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Abstract While collapsibility of CW complexes dates back to the 1930s, col-
lapsibility of directed Euclidean cubical complexes has not been well studied
to date. The classical definition of collapsibility involves certain conditions
on pairs of cells of the complex. The direction of the space can be taken into
account by requiring that the past links of vertices remain homotopy equiv-
alent after collapsing. We call this type of collapse a link-preserving directed
collapse. In the undirected setting, pairs of cells are removed that create a
deformation retract. In the directed setting, topological properties—in partic-
ular, properties of spaces of directed paths—are not always preserved. In this
paper, we give computationally simple conditions for preserving the topol-
ogy of past links. Furthermore, we give conditions for when link-preserving
directed collapses preserve the contractability and connectedness of spaces of
directed paths. Throughout, we provide illustrative examples.
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1 Introduction

A directed Euclidean cubical complex is a subset of Rn comprising a finite
union of directed unit cubes. Directed paths (i.e., paths that are nondecreas-
ing in all coordinates) and spaces of directed paths are the objects of study
in this paper. In particular, we address the question of how to simplify di-
rected Euclidean complexes without significantly changing the spaces of di-
rected paths.

This model is motivated by several applications, where each axis of the
model corresponds to a parameter of the application (e.g., time). In par-
ticular, Euclidean cubical complexes are used to model concurreny in com-
puter programming [4–6,21], hybrid dynamical systems [20], and motion plan-
ning [7]. Consider the application to concurrency. In this example, each axis
represents a sequence of actions a process completes in the program execu-
tion. The complex itself corresponds to “compatible” parameters (i.e., when
the processes can execute simultaneously). Cubes missing from the complex
correspond to parameters for which the processes cannot execute simultane-
ously for some reason, such as when they require the same resources with
limited capacity; see Fig. 1. A directed path (dipath) in the complex repre-
sents a, possibly partial, program execution. Such executions are equivalent if
the corresponding dipaths are directed homotopic. Simplifying the complexes
allows for a more compact representation of the execution space, which, in
turn, reduces the complexity of validating correctness of concurrent programs.

A non-trivial Euclidean cubical complex contains uncountably many di-
paths and more information than we need for understanding the topology of
the spaces of dipaths. The main question we ask is, How can we simplify a
directed Euclidean cubical complex while still preserving spaces of dipaths?

Past links are local representations of a Euclidean cubical complex at
vertices. They were introduced in [21] as a means to show that any finite
homotopy type can be realized as a connected component of the space of
execution paths for some PV -model. In [1], we found conditions for when
the local information of past links preserve the global information on the
homotopy type of spaces of dipaths. Because of these relationships between
past links and dipath spaces, we define collapsing in terms of past links. We
call this type of collapsing link-preserving directed collapse (LPDC). We aim
to compress a Euclidean cubical complex by LPDCs before attempting to
answer questions about dipath spaces.

The main result of this paper is Theorem 3.9, which provides a simple
criterion for such a collapsing to be allowed: A pair of cubes (τ, σ) is an
LPDC pair if and only if it is a collapsing pair in the non-directed sense
and τ does not contain the minimum vertex of σ. This condition greatly sim-
plifies the definition of LPDC and is easy to add to a collapsing algorithm
for Euclidean cubical complexes in the undirected setting. Algorithms and
implementations in this setting already exist such as in [15]. Furthermore,
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of closed cubes in K is in one-to-one correspondence with the open cubes in K.
Specifically, vertices in K correspond to vertices in K and all other elementary
cubes in K correspond to their interiors in K. Throughout this paper, we
denote the set of zero-cubes in K by verts(K) and note that verts(K) ( Zn,
since all cubes in (K,K) are elementary cubes.

The product order on Rn, denoted �, is the partial order such that for two
points p = (p1, p2, . . . , pn) and q = (q1, q2, . . . , qn) in Rn, we have p � q if
and only if pi ≤ qi for each coordinate i. Using this partial order, we define
the interval of points in Rn between p and q as

[p,q] := {x | p � x � q}.

The point p is the minimum vertex of the interval and q is the maxi-
mum vertex of the interval, with respect to �. Notationally, we write this
as min([p,q]) := p and max([p,q]) := q. When q ∈ Zn and p = q + j,
for some j ∈ {0, 1}n, the interval [p,q] is an elementary cube as defined in
Eq. (1). If, in addition, j is not the zero vector, then we say that [v− j,v] is
a lower coface of v.

