2021 IEEE Symposium Series on Computational Intelligence (SSCI) | 978-1-7281-9048-8/21/$31.00 ©2021 IEEE | DOI: 10.1109/55CI50451.2021.9659958

Incremental & Semi-Supervised Learning for
Functional Analysis of Protein Sequences

1% Mali Halac 2" Bahrad Sokhansanj

3 William L. Trimble 4™ Thomas Coard

Electrical and Computer Eng. Electrical and Computer Eng. Argonne National Laboratory Electrical and Computer Eng.

Drexel University
Philadelphia, PA, USA
mh3636 @drexel.edu

Drexel University
Philadelphia, PA, USA
bahrad @molhealtheng.com

5™ Norman C. Sabin Jr. 6 Emrecan Ozdogan

University of Chicago
Chicago, IL, USA
wltrimbl @uchicago.edu

Drexel University
Philadelphia, PA, USA
thomas.coard @ gmail.com

7t Robi Polikar 8™ Gail L. Rosen

Electrical and Computer Eng. Electrical and Computer Eng. Electrical and Computer Eng. Electrical and Computer Eng.

Rowan University
Glassboro, NJ, USA
sabinn49 @students.rowan.edu

Rowan University
Glassboro, NJ, USA
ozdoga67 @rowan.edu

Abstract—Current approaches for the functional annotation of
proteins rely on training a classifier based on a fixed reference
database. As more genes are sequenced, the size of the reference
database grows and classifiers are retrained with the old and
some new data. Considering the ever-increasing number of
(meta-)genomic data, repeating this process is computationally
expensive. An alternative is to update the classifier continuously
based on a stream of data. Thus, in this study, we propose
an incremental and semi-supervised learning approach to train
a classifier for the functional analysis of protein sequences.
Our method proves to have a low computational cost while
maintaining high accuracy in predicting protein functions.

Index Terms—Incremental clustering, semi-supervised learn-
ing, functional annotation, protein sequence

I. INTRODUCTION

The functional analysis of proteins can involve costly, time-
consuming, and difficult experiments. As such, it is helpful
to use computational techniques to extend our knowledge
about previously studied and characterized proteins to develop
hypotheses for, and thus narrow and focus the experimental
work required to understand relatively less studied or newly
sequenced proteins. Using computation to predict the func-
tional roles of proteins found in genomic samples may be
crucial in disease diagnosis, development of novel drugs, and a
deeper understanding of the evolutionary relationships among
proteins [1], [2].

There exists many computational approaches to predict a
protein’s function. One of the most commonly used methods
relies on the protein sequence homology — statistically signif-
icant sequence similarity. Sequence homology based methods
are informative about the evolutionary relationship of proteins.
Homologous proteins that were separated by a speciation event
are called orthologs, which are known to share a common
function. Thus, it is possible to infer a protein’s function by
aligning it to its ortholog [3].

This work was supported in part by NSF grants #1919691 and #1936791.

978-1-7281-9048-8/21/$31.00 ©2021 IEEE

Rowan University
Glassboro, NJ, USA
polikar @rowan.edu

Drexel University
Philadelphia, PA, USA
glr26 @drexel.edu

One of the recent problems in genomics studies is the large
computational cost of conducting such analyses. Traditional
approaches to detect homology rely on performing a pairwise
alignment against an entire reference database, a computation-
ally expensive method. Moreover, the recent boom in the num-
ber of proteins sequenced requires an incremental approach
that would continually update the classifier without reprocess-
ing the entire database. The MG-RAST metagenomics analysis
server, for example, has 467,237 metagenomes containing
1,979 billion DNA sequences [4], which is translated to
possible reading frames for protein alignment. In this study,
we demonstrate the application of an incremental and semi-
supervised learning algorithm for the functional analysis of
protein sequences.

II. BACKGROUND
A. Sequence Alignment

Proteins are composed of polymer chains of up to 22
different kinds of amino acids, which are encoded by an
organisms’s DNA. The permutations of the amino acids that
form the chain, the protein “sequence,” provide the structure
and function of the protein. As a consequence, a protein’s
sequence includes information about the evolution of the
organism, as well as the functional roles of the protein.

Sequence alignment is a method that is used to compare
different protein sequences to discover implicit facts about the
functional role or common evolutionary descent of proteins
[5]. The two most prevalent types of sequence alignment are:
pairwise and multiple. Pairwise sequence alignment compares
two sequences to perform a similarity search in a database.
Multiple sequence alignment, on the other hand, compares
three or more sequences to infer homology between the input
sequences.

In this study, we use Diamond [6], [7] to perform pairwise
sequence alignment and MUSCLE [8] for multiple sequence
alignment.

Authorized licensed use limited to: Drexel University. Downloaded on August 26,2022 at 19:22:58 UTC from IEEE Xplore. Restrictions apply.

B. Protein Function Prediction

In order to predict a protein’s function, we first have
to understand what a “function” is. The term function, by
itself, is vaguely descriptive. Thus, there are many studies
trying to delineate the term. The Gene Ontology Database,
for example, defines protein function in a hierarchical way in
three distinct parts: molecular function, cellular component,
and biological process [9], [10]. One major challenge in using
Gene Ontology is to decide which level of the hierarchy
to operate in. Another functional construct that can be used
for function prediction is the Clusters of Orthologous Genes
(COG) database where proteins are clustered according to
their orthologous relationships [11]. Orthologous proteins are
known to frequently implement the same function in different
organisms. Thus, each orthologous group in COG database
has a functional annotation indicating the predicted function
of the proteins in that COG [12]. The current COG database
includes 4,877 orthologous groups and 3,213,196 proteins
[13]. In this study, we use COGs as a reference to determine
protein function based on sequence homology.

