
monitoring the response of a diverse set of (likely, cross-
sensitive) MOFs [42, 43], analogous to the mammalian olfac-
tory system (MOFs :: olfactory receptors) [44]. Each response
of a cross-sensitive MOF, though having contributions from
the analyte and interferents, places one constraint on the

gas composition. As a whole, the response vector of the gas
sensor array may provide sufficient information to uniquely
determine the gas composition. Typically, a machine learn-
ing algorithm is used to parse the high-dimensional response
of a sensor array [45]. A few MOF-based gas sensor arrays
have been experimentally demonstrated [16, 29, 46–48]. Still,
even gas sensor arrays are susceptible to cross-sensitivity;
the inverse problem (determine the gas composition from
the sensor array response vector) could still be underdeter-
mined—particularly, if the number of MOFs comprising the
array is less than the number of degrees of freedom in the
gas composition. In an environment with complex, multi-
component gas mixtures, if the sensor array contains too few
MOFs, the information contained in its response is insufficent
to fully constrain the gas composition.

In this article, we outline a mathematical method to identify
changes in the gas composition to which reversible6, quantita-
tive gas sensors/sensor arrays are unresponsive. Gas sensing
can be viewed as the inverse problem of finding the gas com-
position consistent with the sensor response governed by a
mixed-gas adsorption model [40]. Owing to cross-sensitivity,
the mapping, under the adsorption model, from gas compo-
sition space to sensor array response space could be non-
injective (many-to-one). Consequently, some gas composi-
tion changes are undetectable. By definition, when the gas
composition changes in an unresponsive direction in com-
position space, the sensor response remains constant; the
explanation is that the adsorption of one set of species bal-
ances (in mass) the desorption of another set of species.
These undetectable gas composition changes generally depend
upon the initial composition. The identification of unre-
sponsive directions of gas sensors/sensor arrays is impor-
tant for understanding their limitations and vulnerabilities to
adversarial attacks [49].

Specifically, we show that the singular value decomposition
(SVD) of the Jacobian matrix of the mapping from gas com-
position vectors to sensor response vectors is key to determin-
ing unresponsive directions and responsive directions, ranked
by sensitivity, in composition space. In particular, the unre-
sponsive subspace is the null space of the Jacobian matrix.
We illustrate this under the context of quantitative sensing
for diluents and higher-hydrocarbons in natural gas [50] (N2,
CO2, and C2H6 in CH4) using gravimetric, MOF-based sen-
sors comprised of HKUST-1 and Co-MOF-74. We use exper-
imental gas adsorption data and ideal adsorbed solution the-
ory [51, 52] to model the mass of adsorbed gas in each MOF
in response to different gas compositions. Under several case
studies, we visualize the unresponsive subspace and ranked
responsive directions together with the underlying mixed gas
adsorption model.

Several computational and mathematical modeling
approaches have been developed to design/analyze gas sensor

6 Gas sensors based on physical adsorption in stable MOFs lacking adsorp-
tion/desorption hysteresis are reversible. Suppose the gas composition
changes from (i) a reference composition to (ii) some new composition, then
(iii) back to the reference composition. The equilibrium mass of gas adsorbed
in the MOF will be the same in (i) and (iii).
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Table 1. Description of variables/functions.

Symbol Description

M Number of MOFs in the sensor array
G + 1 Number of species in the gas phase
x Mole fraction vector describing gas composition
m Sensor array response vector
X Gas composition space, x ∈ X ⊂ R

G

M Sensor response space, m ∈ M ⊂ R
M

xop Operating point in gas composition space
mop Sensor response at xop

a(x) Adsorption function, maps gas composition to sensor response
B̃ = B̃(xop) Unresponsive subspace of sensor array
J = J(xop) Jacobian matrix of a(x)
ui Left singular vector i of J
vi Right singular vector i of J
σi Singular value i of J

arrays of MOFs [40, 41, 53–57]. Our work focuses on
identifying the limitations of non-injective, MOF-based gas
sensor arrays by elucidating directions in composition space
in which the gas sensor is unresponsive to changes.

2. A mathematical model of gas sensor arrays

2.1. Problem setup

Suppose a gravimetric sensor array of M MOFs aims to deter-
mine the composition of a gas (temperature, pressure fixed)
with G + 1 components. Table 1 summarizes our notation.

The gas composition vector. Let x ∈ R
G be the gas com-

position vector, with xi the mole fraction of component i in
the gas phase. We omit component G + 1 of the gas from
x since its mole fraction follows from xG+1 = 1 − (x1 + x2

+ · · ·+ xG). Thus, the only constraints on x are
∑G

i=1 xi � 1
and x � 0. We define this subset of R

G as gas composition
space X , so that x ∈ X . We assume the gas is held at con-
stant pressure and temperature, implying (i) x fully specifies
the thermodynamic state of the gas phase and (ii) G is the
number of degrees of freedom in the gas phase.

The sensor response vector. Let m ∈ R
M be the sensor

array response vector, with mi (g gas/g MOF) denoting the
total mass of gas adsorbed in MOF i at thermodynamic equi-
librium, normalized by the mass of MOF in the sensor. We
assume, as in practice, that each MOF is cross-sensitive. As a
result, mi is comprised of contributions from each of the G + 1
components of the gas phase.

