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Real-world data often exhibit low-dimensional geometric structures and can be viewed as samples near
a low-dimensional manifold. This paper studies nonparametric regression of Holder functions on low-
dimensional manifolds using deep Rectified Linear Unit (ReLU) networks. Suppose n training data
are sampled from a Holder function in H *% supported on a d-dimensional Riemannian manifold
isometrically embedded in RP. A deep ReLU network architecture is designed to estimate the underlying

function from the training data. The mean squared error of the empirical estimator is proved to converge in
_ 20t . . .
the order of n  2G+o)+d log3 n. This result shows that deep ReLU networks give rise to a fast convergence

rate depending on the data intrinsic dimension d, which is usually much smaller than the ambient
dimension D. It therefore demonstrates the adaptivity of deep ReLU networks to low-dimensional
geometric structures in data and partially explains the power of deep ReLU networks in tackling high-
dimensional data with low-dimensional geometric structures.

Keywords: nonparametric regression; low-dimensional manifolds; deep ReLU networks; sample com-
plexity; uniform approximation theory.

1. Introduction

Deep learning has made astonishing breakthroughs in various real-world applications, such as computer
vision [27, 45, 50], natural language processing [5, 28, 77], healthcare [38, 55], robotics [29], etc. For
example, in image classification, the winner of the 2017 ImageNet challenge retained a top-5 error rate
of 2.25% [36], whereas the data set consists of about 1.2 million labeled high-resolution images in 1000
categories. In speech recognition, [4] reported that deep neural networks outperformed humans with a
5.15% word error rate on the LibriSpeech corpus constructed from audio books [61]. Such a data set
consists of approximately 1000 hours of 16kHz read English speech from 8000 audio books.

The empirical success of deep learning brings new challenges to the conventional wisdom of
machine learning. Data sets in these applications are in high-dimensional spaces. In existing literature,
a minimax lower bound has been established for the optimal algorithm of learning C* functions in R?
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2 M. CHEN ET AL.

[31, 70]. Denote the underlying function by f;. The minimax lower bound suggests a pessimistic sample
complexity: to obtain an estimator f‘ for each C* function f;, with an e-error, uniformly for all C* functions
(i.e. SUP s I[f —foll, = € with || - ||, denoting the function L, norm), the optimal algorithm requires

the sample size n > ¢~ in the worst scenario (i.e. when f; is the most difficult for the algorithm
to estimate). We instantiate such a sample complexity bound to the ImageNet data set, which consists
of RGB images with a resolution of 224 x 224. The theory above suggests that, to achieve an e-error,
the number of samples has to scale as € ~224*224x3/s where the smoothness parameter s is significantly
smaller than 224 x 224 x 3. Setting € = 0.1 already gives rise to a huge number of samples far beyond
practical applications, which well exceeds 1.2 million labeled images in ImageNet.

To bridge the aforementioned gap between theory and practice, we take the low-dimensional
geometric structures in data sets into consideration. This is motivated by the fact that real-world data sets
often exhibit low-dimensional structures. Many images consist of projections of a 3D object followed
by some transformations, such as rotation, translation and skeleton. This generating mechanism induces
a small number of intrinsic parameters [34, 60]. Speech data are composed of words and sentences
following the grammar, and therefore have small degrees of freedom [21]. More broadly, visual,
acoustic, textual and many other types of data often have low-dimensional geometric structures due
to rich local regularities, global symmetries, repetitive patterns or redundant sampling [2, 15, 62, 69]. It
is therefore reasonable to assume that data lie on a manifold .# of dimension d <« D.

1.1 Summary of main results

In this paper, we study nonparametric regression problems [31, 70, 74] using neural networks in
exploitation of low-dimensional geometric structures of data. Specifically, we model data as samples
from a probability measure supported on a d-dimensional Riemannian manifold .# isometrically
embedded in RP where d < D. The goal is to recover the regression function f; supported on .# using
the samples S, = {(x;,y)}7_; withx € .# and y € R. The x;’s are i.i.d. sampled from a distribution Z,
on ./, and the response y; satisfies

v = fo(xp) +§;,

where &;’s are i.i.d. sub-Gaussian noise independent of x;’s.

We use multi-layer Rectified Linear Unit (ReLU) neural networks to recover f;,. ReLU networks are
widely used in computer vision, speech recognition, natural language processing, etc. [25, 52, 56]. These
networks can ease the notorious vanishing gradient issue during training, which commonly arises with
sigmoid or hyperbolic tangent activations [25, 26]. Given an input X, an L-layer ReLU neural network
computes an output as

f(x) =W, -ReLU(W,_,---ReLU(W,;x+b,)---+b, ) +b,, (1.1)

where Wy, ..., W, and by,...,b, are weight matrices and vectors of proper sizes, respectively, and
ReLU(-) denotes the entrywise rectified linear unit (i.e. ReLU(a¢) = max{0, a}). We denote .% as a class
of neural networks with bounded weight parameters and bounded output (we refer to % as a ReLU
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NONPARAMETRIC REGRESSION ON LOW-DIMENSIONAL MANIFOLDS USING RELU NETWORKS 3

network structure throughout the rest of the paper):

FR,k,L,p,K) = {f | f(x)in the form (1.1) with L-layers and width bounded by p,

L
WFlloo < R MWilloo oo < K Ibillo < & fori=1,...,L > Wl + lIbllg < K},
i=1

(1.2)

where ||-||, denotes the number of nonzero entries in a vector or a matrix, ||-||, denotes £,, norm of a
function or entrywise £, norm of a vector. For a matrix M, we have ||M||, o, = max; ; |[M].
To obtain an estimator f € #(R, k, L, p, K) of f;,, we minimize the empirical quadratic risk

fn = argmin @n(f) = argmin 1 Z (f(xl-) — yi)z . (1.3)

FeFRi,Lp.K) feFRuLpk) "ot

The subscript n emphasizes that the estimator is obtained using n pairs of samples. Our theory shows
that fn converges to f;, at a fast rate depending on the intrinsic dimension d, under some mild regularity
conditions. We assume f;, € HT (M) is an (s + o)-Holder function on .#, where s > 0 is an integer
and « € (0, 1]. For the network class #(R, k, L, p, K), we choose

- s+a - d ~ s+« d___
L= O - 1 s — 0 ( 2(s+zx)+d) s K = 0 - pn2(s+a)+d 1 s R = s
(2(s+a)+d og") p " (2(s+a)+d" Og”) Wolloo

and set k as a constant depending on s, f;), and .#Z. Here we use O to hide factors depending on s, d and
logarithmic factors (e.g. log D). Then the empirical minimizer fn of (1.3] gives rise to

E [ //// (fn(x) . fo(x))zd@x(x)} < (R +0?) (n—zé%;’ld n g) log* .

where the expectation is taken over the training samples S,,, o2 is the variance proxy of sub-Gaussian
noise &;, and c is a constant depending on log D, s, k and .# (see a formal statement in Theorem 3.3).

