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Abstract While collapsibility of CW complexes dates back to the 1930s, col-
lapsibility of directed Euclidean cubical complexes has not been well studied
to date. The classical definition of collapsibility involves certain conditions
on pairs of cells of the complex. The direction of the space can be taken into
account by requiring that the past links of vertices remain homotopy equiv-
alent after collapsing. We call this type of collapse a link-preserving directed
collapse. In the undirected setting, pairs of cells are removed that create a
deformation retract. In the directed setting, topological properties—in partic-
ular, properties of spaces of directed paths—are not always preserved. In this
paper, we give computationally simple conditions for preserving the topol-
ogy of past links. Furthermore, we give conditions for when link-preserving
directed collapses preserve the contractability and connectedness of spaces of
directed paths. Throughout, we provide illustrative examples.
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1 Introduction

A directed Euclidean cubical complex is a subset of R™ comprising a finite
union of directed unit cubes. Directed paths (i.e., paths that are nondecreas-
ing in all coordinates) and spaces of directed paths are the objects of study
in this paper. In particular, we address the question of how to simplify di-
rected Euclidean complexes without significantly changing the spaces of di-
rected paths.

This model is motivated by several applications, where each axis of the
model corresponds to a parameter of the application (e.g., time). In par-
ticular, Euclidean cubical complexes are used to model concurreny in com-
puter programming [4-6,21], hybrid dynamical systems [20], and motion plan-
ning [7]. Consider the application to concurrency. In this example, each axis
represents a sequence of actions a process completes in the program execu-
tion. The complex itself corresponds to “compatible” parameters (i.e., when
the processes can execute simultaneously). Cubes missing from the complex
correspond to parameters for which the processes cannot execute simultane-
ously for some reason, such as when they require the same resources with
limited capacity; see Fig. 1. A directed path (dipath) in the complex repre-
sents a, possibly partial, program execution. Such executions are equivalent if
the corresponding dipaths are directed homotopic. Simplifying the complexes
allows for a more compact representation of the execution space, which, in
turn, reduces the complexity of validating correctness of concurrent programs.

A non-trivial Euclidean cubical complex contains uncountably many di-
paths and more information than we need for understanding the topology of
the spaces of dipaths. The main question we ask is, How can we simplify a
directed Euclidean cubical complex while still preserving spaces of dipaths?

Past links are local representations of a Euclidean cubical complex at
vertices. They were introduced in [21] as a means to show that any finite
homotopy type can be realized as a connected component of the space of
execution paths for some PV-model. In [1], we found conditions for when
the local information of past links preserve the global information on the
homotopy type of spaces of dipaths. Because of these relationships between
past links and dipath spaces, we define collapsing in terms of past links. We
call this type of collapsing link-preserving directed collapse (LPDC). We aim
to compress a Euclidean cubical complex by LPDCs before attempting to
answer questions about dipath spaces.

The main result of this paper is Theorem 3.9, which provides a simple
criterion for such a collapsing to be allowed: A pair of cubes (1,0) is an
LPDC pair if and only if it is a collapsing pair in the non-directed sense
and T does not contain the minimum vertex of o. This condition greatly sim-
plifies the definition of LPDC and is easy to add to a collapsing algorithm
for Euclidean cubical complexes in the undirected setting. Algorithms and
implementations in this setting already exist such as in [15]. Furthermore,
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Fig. 1: The Swiss Flag and Three Directed Paths. The gray and blue squares
are the two-cubes of a Euclidean cubical complex. The bi-monotone increasing
paths are directed paths starting at (0,0) and ending at (5,5). This complex
has a cross-shaped hole in the middle. As a consequence, the solid directed
paths are directed homotopic while the dashed directed path is not directed
homotopic to either of the other directed paths. Each point highlighted in
blue is unreachable, meaning that we cannot reach any point highlighted
in blue without breaking bi-monotonicity in a path starting at (0,0). This
complex models the dining philsophers problem, a well-known example in
concurrency, where two processes require two shared resources with limited
capacity [4,12]. The two distinct paths (solid and dashed) represent which
process uses both shared resources first.[[for camera-ready: BTF + NS
rewrote this figure caption. Can someone else take a look?]]

we provide conditions for when LPDCs preserve the contractability and con-
nectedness of dipath spaces (Section 4) along with a discussion of some of the
limitations (Section 5). This work provides a start at the mathematical foun-
dations for developing polynomial time algorithms that collapse Euclidean
cubical complexes and preserve dipath spaces.

2 Background

This paper builds on our prior work [1], as well as work by others [6,9, 10,
16,21]. In this section, we recall the definitions of directed Euclidean cubical
complexes, which are the objects that we study in this paper. Then, we discuss
the relationship between spaces of directed paths and past links in directed
Fuclidean cubical complexes. For additional background on directed topology
(including generalizations of the definitions below), we refer the reader to [5].
We also assume the reader is familiar with the notion of homotopy equivalence
of topological spaces (denoted using ~ in this paper) and homotopy between
paths as presented in [11].
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2.1 Directed Spaces and Euclidean Cubical Complexes

Let n be a positive integer. A (closed) elementary cube in R™ is a product of
closed intervals of the following form:

[1)1 7].1,1)1] X [1)2 7].2,1)2] X ... X [Un 7].”,1)”] g Rn, (1)

where v = (v1,v2,...,0,) € Z" and j = (j1,J2,---,jn) € {0,1}™. We often
refer to elementary cubes simply as cubes. The dimension of the cube is the
number of unit entries in the vector j; specifically, the dimension of the cube
in Eq. (1) is the sum: ", j;. In particular, when j = 0 := (0,0,...,0), the
elementary cube is a single point and often denoted using just v. If 7 and ¢
are elementary cubes such that 7 C o, we say that 7 is a face of o and that o
is a coface of 7. Cubical sets were first introduced in the 1950s by Serre [17]
in a more general setting; see also [2,8,13].

0

Fig. 2: Euclidean cubical complex in R? with 24 zero-cubes (vertices), 28 one-
cubes (edges), and six two-cubes (squares). By construction, all elementary
cubes in a directed Euclidean cubical complex are axis aligned. Consider
the vertex v = (3,4). The edge e = [(2,4), (3,4)] (written e = [2,3] x [4, 4]
in the notation of Eq. (1)) is one of the two lower cofaces of v. Since e is
not a face of any two-cube, e is a maximal cube (since it is not a face of a
higher-dimensional cube).