C. Incremental Learning for Genomic and Genetic Annota-
tions

Fueled by recent advances in technology, the cost of DNA
sequencing is reducing at a rate that is faster than the increase
in computational power resulting in sequencing many novel
organisms and genomes that subsequently need to be analyzed
[14], [15]. The conventional methods to align these sequences
rely on methods that train on a fixed reference database.
Every time more reference and genomic sequences are added,
the entire alignment must be rerun from scratch. However,
considering the ever increasing number of reference sequences
and genomic data, rerunning this approach is expensive due to
the cost of computational power [16]. An alternative solution
is to update the classifier on new data only, thus avoiding the
computational cost to reprocess the entire database [17].

III. METHODS

All the experiments were run on Drexel University’s high
performance computing cluster, Picotte. The reported CPU
times are for an Intel Xeon Platinum 8268. The CPU times and
memory usage are measured using Slurm Workload Manager’s
”seff” command.

A. Protein Data Set

The Clusters of Orthologous Genes (COG) database is a
useful tool for the functional annotation of protein sequences.
In the COG database each protein is assigned to an orthologous
group which represents a general function. An example of such
a group is COGO0008 which includes glutamyl- or glutaminyl-
tRNA synthethase proteins. In the case of multi domain
proteins, however, the COG approach assigns only the func-
tional domains to orthologous groups to prevent misleading
annotations for proteins [18]-[20].

The data sets used for this study are based on the Swiss-
Prot and TrEMBL databases both of which are subset of the

UniProt database. The Swiss-Prot is a result of manual anno-
tations, whereas TTEMBL consists of automatically annotated
proteins [21].

For this study, we formed two different data sets to test our
algorithm. The first data set is based on the COG proteins
that are part of the Swiss-Prot database. In order to ensure
that approximately the same percentage of samples of each
target class are present in both the training and validation
sets, we performed a stratified split. As a result, the training
set contains 60,297 protein sequences with 63,146 functional
domains from 3,204 COGs; whereas the validation set contains
57,450 protein sequences.

In order to minimize the error in the labels of proteins used
for training for larger data sets, the second data set is formed
by employing COG proteins that are part of the Swiss-Prot
database as the training set and COG proteins that are part of
the TTEMBL database as the validation set. Using the manually
curated Swiss-Prot sequences as our training set allows us
to have a more reliable starting point for our model. The
training set contains 117,747 protein sequences with 122,202
functional domains from 3,858 COGs, whereas the validation
set contains 2,938,741 protein sequences. Furthermore, all the
protein sequences for which a COG was not defined in the
training was excluded from the validation sets for both the
first and the second data sets.

B. Centroid Detection for COGs

In order to develop an algorithm that is fast and accurate, we
devised an efficient way of representing COGs. Our algorithm
is designed to detect multiple centroids for each COG. These
centroids are later used to predict the functions for novel
proteins.

Distribution plot for COG0745

Frequency
e e e e
~ 9 N o N
5 5 » o &

o
°

25

i

100 125 150 175 200 225 250 275
Sequence Length

MR A LKA

Fig. 1. The distribution plot for COG0745 showing the local maxima.
Consensus groups are formed between each local maxima. Each protein
sequence is assigned to a consensus group according to its sequence length.

Our algorithm relies on the computation of the consensus
sequence to detect the centroids. The consensus sequence may
be defined as the order of most frequently occurring amino
acid in an alignment. The centroid detection is performed in
5 steps:

1) The distribution of sequence lengths is computed for
each COG in the reference database (Fig. 1).

Authorized licensed use limited to: Drexel University. Downloaded on August 26,2022 at 19:22:58 UTC from IEEE Xplore. Restrictions apply.

Sample
Consensus Group

Sample
Consensus Group

>sequence_1
SVNLDQLSINT
>sequence_2
TEDVSKRFEA
>sequence_3
SAEKSKGTRIMFGDA

>sequence_1
SVNLDQ-——-LSINT
>sequence_2
TEDVSK-———RF-EA
>sequence_3
SAEKSKGTRIMFGDA

MSA

The Consensus Compute
Sequence Consensus
S***SKGTRI*F**A Sequence

Fig. 2. Computation of the consensus sequence. The consensus groups may
be defined as subgroups for each COG. Each consensus group has multiple
sequences in them. A multiple sequence alignment is performed for each
subgroup to compute the consensus sequences. The consensus sequence is a
concise representation of the sequences in the subgroups.

2) The local maxima of each distribution is detected (Fig.
1).

3) Consensus groups are formed between each local max-
ima. Protein sequences are assigned to consensus groups
according to their sequence lengths (Fig. 2).

4) A multiple sequence alignment (MSA) is performed for
each consensus group using MUSCLE (Fig. 2).

5) The consensus sequence of the multiple alignment is
computed using 0.5 threshold. In other words, an amino
acid has to be found at a specific position in at least
50% of the sequences to be annotated in the consensus
sequence. Otherwise, the position is noted with an
asterisk (*) (Fig. 2).