Using the fact that the partial order (Rn,�) induces a partial order on the
points in K, we define directed paths in K as the set of nondecreasing paths
in K: A path in K is a continuous map from the unit interval I = [0, 1] to K.
We say that a path γ : I → K goes from γ(0) to γ(1). Letting KI denote the
set of all paths in K, the set of directed paths (or dipaths for short) is

−→
P (K) := {γ ∈ KI | ∀i, j s.t. 0 ≤ i ≤ j ≤ 1, γ(i) � γ(j)}.

We topologize
−→
P (K) using the compact-open topology. For p,q ∈ K, we de-

note the subspace of dipaths from p to q by
−→
P q

p(K). We refer to (K,
−→
P (K)) as

a directed Euclidean cubical complex.1 The connected components of
−→
P q

p(K)
are exactly the equivalence classes of dipaths, up to dihomotopy. If two di-
paths, f and g are homotopic through a continuous family of dipaths, then f
and g are called dihomotopic.

Given a directed complex, certain subcomplexes are of interest:

Definition 2.1 (Special Complexes)

Let (K,K) be a directed Euclidean cubical complex in Rn. Let p ∈ verts(K)
and let σ be an elementary cube (that need not be in K).

1. The complex above p is Kp� := {q ∈ K | p � q}.
2. The complex below p is K�p := {q ∈ K | q � p}.

1 Directed Euclidean cubical complexes are an example of a more general concept known

as directed space (d-spaces). To define a d-space, we have a topological space X and we
define a set of dipaths P

′(X) ⊆ X
I that contains all constant paths, and is closed under

taking nondecreasing reparameterizations, concatenations, and subpaths. Indeed,
−→
P (K)

satisfies these properties.
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3. The reachable complex from p is reach(K,p) := {q ∈ K |
−→
P q

p(K) 6= ∅}.
4. The complex restricted to σ is

K|σ :=
⋃

{τ ∈ K | minσ � min τ � max τ � maxσ}.

5. If K = In, then we call (K,K) the standard unit cubical complex and
often denote it by (In, I). If K = In + x for some x ∈ Zn, then K is a
full-dimensional unit cubical complex.

2.2 Past Links of Directed Cubical Compelxes

An abstract simplicial complex is a finite collection S of sets that is closed
under the subset relation, i.e., if A ∈ S and B is a set such that ∅ 6= B ⊆ A,
then B ∈ S. The sets in S are called simplices. If the simplex A has k + 1
elements, then we say that the dimension of A is dim(A) := k, and we say A
is a k-simplex. For example, the zero-simplices are the singleton sets and are
often referred to as vertices. Since every element of a set A ∈ S gives rise to
a singleton set in the finite set S, A must be finite.

In a topological space embedded in Rn, the link of a point v is constructed
by intersecting an arbitrarily small (n − 1)-sphere around v with the space
itself. In Rn, the link of a point is an (n−1)-sphere. Moreover, if v ∈ Zn, the
link inherits the stratification as a subcomplex of Rn, and can be represented
as a simplicial complex whose i-simplices are in one-to-one correspondence
with the (i+1)-dimensional cofaces of v. The past link of v is the restriction
of the link using the set of lower cofaces of v instead of all cofaces. Thus,
we can represent each simplex in the past link as a vector in {0, 1}n \ {0},
where the vector j ∈ {0, 1}n\{0} represents the cube [v−j,v] in the simplex-
cube correspondence. As a simplicial complex, the past link of v in Rn has n
vertices {xi}1≤i≤n, and j represents the simplex {xi|1 ≤ i ≤ n, ji = 1} of
dimension ||j||1 − 1; for example, (1, 0, 0) represents a vertex and (1, 0, 1)
represents an edge. We are now ready to define the past link of a vertex in a
Euclidean cubical complex:

Definition 2.2 (Past Link)

Let (K,K) be a directed Euclidean cubical complex in Rn. Let v ∈ Zn. The
past link of v is the following simplicial complex:

lk−K(v) := {j ∈ {0, 1}n \ {0} | [v − j,v] ⊆ K}.

As a set, the past link represents all elementary cubes in K for which v is the
maximum vertex. As a simplicial complex, it describes (locally) the different
types of dipaths to or through v in K; see Fig. 3.