Elementary cubes stratify R, where two points z,y € R™ are in the same
stratum if and only if they are members of the same set of elementary cubes;
we call this the cubical stratification of R™. Each stratum in the stratification
is either an open cube or a single point. A Fuclidean cubical complex (K, K)
is a subspace K C R” that is equal to the union of a finite set of elementary
cubes, together with the stratification X induced by the cubical stratification
of R™; see Fig. 2. We topologize K using the subspace topology with the
standard topology on R™. By construction, if o € K, then all of its faces are
necessarily in K as well. If 0 € K with no proper cofaces, then we say that o is
a mazimal cube in K. We denote the set of closed cubes in (K, K) by K; the set
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of closed cubes in K is in one-to-one correspondence with the open cubes in K.
Specifically, vertices in K correspond to vertices in K and all other elementary
cubes in K correspond to their interiors in . Throughout this paper, we
denote the set of zero-cubes in K by verts(K) and note that verts(K) C Z",
since all cubes in (K, K) are elementary cubes.

The product order on R™, denoted =, is the partial order such that for two
points p = (p1,p2,---,Pn) and @ = (q1,¢2,---,Gs) in R, we have p < q if
and only if p; < g; for each coordinate i. Using this partial order, we define
the interval of points in R™ between p and q as

[p.q] :={x|p=x=q}.

The point p is the minimum vertex of the interval and q is the maxi-
mum vertex of the interval, with respect to <. Notationally, we write this
as min([p,q]) := p and max([p,q]) := q. When q € Z" and p = q + j,
for some j € {0,1}", the interval [p,q| is an elementary cube as defined in
Eq. (1). If; in addition, j is not the zero vector, then we say that [v — j, v] is
a lower coface of v.

Using the fact that the partial order (R™, <) induces a partial order on the
points in K, we define directed paths in K as the set of nondecreasing paths
in K: A path in K is a continuous map from the unit interval I = [0, 1] to K.
We say that a path v: I — K goes from 7(0) to v(1). Letting K! denote the
set of all paths in K, the set of directed paths (or dipaths for short) is

PK)={ye K |Vijst. 0<i<j<1,4() <)}

We topologize ?(K) using the compact-open topology. For p,q € K, we de-
note the subspace of dipaths from p to q by ?E(K). We refer to (K, P (K)) as
a directed Euclidean cubical complez.! The connected components of a(K)
are exactly the equivalence classes of dipaths, up to dihomotopy. If two di-
paths, f and g are homotopic through a continuous family of dipaths, then f
and g are called dihomotopic.

Given a directed complex, certain subcomplexes are of interest:

Definition 2.1 (Special Complexes)
Let (K, K) be a directed Euclidean cubical complex in R™. Let p € verts(K)
and let o be an elementary cube (that need not be in ).

1. The complex above p is Kp< :={q € K | p < q}.
2. The complex below p is K<p :={q € K | q =< p}.

I Directed Euclidean cubical complexes are an example of a more general concept known
as directed space (d-spaces). To define a d-space, we have a topological space X and we
define a set of dipaths P’(X) C X that contains all constant paths, and is closed under
taking nondecreasing reparameterizations, concatenations, and subpaths. Indeed, ?(K)
satisfies these properties.
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3. The reachable complex from p is reach(K,p) :={q € K | 33([() £ (0}.
4. The complex restricted to o is

K|, = U{T € K | mino < min7 < max7 < maxo}.

5. If K = I, then we call (K,K) the standard unit cubical complex and
often denote it by (I™,I). If K = I™ + x for some x € Z", then K is a
full-dimensional unit cubical complex.

2.2 Past Links of Directed Cubical Compelxes

An abstract simplicial complez is a finite collection S of sets that is closed
under the subset relation, i.e., if A € S and B is a set such that ) # B C A,
then B € S. The sets in S are called simplices. If the simplex A has k + 1
elements, then we say that the dimension of A is dim(A) := k, and we say A
is a k-simplex. For example, the zero-simplices are the singleton sets and are
often referred to as vertices. Since every element of a set A € S gives rise to
a singleton set in the finite set S, A must be finite.

In a topological space embedded in R™, the link of a point v is constructed
by intersecting an arbitrarily small (n — 1)-sphere around v with the space
itself. In R™, the link of a point is an (n — 1)-sphere. Moreover, if v € Z™, the
link inherits the stratification as a subcomplex of R™, and can be represented
as a simplicial complex whose i-simplices are in one-to-one correspondence
with the (i 4 1)-dimensional cofaces of v. The past link of v is the restriction
of the link using the set of lower cofaces of v instead of all cofaces. Thus,
we can represent each simplex in the past link as a vector in {0,1}™ \ {0},
where the vector j € {0,1}™\ {0} represents the cube [v—j, v] in the simplex-
cube correspondence. As a simplicial complex, the past link of v in R™ has n
vertices {z;}1<i<n, and j represents the simplex {x;|1 < i < n,j; = 1} of
dimension ||j||; — 1; for example, (1,0,0) represents a vertex and (1,0, 1)
represents an edge. We are now ready to define the past link of a vertex in a
Euclidean cubical complex:

Definition 2.2 (Past Link)

Let (K, K) be a directed Euclidean cubical complez in R™. Let v € Z™. The
past link of v is the following simplicial complex:

Il (v) = {j € {0,1}"\ {0} | [v —j.v] € K.

As a set, the past link represents all elementary cubes in K for which v is the
maximum vertex. As a simplicial complex, it describes (locally) the different
types of dipaths to or through v in K; see Fig. 3.

We conclude this section with a lemma summarizing properties of the past
link, most of which follow directly from definitions:
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\4 X
€1
€2
(a) Past Link of v (b) Past Link of x

Fig. 3: Past link in the Open Top Box. (a) The maximum vertex of this com-
plex is v = (v1,v2,v3). The past link 1k, (v) is the simplicial complex com-
prising three vertices and two edges (shown in blue/cyan). These simplices are
in one-to-one correspondence with the set of lower cofaces of v (highlighted
in pink). For example, the edges of 1k, (v), which are labeled e; and es, are
in one-to-one correspondence with the elementary two-cubes that are lower
cofaces of v (o1 = [(v1—1,v2,v3—1),v] and o5 = [(v1,v2—1, v3—1), v], respec-
tively). In the vector notation for simplices of 1k (v), we write e; = (1,0,1)
and ez = (0, 1,1). (b) The past link of a vertex x that is neither the minimum
nor the maximum vertex in the complex.