The adsorption function. Mathematically, we view gas
sensor arrays as mapping from gas composition space X
to sensor response space M ⊂ R

M [41, 58]. The adsorp-
tion function a : x �→ m maps each gas composition vec-
tor x ∈ X to a sensor response vector m ∈ M. I.e. m =
a(x) is a model for the total mass of gas adsorbed in each
MOF (at thermodynamic equilibrium) as a function of the
gas composition. We assume a(x) is a continuously differen-
tiable function, disallowing adsorption/desorption hysteresis,
gas-induced first-order structural transitions, and condensa-
tion of adsorbates in the pores. We also disallow chemical

transformations in the MOF. The sensor response space M =
a(X ) is then the image of gas composition space under the
adsorption model.

A model of the adsorption function a(x) could be con-
structed from adsorption data D = {(xi, mi)}n

i=1, with n the
number of experiments exposing the sensor array to a gas
mixture to observe its response, through various methods
including:

• interpolation of D.
• A statistical mechanical model of gas adsorption [59]

whose parameters are identified using D.
• A statistical machine learning model trained on D.
• Ideal adsorption solution theory (IAST) [51] applied to

pure-component adsorption models constructed from D.

The source ofD could be experimental gas adsorption mea-
surements or molecular simulations of gas adsorption [60, 61]
in the MOFs.

While we write the adsorption function a(x) as a vector-
valued function, the mass of gas adsorbed in each MOF is
independent. In other words, we can independently build the
adsorption model for each MOF i in the array, mi = ai(x).

Gas sensing as an inverse problem [40]. The forward
problem is to predict the response of the sensor array m given
the gas composition x. The solution is to evaluate the adsorp-
tion model m = a(x). The inverse problem arises in gas sens-
ing: we wish to predict the gas composition x given the sen-
sor response m using the adsorption model m = a(x). While
the forward problem always has a unique solution, the inverse
problem may have a unique solution, no solution, or many
solutions.

2.2. Non-injective gas sensor arrays with underdetermined
inverse problems

In this work, we consider gas sensor arrays comprised of
fewer MOFs than degrees of freedom in the gas composition
(M < G). The mapping a : x �→ m under a sensor array
with M < G is generally non-injective (many-to-one). Con-
sequently, the inverse problem of determining the gas com-
position x from the sensor response m is underdetermined;
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typically, many gas compositions can produce the observed
response. In the inverse problem, observation of each MOF’s
response, generally, provides one independent constraint,
mi = ai(x), on the gas composition. For M < G, the response
of the sensor array places an insufficient number of constraints
on the gas composition to uniquely determine it.

As a result of their (view 1) non-injective mapping
a : x �→ m and (view 2) underdetermined inverse problems,
gas sensor arrays with fewer MOFs than degrees of freedom
in the gas (M < G) suffer from unresponsiveness to some
changes in gas composition: despite a change in composi-
tion, the sensor response remains constant, and hence the
composition change goes undetected.

3. Unresponsive and ranked responsive directions
of non-injective gas sensors

Non-injective gas sensors contain fewer MOFs than degrees of
freedom in the gas composition. They are vulnerable to blind-
ness: the sensor is unresponsive to certain gas composition
changes. Our work focuses on identifying these vulnerabili-
ties in non-injective gas sensors. Moreover, the sensor is more
sensitive to certain gas composition changes than others (of
the same magnitude). We show that the SVD of the Jacobian
matrix of the adsorption function a(x) is key to identifying
directions in composition space to which the sensor is most-,
least-, and un-responsive.

3.1. The operating point xop as a reference
We will define unresponsive and ranked responsive direc-
tions in reference to some steady-state, reference gas compo-
sition, or operating point xop ∈ X . mop := a(xop) is the sensor
response at this operating point.

3.2. The unresponsive locus B

The unresponsive locus B ⊂ X associated with an operating
point xop is the set of gas compositions such that the sensor
response remains constant at mop:

B := {x ∈ X : a(x) = mop}. (1)

The unresponsive locus is an intersection of the level sets of
the adsorption functions for each MOF in the sensor array,
B = ∩M

i=1{x : ai(x) = mi,op}. By definition, the sensor array
cannot distinguish between gas compositions in the unrespon-
sive locus. A change in the gas composition from xop ∈ B to
x′ ∈ B is undetectable despite x′ 	= xop. Fundamentally, the
response of a sensor array composed of cross-sensitive MOFs
remains constant under the composition change from xop to
x′ because the adsorption of one set of species balances (in
mass) the desorption of another set of species (see figure 2).
A physically trivial example of a mathematically non-trivial
unresponsive locus is when all MOFs do not adsorb a particular
component of the gas.

3.3. Linear approximation of a(x) near the operating point
xop

Let us make a linear approximation ã(x) of the adsorption
function a(x) valid near the operating point xop. A first-order

Taylor expansion of a(x) about xop gives:

a(x) ≈ a(xop) + J(xop)(x − xop) =: ã(x), (2)

with J = J(x) the M × G Jacobian matrix of a(x) with
Ji j := ∂mi

∂x j
. For a non-injective gas sensor array (M < G), J is

fat. From a geometric viewpoint, the approximator mi ≈ ãi(x)
is a hyperplane tangent to the surface ai(x) and passing through
mi,op.