We conclude this section with a lemma summarizing properties of the past
link, most of which follow directly from definitions:
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let j ∈ lk−K(v). Since v− j � v, then [v− j,v] ⊆ K�v. Therefore, we conclude
that lk−K(v) ⊆ lk−K�v

(v).

Statement 4: Since K = [w − 1,w], we know that K is full-dimensional,
and so for all j ∈ {0, 1}n, [w− j,w] ⊆ K. Thus, by definition of past link, we
have that the past link of w is: lk−K(w) := {0, 1}n\{0}, which is the complete
simplicial complex on n vertices.

Statement 5: Let L = K ∩ [v − 1,v]. By definition of past link, we
know lk−L (v) = lk−K(v). By Statement 2, since L is a subcomplex of [v−1,v],
we know lk−L (v) ⊆ lk−[v−1,v](v). By Statement 4, lk−[v−1,v](v) is the complete

simplicial complex on n vertices. Therefore, lk−K(w) is the complete simplicial
complex on n vertices. �

2.3 Relationship Between Past Links and Path Spaces

The topology of the past links is intrinsically related to spaces of dipaths.
Specifically, in [1] we prove that the contractability and/or connectedness of
past links of vertices in directed Euclidean cubical complexes with a minimum
vertex2 implies that all spaces of dipaths with w as initial point are also
contractible and/or connected.

Theorem 2.4 (Contractability [1, Theorem 1])

Let (K,K) be a directed Euclidean cubical complex in Rn that has a min-
imum vertex w. If, for all vertices v ∈ verts(K), the past link lk−K(v) is

contractible, then the space
−→
P k

w(K) is contractible for all k ∈ verts(K).

An analogous theorem for connectedness also holds.

Theorem 2.5 (Connectedness [1, Theorem 2])

Let (K,K) be a directed Euclidean cubical complex in Rn that has a min-
imum vertex w. Suppose that, for all v ∈ verts(K), the past link lk−K(v) is

connected. Then, for all k ∈ verts(K), the space
−→
P k

w(K) is connected.

Furthermore, we proved a partial converse to Theorem 2.5. Specifically, the
converse holds only if K is a reachable directed Euclidean cubical complex
as defined in Statement 3 of Definition 2.1. This is expected: Properties of
parts of the directed Euclidean complex which are not reachable from w, do
not influence the dipath spaces from w.

Theorem 2.6 (Realizing Obstructions [1, Theorem 3])

Let (K,K) be a directed Euclidean cubical complex in Rn. Let w ∈
verts(K), and let L = reach(K,w). Let v ∈ verts(L). If the past link lk−L (v)

is disconnected, then the space
−→
P v

w(K) is disconnected.

2 In [1], the minimum (initial) vertex was often assumed to be 0 for ease of exposition.
We restate the lemmas and theorems here using more general notation, where K has a

minimum vertex w.
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3 Directed Collapsing Pairs

Although simplicial collapses preserve the homotopy type of the underlying
space [14, Proposition 6.14] and hence of all path spaces, this type of col-
lapsing in directed Euclidean cubical complexes may not preserve topological
properties of spaces of dipaths. In this section, we study a specific type of col-
lapsing called a link-preserving directed collapse. We define link-preserving
directed collapses in Section 3.1 and give properties of link-preserving di-
rected collapses in Section 3.2.

3.1 Link-Preserving Directed Collapses

Since we are interested in preserving the dipath spaces through collapses, the
results from Section 2.3 motivate us to study a type of directed collapse (DC)
via past links, introduced in [1]. However, we call it a link-preserving directed
collapse (LPDC) (as opposed to a directed collapse) since we show in the
last sections of this paper that when the spaces of dipaths starting from the
minimum vertex are not connected, the following definition of collapse does
not preserve the number of components.

Definition 3.1 (Link Preserving Directed Collapse)

Let (K,K) be a directed Euclidean cubical complex in Rn. Let σ ∈ K be a
maximal cube, and let τ be a proper face of σ such that no other maximal cube
contains τ (in this case, we say that τ is a free face of σ). Then, we define
the (τ, σ)-collapse of K as the subcomplex obtained by removing everything
in between τ and σ:

K ′ = K \ {γ ∈ K | τ ⊆ γ ⊆ σ}, (2)

and let K′ denote the stratification of the set K ′ induced by the cubical strat-
ification of Rn (thus, K′ ( K).