Our theory implies that, in order to estimate an (s + «)-Holder function up to an e-error, the
. . _ 2(sta)+d . .
sample complexity is n = € ste  up to a log factor. This sample complexity depends on the

intrinsic dimension d, and thus largely improves on existing theories of nonparametric regression using
. ~  _20+a)+D
neural networks, where the sample complexity scales as O(e™ ~ st ) [32, 40-42, 63]. Our result

partially explains the success of deep ReLU neural networks in tackling high-dimensional data with
low-dimensional geometric structures.

An ingredient in our analysis is an efficient universal approximation theory of deep ReL.U networks
for (s + a)-Holder functions on . (Theorem 3.1). A preliminary version of the approximation theory
appeared in [10]. Specifically, we show that, in order to uniformly approximate (s4-«)-Holder functions
on a d-dimensional manifold with an e-error, the network consists of at most O(log 1/€ + log D) layers
and O(e 4/t 10g 1/e 4+ Dlog 1/e + Dlog D) neurons and weight parameters (Theorem 3.1). The
network size in our approximation theory weakly depends on the data dimension D, which significantly
improves on existing universal approximation theories of neural networks [7, 33, 51, 54, 76], where the
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FIG. 1. Practical network sizes for the ImageNet data set [68] versus the required size predicted by existing theories [76].

network size scales as O(e ~P/6+®)) Figure 1 illustrates a huge gap between the network sizes used in
practice [68] and the required size predicted by existing theories, e.g. [76] for the ImageNet data set. Our
approximation theory partially bridges this gap by exploiting the data intrinsic geometric structures, and
justifies why neural networks of moderate size have achieved a great success in various applications.
Meanwhile, our network size also matches its lower bound up to logarithmic factors for a given manifold
A (Proposition 3.2).

1.2 Related work

Nonparametric regression has been widely studied in statistics. A variety of methods has been proposed
to estimate the regression function, including kernel methods, wavelets, splines and local polynomials
[3, 22, 31, 70, 73]. Nonetheless, there is limited study on regression using deep ReLU networks
until recently. The earliest works focused on neural networks with a single hidden layer and smooth
activations (e.g. sigmoidal and sinusoidal functions, [6, 53]). Later results achieved the minimax lower

bound for the mean squared error in the order of O(n_%) up to a logarithmic factor for C* functions in
RP [32, 40—42]. Theories for deep ReLLU networks were developed in [63], where the estimate matches
the minimax lower bound up to a logarithmic factor for Holder functions. Extensions to more general
function spaces, such as Besov spaces, can be found in [67] and results for classification problems can
be found in [39, 59].

The rate of convergence in the results above cannot fully explain the success of deep learning due
to the curse of the data dimension with a large D. Fortunately, many real-world data sets exhibit low-
dimensional geometric structures. It has been demonstrated that some classical methods are adaptive to
the low-dimensional structures of data sets and perform as well as if the low-dimensional structures were
known. Results in this direction include local linear regression [8, 11], multiscale polynomial regression
[49], k-nearest neighbor [43], kernel regression [44] and Bayesian Gaussian process regression [75],
where optimal rates depending on the intrinsic dimension were proved for functions having the second
order of continuity [8], globally Lipschitz functions [43] and Holder functions with Holder index no
more than 1 [44].
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Recently, several independent works [14, 57, 64] justified the adaptability of deep neural networks to
the low-dimensional data structures. [64] considered function approximation and regression of Holder
functions on a low-dimensional manifold, which is similar to the setup in this paper. The proofs in [64]
and this paper both utilize a collection of charts to map each point on .# into a local coordinate in R?,
and then approximate functions in R?. There are two differences in the detailed proof: (i) in exploitation
of a positive reach property of .#, we construct local coordinates on the manifold given by orthogonal
projections onto the tangent spaces, whereas [64] assumed the existence of smooth local coordinates; (ii)
a main novelty of our work is to explicitly construct a chart determination sub-network, which assigns
each data point to its proper chart. In [64], the chart determination is realized by the partition of unity.
In order to approximate functions in %% (.#), [64] required a uniform upper bound on the derivatives
of each coordinate map and each function in the partition of unity, up to order (s + «)D/d. Our proof
does not rely on such regularity conditions depending on the ambient dimension D. To describe the
intrinsic dimensionality of data, [57] applied the notion of Minkowski dimension, which can be defined
for a broader class of sets without smoothness restrictions. The intrinsic dimension of manifolds and the
Minkowski dimension are different notions for low-dimensional sets, and one does not naturally imply

the other. [64] and [57] established a O(n_%) convergence rate of the mean squared error for
learning functions in 7% (.#), where d is the manifold dimension in [64] and Minkowski dimension
in [57], respectively. Recently [14] studied the approximation and regression error of ReLU neural
networks for a class of functions in the form of f(x) = g(7_,/(X)), where X is near the low-dimensional
manifold .Z, Y4 is a projection onto .#, and g is a Holder function on .Z.

A crucial ingredient in the statistical analysis of neural networks is the universal approximation
ability of neural networks. Early works in literature justified the existence of two-layer networks with
continuous sigmoidal activations (a function o (x) is sigmoidal, if 6 (x) - Oasx — —oo,and o (x) — 1
as x — 0o) for a universal approximation of continuous functions in a unit hypercube [12, 18, 24, 35,
37, 48]. In these works, the number of neurons was not explicitly given. Later, [7, 54] proved that
the number of neurons can grow as € ~?/? where € is the uniform approximation error. Recently, [51],
[33] and [19] extended the universal approximation theory to networks of bounded width with ReLU
activations. The depth of such networks grows exponentially with respect to the dimension of data. [76]
showed that ReLU neural networks can uniformly approximate functions in Sobolev spaces, where the
network size scales exponentially with respect to the data dimension and matches the lower bound. [78]
also developed a universal approximation theory for deep convolutional neural networks [45], where the
depth of the network scales exponentially with respect to the data dimension.