3.4. The (local) unresponsive subspace of composition
space

We define the (locally valid) unresponsive subspace B̃ ⊂ R
G

of a sensor array associated with operating point xop as the
directions in composition space such that, for small changes
in the gas composition in these directions, the sensor response
remains approximately constant at mop. Thus, for a unit vector
Δx ∈ B̃, a(xop + εΔx) ≈ a(xop) with ε a small number. Invok-
ing the linear approximation in equation (2), the local unre-
sponsive subspace is given by the null space of the Jacobian
matrix J(xop):

B̃ := {Δx ∈ R
G : J(xop)Δx = 0} (3)

⇒ ã(xop +Δx) = ã(xop) = mop ∀ Δx ∈ B̃. (4)

The null space of J will be non-trivial provided G > M.
I.e, sensor arrays such that M < G possess non-trivial unre-
sponsive subspaces because the mapping ã : x �→ m is non-
injective.

3.5. The sensitive direction in composition space

The sensor response is most sensitive to gas composition
changes in the direction of:

Δxs := arg maxΔx:‖Δx‖=ε‖ã(xop +Δx) − ã(xop)‖. (5)

Of all gas composition changes Δx from xop that are small
(ε > 0) in magnitude, those in the sensitive direction of Δxs

elicit the largest-magnitude change in the response of the
sensor array.

3.5.1. The singular value decomposition (SVD) of J. The
SVD [62, 63] of the M × G Jacobian matrix J factorizes it as:

J = UΣVᵀ, (6)

where U is an M × M orthogonal matrix, Σ is an M × G diag-
onal matrix with singular values σ1 � σ2 � . . . � σM listed
down the diagonal, and V is a G × G orthogonal matrix. The
left singular vector ui ∈ R

M is column i of U and lies in sensor
response space. The right singular vector vi ∈ R

G is column i
of V and lies in gas composition space7. The M left (G right)
singular vectors form an orthonormal basis for sensor response
(gas composition) space. Provided the MOFs are distinct, it is

7 Technically, the singular vectors can/will lie outside the valid sensor
response/gas composition spaces as we’ve defined them since e.g. they can
have negative entries.
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Figure 2. Illustrating a gas composition change to which a non-injective, gravimetric, MOF-based gas sensor is unresponsive. A single
QCM-HKUST-1 sensor is immersed in a gas mixture of two different compositions: on the left, a dominantly CH4/C2H6 mixture; on the
right, a dominantly CH4/CO2 mixture. The response of the sensor to the two distinct gas compositions is identical; hence, the sensor cannot
be used to distinguish between these two compositions. The total mass of gas adsorbed in the HKUST-1 film remains the same upon
changing from the ∼ CH4/C2H6 to ∼ CH4/CO2 mixture because the desorption of C2H6 approximately balances (in mass) the adsorption of
CO2, while the adsorption of CH4 remains approximately constant.

extremely likely that J is full-rank (rank M)8, so we assume
σM > 0.

Seen by JV = UΣ:

Jvi =

{
σiui i ∈ {1, 2, . . . , M}

0 i ∈ {M + 1, M + 2, . . . , G}.
(7)

Therefore, under the linear approximation ã(x) in equation (2),
the sensor array is:

• responsive to gas composition changes in directions
belonging to the subspace spanned by the first M right sin-
gular vectors (v1, v2, . . . , vM). This list of vectors is ranked
by the magnitude of the associated sensor array responses.

• Unresponsive to gas composition changes in directions
belonging to the subspace spanned by the set of last
G − M right singular vectors {vM+1, vM+2, . . . , vG}. This
subspace is the null space of J.

Hence,

• the sensitive direction of the gas sensor array, Δxs in
equation (5), is described by the first right singular vec-
tor v1 of the Jacobian matrix J. The gas sensor array is
responsive, but less sensitive, to composition changes in
the subspace spanned by {v2, v3, . . . , vM}.

• The local unresponsive subspace B̃ is spanned by
the last (unranked) G − M right singular vectors
{vM+1, vM+2, . . . , vG} of J.

We emphasize that the sensitive and unresponsive direc-
tions (i) depend on the operating gas composition xop and
(ii) pertain to small changes in the gas composition since
they rely on the linear approximation in equation (2) of the
generally nonlinear function a(x).

We remark on the uniqueness of the SVD in equation (6).
The singular values are unique. The left and right singular
vectors associated with the distinct, non-zero singular values

8 J could, however, be ill-conditioned [40].

are unique, up to both corresponding vectors being multiplied
by −1. The right singular vectors spanning the null space
are much more arbitrary in the sense that they can be any
orthonormal basis for the null space.

Note, if the response vector is recorded in units g gas instead
of g gas/g MOF, (i) the responsive and unresponsive subspaces
do not change, but (ii) the ranked responsive directions that
span the responsive subspace do change if different masses of
MOF are used in each sensor.