We call the directed Euclidean cubical complex (K ′,K′) a link-preserving
directed collapse (LPDC) of (K,K) if, for all v ∈ verts(K ′), the past
link lk−K(v) is homotopy equivalent to lk−K′(v) (denoted lk−K(v) ≃ lk−K′(v)).
The pair (τ, σ) is then called an LPDC pair.

Remark 3.2 (Simplicial Collapses) The study of simplicial collapses is
known as simple homotopy theory [3, 19], and traces back to the work of
Whitehead in the 1930s [18]. The idea is very similar: If C is an abstract
simplicial complex and α ∈ C such that α is a proper face of exactly one
maximal simplex β, then the following complex is the α-collapse of C in the
simplicial setting:

C ′ = C \ {γ ∈ C | α ⊆ γ ⊆ β}.
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From the definition of an LPDC, we see that finding an LPDC pair requires
computing the past link of all vertices in verts(K ′). In [1], we discussed how
we can reduce the check down to only the vertices in σ since no other vertices
have their past links affected. In this paper, we prove we need to only check
one condition to determine if we have an LPDC pair. The one simple condi-
tion dramatically reduces the number of computations we need to perform in
order to verify we have an LPDC. This result given in Theorem 3.9 depends
on the following lemmas about the properties of past links on vertices.

Lemma 3.3 (Properties of Past Links in a Vertex Collapse)

Let (K,K) be a directed Euclidean cubical complex in Rn. Let σ ∈ K
and τ,v ∈ verts(σ) such that τ � v. If τ is a free face of σ and K ′ is
the (τ, σ)-collapse, then the following two statements hold:

1. lk−
K|σ

(v) = {j ∈ {0, 1}n \ {0} | min(σ) � v − j}.

2. lk−
K′|σ

(v) = lk−
K|σ

(v) \ {j ∈ {0, 1}n \ {0} | v − j � τ}.

Proof To ease notation, we define the following two sets:

J := {j ∈ {0, 1}n \ {0} | min(σ) � v − j}

I := {j ∈ {0, 1}n \ {0} | v − j � τ}.

First, we prove Statement 1 (that lk−
K|σ

(v) = J). We start with the for-

ward inclusion. Let j ∈ lk−
K|σ

(v). By the definition of past links (see Def-

inition 2.2), we know that [v − j,v] ⊆ K|σ. By the definition of K|σ (see
Definition 2.1), we know that min(σ) � min([v − j,v]) = v − j. This im-
plies j ∈ J . Therefore, lk−

K|σ
(v) ⊆ J . For the backward inclusion, let j ∈ J .

Then, since v ∈ verts(σ) and σ is an elementary cube by assumption, and
min(σ) � v − j by definition of J , we have v − j ∈ verts(σ). Since σ ∈ K,
all faces must be in K; hence, [v − j,v] ⊆ K|σ. Therefore, j ∈ lk−

K|σ
(v), and

so lk−
K|σ

(v) ⊇ J . Since we have both inclusions, then Statement 1 holds.

Now, we prove Statement 2 (that lk−
K′|σ

(v) = J \ I). Again, we prove the

inclusions in both directions. For the forward inclusion, let j ∈ lk−
K′|σ

(v).

By Statement 2 of Lemma 2.3, we have lk−
K′|σ

(v) ⊆ lk−
K|σ

(v), and so, we

obtain j ∈ lk−
K|σ

(v) = J . Next, we must show that j /∈ I. Assume, for a
contradiction, that j ∈ I. Then, by definition of I, v− j � τ . Since τ � v, we
obtain the partial order v − j � τ � v. This implies that [τ,v] ⊆ [v − j,v].
Since [v− j,v] is an elementary cube in K ′|σ, then its face [τ,v] must also be
an elementary cube in K ′|σ. Setting γ = [τ,v] and observing τ = τ ⊆ γ ⊆ σ,
we observe that γ is not an elementary cube in K ′ by Eq. (2). This gives us
a contradiction and so j /∈ I. Therefore, lk−

K′|σ
(v) ⊆ J \ I.

Finally, we prove the backward inclusion of Statement 2. Let j ∈ J \ I.
Then, by Statement 1, j ∈ lk−

K|σ
(v) and either τ ≺ v−j or τ is not comparable

to v − j under �. Thus, by Eq. (2), [v − j,v] is an elementary cube of K ′|σ.
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The following lemma shows under which condition a directed Euclidean
cubical collapse induces a simplicial collapse in the past link.