The aforementioned results focus on functions on a compact subset (e.g. [0, 11°) in R?. Function
approximation on manifolds has been well studied using classical methods, such as local polynomials
[8] and wavelets [16]. However, studies using neural networks are limited. Two noticeable works are [13]
and [65]. In [13], high-order differentiable functions on manifolds are approximated by neural networks
with smooth activations, e.g. sigmoid activations and rectified quadratic unit functions (max>{0, x}).
These smooth activations are not commonly used in mainstream applications such as computer vision
[36, 45, 50]. In [65], a 4-layer network with ReL U activations was proposed to approximate C? functions
on low-dimensional manifolds. This theory does not cover arbitrarily C° functions. We are also aware
of a concurrent work of ours, [66], which established an approximation theory of ReLU networks for
Holder functions in terms of a modulus of continuity. When the target function belongs to the Holder
class 2% supported in a neighborhood of a d-dimensional manifold embedded in R?, [66] constructed
aReLU network, which yields an approximation error in the order of N 2%/ [, =2¢/d5 where N and L are
the width and depth of the network and d < ds < D. Their proof utilizes a different approach compared
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6 M. CHEN ET AL.

to ours: they first construct a piecewise constant function to approximate the target function and then
implement the piecewise constant function using a ReLU network. The higher order smoothness for
2% functions while s + & > 1 is not exploited due to the use of piecewise constant approximations.

1.3 Roadmap and notations

The rest of the paper is organized as follows: Section 2 presents a brief introduction to manifolds
and functions on manifolds. Section 3 presents a statistical estimation theory of functions on low-
dimensional manifolds using deep ReLU neural networks and a universal approximation theory;
Section 4 sketches the proof of the approximation theory. Section 5 sketches the proof of the statistical
estimation theory in Section 3, and the detailed proofs are deferred to Appendix; Section 6 provides a
conclusion of the paper.

We use bold-faced letters to denote vectors, and normal font letters with a subscript to denote its

coordinate, e.g. X € R4 and x; being the k-th coordinate of x. Given a vector s = [sy,... ,sd]—r e N4,

we define s! = []2, s;! and |s| = 3%, 5. We define x® = []7_, x}". Given a function f : R? > R, we
. .. Is| .

denote its derivative as DSf = W, and its £ norm as ||f||,, = max, |[f(x)|. We use o to denote

the composition operator.

2. Preliminaries

‘We briefly review manifolds, partition of unity and function spaces defined on smooth manifolds. Details
can be found in [71] and [46]. Let .# be a d-dimensional Riemannian manifold isometrically embedded
in RP.

DEFINITION 2.1. A chart for ./ is a pair (U, ¢) such that U C .#is open and ¢ : U — R? where ¢ is
a homeomorphism (i.e. bijective, ¢ and ¢~! are both continuous).

The open set U is called a coordinate neighborhood, and ¢ is called a coordinate system on U. A
chart essentially defines a local coordinate system on .. Given a suitable coordinate neighborhood U
around a point ¢ on the manifold .#, we denote P, as the orthogonal projection onto the tangent space
at ¢, which gives a particular coordinate system on U.

EXAMPLE 2.2. (Projection to Tangent Space). Let T.(.#) be the tangent space of .# at the point ¢ € .#
(see the formal definition in [71, Section 8.1)). We denote v, ..., v, as an orthonormal basis of T (.#).
Then the orthogonal projection onto the tangent space 7, (.#) is defined as P (x) = Vi(x—c)forx € U
with V = [v,,...,v,] € RP*4,

We say two charts (U, ¢) and (V, ¢) on .# are ck compatible if and only if the transition functions,

poy LY (UNV) > d(UNV) and Yood l:dp(UNV) > w(UNV)

are both C*.

DEFINITION 2.3. (C* Atlas). A C* atlas for .# is a collection of pairwise CX compatible charts
{(U;, ¢l-)},~€g/such that UiEJZ/Ui =M.

DEFINITION 2.4. (Smooth Manifold). A smooth manifold is a manifold together with a C*° atlas.
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Classical examples of smooth manifolds are the Euclidean space R?, the torus and the unit sphere.
We further define a Riemannian manifold as a pair (., g), where .# is a smooth manifold and g is a
Riemannian metric [47, Chapter 2). To better interpret Definition 2.3 and 2.4, we give an example of a
C® atlas on the unit sphere in R.

EXAMPLE 2.5. We denote S? as the unit sphere in R?, i.e. x> 4+ y*> + zZ = 1. The following atlas of S?
consists of 6 overlapping charts (U, P,), ..., (Ug, P¢) corresponding to hemispheres:

U] ={(X7Y»Z) |x>0}’ P1(xay’Z)=(y,Z)a U2:{(x7y»1) |x<0}’ Pz(x,y,Z)Z()’»Z),
Uy ={(x,y,2) |y >0}, P3s(x,y,2) = (x,2), Uy ={(xy2) ]y <0}, Py(x,y,2) = (x,2),
U5:{(X,y,Z) |Z>0}’ PS(X’y’Z):(xsy)’ U6:{(x’y’z) |Z<0}’ Pé(x,y’Z):(X,)’)

Here P; is the orthogonal projection onto the tangent space at the pole of each hemisphere. Moreover,
all the six charts are C*° compatible, and therefore, (U, P,),. .., (Us, Pg) form an atlas of S2.

For a general compact smooth manifold .2, we can construct an atlas using orthogonal projections
to tangent spaces as local coordinate systems. Let P, be the orthogonal projection to the tangent
space T,(.#) for ¢ € .#. Let U, be an open coordinate neighborhood containing ¢ such that P is a
homeomorphism. Since .# is compact, there exist a finite number of points {c;} such that the charts
{(U,,P,,)} form an atlas of ..

The existence of an atlas on .# allows us to define differentiable functions.

DEFINITION 2.6. (C® Functions on .#). Let .# be a d-dimensional Riemannian manifold isometrically
embedded in RP. A function f : .# +— R is C°® if for any chart (U, ¢), the composition f o o1
¢ (U) — R is continuously differentiable up to order s.

REMARK 2.1. The definition of C*® functions is independent of the choice of the chart (U, ¢). Suppose
(V, ) is another chart and V (| U # @. Then we have

fou ™l =(o¢p Ho@oy™.
Since .# is a smooth manifold, (U, ¢) and (V, ¢) are C*° compatible. Thus, f o ¢ lisC and g oy!
is C*°, and their composition is C*.
We next generalize the definition of C* functions to Holder functions on the smooth manifold ..