The process of obtaining the initial consensus sequences is
not parallelized since the size of our training set is relatively
small. For larger training sets, this process can be parallelized
by executing the above steps simultaneously for each COG
(Fig. 3 Part A). For the training set of the second data set, it
took 1 hour and 28 minutes of CPU time to prepare the initial
consensus sequences.

C. Algorithm

Once we obtain the initial consensus sequences, we feed
them to the main algorithm along with the validation se-
quences. The algorithm first performs a pairwise sequence
alignment using Diamond in sensitive mode with two different
parameters entered by the user: sequence identity and query
coverage. The sequence identity represents the percentage of
identical amino acid residues that were aligned against each
other in the local alignment. A threshold of 40% for the
sequence identity means the pairwise alignment will only
return the alignments having at least 40% sequence similarity.
The query coverage, on the other hand, informs the user about
the percentage of the query sequence that overlaps with the
target sequence. Moreover, the pairwise alignment is run using
the “—max-target-seqs 1~ option so that it only returns the
alignment with the highest score. The output of the pairwise

-

L [COG0001]
—)

Distribution of Distribution of
Sequence Length Sequence Length

Part A

Reference Database ‘

[COGUDDZ] [COGn]
Distribution of
Sequence Length

Detect Local Max Detect Local Max Detect Local Max
s ™
C Ci C IS C 1s| |Consensus| |Consensus
Group 1 Group n Group 1 Group n Group 1 Group n
Seq_1 Seq_1 Seq_1 .
Seq_2 Seq_(k-1) Seq_2 Seq_(k-1) Seq_2 Seq_(k-1)
. Seq_(k) . Seq_(k) . Seq_(k)
p.
¥ ¥ ¥ ¥ v ¥
MSA MSA MSA MSA MSA MSA
v v A4 v ¥ v
Compute Compute Compute Compute Compute Compute
Consensus Consensus ~ Consensus Consensus Consensus Consensus
Initial Consensus Sequences FJ—‘
Part B ‘i Repeat
Validation Pairwise Sequence LN until Convergence
Sequences Alignment € A

(Consensus Group 2 (Consensus Group n"
consensus_seq_2 consensus_seq_n

{Consensus Group 1
consensus_seq_1

val_seq_1 val_seq_1 val_seq_1
val_seq_2 val_seq_2 val_seq_2

L

¥ v v

MSA MSA MSA

¥ A4 ¥
Recompute Recompute Recompute
Consensus Consensus Consensus

Unclustered +
Validation Sequences

Fig. 3. The algorithm. Part A: Centroid Detection for COGs The distribu-
tion of sequence lengths are computed for each COG in the reference database.
Then, the the local maxima of the distributions are detected. Consensus groups
are formed between each local maxima and the protein sequences are assigned
to consensus groups according to their sequence lengths. Then, a multiple
sequence alignment (MSA) is performed and the consensus sequences are
computed for each consensus group. Part A is performed only once to get the
initial consensus sequences. Part B: Main Algorithm. When a batch of data
is fed into the algorithm, a pairwise sequence alignment is performed against
the initial consensus sequences. The Diamond protein aligner is used for the
pairwise sequence alignment in sensitive mode with 2 different parameters
entered by the user: sequence identity and query coverage. A threshold of
40% for sequence identity will return the alignments having at least 40%
sequence similarity. The query coverage, on the other hand, informs the user
about the percentage of the query sequence that overlaps with the target
sequence. Moreover, the pairwise alignment is run using the “—max-target-
seqs 17 option so that it only returns the alignment with the highest score. The
consensus sequences are grouped with the validation sequences they aligned
to and form the consensus groups. Then, a multiple sequence alignment
(MSA) is performed for each consensus group and their consensus sequence
is recomputed. Once the consensus sequences are updated, they are fed into
the algorithm again along with the unclustered validation sequences. The
algorithm runs steps in Part B until it cannot cluster any more sequences
for the current batch.

alignment informs us about the predicted function indicating
which validation sequence was aligned against a certain con-
sensus sequence (Fig. 4). Then, each consensus sequence is

Authorized licensed use limited to: Drexel University. Downloaded on August 26,2022 at 19:22:58 UTC from IEEE Xplore. Restrictions apply.

Query Target Seq_ldentity Length
AAM@1497_1 (C0G@@R1_group_0 48.2 415
AAM@2290_1 C0GO@@Z2_group_7 51.3 345
AAMO1238_1 C0GOG@5_group_3 50.2 255
AAM2113_1 COG@@13_group_38 44.1 950

Fig. 4. Output of the pairwise sequence alignment. "Query” column shows
the protein ids for the validation sequence. “Target” column indicates to which
consensus sequence the query is aligned to. The third column indicates the
sequence identity: the percentage of identical amino acid residues that were
aligned against each other in the local alignment [22]. The fourth column
shows the total length of the local alignment. We can infer the function of
a query sequence by looking at its pairwise alignment. In this figure the
protein "TAAMO01497_1" is aligned to "COGO0001_group_0” thus its function
is predicted as the general function for sequences in COG0001: ’Glutamate-
1-semialdehyde aminotransferase”.

grouped together with validation sequences it’s aligned to.
For each group formed, a multiple sequence alignment is
performed and their consensus sequence is recomputed (Fig.
3 Part B). The updated consensus sequences are used in the
next iterations to cluster any unclustered validation sequences.
This way the algorithm learns from both the initial training
and the newly clustered sequences, hence behaving as a semi-
supervised classifier.