3.6. Special case: linear adsorption model

Suppose gas adsorption in each MOF of the array is described
by Henry’s law:

mi =

G+1∑
j=1

Hi, jPx j, (8)

with P the total pressure (bar) of the gas phase and Hi, j the
Henry coefficient (g gas/(g MOF-bar)) of gas j in MOF i.
Imposing the constraint that the mole fractions {x j} sum to
one, the adsorption model for the sensor array is linear:

m = a(x) = Ax + b, (9)

with Ai j :=P(Hi, j − Hi,G+1), bi :=PHi,G+1, and x := [x1,
x2, . . . , xG]. Under this special case, the Jacobian matrix
J = A does not depend on a reference gas composition xop.
Therefore, the unresponsive and responsive subspaces are
independent of xop, too.

4. Summarizing with a toy example

We illustrate the identification of the unresponsive and ranked
responsive directions with a toy example: a sensor array of
M = 2 distinct MOFs aimed at sensing a quaternary mixture
at fixed temperature and pressure (G = 3). See figure 3(a).

Figure 3(c) illustrates the SVD of an M = 2 × 3 = G Jaco-
bian matrix J = J(xop) at some operating point xop. The three
orthonormal right singular vectors {v1, v2, v3} lie in G =

5
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Figure 3. Elucidating the unresponsive and ranked responsive directions of a (toy) sensor array through the SVD of the Jacobian matrix J of
its adsorption function a(x). (a) A gravimetric, two-MOF sensor array immersed in a four-component gas mixture at constant temperature
and pressure but varying composition. The gas composition x ∈ R

3, while the sensor response m ∈ R
2. (b) The adsorption function a(x) is a

map a : x �→ m from 3D gas composition space (left) to 2D sensor response space (right). The operating gas composition xop and associated
response mop are shown as black points. Under the linear approximation of a(x) valid locally around xop: the image of the sphere of small
radius ε (blue, left) maps to the solid ellipse (blue, right) with semi-major and semi-minor axes given by εσ1u1 and εσ2u2, respectively. Gas
composition changes εv1, εv2, εv3 form an orthogonal basis of composition space and are mapped to response changes εσ1u1, εσ2u2, 0,
respectively. v3 describes the unresponsive direction, since small changes in composition in this direction do not alter the response. Small
composition changes in the direction of v1 elicit the largest-magnitude response. (c) The SVD J = UΣVᵀ gives the vectors described in (b).

3-dimensional composition space, while the two orthonor-
mal left singular vectors {u1, u2} lie in M = 2-dimensional
response space. The Jacobian matrix maps the right-singular
vectors into response space as follows:

Jv1 = σ1u1 (10)

Jv2 = σ2u2 (11)

Jv3 = 0. (12)

Provided the MOFs are distinct, the two rows of J are highly
unlikely to point in exactly the same direction; thus, we
safely assume J is full-rank, i.e. σ2 > 0. Equations (10) and
(11) indicate the sensor is responsive to gas composition
changes in the direction of v1 and v2 but more sensitive to
changes in the direction of v1 (σ1 � σ2 by definition, but
likely σ1 > σ2). Equation (12) indicates the null space of the

Jacobian matrix is non-trivial and spanned by v3. Therefore,
the linear map ã : x �→ m is non-injective, as a consequence
of M < G.

Consider small gas composition changes (of magnitude
ε > 0) from xop. The linear approximant ã(x) in equation
(2) maps a sphere in 3D composition space centered at xop

to a solid ellipse in 2D sensor response space [62] centered
at mop. See figure 3(b). This follows from equation (2) and
equations (10)–(12). The composition change in the sensitive
direction, εv1 (green in figure 3(b)), elicits the largest sensor
response—from mop to mop + εσ1u1 on the endpoint of the
major axis of the ellipse. The sensor is responsive, but less sen-
sitive, to composition changes in the direction of v2 (yellow
in figure 3(b)); the composition change εv2 moves the sen-
sor response by the vector εσ2u2, placing it on the endpoint
of the minor axis of the ellipse. The relative sensitivity of the

6



J. Phys.: Condens. Matter 33 (2021) 464003 N Gantzler et al

Figure 4. The two MOFs as candidate recognition elements and their equilibrium, pure-component gas adsorption isotherms. (a) The crystal
structures of HKUST-1 [37] (left) and Co-MOF-74 [64] (right). (b) Experimentally measured, pure-component CH4 (298 K) [67, 71], N2
(298 K) [70, 71], CO2 (298 K) [68, 71], and C2H6 (296 K) [69] adsorption isotherm data (points) in HKUST-1 and Co-MOF-74. Curves
show the pure-component adsorption models fit to the data.

response to composition changes in the direction of v1 vs v2

depends on the singular values, σ1 vs σ2. On the other hand, v3

is the unresponsive direction; the composition change εv3 (red
in figure 3(b)) does not elicit a sensor response, and m remains
at mop despite the change in gas composition. Using this toy
sensor array, we therefore cannot detect small composition
changes in the direction of v3!

5. Demonstration: natural gas sensing with
gravimetric sensors based on HKUST-1 and
Co-MOF-74

We now demonstrate the identification of the unresponsive
subspace and ranked responsive directions in gas composition
space for a gravimetric, single-MOF sensor and two-MOF sen-
sor array for diluents and higher-hydrocarbons in natural gas
[50]. Specifically, suppose the sensor (array) is immersed in

a variable-composition gas mixture involving N2, C2H6, CO2,
and CH4 at 1 bar and 298 K. We consider two candidate MOFs
as the recongition element(s), HKUST-1 [37] and Co-MOF-74
[64]. HKUST-1 is composed of dicopper(II) ions coordinated
to benzene-1,3,5-tricarboxylate ligands to form three distinct
pores, two of ∼1.4 nm and one of ∼1.0 nm in diameter [65].
Co-MOF-74 is composed of cobalt(II) ions coordinated to 2,5-
dihydroxyterephthalic acid ligands to form hexagonal chan-
nels of ∼1.2 nm diameter [66]. Figure 4(a) visualizes their
crystal structures.