DEFINITION 2.7. (Holder Functions on .#Z). Let .# be a d-dimensional compact Riemannian manifold
isometrically embedded in R”. Let {(U;,P))},cor be an atlas of .# where the P;’s are orthogonal
projections onto tangent spaces. For a positive integer s and « € (0,1], a function f : .#Z +— R is
(s + )-Holder continuous if for each chart (U;, P;) in the atlas, we have

1. fo F’i_1 € C* with [D5(f o Pl._l)l < lforany|s| <s,xeU;

2. forany |s| = s and x,Xx, € U,,

-1 —1
‘Ds(f ° Pi )’P['(Xl) Do Pi )‘Pi(x2)

< H P.(x;) — P,(x,)%. .1)
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Moreover, we denote the collection of (s + a)-Holder functions on .# as %% ().

Definition 2.7 requires that all s-th order derivatives of f o Pl._1 are Holder continuous. We recover
the standard Holder class on a Euclidean space if P; is the identity mapping. We next introduce the
partition of unity, which plays a crucial role in our construction of neural networks.

DEFINITION 2.8. (Partition of Unity, Definition 13.4 in (71)). A C®° partition of unity on a manifold .#
is a collection of nonnegative C* functions p; : .# +— R, for i € o/such that

1. the collection of supports, {supp(p;)},. o7 is locally finite, i.e. every point on .7 has a neighbor-
hood that meets only finitely many of supp(p;)’s;

2. Zplzl'

For a smooth manifold, a C* partition of unity always exists.

PrOPOSITION 2.9. (Existence of a C* partition of unity, Theorem 13.7 in (71)). Let {U}},sbe an open
cover of a compact smooth manifold .#. Then there is a C* partition of unity {p,},. ., Where every p;
has a compact support such that supp(p;) C U;.

Proposition 2.9 gives rise to the decomposition f = >_°, f; with f; = fp;. Note that the f;’s have the
same regularity as f, since

fiod ' =(fod; ) x (pog ")

for a chart (U;, ¢;). This decomposition implies that we can express f as a sum of the f;’s, where every f;
is only supported in a single chart.
To characterize the curvature of a manifold, we adopt the following geometric concept.

DEFINITION 2.10. (Reach (23), Definition 2.1 in (1)). Denote

C M) = [x eRP:3p#qe|p—xl,=Iq—xl, = inf ||y—x||2]
ye

as the set of points that have at least two nearest neighbors on .#. The reach t > 0 is defined as

||X_Y||2
xe///ye (

Reach has a straightforward geometrical interpretation: at each point x € ., the radius of the
osculating circle is greater or equal to t. Intuitively, a large reach for .# requires the manifold .# not to
change ‘rapidly’ as shown in Figure 2.

In our proof for the universal approximation theory, reach determines a proper choice of an atlas for
. In Section 4, we choose each chart U; to be contained in a ball of radius less than t2. For smooth
manifolds with a small 7, we need a large number of charts. Therefore, reach of a smooth manifold
reflects the complexity of the neural network for function approximation on .Z.
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3. Main results

This section contains our main statistical estimation theory for Holder functions on low-dimensional
manifolds using deep neural networks. We begin with some assumptions on the regression model and
the manifold ..

ASSUMPTION 1. ./ is a d-dimensional compact Riemannian manifold isometrically embedded in RP.
There exists a constant B > 0 such that, for any point x € .#, we have |xj| <Bforallj=1,...,D.

ASSUMPTION 2. The reach of #Zist > 0.

AssuMpTION 3. The ground truth function f;, : .# +— R belongs to the Holder space % (.#) with a
positive integer s and « € (0, 1].

AssUMPTION 4. The noise &;’s are i.i.d. sub-Gaussian with [E[£;] = 0 and variance proxy o2, which are
independent of the x;’s.

3.1 Universal approximation theory

An accurate estimation of the nonparametric regression function f; necessitates the existence of a good
approximation of f, by our learning models—neural networks. To aid the choice of a proper neural
network class for learning f;,, we first investigate the following questions:

e Given a desired approximation error € > 0, does there exist a ReLU neural network, which
universally represents Holder functions supported on .#?

e If the answer is yes, what is the corresponding network architecture?
We provide a positive answer in the theorem below and defer the proof to Section 4.

THEOREM 3.1. Suppose Assumptions 1 and 2 hold. Given any € € (0, 1), there exists a ReLU network
structure #(-,k,L,p,K), such that, for any f : .# — R satisfying Assumption 3, if the weight
parameters of the network are properly chosen, the network yields a function f satisfying ||f —f|| o S €.
Such a network has

1. no more than L = ¢, (log % + log D) layers, with width bounded by p = cz(efs%w + D),

2. atmost K = ¢ (e_ﬁ log % + Dlog % + Dlog D) neurons and weight parameters, with the range
of weight parameters bounded by ¥ = ¢, max{l, B, 72, «/3},
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10 M. CHEN ET AL.

Chart Determination

Pairing
~

% ((Fiod), (@so®)

\ Taylor Approximation//"’

F1G. 3. The ReLU network identified by Theorem 3.1.

where ¢, c,,c3 depend on d, s, T, B, the surface area of .#, and the upper bounds on the derivatives of
the coordinate systems ¢,’s and the p;’s in the partition of unity, up to order s, and ¢, depends on the
upper bound on the derivatives of the p;’s, up to order s.

This network class .% will be used later to estimate a regression function in Theorem 3.3. Our
approximation theory does not require the output range to be bounded by R in the network class (or
equivalently by setting R = +00). The enforcement of ||f||,, < R is to be imposed for regression in
order to control the variance in statistical estimations.

The network structure identified by Theorem 3.1 consists of three sub-networks as shown in Figure 3
(The detailed construction of each sub-network is postponed to Section 4):

e Chart determination sub-network, which assigns each input to its corresponding neighborhood;
e Taylor approximation sub-network, which approximates f by polynomials in each neighborhood;

e Pairing sub-network, which yields multiplications of the proper pairs of the outputs from the chart
determination and the Taylor approximation sub-networks.

Theorem 3.1 significantly improves on existing approximation theories [76], where the network size
grows exponentially with respect to the ambient dimension D, i.e. e ~P/(s+e)

Theorem 3.1 also improves [65] for C* functions in the case that s > 2. When s > 2, our network
size scales like € ~/5 which is significantly smaller than the one in [65] in the order of €42,

Our approximation theory can be directly generalized to the Sobolev space #%°°, which is embedded
in C*. The reason is that our proof of Theorem 3.1 relies on local Taylor polynomial approximations of
Holder functions. For general Sobolev spaces #*P_ one needs to consider averaged Taylor polynomials
and the Bramble—Hilbert lemma [9, Lemma 4.3.8). We refer to [30] for readers’ interests.