Our algorithm relies on a similarity search against the
consensus sequences. The number of validation sequences that
gets clustered depends on the consensus sequences’ represen-
tative power. Similarly, the parameters used for the pairwise
sequence alignment may also affect the number of validation
sequences that gets clustered. When the new consensus se-
quences are computed, they are fed into the algorithm again
along with the unclustered validation sequences to maximize
the number of predictions for a batch of data. The algorithm
repeats the steps illustrated in Fig. 3 Part B until it cannot
cluster any more sequences for the current batch.

Correct_Predictions

A : !

ceuracy Total_Predictions M
True_Positive

Precision - — 2

reciston True_Positive + False_Positive ?
True_Positive

Sensitivity : - 3

ensivity True_Positive + False_Negative ¥

F1 Score : 2% Precision x Sensitivity)

Precision + Sensitivity

The accuracy, precision, sensitivity, and F1 scores reported
in the results section are obtained using the standard equations
(Equations 1, 2, 3, 4).

IV. RESULTS AND DISCUSSION

A. Performance Comparison

We first evaluated the performance of our method with
the first data set, which was formed by splitting the COG
proteins that are part of the Swiss-Prot database into training
and validation sets. The validation set is fed into the algorithm

Performance Comparison For Data Set 1
100 90

70
60
50
40
30
I I .
0

id_40_qc_80 id_40_qc_50 id_20_qgc_80 id_20_qc_50

99.5

©0
©

98.!

Percentage (%)
(Accuracy, Precision, Sensitivity, F1 Score)
0
5] (%]
Percentage (%)
(Total Clustered)

9

>
n

©
~

i

o

96.5

M Accuracy Precision Sensitivity MF1Score M Total Clustered

Fig. 5. Performance Comparison For Data Set 1. Both y-axes shows the
percentage but in different scales. The left axis is for accuracy, precision,
sensitivity, and F1 score (performance measures), whereas the right axis is
for the total number of clustered sequences. “id_40_qc_80” stands for 40%
sequence identity and 80% query coverage.

in one batch and the model’s performance is measured for
different parameters explained in Part C of the Methods
section. The accuracy, precision, sensitivity, and F1 scores
are recorded for each different parameter (Fig. 5). The lowest
accuracy of 97.62% is observed for 20% sequence identity
and 50% query coverage. It is observed from Fig. 5 that,
while loosening the parameters leads to a slight decrease in the
accuracy, precision, sensitivity, and F1 scores; it results in a
significant increase in the total number of clustered sequences.

Performance Comparison For Data Set 2

96

94

93 I I

91 0

id_40_qgc_80 id_40_qgc_50 id_20_qgc_80 id_20_qgc_50

o

©
2 U @ N ®
© © © o o©o

w
o

Percentage (%)
(Total Clustered)

N
o

o
N
=
S)

Percentage (%)
(Accuracy, Precision, Sensitivity, F1 Score)
o
v

W Accuracy Precision Sensitivity ®F1Score mTotal Clustered

Fig. 6. Performance Comparison For Data Set 2. Both y-axes shows the
percentage but in different scales. The left axis is for accuracy, precision,
sensitivity, and F1 score (performance measures), whereas the right axis is
for the total number of clustered sequences. “id_40_qc_80” stands for 40%
sequence identity and 80% query coverage. It is observed that the performance
measures decrease when loosening the parameters for the pairwise sequence
alignment. The total number of clustered sequences, on the other hand,
increases when loosening the thresholds.

In order to further evaluate the performance of our method
with larger data sets, we proceeded with the second data set.
The algorithm is initially trained with 117,747 COG proteins
that are part of the Swiss-Prot. Then, 2,938,741 COG proteins
that are part of the TrEMBL are fed into the algorithm
in one batch. The accuracy, precision, sensitivity, and F1
scores are recorded for each parameter (Fig. 6). The best
accuracy (98.58%), precision (98.59%), sensitivity (98.58%),

Authorized licensed use limited to: Drexel University. Downloaded on August 26,2022 at 19:22:58 UTC from IEEE Xplore. Restrictions apply.

and F1 score (98.59%) are observed when the parameters for
the pairwise alignment were strictest: 40% sequence identity
and 80% query coverage. The lowest of these measures are
observed with 20% sequence identity and 50% query coverage:
93.55% accuracy, 93.55% precision, 93.55% sensitivity, and
93.55% F1 score. While loosening the thresholds decreases the
overall performance, it increases the total number of clustered
sequences. Given this trade-off between the performance and
the total clustered, it is up to the end user to decide which
parameters to use.