In each case study below, the number of degrees of freedom
in the gas composition is greater than the number of MOFs
comprising the sensor/sensor array (G > M). Thus, (i) the
sensor’s mapping under a from gas composition space to sen-
sor response space is non-injective and (ii) the inverse problem
to determine the gas composition from the sensor response is
underdetermined. Accordingly, the sensor (array) will contain
a non-trivial unresponsive subspace.
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Table 2. References for experimentally measured, pure-
component, equilibrium gas adsorption isotherms at 298 K (except
C2H6, at 296 K).

MOF CH4 CO2 C2H6 N2

HKUST-1 [67] [68] [69] [70]
Co-MOF-74 [71] [71] [69] [71]

5.1. The adsorption model a(x), its Jacobian matrix J, and
its SVD

We construct an adsorption model for each MOF on the
basis of experimentally measured, pure-component CH4, CO2,
C2H6, and N2 adsorption data at or near 298 K. Figure 4(b)
displays the adsorption isotherms and table 2 provides the
references.

We invoke ideal adsorbed solution theory (IAST) [51, 52]
and use pyIAST [72] to implement the adsorption function
a(x). Section 2.1 explains that a(x) gives the total mass of gas
adsorbed in each MOF (g/g) of the array as a function of the gas
composition x. IAST is a thermodynamic framework to pre-
dict mixed-gas adsorption from pure-component adsorption
isotherms. Figure 4(b) shows the pure-component adsorption
isotherm models fit to the experimental adsorption data and
used as input for IAST calculations; the single-site Langmuir,
dual-site (DS) Langmuir, and quadratic adsorption isotherm
models fit the data well. N.b., though we write m = a(x), IAST
provides mi = ai(x) for each MOF in the array independently.

We compute the Jacobian matrix J = J(xop) of a(x)
numerically via a second-order, centered finite differ-
ence using numdifftools; we compute the SVD of J
using numpy.

5.2. Case M = 1, G = 2: single-MOF sensor, ternary gas
mixture

We first consider a single-MOF sensor, using either Co-MOF-
74 or HKUST-1, immersed in a three-component mixture:
CH4/N2/CO2, CH4/N2/C2H6, or CH4/C2H6/CO2 at 1 bar and
298 K.

Figure 5 visualizes, under these six scenarios, the adsorp-
tion function m = a(x) as well as the unresponsive v2 (red
arrow) and sensitive v1 (green arrow) directions—given by the
right singular vectors of the Jacobian matrix J(xop)— at a ref-
erence gas composition xop (black dot). The rows correspond
to the three different gas mixtures; the columns correspond
to the two different single-MOF sensors. Each panel displays
the 2D gas composition space pertaining to the row. The col-
ored lines are contours of the adsorption function a(x) and are
labeled by the total adsorbed mass of gas m in the respec-
tive single-MOF sensor. Each map a : x �→ m is clearly non-
injective, as an unresponsive locus of points elicits the same
sensor response m. Within each panel, (i) the nonlinearity of
the contours and the different areas between successive con-
tours reflect the nonlinearity of a(x) and (ii) the slant of the
contours reflects the different affinity for the MOF among the
three different components of the gas.

The sensitive direction v1 is orthogonal to the contour {x :
a(x) = mop}. Among all fixed-magnitude changes in gas com-
position, the change in the sensitive direction will elicit the
largest response (see equation (5)). The unresponsive direction
is tangential to the contour {x : a(x) = mop}. The unresponsive
subspace is one-dimensional owing to the single constraint
imposed by the response of the sensor on the two degrees of
freedom in the gas composition. For a small change in gas
composition in the unresponsive direction, the sensor response
remains approximately the same and, hence, the composition
change is not detected by the sensor. Figure 2 illustrates the
underlying physical cause of the unresponsiveness to a com-
position change, using as an example the HKUST-1 sensor
immersed in a CH4/C2H6/CO2 mixture: the desorption of one
set of species balances (in mass) the adsorption of another set
of species.

For the two gas mixtures involving N2, the sensitive direc-
tion is oriented approximately in the direction of changes
in the more readily adsorbing components, CO2 or C2H6.
N2-MOF interactions are weaker than CO2- and C2H6-MOF
interactions, reflected in the adsorption isotherms in figure
4(b). The CH4/C2H6/CO2 mixture is most interesting, as the
sensitive and unresponsive directions each have significant
components in the direction of changes in CO2 and C2H6

mole fractions. Again reflected in the adsorption isotherms
in figure 4(b), CO2-MOF and C2H6-MOF interactions are
competitive.