Moreover, the size of our ReLU network in Theorem 3.1 matches the lower bound in [20] up to a
logaridthmic factor for the approximation of functions in the Holder space P ([0, 119) defined on
[0, 1]¢.

PROPOSITION 3.2. Fix d and 5. Let W be a positive integer and .7: RW > ([0, 1]¢) be any mapping.
Suppose there is a continuous map @ : 7~ 11([0,1]1¢) = RY such that |f — AO )l < € for any

f e~ 11(0,11%). Then W > ce=5 with ¢ depending on s only.
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NONPARAMETRIC REGRESSION ON LOW-DIMENSIONAL MANIFOLDS USING RELU NETWORKS 11

We take R" as the parameter space of a ReLU network, and .7 as the transformation given by the
ReLU network. Theorem 3.2 implies that, to approximate any f € 271110, 119), the ReLU network

needs to have at least ce_.g?’ weight parameters. Although Proposition 3.2 holds for functions defined on
[0, l]d, our network size remains in the same order up to a logarithmic factor even when the function is
supported on a manifold of dimension d.

On the other hand, the lower bound also reveals that the low-dimensional manifold model plays a
vital role to reduce the network size. To uniformly approximate functions in 2471110, 11P) with an

. . . _D . .
accuracy €, the minimal number of weight parameters is O(e~ s ). This lower bound cannot be improved
without low-dimensional structures of data.

3.2 Statistical estimation theory

Based on Theorem 3.1, we next present our main regression theorem, which characterizes the
convergence rate for the estimation of f, using ReLU neural networks.

THEOREM 3.3. Suppose Assumptions 1 - 3.3 hold. Let fn be the minimizer of empirical risk (1.3) with
the network class .#(R, «, L, p, K) properly designed such that

L=0 s~|——(x logn), p= 0 (n2<.s+?x>+d) , K= 0O H_—an2<s+da>+d’ logn ),
2(s+a)+d 2(s+a)+d
R=foll,» and « = O(max{l,B,vd,t%}).

Then we have

~ 2 5 2 _2(s+w) D 3
E ///(fn(x) - fo(x)) d2,.(x) | < c(R? + 02 (n~Troma + = ) log? n,
n
where the expectation is taken over the training samples S, and c is a constant depending on log D, d,
s, T, B, the surface area of .#, and the upper bounds of derivatives of the coordinate systems ¢;’s and
partition of unity p;’s, up to order s.

Theorem 3.3 is established by a bias—variance trade-off. We decompose the mean squared error to
a squared bias term and a variance term. The bias is quantified by Theorem 3.1, and the variance term
is proportional to the network size. A detailed proof of Theorem 3.3 is provided in Section 5. Here are
some remarks:

1. The network class in Theorem 3.3 is sparsely connected, i.e. K = O(Lp), while densely
connected networks satisfy K = O(Lp?).

2. The network class Z(R, «, L, p, K) has outputs uniformly bounded by R. Such a requirement can
be achieved by appending an additional clipping layer to the end of the network structure, i.e.

g(a) = max{—R, min{a, R}} = ReLU(a — R) — ReLU(a + R) — R.

3. Each weight parameter in our network class is bounded by a constant « only depending on the
curvature 7, the range B of the manifold ./ and the manifold dimension d. Such a boundedness
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12 M. CHEN ET AL.

condition is crucial to our theory and can be computationally realized by normalization after each
step of the stochastic gradient descent.

4. Proof of approximation theory

This section contains a proof sketch of Theorem 3.1. Before we proceed, we show how to approximate
the multiplication operation using ReLU networks. This operation is heavily used in the Taylor
approximation sub-network, since Taylor polynomials involve a sum of products. We first show ReLU
networks can approximate quadratic functions.

LEMMA 4.1. (Proposition 2 in (76)). The function f(x) = x> with x € [0, 1] can be approximated by
a ReLU network with any error ¢ > 0. The network has depth and the number of neurons and weight
parameters no more than clog(1/€) with an absolute constant ¢, and the width of the network is an
absolute constant.

This lemma is proved in Appendix A.1. The idea is to approximate quadratic functions using a
weighted sum of a series of sawtooth functions. Those sawtooth functions are obtained by compositing
the triangular function

g(x) = 2ReLU(x) — 4ReLU(x — 1/2) + 2ReLU(x — 1),

which can be implemented by a single layer ReLU network.
We then approximate the multiplication operation by invoking the identity ab = ‘—IL((a—i—b)2 —(a—b)?)
where the two squares can be approximated by ReL.U networks in Lemma 4.1.

COROLLARY 4.1. (Proposition 3 in (76)). Given a constant C > 0 and € € (0, C?), there is a ReLU
network that implements a function x : R? — R such that: 1). For all inputs x and y satisfying x| < C
and |y| < C, we have | X (x,y) — xy| < €; 2). The depth and the weight parameters of the network is no

2 .
more than clog % with an absolute constant c.

The ReLU network in Theorem 3.1 is constructed in the following five steps.

Step 1. Construction of an atlas. Denote the open Euclidean ball with center ¢ and radius r in R”
by %(c, r). For any r, the collection {#(x, )}, 4 is an open cover of .. Since .# is compact, there
exists a finite collection of points ¢; fori =1,...,C , such that.Z C | J; %(c;, 7).

The following lemma says that when the radius r is properly chosen, U, = %(c;,r) N A is
diffeomorphic to R.

LEMMA 4.2. Suppose Assumption 1 and 2 hold and let r < 7/4. Then the local neighborhood U; =
AB(c;, r) N A is diffeomorphic to R, In particular, the orthogonal projection P, onto the tangent space
T,, () at ¢; is a diffeomorphism.
The proof is provided in Appendix B.1, which utilizes the results in [58]. Therefore, we pick radius
C
r < t/4, and let {(U,, qbi)}i:‘/l// be an atlas on ./ as illustrated in Figure 4, where ¢, is
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NONPARAMETRIC REGRESSION ON LOW-DIMENSIONAL MANIFOLDS USING RELU NETWORKS 13

More Open
Balls to Cover

9 c [0,1]¢

Fi1G. 4. Curvature decides the number of charts: smaller reach requires more chart.

to be defined in Step 2. The number of charts C ,/is upper bounded by

SA(A)
C///S ’7 ] Td—"

where SA(M) is the surface area of ./, and T is the thickness of the U,’s, which is defined as the
average number of U,’s that contain a point on .# (see Eq. (1) in Chapter 2 of [17]).