A. Iterations to Converge

~
3 3

~

N i

S
n

id_40_qc_80: 12 iterations
id_40_qgc_50: 15 iterations
—id_20_qc_80: 10 iterations
—id_20_qgc_50: 11 iterations

S

Total Clustered (%)
°
n

S

Total Clustered (%)
Now s 0 oo
8

°

Vet e=S R

\L 3456 7 8 9101112131415

=
o ©

12 3 4 5 6 7 8 9 10 11 12 13 14 15
Iterations

Iteration Accuracy

=
S
S

®
3

id_40_qc_80: 12 iterations
id_40_qc_50: 15 iterations
—id_20_qc_80: 10 iterations

@
3

IS
]

N
S

—id_20_qc_50: 11 iterations

Accuracy per Iteration (%)

o

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Iterations

Fig. 7. Performance Comparison. Part A: Iterations to Converge. The
number of iterations it takes for the algorithm to converge when run with
different parameters for the pairwise sequence alignment. The y-axis shows
the additional percentage of sequences that were clustered in each iteration.
The inner graph shows the number of iterations vs total clustered starting
from the third iteration. Most of the sequences get clustered at the first step.
The cumulative percentage of clustered sequences at the first step and at the
last step are as follows: 28.47%/32.19% for id_40_qc_80, 33.83%/41.87%
for id_40_qc_50, 53.89%/56.48% for id_20_qc_80, and 70.10%/73.43% for
id_20_qc_50. Part B: Iteration Accuracy The accuracy of the predictions
for each iteration. Highest accuracies are observed at the first iteration.

It is mentioned in the methods section that the algorithm
repeats steps in Fig. 3 Part B until it cannot cluster any more
sequences. This is to maximize the number of predictions for
a given batch of data. Fig. 7 Part A shows the additional
percentage of clustered sequences in each iteration, whereas
the Part B shows their clustering accuracy. The percentage of
sequences clustered in each iteration is calculated as:

#_of_Sequences_C lustered_in_n'"_iteration
Total_#_of_Sequences

It can be observed from Fig. 7 that each parameter takes dif-
ferent amount of iterations to converge. Most of the sequences
are clustered at the first iteration. When the algorithm is run
at 40% sequence identity and 80% query coverage, 28.47% of
the sequences are get clustered at the first iteration. By the end
of the last iteration (12), the percentage of clustered sequences
increases to 32.19%. Moreover, the accuracies are the highest
at the first iteration.

* 100 (5)

CPU Time & Memory
50 47 6
s 536
4.79
458 5
_ :(; 437 35 37 _
< 43
@ 30 [c}
>
Exs 4 35
o 20 €
o 7 @
Q15 =
10 1
5
0 0
id_40_qc_80 id_40_qc_50 id_20_qc_80 id_20_qgc_50
W CPU_Time Memory

Fig. 8. CPU Time & Memory Required for Convergence: Offline Usage.
The figure illustrates the memory usage and the CPU time required to run
the algorithm until convergence. The minimum usage occurs at 40% sequence
identity and 80% query coverage. The majority of memory usage is induced
by the pairwise alignment, whereas the majority of the CPU time is used
by the multiple sequence alignment and the recomputation of the consensus
sequence for the next iteration (Fig. 3 Part B).

We further evaluated the performance of our algorithm in
terms of computational usage. Fig. 8 shows the memory usage
and the CPU time required for the algorithm to converge. The
run with 40% sequence identity and 80% query coverage has
the minimum usage and the maximum accuracy. It is important
to note that the computational usage illustrated in Fig. 8 is for
all the iterations. The part that consumes most of the memory
is the pairwise sequence alignment, whereas most of the CPU
time is spent during multiple sequence alignment and the
computation of the consensus sequence for the next iteration
(Fig. 3 Part B). Thus, we offer our program for two different
uses: online and offline. Offline analysis employs the same
algorithm presented in Fig. 3 Part B. For offline applications,
users may decide to run the algorithm either until convergence
or for a given number of iterations. This is the case where the
goal is the continual learning of protein functions.

CPU Time & Memory
(online use vs conventional)

5 4.7 4.7 4.72 4.66 8
45 6.88 7
4
5.89 5.89 5.89 6
=35 =
= 3 50
E 3.87 =
3.82 .
= 25 3.51 3.54 45
2 2 3 g
5,5 143 1.43 145 143 s
2
1
05 1
0 0

online conventional online conventional online conventional online conventional
id_40_qc_80id_40_qc_80id_40_qc_50 id_40_qc_50 id_20_qc_80id_20_qc_80id_20_qc_50id_20_qc_50

W CPU_Time Memory

Fig. 9. CPU Time & Memory: Online vs Conventional. ”id_40_qgc_80"
stands for 40% sequence identity and 80% query coverage. Conventional
methods to determine protein functions rely on the pairwise alignment of
the query sequences against an entire set of reference sequences. The use of
the consensus sequences as a reference database reduces the search space for
the alignment resulting in much less memory and CPU usage. It can also be
observed from both figure 8 and 9 that the CPU and memory usage proves
to be lower for the online analysis compared to the offline usage.

For users that desire a fast and reliable way of determining

Authorized licensed use limited to: Drexel University. Downloaded on August 26,2022 at 19:22:58 UTC from IEEE Xplore. Restrictions apply.