Comparing Co-MOF-74 and HKUST-1 for CH4/C2H6/CO2

sensing, the sensitive direction v1 for HKUST-1 has a larger
component along x = [0.5, 0.5] (see figure 5). Therefore,
HKUST-1 is a more suitable sensor for estimating the sum of
the CO2 and C2H6 mole fractions and, thus, the mole fraction
of CH4. In other words, the component of the unresponsive
direction for HKUST-1 along x = [0.5, 0.5] is smaller than
for Co-MOF-74; so, HKUST-1 is not as blind as Co-MOF-
74 to changes in the CH4 mole fraction in the CH4/C2H6/CO2

mixture. Figure 6 clarifies: observation of the response mop

of the HKUST-1 sensor places tighter bounds on xCH4 than
observation of the response of the Co-MOF-74 sensor because
xCH4 is approximately constant along its unresponsive direc-
tion. This exemplifies how unresponsive directions and loci
could be used to juxtapose two non-injective sensors. How-
ever, a more rigorous comparison of the two sensors should
include sensitivity to measurement noise [40, 55].

5.3. Case M = 1, G = 3: single-MOF sensor, quaternary gas
mixture

Now consider a single-MOF sensor—either Co-MOF-74 or
HKUST-1— immersed in a CH4/N2/CO2/CH4 mixture at 1 bar
and 298 K.

Figure 7 visualizes the adsorption function m = a(x) by
showing its level sets in 3D gas composition space, colored
by the associated response m. The black point is the refer-
ence gas composition xop. The sensitive direction v1 (green
vector) is orthogonal to the level set {x : a(x) = mop}, and
the unresponsive subspace, a plane spanned by v2 and v3

(red vectors), is tangent to it. Note the vectors v2 and v3
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Figure 5. Case M = 1, G = 2: visualization of a(x) and the unresponsive and sensitive directions for a single-MOF sensor immersed in a three-
component gas mixture at 1 bar and 298 K under six distinct cases. The row indicates which three species compose the gas mixtures. The
column indicates which MOF is used as the recognition element for the gravimetric sensor. In each panel, the plane represents gas composition
space. Color-coded contours of the adsorption function a(x) are drawn to indicate unresponsive loci and are labeled with m = a(x) for all x
on that contour. At the operating gas composition xop, the sensitive (green) and unresponsive (red) directions are shown as εv1 and εv2,
respectively (ε = 1/15).
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Figure 6. Case M = 1, G = 2: comparing the utility of two non-injective gas sensors for determining xCH4 in a CH4/C2H6/CO2 mixture.
Along the unresponsive locus B (black curve) associated with xop (black dot), the response of the sensor remains fixed at mop. Observation of
the response mop in each sensor places a lower and upper bound on the mole fraction of CH4, xCH4 . The HKUST-1 sensor gives a more useful
constraint on xCH4 than the Co-MOF-74 sensor; xCH4 is constrained to lie in a smaller interval by the response of the HKUST-1 sensor.

are not ranked, i.e. one is not more or less unresponsive
than the other, and are not unique, in that any two orthonor-
mal vectors that lie in the unresponsive plane can be cho-
sen. The unresponsive subspace is two-dimensional due to
the single constraint imposed by the response of the sen-
sor on the three degrees of freedom in the gas composition.
Small changes in gas composition on the unresponsive plane
are undetectable since the sensor response remains constant.
The sensitive direction v1 is orthogonal to the unresponsive
plane.

Comparing the sensitive directions of the two sensors at the
operating point

xop = [0.25, 0.2, 0.2] (13)

we find, for HKUST-1 and Co-MOF-74, respectively:

v1 ≈
[
−0.02 0.67 0.74

]
(14)

v1 ≈
[
0.02 0.96 0.27

]
(15)

with the gas composition vector defined as:

x = [xN2 , xCO2 , xC2H6]. (16)

Both sensors are much more sensitive to changes in CO2 and
C2H6 than to changes in N2. Note the three faces of each cube
in figure 7 when one mole fraction is set to zero are equivalent
to figure 5.

5.4. Case M = 2, G = 3: two-MOF sensor array, quaternary
gas mixture

Now consider a two-MOF sensor array, comprised of Co-
MOF-74 and HKUST-1, immersed in a CH4/N2/CO2/CH4

mixture. See figure 8(a).
Figure 8(b) is a visualization to understand the mapping

a : x �→ m, with x in a 3D gas composition space and m
in a 2D sensor response space. The image of the sphere of
radius ε = 0.04 in gas composition space (blue, left) is the
solid ellipse-like shape (blue, right) in sensor response space;
they are (approximately, for the case of the ellipse-like shape)
centered, respectively, at the reference gas composition xop

and its associated response mop. Unlike the M = 2, G = 3
case in the toy sensor array figure 3(b), the image of the
sphere is not exactly a solid ellipse owing to the nonlinearity
of a(x).