REMARK 4.1. The thickness T, scales approximately linear in d. As shown in Eq. (19) in Chapter 2 of

[17], there exist coverings with ﬁé ST, <dlogd+dloglogd + 5d.

Step 2. Projection with rescaling and translation. We denote the tangent space at ¢; as

T, (A) = span(v,y, ..., V;y),

where {v;;,...,v,;;} form an orthonormal basis. We obtain the matrix V; = [v;,...,v;;] € RDxd by
concatenating the v;;’s as column vectors.
Define

¢;(x) = b,(VI (x — ¢;) +u,) € [0,1]¢

for any x € U;, where b; € (0, 1] is a scaling factor and u, is a translation vector. Since U, is bounded,
we can choose proper b; and u; to guarantee ¢;(x) € [0, 11¢. We rescale and translate the projection to
ease the notation for the development of local Taylor approximations in Step 4. We also remark that
each ¢; is a linear function, and can be realized by a single layer linear network.

Step 3. Chart determination. This step is to assign a given input x to the proper charts to which
x belongs. This avoids projecting x using unmatched charts (i.e. x ¢ U; for some j) as illustrated in
Figure 5.

An input x can belong to multiple charts, and the chart determination sub-network determines all
these charts. This can be realized by compositing an indicator function and the squared Euclidean
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14 M. CHEN ET AL.

Unmatched

F1G. 6. Chart determination utilizes the composition of approximated distance function 312 and the indicator function 1 4.

distance
D
2 2 2
dx) =Ix—cli=> (x—c;)
j=1

fori = 1,...,C ,. The squared distance di2 (x) is a sum of univariate quadratic functions; thus, we
can apply Lemma 4.1 to approximate dl.2 (x) by ReLU networks. Denote fzsq as an approximation of the
quadratic function x? on [0, 1] with an approximation error v. Then we define

).

as an approximation of diz(x). The approximation error is ||3i2 - dl.2|| o = 4B2Dv, by the triangle
inequality. We consider an approximation of the indicator function 1(x € [0, %)) as in Figure 6:

iy

(%) 4BQ§:E (xf_c
i (X) = sq\|” »p
j=1 2B

1 a<r’—A+4B*Dv

N 2 2

1@ =\~ 550 + 5ont a€[r? — A+4B?Dv,r? — 4B’Dv] 4.1)
0 a > r* —4B*Dv

where A (A > 8B2Dv) will be chosen later according to the accuracy €.
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NONPARAMETRIC REGRESSION ON LOW-DIMENSIONAL MANIFOLDS USING RELU NETWORKS 15

#i(x)

F1G. 7. Locally approximate f in each chart (U;, ¢;) using Taylor polynomials.

To implement il ala), we consider a basic step function g = 2ReLU(x — 0.5(+ — 4B*Dv)) —
2ReLU(x — r* + 4B’Dv). It is straightforward to check

grla)=go---o0ga)
~———

k
0 a< (1 =272 - 4B2Dv)
— 12k — 2 +4BDv) + 2 —4BDv a e [(1 — 1)~ 4B2Dv), ? — 4B2Dv] .
2 —4B%2Dv a> r*—4B%Dv

Let ﬁA =1- mgk. It suffices to choose k satisfying (1 — 21—,<)(r2 —4B%Dv) > r2 — A+ 4B*Dv,

which yields & = {log rZz-‘ We use 1 A0 312 to approximate the indicator function on U;:
o ifx¢gU,ie. dl.z(x) > 12, we have ﬁA o le.z(x) =0
e ifxe U, and dl-z(x) < r? — A, we have ﬁA o Ell.z(x) =1.

We remark that although the approximate indicator function i 4 18 a piecewise linear function with two
breakpoints, we implement it using a deep neural network to control the range of weight parameters in
the network. Otherwise, the parameter upper bound can be as large as 1/A due to the steep slope in i A
which undermines the statistical theory.

Step 4. Taylor approximation. In each chart (U;, ¢;), we locally approximate f using Taylor
polynomials of order n as shown in Figure 7. Specifically, we decompose f as

4
f=>f with f=fp,

i=1

where p; is an element in a C* partition of unity on .#, which is supported inside U;. The existence of
such a partition of unity is guaranteed by Proposition 2.9. Since .# is a compact smooth manifold and
p; is C*°, f; preserves the regularity (smoothness) of f such that f; € 7 (#) fori=1,...,C 4.
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16 M. CHEN ET AL.

LeEMMA 4.3. Suppose Assumption 3 holds. Fori=1,...,C W the function f; is Holder continuous on
A, in the sense that there exists a Holder coefficient L; depending on d, the upper bounds of derivatives
of the partition of unity p; and coordinate system ¢;, up to order s, such that for any |s| = s, we have

S —1 S -1
‘D (fi o ¢; )|¢,-(x1) —D(fio 9, )|¢i(X2)

<L

)d’i(xl) - ¢i(xz)‘

o
. VX, X, € U,

Proof Sketch. We provide a sketch here. More details are deferred to Appendix B.2. Without loss of
generality, suppose Assumption 3 holds with the atlas chosen in Step 1. Denote g, = f o ¢i_1 and

8 =p;o ¢l._1. By the Leibniz rule, we have

— s
D*(f; o ¢, ") =D(g, x gy) = Z ( N )DPg,Dlg,.
[pl+lgl=s

Consider each term in the sum: for any x,x, € U,,

[DP81D982 4,5, = DP81D82 4,1y |
< |DPg1 @i xi)[|D%82 ) = D982 50| + [DI8281xD D81, ) = DP81 gy 0|
= )\l@i,a llg;(x;) — ¢,(X2)||g + Hiﬂi,a||¢i(x1) - 45,-(X2)||‘2’.
Here A; and u; are uniform upper bounds on the derivatives of g, and g, with order up to s, respectively.

The quantities 6; , and B, , in the last inequality above is chosen as follows: by the mean value theorem,
we have

|Dq82|¢i(X1) - Dqu|¢i(X2)} = x/guillcbi(xl) - ¢i(X2)||2
= \/El/«j”(f’i(xl) - ¢,’(X2)||é_a||¢i(xl) - ¢,’(X2)||g
< Vdp;2r)' " lg;(x)) — ;x5

where the last inequality is due to the fact that ||¢;(x|) — ¢;(X,)ll, < b;IV;lllIX; — X;]l, < 2r. Then we
set 0, = ﬂui(Zr)l_“ and by a similar argument, we set f; , = \/ﬁki(Zr)l_“. We complete the proof
by taking L; = 2+ 1/d,u,(2r)' 7. O

Lemma 4.3 is crucial for the error estimation in the local approximation of f; o ¢; ! by Taylor

polynomials. This error estimate is given in the following theorem, where some of the proof techniques
are from Theorem 1 in [76].