Performance Comparison
(Online vs Conventional)

98
97
96
95
) I I
93

online ¢ I online online ¢ | online c I
id_40_qc_80id_40_qc_80id_40_qc_50id_40_qc_50id_20_qc_80id_20_qc_80id_20_qc_50id_20_gc_50

H

S

8

N oW B 0 o N @

5 & 8§ 8§ 8 3 & 8
Percentage (%)
(Total Clustered)

Percentage (%)
(Accuracy, Precision, Sensitivity, F1 Score)
"
5

o

m Accuracy Precision Sensitivity mF1Score mTotal Clustered

Fig. 10. Performance Comparison: Online vs Conventional.
”id_40_qc_80” stands for 40% sequence identity and 80% query coverage.
Our online analysis method offers similar accuracy, precision, sensitivity, and
fl score to the conventional methods which rely on the pairwise alignment
of the query sequences against an entire set of reference sequences. In terms
of total number of clustered sequences, however, the conventional method
outperforms the online analysis by 8% difference.

the functions for their proteins, we offer an online analysis.
When the goal of the user is to get the functional annotations
for their proteins, online analysis offers a faster alternative to
the conventional methods which rely on performing a pairwise
alignment against an entire reference database (Fig. 9). Our
method —the online analysis— offers a significant speed-up
while showing a similar performance to conventional methods
in terms of accuracy, precision, sensitivity, and f1 score (Figs.
9, 10). The online analysis proves to be less demanding for
computational power as well. It has a lower memory usage
and requires 3 times less CPU time (Fig. 9). The reduction in
CPU time and memory comes from the compact representation
of the protein sequences in the reference database. The use
of the consensus sequences for the online analysis reduces
the search space for the pairwise alignment, thus resulting
in computational savings. The only drawback, however, is
that it clusters around 8% less sequences compared with the
conventional methods (Fig. 10).

Compared to the offline usage, the online analysis offers
significant speed-up by avoiding many iterations, multiple
sequence alignment, and the recomputation of the consensus
sequence. However, it’s important to note that the online
analysis is not incremental, whereas the offline usage offers
continual learning of protein functions thanks to its incre-
mental nature. Compared to the offline application, the online
analysis is up to 32 times faster in terms of CPU hours. The
memory usage is also lower in the online analysis (Figs. 8 and
9).

B. Simulation of Incremental Learning

To simulate a real-world scenario for incremental learning,
we split the validation sequences in 5 batches and fed the algo-
rithm one batch at a time. Each batch contains 587,000 protein
sequences (2,935,000 protein sequences in total). When a
batch of data is introduced, the algorithm clusters protein
sequences until it reaches convergence (Fig. 3 Part B). Any
sequence that was not clustered at the end of the last iteration

1t Batch 2nd Batch 3rd Batch
. - Update Update Update
Initial Training Data Classifier Classifier Classifier
| A A

Unclustered Sequences

Fig. 11. Incremental Learning of Protein Sequences. Since our algorithm is
specifically designed for incremental learning, it can continually predict pro-
tein functions as more genomic data becomes available. When the algorithm is
run with a batch of data, it clusters all the sequences that were aligned against
a consensus sequence (Fig. 3 Part B). Any sequence that was not clustered is
reintroduced to the algorithm with the next batch. Since the algorithm updates
the centroids each time a batch of data is introduced, unclustered sequences
from previous batches may get clustered with the next batches.

is merged with the next batch of data and reintroduced to
the algorithm (Fig. 11). For that reason, the total size of each
batch is larger than its original size— Batch 1: 587,000; Batch
2: 985,184; Batch 3: 1,380,382; Batch 4: 1,745,938; Batch 5:
2,135,513. The incremental learning scenario is run with the
best performing parameters: 40% sequence identity and 80%
query coverage (Figs. 6, 8).

Batch Analysis: Performance Comparison
.71

98.41 98.14

98 98.51 98.46
3217
90
30
80
25 70
19.47
20 60
16.04 50
15
40
11336 101
10 7.42 6.89 30
. 4.87 20
0 | 1 [N
0 0

Batch1 Batch 2 Batch 3 Batch 4 Batch 5
(12 Iterations) (12 Iterations) (13 Iterations) (11 Iterations) (13 Iterations)

Percentage (%)
(Total Clustered)
Percentage (%)
(Accuracy)

W Total Clustered
(from previous batches)

W Total Clustered
(for each batch)

W Accuracy

Fig. 12. Performance Comparison for Each Batch. Results for incremental
scenarios run with 40% sequence identity and 80% query coverage. Both y-
axes show the percentage but in different scales. The left axis is for total
clustered for each batch and total clustered from previous batches. The right
axis is for the accuracy. The number of iterations required for each batch
is shown. The accuracy remains at 98% through all batches. As more data
is poured in, the consensus sequences are modified based on the new data
and thus the algorithm is able to predict functions for proteins who are
not clustered at the previous batch. At the end of the fifth batch, a total of
1,015,163 sequences are clustered out of 2,935,000 sequences. That number
accounts for 34.59% of the sequences fed into the algorithm. It can be inferred
from Fig. 6 that the percentage of the sequences that are clustered remains
similar in incremental and non-incremental versions.

The results for the simulation of incremental learning show
that our algorithm is able to continually predict protein func-
tions with a high accuracy. It can be observed from Fig. 12
that the accuracy remains at 98% through all batches. This
shows that even though an increasing number of sequences
are used to modify the consensus sequence, the modifications
of the consensus are meaningful (Fig. 2) since the changes
in the consensus result in more predictions without having a
negative impact on the accuracy.

It is observed from Fig. 13 that the maximum memory usage
of 2.64 GB occurs at the fifth batch. Incremental learning

Authorized licensed use limited to: Drexel University. Downloaded on August 26,2022 at 19:22:58 UTC from IEEE Xplore. Restrictions apply.