Lemma 2.3 (Properties of Past Links)

Let (K,K) be a directed Euclidean cubical complex in R™. Then, the fol-
lowing statements hold for all v € Z™:

1. Ik (v) = Upern Ly (v).

2. If (K',K") is a subcomplex of (K,K), then Ik, (v) Clk,(v).

3. ki (v) = lky (v).

4. If there exists w € 7" such that K = [w — 1,w]|, then lk(w) is the
complete simplicial complex on n vertices.

5. ke (v) is a subcomplex of the complete simplicial complex on n ver-
tices. [[for camera-ready: this is nol ciled in the proofs, but I think we
do use il. can we identify where so thal it can be cited?]]

Proof Statement 1: If K = (), then all past links are empty and the equality
trivially holds. If K = {), then verts(K) is a finite non empty set. Thus,
there exists q € R™ such that for all w € verts(K), q = w. Let j € lk(v).
Then, [v —j,v] € K and so v —j € verts(K). Hence, ¢ < v — j, which means
that j € lkye  (v) € Upepn Ly (v). The reverse inclusion follows from the
fact that each of these statements holds if and only if.

Statement 2: Observe that if j € lky, (v), then, by definition of the past
link, [v —j,v] € K'. Since K’ C K, we have [v — j,v] € K’ C K. Therefore,
we can conclude that j € Ik (v).

Statement & By Statement 2 (which we just proved), we have the following
inclusion kg (v) C lkg(v). To prove the inclusion in the other direction,
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let j € Ik (v). Since v—j < v, then [v—j,v] C K<y. Therefore, we conclude
that lkp (v) C kg (v).

Statement 4: Since K = [w — 1, w], we know that K is full-dimensional,
and so for all j € {0,1}", [w —j, w] C K. Thus, by definition of past link, we
have that the past link of w is: k- (w) := {0,1}™\ {0}, which is the complete
simplicial complex on n vertices.

Statement &5 Let L = K N [v — 1,v]. By definition of past link, we
know lk; (v) = Ik (v). By Statement 2, since L is a subcomplex of [v—1,v],
we know 1k, (v) C | (v). By Statement 4, | . (v) is the complete
simplicial complex on n vertices. Therefore, Ik (w) is the complete simplicial
complex on n vertices. O

2.3 Relationship Between Past Links and Path Spaces

The topology of the past links is intrinsically related to spaces of dipaths.
Specifically, in [1] we prove that the contractability and/or connectedness of
past links of vertices in directed Euclidean cubical complexes with a minimum
vertex? implies that all spaces of dipaths with w as initial point are also
contractible and/or connected.

Theorem 2.4 (Contractability [1, Theorem 1])

Let (K,K) be a directed Euclidean cubical complex in R™ that has a min-
imum vertex w. If, for all vertices v € verts(K), the past link 1k (v) is
contractible, then the space ?k (K) is contractible for all k € verts(K).

w

An analogous theorem for connectedness also holds.

Theorem 2.5 (Connectedness [1, Theorem 2])

Let (K,K) be a directed Euclidean cubical complex in R™ that has a min-
imum vertex w. Suppose that, for all v € verts(K), the past link 1k (v) is
connected. Then, for all k € verts(K), the space PX(K) is connected.

w

Furthermore, we proved a partial converse to Theorem 2.5. Specifically, the
converse holds only if K is a reachable directed Euclidean cubical complex
as defined in Statement 3 of Definition 2.1. This is expected: Properties of
parts of the directed Euclidean complex which are not reachable from w, do
not influence the dipath spaces from w.

Theorem 2.6 (Realizing Obstructions [1, Theorem 3])

Let (K,K) be a directed Euclidean cubical complex in R™. Let w €
verts(K), and let L = reach(K,w). Let v € verts(L). If the past link 1k (v)

is disconnected, then the space P¥,(K) is disconnected.

2 In [1], the minimum (initial) vertex was often assumed to be O for ease of exposition.
We restate the lemmas and theorems here using more general notation, where K has a
minimum vertex w.
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3 Directed Collapsing Pairs

Although simplicial collapses preserve the homotopy type of the underlying
space [14, Proposition 6.14] and hence of all path spaces, this type of col-
lapsing in directed Euclidean cubical complexes may not preserve topological
properties of spaces of dipaths. In this section, we study a specific type of col-
lapsing called a link-preserving directed collapse. We define link-preserving
directed collapses in Section 3.1 and give properties of link-preserving di-
rected collapses in Section 3.2.

3.1 Link-Preserving Directed Collapses

Since we are interested in preserving the dipath spaces through collapses, the
results from Section 2.3 motivate us to study a type of directed collapse (DC)
via past links, introduced in [1]. However, we call it a link-preserving directed
collapse (LPDC) (as opposed to a directed collapse) since we show in the
last sections of this paper that when the spaces of dipaths starting from the
minimum vertex are not connected, the following definition of collapse does
not preserve the number of components.

Definition 3.1 (Link Preserving Directed Collapse)

Let (K,K) be a directed Euclidean cubical complex in R™. Let o € K be a
mazimal cube, and let T be a proper face of o such that no other maximal cube
contains T (in this case, we say that T is a free face of o). Then, we define
the (1,0)-collapse of K as the subcomplex obtained by removing everything
in between T and o:

K'=K\{yeKk|T<7yCqa}, (2)

and let K' denote the stratification of the set K' induced by the cubical strat-
ification of R™ (thus, K' C K).

We call the directed Fuclidean cubical complex (K',K’) a link-preserving
directed collapse (LPDC) of (K,K) if, for all v € verts(K'), the past
link 1k (v) is homotopy equivalent to kg, (v) (denoted ki (v) ~ 1k, (v)).
The pair (7,0) is then called an LPDC pair.

Remark 3.2 (Simplicial Collapses) The study of simplicial collapses is
known as simple homotopy theory [3, 19/, and traces back to the work of
Whitehead in the 1930s [18]. The idea is very similar: If C is an abstract
simplicial compler and o € C' such that o is a proper face of exactly one
mazximal simplex [, then the following complex is the a-collapse of C in the
simplicial setting:

C'=C\{yeClaCyCp}
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Nole thal we use only the free face (o) when defining a simplicial collapse,
as doing so helps to distinguish between discussing a simplicial collapse and
a directed Fuclidean cubical collapse. In addition, we always explicitly state
“in the simplicial setting” when talking about a simplicial collapse.