THEOREM 4.1. Let f; = fp; as in Step 4. For any § € (0, 1), there exists a ReLU network structure that,
if the weight parameters are properly chosen, the network yields an approximation of f; o ¢i_1 uniformly
with an L error 8. Such a network has

1. no more than ¢, (log % + 1) layers, with width bounded by ¢,é —d/(ste)
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NONPARAMETRIC REGRESSION ON LOW-DIMENSIONAL MANIFOLDS USING RELU NETWORKS 17

2. at most c38_ﬁ (log % + 1) neurons and weight parameters, with the range of weight parameters
bounded by k = ¢, max{l,/d},

where ¢y, ¢,, c; depend on s,d, T, and the upper bound of derivatives of f; o ¢>i_1 up to order s, and ¢,
depends on the upper bound of the derivatives of p;’s up to order s.

Proof Sketch. The detailed proof is provided in Appendix B.3. The proof consists of two steps:
1. Approximate f; o ¢;” ! using a weighted sum of Taylor polynomials;

2. Implement the weighted sum of Taylor polynomials using ReLU networks.

Specifically, we set up a uniform grid and divide [0, 1]¢ into small cubes, and then approximate fiod; !
by its s-th order Taylor polynomial in each cube. To implement such polynomials by ReLU networks,
we recursively apply the multiplication x operator in Corollary 4.1, since these polynomials are sums
of the products of different variables. (]

Step 5. Estimating the total error. We have collected all the ingredients to implement the entire
ReLU network to approximate f on .. Recall that the network structure consists of 3 main sub-networks
as demonstrated in Figure 3. Let X be an approximation to the multiplication operator in the pairing sub-
network with error n. Accordingly, the function given by the whole network is

u
f= Z X(fady0d?  withf, =f 0¢;
i—1

wheref”i is the approximation of f; o qbi_l using Taylor polynomials in Theorem 4.1. The total error can
be decomposed into three components according to Lemma 4.4 below. We denote 1(x € U,) as the
indicator function of U,. Let the approximation errors of the multiplication operation x and the local
Taylor polynomial in Theorem 4.1 be 1 and §, respectively.

~ C
LEmMA 4.4. Foranyi=1,..., C///, we have ||f — fll < Zi=/1/{(Ai,l +Al-’2 +Ai’3), where

Ay = %G dyod)) —fix dyodd|, <,
Ap=fixdyod)—fix A odd],, <.

A an c(r+1)
Al-’3 = ||fl x (M, o0d)—fix1(xe Ui)||0<J < ——A for some constant c.

r(1 —r/t)

Lemma 4.4 is proved in Appendix B.4. In order to achieve an € total approximation error, i.e. ||f —
f o < €, we need to control the errors in the three sub-networks. In other words, we need to decide v
for 211.2, A for 1 4, 8 for f, and n for X. Note that A; is the error from the pairing sub-network, A, , is
the approximation error in the Taylor approximation sub-network, and A, 5 is the error from the chart

determination sub-network. The error bounds on A; ;,4; , are straightforward from the constructions of

% and f‘l The estimate of A; 5 involves some technical analysis since |1 A© (Ailz —1Ix e U)ly = 1.
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18 M. CHEN ET AL.

Note that we have
lpod?(x) —1(xeU) =0

whenever [x —¢;5 < 2 — A or |[x —¢;l|3 > r*. Therefore, we only need to prove that |f;(x)] is
sufficiently small in the shell region

H={xeM:r*—A<|x—c¢l3<r).

We bound the maximum of f; on J#; using a first-order Taylor expansion. Since f; vanishes at the
boundary of U; due to the partition of unity p;, we can show that sup, A [f;(x)| is proportional to the
width A of .. In particular, there exists a constant ¢ depending on f;’s and ¢;’s such that

c(mr+1)

gaxi ;x| < WA forany i=1,...,C 4. “4.2)

Then (4.2) immediately implies the upper bound on A, 5. The formal statement of (4.2) and its proof are
deferred to Lemma A.1 and Appendix B.5.
Given Lemma 4.4, we choose

€ r(l —r/t)e
n=686=—-—— and = (4.3)
3C g 3e(r +DC 4
so that the approximation error is bounded by €. Moreover, we choose
2 4.4)
V= ——— .
16B2D

to guarantee A > 8B2Dv so that the definition of 1 , is valid.

Finally we quantify the size of the ReLU network. Recall that the chart determination sub-network
has ¢, log% layers, the Taylor approximation sub-network has c, log% layers, and the pairing sub-
network has c; log L layers. Here ¢, depends on d,s,f, and ¢, c; are absolute constants. Combining
these with (4.3) and (4.4) yields the depth in Theorem 3.1. By a similar argument, we can obtain the
number of neurons and weight parameters. A detailed analysis is given in Appendix B.6.

5. Proof of the statistical estimation theory

In the proof of Theorem 3.3, we decompose the mean squared error of the estimator fn into a squared
bias term and a variance term. We bound the bias and variance separately, where the bias is tackled
using the approximation theory (Theorem 3.1), and the variance is bounded using the metric entropy
arguments [31, 72]. We begin with an oracle-type decomposition of the L, risk, in which we introduce
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the empirical L, risk as the intermediate term:

> 2 1< .

i=1

T

N 2 1
+E [//{ (fn(X) —fo(x)) d@x(x)} —2FE |:n g(f”(xi)_fO(Xi))zi|,

p)

where T reflects the squared bias of using neural networks for estimating f; and 7, is the variance term.
We slightly abuse the notation i to denote the index of samples.