Magnitude-ε changes in the gas composition in the
sensitive and intermediate directions in gas composition
space—changes of εv1 and εv2, the green and yellow vectors
in figure 8(b)—are mapped to the endpoints of the semimajor-
like and semiminor-like axes of the ellipse-like shape—εσ1u1

and εσ2u2, respectively. Among all magnitude-ε changes in the
gas composition on the sphere (left), a change ∼ εv1 produces
the largest-magnitude sensor array response. The sensor array
is responsive to, but with reduced sensitivity, small changes
in the intermediate direction v2. On the other hand, the sensor
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Figure 7. Case M = 1, G = 3: visualization of m = a(x) and the unresponsive plane and sensitive direction for a single-MOF sensor
immersed in a CH4/N2/CO2/C2H6 gas mixture at 1 bar and 298 K. The column indicates which MOF is used as the recognition element for
the gravimetric sensor. Each panel shows gas composition space. Level surfaces of the adsorption function a(x) are color-coded according to
the associated m. At the operating gas composition xop (black point), (i) the sensitive direction εv1 is shown by the green vector and (ii) the
unresponsive plane is spanned by the two unresponsive directions εv2, εv3 shown by the red vectors.

array is unresponsive to small changes in the gas composition
in the unresponsive direction of v3. The unresponsive subspace
is one dimensional here because the response of the two MOFs
places two constraints on the three degrees of freedom in the
gas composition.

6. Non-injective gas sensor arrays are not useless

The inverse problem [40] of predicting the gas composition
x from the response vector m of a non-injective gas sensor
array typically has infinite solutions, meaning that infinitely
many gas compositions are consistent with the response.
We therefore cannot make a unique prediction of the gas
composition without imposing further assumptions. Despite
this, non-injective gas sensor arrays could still be practically
useful.

First, the response of a non-injective sensor array places
potentially useful constraints on the gas composition. For
example, consider the single HKUST-1 sensor in figure 5.
The response under CH4/CO2/N2 mixtures places tight bounds
on the mole fraction of CO2 in the mixture. On the other
hand, the response under CH4/CO2/C2H6 mixtures cannot
delineate between dominantly CH4/CO2 and CH4/C2H6 mix-
tures (see figure 2). Nevertheless, the response does place

tight bounds on the sum of the CO2 and C2H6 mole fractions
and, hence, the CH4 mole fraction (see figure 6). This tight
bound on xCH4 could be very useful and sufficient for certain
applications.

Second, imposing additional assumptions about the gas
composition can grant the inverse problem a unique solution.
Suppose the sensor response changed from mop, at the oper-
ating gas composition xop, to m′. Invoking the linear approx-
imation in equation (2), the inverse problem is to find x′ that
satisfies:

J(xop)(x′ − xop) = m′ − mop =: Δm. (17)

Because J(xop) is fat for a non-injective (M < G) gas sen-
sor array, equation (17) has infinite solutions (fewer equations
than unknowns). However, if we impose an additional
assumption that the minimal-L2-norm gas composition change
Δx := x′ − xop from xop is the culprit of the change in the sen-
sor response Δm, the inverse problem is granted a unique
solution. The altered inverse problem:

min
Δx: J(xop)Δx=Δm

‖Δx‖ (18)

has a unique solution given by Δx = J†Δm, with J† the
Moore–Penrose pseudo-inverse [63] of J. Again, the SVD in
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Figure 8. Case M = 2, G = 3: visualization of a(x) and unresponsive directions for a two-MOF sensor array immersed in a CH4/N2/CO2/C2H6
gas mixture at 1 bar and 298 K. (a) The two-MOF sensor array uses HKUST-1 and Co-MOF-74 as recognition elements. (b) The mapping
from gas composition space (left) to sensor response space (right) under a(x) for the sensor array in (a). The small sphere of radius ε = 0.04
in composition space (blue) is mapped to the solid ellipse-like shape (not an exact ellipse like in figure 3(b) because a(x) is nonlinear) in
response space (blue). Under the linear approximant of a(x), ã(x), the vectors εv2, εv2, εv3 are mapped to εσ1u1, εσ2u2, 0, respectively. The
unresponsive direction is v3 (red). The sensitive direction is v1 (green).

12



J. Phys.: Condens. Matter 33 (2021) 464003 N Gantzler et al

equation (6) plays the central role, as the pseudo-inverse can
be constructed from it [63].

7. Conclusions and discussion

Mathematically, gas sensor arrays map each gas composition
vector x to an equilibrium response vector m. For gravimetric,
MOF-based gas sensor arrays, this mapping is characterized
by a mixed-gas adsorption model m = a(x). An observation of
the (total) mass of gas adsorbed in an MOF generally places
one independent constraint mi = ai(x) on the gas composition.
We considered when there are fewer MOFs in the array than
degrees of freedom in the gas composition (the number of com-
ponents minus one, given fixed temperature and pressure). As a
result, the mapping a : x �→ m is non-injective (many-to-one).
Then, some gas composition changes from xop to x′ do not
cause changes in the sensor response mop despite x′ 	= xop and
thus are undetectable. We showed how to determine the local
unresponsive subspace of gas composition space from the null
space of the Jacobian matrix J of the adsorption model a(x).
Whereupon small changes in gas composition in an unrespon-
sive direction, the sensor response remains constant. More, the
right singular vectors of J associated with its non-zero singular
values give directions in gas composition space to which the
sensor is responsive, ranked by sensitivity. We demonstrated
the identification of unresponsive and ranked responsive direc-
tions in non-injective, single- and double-MOF sensor arrays
based on HKUST-1 and Co-MOF-74 immersed in a mixture
involving CH4, CO2, C2H6, and N2 relevant to natural gas sens-
ing [50]. Our case studies involved �two MOFs and �four
components in the gas, instructively allowing us to visualize
a(x) and clarify the meaning of the unresponsive and ranked
responsive directions in gas composition space. The SVD in
equation (6) is particularly powerful for large sensor arrays and
high-dimensional gas composition spaces where visualization
of a(x) is extremely difficult.