Lemma 3.5 (Vertex Collapses that Induce Simplicial Collapse of
Past Links)

Let (K,K) be a directed Euclidean cubical complex in Rn. Let σ ∈ K
and τ,v ∈ verts(σ) such that τ � v and τ 6= min(σ). If τ is a free face of σ
and K ′ is the (τ, σ)-collapse, then lk−K′(v) is the (v − τ)-collapse of lk−K(v)
in the simplicial setting.

Proof Consider K�v. Since τ,v ∈ verts(σ) and σ is maximal in K, we
know [min(σ),v] and [τ,v] are elementary cubes in K�v. Since τ is a free
face of σ, we further know that [min(σ),v] is the only maximal proper coface
of [τ,v] in K�v. By definition of past link (Definition 2.2), we then have
that v − min(σ) and v − τ are simplices in lk−K�v

(v), and v − min(σ) is

the only maximal proper coface of v − τ in lk−K�v
(v). Hence, v − τ is free

in lk−K�v
(v). Moreover, lk−

K′
�v

(v) is the (v − τ)-collapse of lk−K�v
(v). One

can see this by using Statement 2 of Lemma 3.3 by which lk−
K′

�v

(v) can be

characterized as the (v − τ)-collapse of lk−K�v
(v).

By Statement 3 of Lemma 2.3, we know that lk−K(v) = lk−K�v
(v) and

that lk−K′(v) = lk−
K′

�v

(v), which concludes this proof. �

Next, we prove two lemmas concerning relationships of the past link of
a vertex in the original directed Euclidean cubical complex and in the col-
lapsed directed Euclidean cubical complex. These relationships depend on
where v is located with respect to τ . In the first lemma, we consider the case
where min(τ) 6� v, and we present a sufficient condition for past links in K
and the (τ, σ)-collapse to be equal. See Fig. 6 for an example that illustrates
the result of this lemma.

Lemma 3.6 (Condition for Past Links in K and K ′ to be Equal)

Let (K,K) be a directed Euclidean cubical complex in Rn. Let τ, σ ∈ K
such that τ is a face of σ. If τ is a free face of σ and K ′ is the (τ, σ)-collapse,
then, for all v ∈ verts(K) such that max(τ) 6� v, we have lk−K(v) = lk−K′(v).

Proof By Statement 2 of Lemma 2.3, we have lk−K′(v) ⊆ lk−K(v). Thus, we
only need to show lk−K(v) ⊆ lk−K′(v). Suppose j ∈ lk−K(v). By the definition
of the past link (see Definition 2.2), we know that [v− j,v] is an elementary
cube in K. By assumption, max(τ) 6� v. Thus, by Eq. (2), [v − j,v] is not
removed from K and thus is an elementary cube in K ′. Thus, j ∈ lk−K′(v).�

In the following lemma, we consider the case where max(τ) � v, and
we present a sufficient condition for past links in the (τ, σ)-collapse and
the (min(τ), σ)-collapse to be equal. See Fig. 7 for an example that illus-
trates this result.
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And so, by definition of K̂ as a (min(τ), σ)-collapse and since v ∈ K, we

conclude that v ∈ K̂.
Next, we show lk−K′(v) = lk−

K̂
(v). By Statement 2 of Lemma 2.3, we

have lk−
K̂
(v) ⊆ lk−K′(v). Thus, what remains to be proven is lk−K′(v) ⊆ lk−

K̂
(v).

Let j ∈ lk−K′(v). By definition of the past link (Definition 2.2), we know
that [v− j,v] ⊆ K ′. Consider two cases: v− j � min(τ) and v− j 6� min(τ).

Case 1 (v − j � min(τ)): Since v − j � min(τ) � max(τ) � v, we know
that τ ⊆ [v − j,v]. Thus, by Eq. (2), we have [v − j,v] * K ′, which is a
contradiction. So, Case 1 cannot happen.

Case 2 (v − j 6� min(τ)): If v − j 6� min(τ), then, by the definition of

a (min(τ), σ)-collapse in Definition 3.1, we know that [v − j,v] ⊆ K̂ and
thus j ∈ lk−

K̂
(v).

Hence, lk−K′(v) ⊆ lk−
K̂
(v). Since we have both subset inclusions, we con-

clude lk−K′(v) = lk−
K̂
(v). �

In general, the minimal vertex of τ is not free in K and hence, there is
no vertex collapse. In the main theorem, the previous lemma is applied to
a subcomplex of K; specifically, it is applied to the restriction to the unit
cube corresponding to σ, where all vertices, inculding min τ are then free.
The results carry over to K.