Batch Analysis: CPU Time & Memory

30 276 3
2.64
25 2.5
21.52.15

=)
£ 20 83 2 O
g =
= 15 12.81 23 15 IS
2 §
?j 10 7.90.762 1 S

5 I 0.5

0 0

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5
H CPU Time (h) Memory (GB)
Fig. 13. CPU Time & Memory for Each Batch. As the batch size

grows, the computational usage increases. The maximum memory used by the
incremental version is 1.65 times less than the non-incremental version (Fig.
8). The CPU time, however, is much longer for the incremental version due
to the multiple iterations performed for each batch. The incremental version
took a total 61 iterations while the non-incremental version took only 12. As
the number of iterations gets bigger, the algorithm spends more time on the
multiple sequence alignment and the recomputation of consensus sequences—
the parts that consume most of the CPU time.

of protein sequences offers 1.65 times less memory usage
compared with the non-incremental version (Fig. 8). The
total CPU time, on the other hand, is higher than the non-
incremental version. This is due to the multiple iterations
performed for each batch. While the incremental version took
a total of 61 iterations, the non-incremental version took only
12 iterations (Figs. 7, 13). As the number of iterations gets
bigger, the algorithm spends more time performing multiple
sequence alignment and computing the consensus sequences—
the parts that consume most of the CPU time (Fig. 3 Part B).

Run Time Complexity
1800
1600

= 1400 y =288.6x+191.4

£

= 1200

o 1000

£ 800

=

> 600

o

O 400 y="54.6x-3.8

200 y=16.1x+0.3
0 e - 20
587,000 1,174,000 1,761,000 2,348,000 2,935,000
Number of Sequences
—Conventional Method Our Method Our Method

(Online Version) (Offline Version)

Fig. 14. Run Time Complexity. The comparison of the run time complexities.
The conventional method represents the case where the query sequences are
aligned against an entire set of reference database. The online version of
our method reduces the search space for the alignment by compressing the
sequences in the reference database into a set of consensus sequences. Thus,
the online version has the least run time complexity. The offline version, our
implementation of incremental learning, has the highest run time complexity.

The Fig. 14 illustrates the run time scales of different meth-
ods. The online version achieves a lower time complexity com-
pared to both the conventional method and the offline version
by performing only the pairwise alignment of query sequences
against a set of consensus sequences. While the conventional

methods rely on the alignment of the query sequences against
an entire reference database, the online version achieves a
similar accuracy (Fig. 10) by using a compact representation
of protein groups. Given the lower run time complexity and
similar performance of online version (Fig. 10), it may be
an alternative to the conventional methods for large protein
data sets in terms of reduced memory usage, and reduced
CPU time. The offline version of our method, on the other
hand, proves to have the highest run time complexity. Due
to the semi-supervised nature of our algorithm, the consensus
sequences are updated based on the newly classified protein
sequences in each iteration. Performing multiple sequence
alignment for each updated consensus groups and recomputing
the consensus sequences result in a higher run time complexity
for offline version (Fig. 3 Part B).

V. CONCLUSION AND FUTURE WORK

The transformation of the reference database into a set of
consensus sequences reduces the computational usage required
for the pairwise alignment. Thus, for online analysis it offers
a faster alternative to the conventional methods.

For offline applications, the incremental learning method
proves to have a high accuracy, while requiring a longer CPU
time. Decreasing the number of iterations for each batch will
result in computational savings. Considering that most of the
sequences get clustered at the first iteration with an accuracy
above 95% (Fig. 7), we may modify our algorithm in the future
studies so that it stops after the first iteration.

The run time complexity of our algorithm is further con-
strained by the software used for multiple sequence alignment
(MSA)—MUSCLE. Considering that the multiple sequence
alignment (MSA) and the recomputation of the consensus
sequences are the most time consuming parts, we may replace
MUSCLE with faster aligners such as FAMSA [23]. Decreas-
ing the number of consensus groups for each COG may also
result in a faster execution of the algorithm by consequently
reducing the number of multiple sequence alignments (MSA)
required. Once these performance issues are addressed, the
next step will be novelty detection. In order to generalize our
method, it’s crucial for it to be able to dynamically create novel
groups for functionally similar proteins for which a functional
group is not defined in the training set.

VI. ACKNOWLEDGEMENTS

This work was supported by hardware provided by Drexel
University’s Research Computing Facility (URCF).

REFERENCES

[1] D.J. Selkoe, “Alzheimer’s Disease: Genes, Proteins, and Therapy,” Phys-
iological Reviews, vol. 81, no. 2, pp. 741-766, 2001, doi: 10.1152/phys-
rev.2001.81.2.741.

[2] S. Wu, “Progress and Concept for COVID-19 Vaccine Development,”
Biotechnology journal, vol. 15, no. 6, p. €2000147-n/a, 2020, doi:
10.1002/bi0t.202000147.

[3] R. D. Emes, “Inferring Function from Homology,” Bioinformatics.
Methods in Molecular Biology™, vol. 453, 2008, doi: 10.1007/978-
1-60327-429-6_6

[4] MG-RAST: metagenomics analysis server. [Online]. Available:
https://www.mg-rast.org/index.html?stay=1. [Accessed: 13-Aug-2021].

Authorized licensed use limited to: Drexel University. Downloaded on August 26,2022 at 19:22:58 UTC from IEEE Xplore. Restrictions apply.