Unsurprisingly, the identification of unresponsive and
ranked responsive directions have analogies in multiple-input,
multiple-output control systems: observability [73–75] and
directionality [76, 77], respectively.

A limitation of our method to identify unresponsive direc-
tions in gas composition space is that it pertains to small
changes in gas composition (via the Taylor expansion in
equation (2); this approximation is illustrated in figure 8(b)).

Why is it useful to identify unresponsive directions in gas
sensors? A gas sensor is unresponsive to and thus cannot
detect gas composition changes in the unresponsive direction.
Determining the unresponsive directions of a gas sensor is
important to quantify its limitations and identify its vulner-
abilities to adversarial attacks [49]. In addition, given a set
of candidate non-injective gas sensors for a sensing task, we
may be able rank their fitness according to their unresponsive
directions e.g. having a minimal component along a pertinent
direction.

Does the notion and identification of unresponsive
directions generalize beyond gravimetric, MOF-based sen-
sors? The notion and process of identifying unresponsive
directions herein generalizes beyond the specific sensing

mechanism of observing the total mass of adsorbed gas in an
MOF. To adapt to a generic array of sensing elements, each
exhibiting some observable property dependent on the gas
composition, redefine:

• m as the vector containing the observed properties of the
M sensing elements in response to the gas composition x.

• a(x) as a function that models the response m to each gas
composition x.

Even without much understanding of the underlying
physics linking the response to the gas composition, we
could build the model a(x) as follows. Construct the sen-
sor array. Conduct gas exposure experiments: observe the
response over a grid of gas compositions to generate data D =
{(xi, mi)}. Build a regression model of a(x) using the training
data D.

Gravimetric MOF sensors are attractive from a modeling
perspective because we can construct a reasonable model a(x)
without actually constructing the sensor array and conduct-
ing laborious experiments. Gas adsorption data in MOFs is
abundant; thermodynamic theories of gas adsorption are well-
developed; and molecular models and simulations can pre-
dict adsorption in MOFs. The latter enables the computational
design of MOF-based gas sensor arrays, as exemplified by
Wilmer and co-workers [54, 55], who use molecular simu-
lations of adsorption to predict the response of gravimetric,
MOF-based sensor arrays and then evaluate their fitness for
gas sensing.

How can we remedy non-injective gas sensors to give a
determined inverse problem? The observed response of a non-
injective gas sensor generally places an insufficient number of
constraints on the gas composition to give the inverse problem
a unique solution. We can make a non-injective sensor array
injective by (i) retrofitting it with additional sensing elements
(MOFs), (ii) designing sensing elements (MOFs) that do not
respond appreciably to interferents in the gas that we are not
concerned about, or (iii) imposing additional assumptions on
the gas composition as in equation (18).

Is an injective sensor array the end goal? The inverse
problem associated with an injective sensor array will theo-
retically always have a unique solution. However, in practice,
the measurements of the masses of gas adsorbed in each MOF
are corrupted by measurement error. As a result, the applied
inverse problem [78] for an injective sensor array could still
(i) have no solution or (ii) be ill-conditioned, where small
measurement errors lead to large changes in the predicted gas
composition [40]. The conditioning of the inverse problem,
colloquially speaking, depends on the diversity of the MOFs in
the array and their interactions with the components of the gas.
One method to evaluate the fitness of different injective sensor
arrays is to analyze the conditioning of their inverse problem
[40].

Future work remains. First, we posed the gas sensing
problem in terms of the equilibrium response of the gas sen-
sor. However, the mass of gas adsorbed in an MOF is generally
dynamic; gas must enter into and diffuse in the thin film of
the MOF attached to the QCM [79–81]. Future work entails
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(i) considering the diffusion kinetics when evaluating MOF-
based sensors to avoid slow response times, (ii) posing inverse
problems in terms of the dynamic response of the sensor, as
in Rajagopalan and Petit [57], and (iii) extracting additional
information about the gas composition from the dynamics of
the response.

Second, we assumed isothermal conditions. We may wish
to use a gas sensor to robustly predict the gas composition
in a range of temperatures. Future work entails building an
adsorption model a(x; T) that applies under different tempera-
tures T , then (a) inputting a separate measurement of T or (b)
determining T as part of the inverse problem.

Third, imposing additional assumptions on the gas compo-
sition can endow the underdetermined inverse problem asso-
ciated with a non-injective gas sensor with a unique solution.
This idea of imposing additional assumptions, consistent with
but not imposed by the physics underlying the problem, is a
common approach to, given an inverse problem with many
solutions, grant it a unique solution [78]. We provided one
example in equation (18), where we sought the minimum-
norm change in the gas composition consistent with the change
in the response.

Fourth, for MOF-based gas sensor arrays to operate in
practical conditions, we need to engineer MOFs that are (1)
thermally, mechanically, and chemically stable [13, 82] and
(2) hydrophobic, for applications where moisture is present,
so that the response is not dominated by water adsorption
[14, 83, 84].
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