The next result states that vertex collapses result in homotopy equivalent
past links as long as we are not collapsing the minimum vertex of the directed
Euclidean cubical complex.

Lemma 3.8 (Past Links in a Vertex Collapse)

Let (K,K) be a directed Euclidean cubical complex in Rn. Let σ ∈ K and
let τ ∈ verts(σ) such that τ 6= min(σ). Let v ∈ verts(K) with v 6= τ . If τ is
a free face of σ and K ′ is the (τ, σ)-collapse, then lk−K(v) ≃ lk−K′(v).

Proof We consider three cases:
Case 1 (v /∈ verts(σ)): By definition of past link (Definition 2.2), if v /∈

verts(σ), then the past links lk−K(v) and lk−K′(v) are equal.
Case 2 (τ 6� v): By Lemma 3.6, if τ = max(τ) 6� v, again we have equality

of the past links lk−K(v) and lk−K′(v).
Case 3 (v ∈ verts(σ) and τ � v): By Lemma 3.5, we know that lk−K′(v)

is the v − τ -collapse of lk−K(v) in the simplicial setting. Since simplicial col-
lapses preserve the homotopy type (see e.g., [14, Proposition 6.14]), we con-
clude lk−K(v) ≃ lk−K′(v).

We give an example of Lemma 3.8 in Fig. 7 by showing how the LPDC
induces a simplicial collapse on past links.

Lastly, we are ready to prove the main result.

Theorem 3.9 (Main Theorem)

Let (K,K) be a directed Euclidean cubical complex in Rn such that there
exist cubes τ, σ ∈ K with τ a free face of σ. Then, (τ, σ) is an LPDC pair if
and only if min(σ) /∈ verts(τ).
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Proof Let v = max(σ) and k = dim(σ). Let (K ′,K′) be the (τ, σ)-collapse
of K. Let (L,L) be the cubical complex such that L = K|σ. Since σ ∈ K, we
know L = σ (i.e., L is a unit cube). Since L is a single unit cube and σ is a
maximal elementary cube, all proper faces of σ, including τ and min(τ), are

free faces in L. Thus, let (L′,L′) be the (τ, σ)-collapse of L, and let (L̂, L̂) be
the (min(τ), σ)-collapse of L.

We first prove the forward direction by contrapositive (if min(σ) ∈
verts(τ), then (τ, σ) is not an LPDC pair). Assume min(σ) ∈ verts(τ). By
Corollary 3.4, we obtain lk−L (v) is homeomorphic to Bk−1 and lk−

L̂
(v) is home-

omorphic to Sk−2. Since min(σ) ∈ verts(τ), we know that min(σ) = min(τ).
Since τ is a face of σ, we know max(τ) � max(σ) = v. Since min(σ) =
min(τ) ∈ verts(τ) and since τ is a proper face of σ, we know that v 6= max(τ).
Thus, v ∈ verts(L′). Applying Lemma 3.7, we obtain lk−L′(v) = lk−

L̂
(v).

Putting this all together, we have:

lk−L (v) ≃ Bd−1 6≃ Sk−2 ≃ lk−
L̂
(v) = lk−L′(v),

and so lk−L (v) 6≃ lk−L′(v).
Since no faces of σ are in K \ L, the past link of v remains the same

outside of L in both K and K ′. Thus, lk−K(v) 6≃ lk−K′(v) and so we conclude
that (τ, σ) is not an LPDC pair, as was to be shown.

Next, we show the backwards direction. Suppose min(σ) 6∈ verts(τ).
Let v ∈ verts(K ′), and consider two cases: max(τ) � v and max(τ) � v.

Case 1 (max(τ) � v): By Lemma 3.6, we have lk−K(v) = lk−K′(v).
Hence, lk−K(v) ≃ lk−K′(v). Since v was arbitrarily chosen, we conclude
that (τ, σ) is an LPDC pair.

Case 2 (max(τ) � v): By Lemma 3.7, we have that lk−L′(v) = lk−
L̂
(v).