Applying a sequence of LPDCs to a directed Euclidean cubical complex
can reduce the number of cubes, and hence can more clearly illustrate the
number of dihomotopy classes of dipaths within the directed Euclidean cubi-
cal complex. For an example, see Fig. 4. However, it is not necessarily true
that LPDCs preserve dipath spaces. We discuss the relationship between di-
path spaces and LPDCs in Section 4.

° (5.5) ° (5,5) ° (55)
O o
o
O
O O
o © o © o ©
(a) Swiss Flag (b) First Round (¢) Second Round
(5,5) (5,5) (5,5)

] 5
o |—
o © o o
(d) Third Round (e) Fourth Round (f) After Collapses

Fig. 4: Collapsing the Swiss Flag. A sequence of vertex collapses is presented
from the top left to bottom right. At each stage, the faces and vertices shaded
in blue and purple represent the vertex collapsing pairs with the blue Eu-
clidean cube being ¢ and the purple vertex being 7. The result of the se-
quence of LPDCs is shown in (f) is a one-dimensional directed Euclidean
cubical complex and one two-cube. Observe that this directed Euclidean cu-

bical complex clearly illustrates the two dihomotopy classes of ?65’5)(1( ).

3.2 Properties of LPDCs

We give a combinatorial condition for a collapsing pair (7,0) to be an LPDC
pair; namely, the condition is that 7 does not contain the vertex min(o).
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From the definition of an LPDC, we see that finding an LPDC pair requires
computing the past link of all vertices in verts(K’). In [1], we discussed how
we can reduce the check down to only the vertices in ¢ since no other vertices
have their past links affected. In this paper, we prove we need to only check
one condition to determine if we have an LPDC pair. The one simple condi-
tion dramatically reduces the number of computations we need to perform in
order to verify we have an LPDC. This result given in Theorem 3.9 depends
on the following lemmas about the properties of past links on vertices.

Lemma 3.3 (Properties of Past Links in a Vertex Collapse)

Let (K,K) be a directed Euclidean cubical complex in R". Let 0 € K
and T,v € verts(o) such that 7 <X v. If 7 is a free face of o and K’ is
the (1,0)-collapse, then the following two statements hold:

1.1k, (v) = {j € {0,137\ {0} | min(o) < v — j}.
2.l (v) = kg (V) \ G € {0, 1"\ {0} | v —j < 7).

Proof To ease notation, we define the following two sets:

J:={j €{0,1}"\ {0} [ min(o) X v —j}
Ii={je{0,1}"\{0} [v—-j=}

lo

First, we prove Statement I (that Ik (v) = J). We start with the for-
ward inclusion. Let j € lkp (v). By the definition of past links (see Def-
inition 2.2), we know that [v — j,v] C K|,. By the definition of K|, (see
Definition 2.1), we know that min(o) < min([v — j,v]) = v — j. This im-
plies j € J. Therefore, lk;ﬂg(v) C J. For the backward inclusion, let j € J.
Then, since v € verts(o) and o is an elementary cube by assumption, and
min(o) < v — j by definition of J, we have v — j € verts(c). Since o € K,
all faces must be in K; hence, [v —j,v] € K|,. Therefore, j € lky| (v), and
SO lkl_(la (v) D J. Since we have both inclusions, then Statement I holds.

Now, we prove Statement 2 (that 1k;(,‘g(v) = J\ I). Again, we prove the
inclusions in both directions. For the forward inclusion, let j € lk}/|0(v)~
By Statement 2 of Lemma 2.3, we have Ik, (v) C lki, (v), and so, we

obtain j € lkl_(la(v) = J. Next, we must show that j ¢ I. Assume, for a
contradiction, that j € I. Then, by definition of I, v —j <X 7. Since 7 < v, we
obtain the partial order v — j < 7 < v. This implies that [r,v] C [v — j,V].
Since [v —j, v] is an elementary cube in K’|,, then its face [r, v] must also be
an elementary cube in K’|,. Setting ¥ = [r, v] and observing 7 =7 C 5 C 7,
we observe that v is not an elementary cube in K’ by Eq. (2). This gives us
a contradiction and so j ¢ I. Therefore, Ik, (v) € J\ 1.

Finally, we prove the backward inclusion of Statement 2. Let j € J \ I.
Then, by Statement 1, j € lk;qa (v) and either 7 < v—j or 7 is not comparable
to v — j under <. Thus, by Eq. (2), [v — j, v] is an elementary cube of K'|,.
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Thus, by Definition 2.2, we have that j € Ik, (v). Hence, J\I Clky, (v),
and so Statement 2 holds. O

Using Lemma 3.3, we see why 7 cannot be the vertex min(c) when per-
forming an LPDC. If 7 = min(o), then

Ik, (v) ={i €{0,1}"\ {0} | min(o) < v —j}
Vi €{0, 11"\ {0} [ v —j = min(0)}
={je{0,1}"\ {0} | min(o) = v—j and v — j > min(c)}
— (e {0.1)"\ {0} | min(o) < v )
={j €{0,1}"\{0} | j < v —min(o)}.

If v is the maximum vertex of o, then we obtain Ik, (v)={0,1}"\{0,v—

min(c)}. This computation gives us the following corollary, which we illus-
trate in Fig. 5 when K is a single closed three-cube.

Corollary 3.4 (Caution for a (min(c),s)-Collapse)

Let (K,K) be a directed Euclidean cubical complex in R™. Let 0 € K,
7 =min(o), and v € verts(c). If 7 is a free face and K' is the (1,0)-collapse,
then the past link of v in K'|, is:

{3 €{0,1}"\ {0} [j < v —min(0)}

In particular, if v = max(c) and k = dim(c), then the past link is the
complete complex on k elements before the collapse, and, after the collapse,
it is homeomorphic to S*=2. Thus, (1,0) is not an LPDC pair.

T [
(a) Initial Complex (b) After Collapse

Fig. 5: Removing the minimum vertex of a cube. Consider the directed Eu-
clidean cubical complex in (a), which as a subset of R?® is a single closed
three-cube; call this three-cube o. Letting 7 = min(c), we observe that the
past link of v = max(o) is contractible before the (7, c)-collapse and is home-
omorphic to S! after the collapse. Thus, the past links before and after the
collapse are not homotopy equivalent, and so this collapse is not an LPDC.
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The following lemma shows under which condition a directed Euclidean
cubical collapse induces a simplicial collapse in the past link.