[5] S. F. Altschul and M. Pop, “Sequence Alignment,” Handbook of
Discrete and Combinatorial Mathematics, 2nd edition, Boca Raton
(FL): CRC Press/Taylor & Francis, 2017, Chapter 20.1. Available:
https://www.ncbi.nlm.nih.gov/books/NBK464187/. [Accessed: 15-Aug-
2021].

[6] B. Buchfink, C. Xie, and D. H. Huson, “Fast and sensitive protein
alignment using DIAMOND,” Nature methods, vol. 12, no. 1, pp. 59-60,
2015, doi: 10.1038/nmeth.3176.

[7]1 B. Buchfink, K. Reuter, and H.-G. Drost, “Sensitive protein alignments
at tree-of-life scale using DIAMOND,” Nature methods, vol. 18, no. 4,
pp. 366-368, 2021, doi: 10.1038/s41592-021-01101-x.

[8] R. C. Edgar, “MUSCLE: multiple sequence alignment with high accu-
racy and high throughput,” Nucleic acids research, vol. 32, no. 5, pp.
1792-1797, 2004, doi: 10.1093/nar/gkh340.

[9]1 A. P. Davis et al., “Gene Ontology: tool for the unification of biology,”
Nature genetics, vol. 25, no. 1, pp. 25-29, 2000, doi: 10.1038/75556.

[10] “The Gene Ontology resource: enriching a GOId mine,” Nucleic
acids research, vol. 49, no. D1, pp. D325-D334, 2021, doi:
10.1093/nar/gkaal113.

[11] R. L. Tatusov, E. V. Koonin, and D. J. Lipman, “A Genomic Perspective
on Protein Families,” Science, vol. 278, no. 5338, pp. 631-637, 1997,
doi: 10.1126/science.278.5338.631.

[12] T. Gabaldén and E. V. Koonin, “Functional and evolutionary implica-
tions of gene orthology,” Nature reviews. Genetics, vol. 14, no. 5, pp.
360-366, 2013, doi: 10.1038/nrg3456.

[13] M. Y. Galperin, Y. I. Wolf, K. S. Makarova, R. Vera Alvarez, D.
Landsman, and E. V. Koonin, “COG database update: focus on mi-
crobial diversity, model organisms, and widespread pathogens,” Nu-
cleic acids research, vol. 49, no. D1, pp. D274-D281, 2021, doi:
10.1093/nar/gkaal018.

[14] K. Wetterstrand, "DNA Sequencing Costs: Data”, Genome.gov.
[Online]. Available: https://www.genome.gov/about-genomics/fact-
sheets/DNA-Sequencing-Costs-Data. [Accessed August 6, 2021].

[15] C. M. Cullen et al., “Emerging Priorities for Microbiome Re-
search,” Frontiers in microbiology, vol. 11, pp. 136-136, 2020, doi:
10.3389/fmicb.2020.00136.

[16] C. Loeffler, A. Karlsberg, L. S. Martin, E. Eskin, D. Koslicki, and
S. Mangul, “Improving the usability and comprehensiveness of micro-
bial databases,” BMC biology, vol. 18, no. 1, pp. 37-37, 2020, doi:
10.1186/512915-020-0756-z.

[17] Z. Zhao, A. Cristian, and G. Rosen, “Keeping up with the genomes:
efficient learning of our increasing knowledge of the tree of life,” BMC
bioinformatics, vol. 21, no. 1, pp. 1-412, 2020, doi: 10.1186/s12859-
020-03744-7.

[18] M. Y. Galperin, D. M. Kristensen, K. S. Makarova, Y. I. Wolf,
and E. V. Koonin, “Microbial genome analysis: the COG approach,”
Briefings in bioinformatics, vol. 20, no. 4, pp. 1063-1070, 2019, doi:
10.1093/bib/bbx117.

[19] R. L. Tatusov, M. Y. Galperin, D. A. Natale, and E. V. Koonin, “The
COG database: a tool for genome-scale analysis of protein functions and
evolution,” Nucleic acids research, vol. 28, no. 1, pp. 33-36, 2000, doi:
10.1093/Nar/28.1.33.

[20] R. L. Tatusov, E. V. Koonin, and D. J. Lipman, “A Genomic Perspective
on Protein Families,” Science, vol. 278, no. 5338, pp. 631-637, 1997,
doi: 10.1126/science.278.5338.631.

[21] A. Bairoch and R. Apweiler, “The SWISS-PROT protein sequence data
bank and its supplement TTEMBL in 1999,” Nucleic acids research, vol.
27, no. 1, pp. 49-54, 1999, doi: 10.1093/nar/27.1.49.

[22] B. Buchfink, “1. Tutorial - Diamond Wiki,” GitHub. [Online]. Available:
https://github.com/bbuchfink/diamond/wiki/1.-Tutorial.

[23] S. Deorowicz, A. Debudaj-Grabysz, and A. Gudys, “FAMSA: Fast
and accurate multiple sequence alignment of huge protein fami-
lies,” Scientific reports, vol. 6, no. 1, pp. 33964-33964, 2016, doi:
10.1038/srep33964.

Authorized licensed use limited to: Drexel University. Downloaded on August 26,2022 at 19:22:58 UTC from IEEE Xplore. Restrictions apply.

		2022-08-24T12:16:11-0400
	Preflight Ticket Signature