Since min(σ) 6∈ verts(τ), we know that min(τ) 6= min(σ). Applying Lemma 3.8,
we obtain lk−L (v) ≃ lk−

L̂
(v). Again, since no faces of σ are removed from K

and K′ to obtain L and L′, the past link of v remains the same outside of L
in both K and K ′. Thus, lk−K(v) ≃ lk−K′(v). Since v was arbitrarily chosen,
we conclude that (τ, σ) is an LPDC pair. �

4 Preservation of Spaces of Dipaths

In [1], we proved several results on the relationships between past links and
spaces of dipaths. One result, Theorem 2.4, states that for a directed Eu-
clidean cubical complex with a minimum vertex, if all past links are con-
tractible, then all spaces of dipaths starting at that minimum vertex are also
contractible. If we start with a directed Euclidean cubical complex with a
minimum vertex that has all contractible past links, then all spaces of di-
paths from the minimum vertex are contractible by this theorem. We explain
how those relationships extend to the LPDC setting in this section.
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Both Theorem 2.4 and Theorem 2.5 have assumptions on the topology of
past links and results on the topology of spaces of dipaths from the minimum
vertex. We may ask if the converse statements are true. Does knowing the
topology of spaces of dipaths from the minimum vertex tell us anything about
the topology of past links? The converse to Theorem 2.4 holds. To prove this,
we first need a lemma whose proof appears in [21].

Lemma 4.3 (Homotopy Equivalence [21, Prop. 5.3])

Let (K,K) be a directed Euclidean cubical complex in Rn. Let p,q ∈ Zn.

If
−→
P q−j

p (K) is contractible for all j ∈ lk−K(q), then
−→
P q

p(K) ≃ lk−Kp�
(q).

Thus, we obtain:

Theorem 4.4 (Contractability)

Let (K,K) be a directed Euclidean cubical complex in Rn that has a mini-
mum vertex w. The following two statements are equivalent:

1. For all v ∈ verts(K), the space of dipaths
−→
P v

w(K) is contractible.
2. For all v ∈ verts(K), the past link lk−K(v) is contractible.

Proof By Theorem 2.4, we obtain Statement 2 implies Statement 1.
Next, we show that Statement 1 implies Statement 2. Let v ∈ verts(K).

For all j ∈ lk−K(v), the cube [v − j,v] is a subset of K, which means

that v − j ∈ verts(K). Thus, by assumption, all dipath spaces
−→
P v−j

w (K) are

contractible. By Lemma 4.3, we know that
−→
P v

w(K) ≃ lk−Kw�
(v) = lk−K(v).

Again, since v ∈ verts(K), the dipath space
−→
P v

w(K) is contractible. There-
fore, lk−K(v) is contractible. �

As a consequence of this theorem, we know that if we start with a directed
Euclidean cubical complex with contractible dipath spaces starting at the
minimum vertex, then any LPDC also result in a directed Euclidean cubical
complex with all contractible dipath spaces starting at the minimum vertex,
and vice versa.

Corollary 4.5 (Preserving Directed Path Space Contractability)
Let (K,K) be a directed Euclidean cubical complex in Rn that has a minimum
vertex w. Let τ, σ ∈ K such that τ is a face of σ. If τ is a free face of σ,
let (K ′,K′) be the (τ, σ)-collapse. If K ′ is an LPDC of K, then the spaces of

dipaths
−→
P v

w(K) are contractible for all v ∈ verts(K) if and only if the spaces

of dipaths
−→
P k

w(K ′) are contractible for all k ∈ verts(K ′).

Proof We start with the forwards direction by assuming that the spaces of

dipaths
−→
P v

w(K) are contractible for all v ∈ verts(K). Theorem 4.4 tells us
that all past links lk−K(v) are contractible for all v ∈ verts(K). This implies
that lk−K′(k) is contractible for all k ∈ verts(K ′) because K ′ is an LPDC
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of K. Applying Theorem 4.4 again, we see that all spaces of dipaths
−→
P k

w(K ′)
are contractible for all k ∈ verts(K ′).

Next we prove the backwards direction by assuming that the spaces of

dipaths
−→
P k

w(K ′) are contractible for all k ∈ verts(K ′). Let v ∈ verts(K).
Either v ∈ verts(K ′) or v /∈ verts(K ′).

Case 1 (v ∈ verts(K ′)): By Theorem 4.4, we know that lk−K′(v) is con-
tractible. Since K ′ is an LPDC of K, then lk−K(v) is also contractible.