Lemma 3.5 (Vertex Collapses that Induce Simplicial Collapse of
Past Links)

Let (K,K) be a directed Euclidean cubical complex in R". Let 0 € K
and T,v € verts(o) such that 7 < v and 7 # min(c). If T is a free face of o
and K’ is the (1,0)-collapse, then Ik, (v) is the (v — 7)-collapse of Ik (v)
in the simplicial setting.

Proof Consider K<y. Since 7,v € verts(c) and o is maximal in K, we
know [min(c),v] and [r,v] are elementary cubes in K<,. Since 7 is a free
face of o, we further know that [min(c), v] is the only maximal proper coface
of [r,v] in K<y. By definition of past link (Definition 2.2), we then have
that v — min(o) and v — 7 are simplices in lkz _ (v), and v — min(o) is
the only maximal proper coface of v — 7 in lky_ (v). Hence, v — 7 is free
in Tkp | (v). Moreover, lkl_{,jv (v) is the (v — 7)-collapse of kg, (v). One
can see this by using Statement 2 of Lemma 3.3 by which 1k1_<,< (v) can be

characterized as the (v — 7)-collapse of 1k, (v).
By Statement 3 of Lemma 2.3, we know that lky(v) = lkx_ (v) and
that 1k, (v) = IkR,< (v), which concludes this proof. O

Next, we prove two lemmas concerning relationships of the past link of
a vertex in the original directed Euclidean cubical complex and in the col-
lapsed directed Euclidean cubical complex. These relationships depend on
where v is located with respect to 7. In the first lemma, we consider the case
where min(7) A v, and we present a sufficient condition for past links in K
and the (7, 0)-collapse to be equal. See Fig. 6 for an example that illustrates
the result of this lemma.

Lemma 3.6 (Condition for Past Links in K and K’ to be Equal)

Let (K,K) be a directed Euclidean cubical complex in R™. Let 7,0 € K
such that T is a face of o. If T is a free face of o and K’ is the (1,0)-collapse,
then, for all v € verts(K) such that max(7) £ v, we have Ik (v) = ki, (v).

Proof By Statement 2 of Lemma 2.3, we have lkj,(v) C 1k (v). Thus, we
only need to show lky (v) C 1k, (v). Suppose j € Ik (v). By the definition
of the past link (see Definition 2.2), we know that [v — j, v] is an elementary
cube in K. By assumption, max(7) A v. Thus, by Eq. (2), [v — j, v] is not
removed from K and thus is an elementary cube in K’. Thus, j € k. (v).O

In the following lemma, we consider the case where max(7) < v, and
we present a sufficient condition for past links in the (7,0)-collapse and
the (min(7),o)-collapse to be equal. See Fig. 7 for an example that illus-
trates this result.
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(a) Initial Complex (b) After Collapse

Fig. 6: Past link of an “uncomparable” vertex before and after a collapse.
Consider the directed Euclidean cubical complex shown, comprising a single
three-cube ¢ and all of its faces. Let 7 = [x,y]. Since v and max(r) =y are
not comparable, by Lemma 3.6, the past link of v is the same before and
after the collapse. Indeed, we see that this is the case for this example. The
past link of v is the complete complex on two vertices, both before and after.

\% \'4 \ %
y Yy Yy
X X
(a) Original Complex (b) The (7, o)-Collapse (¢) The (x,0)-Collapse

Fig. 7: Two collapses with same past links. For example, in the directed
Euclidean cubical complex K shown in (a), let o be the three-cube, and
let 7 = [x,y]. We look at the past link of the vertex v. In the original directed
Euclidean cubical complex, the past link of v is the complete complex on three
vertices. By Lemma 3.7, the past link of v is the same in both the (7,0)-
collapse and the (x,0)-collapse since max(r) = y =< v. By Lemma 3.8, we
also know that the past links of v in K and the (x, o)-collapse are homotopy
equivalent. Indeed, we see that this is the case.

Lemma 3.7 (Comparing Past Links in a General Collapse with Past
Links in a Vertex Collapse)

Let (K,K) be a directed Euclidean cubical complex in R™ such that there
exists cubes 7,0 € K with min(7) a free face of o. Let K' be the (7, 0)-collapse
and let K be the (min(7),o)-collapse. If v € verts(K') and max(r) < v,
then v € verts(K) and lky, (v) = 1k (v).

Proof We first show v € verts(f(). If 7 is a zero-cube (and hence in verts(K)),
then K’ = K, which means that v € verts(K). On the other hand, if 7 is not
a zero-cube, then we have min(r) < max(7) < v. In particular, min(r) # v.
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And so, by definition of K as a (min(7), o)-collapse and since v € K, we
conclude that v € K.

Next, we show lkj,(v) = lkz(v). By Statement 2 of Lemma 2.3, we
have Ik (v) C Ik, (v). Thus, what remains to be proven is Ik, (v) C Ik (v).
Let j € lkg, (v). By definition of the past link (Definition 2.2), we know
that [v —j,v] C K'. Consider two cases: v — j < min(7) and v — j A min(7).

Case 1 (v —j < min(7)): Since v — j < min(7) < max(7) < v, we know
that 7 C [v — j,v]. Thus, by Eq. (2), we have [v —j,v] ¢ K’, which is a
contradiction. So, Case 1 cannot happen.

Case 2 (v —j A min(7)): If v —j £ min(7), then, by the definition of
a (min(7), o)-collapse in Definition 3.1, we know that [v — j,v] C K and
thus j € Ik~ (v).

Hence, 1k, (v) C lk~(v). Since we have both subset inclusions, we con-
clude Iky, (v) = Ik~ (v). O

In general, the minimal vertex of 7 is not free in K and hence, there is
no vertex collapse. In the main theorem, the previous lemma is applied to
a subcomplex of K; specifically, it is applied to the restriction to the unit
cube corresponding to o, where all vertices, inculding min 7 are then free.
The results carry over to K.

The next result states that vertex collapses result in homotopy equivalent
past links as long as we are not collapsing the minimum vertex of the directed
Euclidean cubical complex.

Lemma 3.8 (Past Links in a Vertex Collapse)

Let (K,K) be a directed Euclidean cubical complex in R"™. Let 0 € K and
let T € verts(o) such that T # min(o). Let v € verts(K) with v # 7. If T is
a free face of o and K' is the (1,0)-collapse, then 1k (v) =~ kg, (v).

Proof We consider three cases:

Case 1 (v ¢ verts(o)): By definition of past link (Definition 2.2), if v ¢
verts(o), then the past links 1k (v) and lkj, (v) are equal.

Case 2 (7 £ v): By Lemma 3.6, if 7 = max(7) A v, again we have equality
of the past links 1k (v) and k., (v).

Case 3 (v € verts(o) and 7 < v): By Lemma 3.5, we know that k., (v)
is the v — 7-collapse of 1k (v) in the simplicial setting. Since simplicial col-
lapses preserve the homotopy type (see e.g., [14, Proposition 6.14]), we con-
clude Ik (v) ~ lkp, (v).

We give an example of Lemma 3.8 in Fig. 7 by showing how the LPDC
induces a simplicial collapse on past links.
Lastly, we are ready to prove the main result.

Theorem 3.9 (Main Theorem)

Let (K,K) be a directed Euclidean cubical complex in R™ such that there
exist cubes 7,0 € K with T a free face of o. Then, (1,0) is an LPDC pair if
and only if min(o) ¢ verts(r).
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Proof Let v = max(c) and k = dim(o). Let (K’,K’) be the (7, c)-collapse
of K. Let (L, L) be the cubical complex such that L = K]|,. Since 0 € K, we
know L =7 (i.e., L is a unit cube). Since L is a single unit cube and o is a
maximal elementary cube, all proper faces of o, including 7 and min(7), are
free faces in L. Thus, let (L', £') be the (7, 0)-collapse of L, and let (L, L) be
the (min(7), o)-collapse of L.

We first prove the forward direction by contrapositive (if min(c) €
verts(7), then (7,0) is not an LPDC pair). Assume min(o) € verts(r). By
Corollary 3.4, we obtain 1k} (v) is homeomorphic to B*~! and Ik> (v) is home-
omorphic to S¥72. Since min(c) € verts(), we know that min(c) = min(7).
Since 7 is a face of o, we know max(7) < max(c) = v. Since min(o) =
min(7) € verts(7) and since 7 is a proper face of o, we know that v # max(r
Thus, v € verts(L'). Applying Lemma 3.7, we obtain lkj,(v) = lkz(v
Putting this all together, we have:

).
).

Ikp (v) =B £ 8872 >~ 15 (v) = Tky, (v),

and so 1kj (v) # 1k, (v).

Since no faces of o are in K \ £, the past link of v remains the same
outside of L in both K and K’. Thus, 1k (v) % 1k, (v) and so we conclude
that (7,0) is not an LPDC pair, as was to be shown.

Next, we show the backwards direction. Suppose min(o) ¢ verts(r).
Let v € verts(K’), and consider two cases: max(7) A v and max(7) < v.

Case 1 (max(r) A v): By Lemma 3.6, we have lkg(v) = Ik (v).
Hence, ki (v) ~ lkg,(v). Since v was arbitrarily chosen, we conclude
that (7,0) is an LPDC pair.

Case 2 (max(7) < v): By Lemma 3.7, we have that Ik, (v) = lkz(v).
Since min(o) ¢ verts(r), we know that min(7) # min(c). Applying Lemma 3.8,
we obtain 1k, (v) ~ Ik~ (v). Again, since no faces of o are removed from K
and K’ to obtain £ and £, the past link of v remains the same outside of L
in both K and K’. Thus, lky (v) >~ ki (v). Since v was arbitrarily chosen,
we conclude that (7,0) is an LPDC pair. O

4 Preservation of Spaces of Dipaths

In [1], we proved several results on the relationships between past links and
spaces of dipaths. One result, Theorem 2.4, states that for a directed Eu-
clidean cubical complex with a minimum vertex, if all past links are con-
tractible, then all spaces of dipaths starting at that minimum vertex are also
contractible. If we start with a directed FEuclidean cubical complex with a
minimum vertex that has all contractible past links, then all spaces of di-
paths from the minimum vertex are contractible by this theorem. We explain
how those relationships extend to the LPDC setting in this section.
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Applying an LPDC preserves the homotopy type of past links by defini-
tion. Hence, applying the theorem again, we see that any LPDC also has
contractible dipath spaces from the minimum vertex. Notice that the mini-
mum vertex is not removed in an LPDC, since it is a vertex and minimal in
all cubes containing it (including the maximal cube). We give an example of
this in Example 4.1.

Example 4.1 (3 x 3 filled grid)

Let K be the 3 x 3 filled grid. For all v € verts(K), Ik (v) is contractible.
By Theorem 2.4, this implies that all spaces of dipaths starting at 0 are con-
tractible. Applying an LPDC such as the edge [(1,3),(2,3)] results in con-
tractible past links in K' and so all spaces of dipaths in K' are also con-
tractible. See Fig. 8. We can generalize this example to any k% filled grid
where k,d € N,

(3,3) (3,3)

0® 0®

(a) Initial Complex (b) After Collapse

Fig. 8 (a) The 3 x 3 filled grid has contractible past links and dipath
spaces. The pair comprising of the purple edge [(1,3),(2,3)] and the blue
square [(1, 2), (2, 3)] is an LPDC pair. (b) The result of performing the LPDC.
All past links are contractible and so all dipath spaces are also contractible.

An analogous result holds for connectedness (Theorem 2.5). If we start
with a directed FEuclidean cubical complex such that all past links are con-
nected, then all dipath spaces are connected. Any LPDC results in a directed
Fuclidean cubical complex that also has connected dipath spaces. See Exam-
ple 4.2.

Example 4.2 (Outer Cubes of the 5 x 5 x 5 Grid)

Let K = [0,5]> \ [1,4]3, which, as an undirected complex, is homeomor-
phic to a thickened two-sphere. For all v € verts(K), Ik (v) is connected.
By Theorem 2.5, this implies that for all v € verts(K), the space of di-

paths ?B’(K) is connected. Applying an LPDC such as with the vertez (5,0, 0)
in the cube [(4,0,0), (5,1,1)] results in connected past links in K' and so all
spaces of dipaths P§(K') are connected. We can generalize this example to
any k% grid where d > 3 and the inner cubes of dimension d are removed.
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Both Theorem 2.4 and Theorem 2.5 have assumptions on the topology of
past links and results on the topology of spaces of dipaths from the minimum
vertex. We may ask if the converse statements are true. Does knowing the
topology of spaces of dipaths from the minimum vertex tell us anything about
the topology of past links? The converse to Theorem 2.4 holds. To prove this,
we first need a lemma whose proof appears in [21].