Case 2 (v /∈ verts(K ′)): If v /∈ verts(K), then τ is a vertex and v = τ .
Observe that lk−σ (τ) is contractible since σ is an elementary cube and τ does
not contain min(σ). Furthermore, notice that lk−K(τ) = lk−σ (τ) because τ is
a free face of σ. Hence, lk−K(τ) is contractible.

Therefore lk−K(v) is contractible for all v ∈ verts(K). Applying Theo-

rem 4.4, we get that
−→
P v

w(K) is contractible for all v ∈ verts(K). �

Using Theorem 2.5 and the partial converse to the connectedness theo-
rem [1, Theorem 3], we get that any LPDC of a directed Euclidean cubical
complex with connected dipath spaces and reachable vertices results in a
directed Euclidean cubical complex with connected dipath spaces.

Corollary 4.6 (Condition for LPDCs to Preserve Connectedness of
All Directed Path Spaces)

Let (K,K) be a directed Euclidean cubical complex in Rn that has a mini-
mum vertex w. Let (L,L) = reach(K,w). Let (τ, σ) be an LPDC pair in L,

and let L′ be the (τ, σ)-collapse. The spaces of dipaths in
−→
P k

w(L) are con-

nected for all v ∈ verts(L) if and only if the spaces of dipaths
−→
P v

w(L′) are
connected for all v ∈ verts(L′).

We note that reachability is a necessary condition. Below we give an exam-
ple of a directed Euclidean cubical complex K that has all connected dipath
spaces but an LPDC yields a directed Euclidean cubical complex with a dis-
connected path space.

Example 4.7 (Bowling Ball)

Let K be the boundary of the 5 × 5 × 5 grid union [(4, 1, 1), (5, 2, 2)]
and [(4, 3, 3), (5, 4, 4)]\ [(5, 3, 3), (5, 4, 4)]. See Fig. 9(a). Notice that some ver-
tices of K are unreachable, for example, vertex (4, 1, 1). Furthermore, all past
links of vertices in K are connected and so all dipath spaces starting at 0
are also connected. After performing an LPDC with τ = [(5, 1, 1), (5, 2, 2)]
and σ = [(4, 1, 1), (5, 2, 2)], the dipath space between 0 and (5, 5, 5) changes
from having one connected component to three connected components, as
shown in the figure. This example shows that the reachability condition
in Corollary 4.6 is necessary for preserving connnectedness in LPDCs.

LPDCs can also preserve dihomotopy classes of dipaths starting at the
minimum vertex of many directed Euclidean cubical complexes that have
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know that p1, p2, q1, and q2 are points in K ′. Since f is a directed retraction,
we have that p1 = f(p1) � f(τ) and that p2 = f(p2) � f(τ). Similarly, we
obtain that f(τ) � f(q1) = q1 and that f(τ) � f(q2) = q2.

Let x1, x2, x3, x4 ∈ I such that f(τ) = (x1, x2, x3, x4). Then,

p1 � f(τ) ⇒ x2 ≥ 1 and hence x2 = 1,

p2 � f(τ) ⇒ x1 ≥ 1 and hence x1 = 1,

f(τ) � q1 ⇒ x4 ≤ 0 and hence x4 = 0,

f(τ) � q2 ⇒ x3 ≤ 0 and hence x3 = 0.

Thus, f(τ) = (1, 1, 0, 0) = τ , which is not in K ′ and hence a contradiction.
In fact, this argument extends to (Ik, Ik) for k ≥ 4.

As further evidence that such a (τ, σ)-collapse does not preserve the di-
rected topology, consider the spaces of dipaths in (I4, I4) and (K ′,K′). We
would need dipaths in the original space to map to dipaths in the collapsed
space. However, notice that the dipath from p1 to q1 through τ cannot be
mapped to a dipath in (K ′,K′).

We observe that vertex LPDCs appear to not introduce the problems of
unreachability and deadlocks. These observations lead us to suspect that
studying unreachability, deadlocks, and vertex LPDCs can help us better
understand when LPDCs preserve and do not preserve dipath spaces between
the minimum and a given vertex. We leave this as future work.

In summary, we provide an easy criterion for determining when we have
an LPDC pair, as well as discuss various settings for when LPDCs preserve
spaces of dipaths. Fully understanding when LPDCs preserve spaces of di-
paths between two given vertices is a step towards developing algorithms
that compress directed Euclidean cubical complexes and preserve directed
topology.
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21. Krzysztof Ziemiański. On execution spaces of PV-programs. Theoretical Computer

Science, 619:87–98, March 2016.