Lemma 4.3 (Homotopy Equivalence [21, Prop. 5.3])

Let (K,K) be a directed Euclidean cubical complex in R™. Let p,q € Z™.
If ?g_j (K) is contractible for all j € Ik (q), then ?g(K) ~lky _(a).

Thus, we obtain:

Theorem 4.4 (Contractability)

Let (K,K) be a directed Euclidean cubical complez in R™ that has a mini-
mum vertex w. The following two statements are equivalent:

1. For all v € verts(K), the space of dipaths ?&(K) is contractible.
2. For all v € verts(K), the past link 1k (v) is contractible.

Proof By Theorem 2.4, we obtain Statement 2 implies Statement 1.

Next, we show that Statement I implies Statement 2. Let v € verts(K).
For all j € lkp(v), the cube [v — j,v] is a subset of K, which means
that v —j € verts(K). Thus, by assumption, all dipath spaces ?Xv_j (K) are
contractible. By Lemma 4.3, we know that Py (K) ~ kg (v) = lkg(v).

Again, since v € verts(K), the dipath space ?&(K) is contractible. There-
fore, Ikj(v) is contractible. d

As a consequence of this theorem, we know that if we start with a directed
Euclidean cubical complex with contractible dipath spaces starting at the
minimum vertex, then any LPDC also result in a directed Euclidean cubical
complex with all contractible dipath spaces starting at the minimum vertex,
and vice versa.

Corollary 4.5 (Preserving Directed Path Space Contractability)
Let (K, K) be a directed Euclidean cubical complex in R™ that has a minimum
vertex w. Let 7,0 € IC such that T is a face of o. If T is a free face of o,
let (K',K") be the (1,0)-collapse. If K’ is an LPDC of K, then the spaces of
dipaths PY,(K) are contractible for all v € verts(K) if and only if the spaces
of dipaths PX (K') are contractible for all k € verts(K').

Proof We start with the forwards direction by assuming that the spaces of
dipaths By (K) are contractible for all v € verts(K). Theorem 4.4 tells us

w

that all past links 1k, (v) are contractible for all v € verts(K'). This implies
that 1k, (k) is contractible for all k € verts(K’) because K’ is an LPDC
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of K. Applying Theorem 4.4 again, we see that all spaces of dipaths ?L‘V(K')
are contractible for all k € verts(K’).

Next we prove the backwards direction by assuming that the spaces of
dipaths ?lv‘v(K’) are contractible for all k € verts(K’). Let v € verts(K).
Either v € verts(K’) or v ¢ verts(K’).

Case 1 (v € verts(K')): By Theorem 4.4, we know that lky, (v) is con-
tractible. Since K’ is an LPDC of K, then lk, (v) is also contractible.

Case 2 (v ¢ verts(K')): If v ¢ verts(K), then 7 is a vertex and v = 7.
Observe that 1k=(7) is contractible since 7 is an elementary cube and 7 does
not contain min(o). Furthermore, notice that lky (7) = k. (7) because 7 is
a free face of 0. Hence, Ik (7) is contractible.

Therefore 1k (v) is contractible for all v € verts(K). Applying Theo-

rem 4.4, we get that PY (K) is contractible for all v € verts(K). O

Using Theorem 2.5 and the partial converse to the connectedness theo-
rem [1, Theorem 3], we get that any LPDC of a directed Euclidean cubical
complex with connected dipath spaces and reachable vertices results in a
directed Euclidean cubical complex with connected dipath spaces.

Corollary 4.6 (Condition for LPDCs to Preserve Connectedness of
All Directed Path Spaces)

Let (K,K) be a directed Euclidean cubical complez in R™ that has a mini-

mum vertex w. Let (L, L) = reach(K,w). Let (1,0) be an L?PDC pair in L,
Kk

and let L' be the (1,0)-collapse. The spaces of dipaths in (L) are con-

nected for all v € verts(L) if and only if the spaces of dipaths ?“,’V(L’) are
connected for all v € verts(L').

We note that reachability is a necessary condition. Below we give an exam-
ple of a directed Euclidean cubical complex K that has all connected dipath
spaces but an LPDC yields a directed Euclidean cubical complex with a dis-
connected path space.

Example 4.7 (Bowling Ball)

Let K be the boundary of the 5 x 5 x 5 grid union [(4,1,1),(5,2,2)]
and [(4,3,3), (5,4,4)]\[(5,3,3), (5,4,4)]. See Fig. 9(a). Notice that some ver-
tices of K are unreachable, for example, vertex (4,1,1). Furthermore, all past
links of vertices in K are connected and so all dipath spaces starting at O
are also connected. After performing an LPDC with 7 = [(5,1,1), (5,2, 2)]
and o = [(4,1,1),(5,2,2)], the dipath space between 0 and (5,5,5) changes
from having one connected component to three connected components, as
shown in the figure. This example shows that the reachability condition
in Corollary 4.6 is necessary for preserving connnectedness in LPDCs.

LPDCs can also preserve dihomotopy classes of dipaths starting at the
minimum vertex of many directed Euclidean cubical complexes that have
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Fig. 9: The bowling ball before and after the collapse described in Ex-
ample 4.7. Observe ?65’5’5)(1( ) has one connected component. Addition-
ally, o = [(4,1,1),(5,2,2)] (highlighted in blue) and 7 = [(5,1,1), (5,2,2)]
(highlighted in purple) is an LPDC pair. After collapsing (7, o), 65’5’5)(1( )
changes from having one connected component to three connected compo-
nents. The three connected components are represented by the three dipaths.

disconnected past links. Recall the Swiss flag as discussed in Fig. 4. The
Swiss flag has disconnected past links at (3,4) and (4,3), yet there exists
a sequence of LPDCs that results in a directed Euclidean cubical complex
that highlights the two dihomotopy classes of dipaths between 0 and (5.5).
Example 4.8 gives another similar situation.

Example 4.8 (Window)

Let K be the 5 x 5 grid with the following two-cube interiors removed:
[(1,1),(2,2)], [(3,1),(4,2)], [(1,3),(2,4)], [(3,3),(4,4)]. See Fig. 10(a). K
has disconnected past links at the vertices (2,2),(4,2),(2,4), (4,4) so K does
not satisfy Corollary 4.5 or Corollary 4.6. Observe that ?(K)ES’S) has siz
connected components. We can perform a sequence of LPDCs that preserves
the dihomotopy classes of dipaths between O and (5,5) al each step. First,
we apply vertex LPDCs to remove the two-cubes along the border. Then we
can apply four edge LPDCs and one vertex LPDC to gel a graph of vertices
and edges. This graph more clearly illustrates the siz dihomotopy classes of
dipaths in ?(K)gfb).

In summary, LPDCs preserve the connectedness and /or contractability of
dipath spaces starting at the minimum vertex as long as K has all reachable
vertices and all dipath spaces starting at the minimum vertex in K connected
and/or contractible to begin with. If K does not have these properties, the
first step could be to remove all unreachable vertices and cubes before col-
lapsing. In the next section, it will become clear that this will not suffice, if
the dipath spaces are not all connected or contractible. [[for camera-ready:
BTF: this paragraph seems out of place, and uses future tense]
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(5,5) (5,5) (5,5)

(a) (®) (c)

(d) (e)

Fig. 10: Link-preserving DCs of the window. A sequence of LPDCs is pre-
sented from (a)-(e). The directed Euclidean cubical complex in (b) comes
from performing several vertex LPDCs to remove the two-cubes along the
border of K. In (b)-(d), the LPDC pairs (7, o) are highlighted in purple and
blue respectively. The result of the sequence of LPDCs is a graph of vertices
and edges that more clearly illustrates the dihomotopy classes of dipaths in
the dipath space.

5 Discussion

LPDCs preserve spaces of dipaths in many examples (see Section 4), in partic-
ular, if they are all trivial in the sense of either all connected or all contractible
and the directed Euclidean cubical complex is reachable for the minimum.
However, LPDCs do not always preserve spaces of dipaths. We discuss some
of those instances here. One limitation of LPDCs is that the number of com-
ponents may increase after an LPDC as we saw in Example 4.7 or, as we see
in Example 5.1, they may decrease.

Example 5.1 (A Sequence of LPDCs of the Window That Decreases
the Number of Connected Components of the Dipath Space)

Consider K as given in Ezample 4.8. After applying vertex LPDCs that
remove the two-cubes on the border of K, we can apply an LPDC to the

edge [(2,4), (3,4)]. Now ?(K’)gB’B) has five connected components; whereas,
the dipath space (K)gS’S) has siz connected components. See Fig. 11. This
ezample shows that there are both “good” and “bad” ways to apply a sequence
of LPDCs to a directed Euclidean cubical complex. As illustrated in Ezam-
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Fig. 11: Link-preserving DC of the window that changes dipath space. The
LPDC of the edge [(2,4), (3,4)] changes the dipath space between 0 to (5,5)
from having six connected components to five connected components.

ple 4.8, there exists a sequence of LPDCs that preserves the siz connected
components in ?(K)?’S). However, if we perform a sequence of LPDCs that
removes the edge [(2,4),(3,4)] as in this example, then we get a directed
FEuclidean cubical complex that does not preserve the dihomotopy classes of
dipaths in ?(K)gfb).

Example 5.1 illustrates the need to investigate other properties if we want
to preserve dipath spaces when performing an LPDC.

In Example 4.7, the problem was the existence of unreachable vertices.
In Example 5.1, the vertex (2,4) is a deadlock after the LPDC: only trivial
dipaths initiate from there; whereas, before collapse, that was not the case.
This seems to suggest that the introduction of new deadlocks should not
be allowed; in practice, this would require an extra—but computationally
easy—check on vertices of o.

In the non-directed setting, if K’ is obtained from K by collapsing a col-
lapsing pair (7,0), then not only is the inclusion of K’ in K a homotopy
equivalence. K’ is a deformation retract of K. The following example re-
moves any hope of such a result in the directed setting:

Example 5.2 (LDPC of the Four-Cube With No Directed Retrac-
tion to the Collapsed Complex)

Let (I*,I*) be the standard unit four-cube. Let T be the vertex (1,1,0,0),
and o be the cube [0,1]. Since T is free and not the minimum vertezx of o,
the pair (1,0) is an LPDC pair. Thus, let (K',K') be the collapsed complezx.
Next, we show that there is no directed retration, i.e., no directed map from I*
to K' that s the identity on K'.

Suppose, for a contradiction, that f : I* — K' is such a directed retraction.
Let p1 = (0,1,0,0), p2 = (1,0,0,0), q1 = (1,1,1,0), and g2 = (1,1,0,1).
By the product order on R*, we have p1,pa < 7 and 7 < qi,qa. Since the
poinls p1, P2, Q1. and qo are vertices of I* and are not equal to T, we also
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know that p1, P2, q1, and gz are points in K'. Since f is a directed retraction,
we have that p1 = f(p1) < f(7) and that pa = f(p2) < f(7). Similarly, we

obtain that f(7) 2 f(a1) = q1 and that f(7) X f(q2) = qa.
Let x1,x2,x3,24 € I such that f(1) = (x1, x2,x3,24). Then,

p1 = f(7) = a2 > 1 and hence x4 =1,
P2 X f(1) = @1 > 1 and hence x, = 1,
f(1) 2 a1 = x4 <0 and hence x4 = 0,
f(r) 2 a2 = z3 <0 and hence 3 = 0.

Thus, f(7) = (1,1,0,0) = 7, which is not in K' and hence a contradiction.
In fact, this argument extends to (I¥,I%) for k > 4.

As further evidence that such a (7,0)-collapse does not preserve the di-
rected topology, consider the spaces of dipaths in (I*,Z%) and (K',K'). We
would need dipaths in the original space to map to dipaths in the collapsed
space. However, notice that the dipath from p1 to qi through T cannot be
mapped to a dipath in (K',K').

We observe that vertex LPDCs appear to not introduce the problems of
unreachability and deadlocks. These observations lead us to suspect that
studying unreachability, deadlocks, and vertex LPDCs can help us better
understand when LPDCs preserve and do not preserve dipath spaces between
the minimum and a given vertex. We leave this as future work.

In summary, we provide an easy criterion for determining when we have
an LPDC pair, as well as discuss various settings for when LPDCs preserve
spaces of dipaths. Fully understanding when LPDCs preserve spaces of di-
paths between two given vertices is a step towards developing algorithms
that compress directed Euclidean cubical complexes and preserve directed
topology.
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