5.1 Bias characterization—bounding T,

Since T is the empirical L, risk of fn evaluated on the samples S, , we relate 7, to the empirical risk
(1.3) by rewriting f,(x;) = y; — &;. Substituting into T}, we derive the following decomposition,

_1 "
Tl =2E ; Zl(fn(xl) — )i + Sj)2:|

DoR % Z I:(fn(xi) =37+ 260, (%) — Eiz]:|
i=1

=2E| inf %;[(ﬂx»—yi>2—s,-2+2sfn<xi>]}

_fey(R,/(,L,p,K)

(ii) , ) L
2 f - A7, (x) +4E | - > &f,x) |- 5.1
= fey(llef}c,L,p,K) /%(f(X) f() (X)) x(X) + |:I’l ; Elfn (Xt)i| ( )

(A) (B)

Equality (7) is obtained by expanding the square, where the cross term E[£,y;] = E[§;(fy(x;) + &)] =
E[Eiz] due to the independence between x; and §;. Inequality (ii) invokes the Jensen’s inequality to pass
the expectation. To obtain term (A), we expand (f(x;) — y,-)2 = (f(x;) —fox;) — é,.)z, and observe the
cancellation of —éiz. Note that term (A) is the squared approximation error of neural networks and we
will tackle it later using Theorem 3.1. We bound term (B) by quantifying the complexity of the network
class #(R,«,L,p, K). A precise upper bound of T, is given in the following lemma, whose proof follows
a similar argument in [63, Lemma 4).
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LEmMMA 5.1. Fix the neural network class #(R, «, L, p, K). For any constant § € (0,2R), we have

2 log N8, FR, 1, L,p,K), |Ill o) + 2
n

T, <4  inf (X) — fo(X))2d D, (x) + 480
! feZF Rk LpK) / /A 4 To

1 8,6~Ra sL3 7K9 ° 2
+(8%\/ogﬂ( F( Knp )i o) +

+ 8)o 4,

where A8, #(R,k,L,p,K),|ll,,) denotes the §-covering number of #(R,«,L,p,K) with respect
to the £, norm, i.e. there exists a discretization o_f F(R,k,L,p,K) into A8, 3“(R_,/<,L,p, K), I-llso)
distinct elements, such that for any f € .%, there is f in the discretization satisfying ||f — fll,, < €.

Proof Sketch. Given the derivation in (5.1), we need to bound term (B). We discretize the neural

network class #(R,«,L,p,K) as {fi*};ﬁj(s’y(R’K’L’p ’K)’”’”"O). By the definition of covering, there exists

f* such that |[fn —f*llso < 8. Denoting |If — fyll,, = % > (f(xp) —fo(xi))2, we cast (B) into

S
B=E| D EE ) — (%) + 1 (x) —fo(xi))}
L =1

<E %gs,»(f*(x,-) —f&x,-))} + 80

I = foll, 2?21 Ei(f*(xi) —fo(xi)):| 5
| S —rl, 1%

(ii) F, = foll, + 8 | ) &(F* (X)) — fo(x,))
\/EE n 0lln ‘ i=15i i 0\ ‘ S ,
= [ Jn Jalf* = £, }Jr ’

where (i) follows from Holder’s inequality and (ii) is obtained by some algebraic manipulation. To break
the dependence between f* and the samples, we replace f* by any ]3* in the §-covering and observe that

S (T (k) —fo (%) ‘ 2 &l () —fo(xi)
GlF—fle | = M| T Rl

J
show
(B) <2 JllE[uf —f||2]+i E[max zz} + 80
= n n 0lln \/ﬁ i j ’

_ ‘ S & ) —fo (i)

. Applying the Cauchy—Schwarz inequality, we can

where z;

K Nl X
with parameter o (i.e. its variance is bounded by o). It is well established in the existing literature on
empirical processes [72] that the maximum of a collection of squared sub-Gaussian random variables

satisfies

‘. Given X, ...,X,, we note that 3 is a sub-Gaussian random variable

E [m]ax ij | X,... ,xni| <302 log 48, #(R,k,L,p,K), I ll,) + 60°.
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Substituting the above inequality into (B) and combining (A) and (B), we have

1=K, -] <2 it E[¢m - fe7] + 450

feZF (R LpK)

2 1 R.x,L.p.K), |- 2

n

Some manipulation gives rise to the desired result

j(R’K’lﬂp?K)a ””oo) +2
n

. log A8,
T, <4 inf (X) — fo())2d D, (x) + 4807
! feZF (R LpK) / M v To

1 895\R3 ,L’ 7Ks : 2
+(8¢5\/ogm F( xnp ) llo) +

+ 8)04.

See proof details in Appendix C.1. O

5.2 Variance characterization—bounding T,

We observe that T, is the difference between the population L, risk of fn and its empirical counterpart.
However, bounding such a difference is distinct from conventional concentration results due to the
scaling factor 2 before the empirical risk. In particular, we split the empirical risk evenly into two parts,
and bound one part using its higher-order moment (fourth moment). Using Bernstein-type inequality
allows us to establish a 1/n convergence rate of T,; the corresponding upper bound is presented in the
following lemma.

LEmMA 5.2. For any constant § € (0,2R), T, satisfies

2

R 1
log #(8/4R, #(R,k,L,p,K), |-l 5) + (4 + _) 5.

T, <
2= 2R

Proof Sketch. The detailed proof is deferred to Appendix C.2. For notational simplicity, we denote
gx) = (f,(x) — fo(x))* and |1gll, < 4R?. Applying the inequality [ ,2*d 2, (x) < 4R* [ ,,2d D, (x)
[6], we rewrite T, as

. 2 O .
T,=E [ / [ p0d2 00— Zg(x,-)}

i=1

_om [ /ﬂg@d@x(x) - %;gm -3/ /(x)d@x@}

1 — 1
<2E [ ////@(x)d.@x@) PILRE / %f(x)d@x(x)} |
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We now utilize ghost samples of x to bound T,, which is a common technique in existing liter-
ature on nonparametric statistics [31; 72]. Specifically, let X;’s be independent replications of Xx;’s.
We bound 7, as

_ - 2
T, < 2E Lf:% //(x)d@ x) Zg< X) - g / ¢ (x)d%(x)]

= 2Eyx [sup Z(g(x) 8(x)) — 16R2 Xx[g (x)+g(x)]:|

g™ i

where ¥ = {g = (f — fo)2 | f € F(R,k,L,p,K)}. We use the shorthand E, ;[-] to denote the double
integral [ [ -d2,.(x)d2,(X) with respect to the joint distribution of (x, x) The last inequality holds
due to Jensen’s inequality. Note here g?(x) + g2(X) contributes as the variance term of g(x;) — g(x),
which yields a fast convergence of T, as n grows.

Similar to bounding T, we discretize the function space ¢ using a §-covering denoted by ¢*. This
allows us to replace the supremum by the maximum over a finite set:

1
T2§2E,—(,X|:sup -Z(g &) — g"(x)) — R2 Eyz | (6200 + (¢ (x)]] (4+2R)8-

e i

We can bound the above maximum by the Bernstein’s inequality, which yields

R21 NG ) + (44— ) s
g o0 2R *

T2S

The last step is to relate the coverlng number of ¢ to that of .Z#(R, x, L, p, K). Specifically, consider
any g,,8, € Ywith g; = (f fo) and g, = (f» f()) , respectively. We can derive

lgr — &lloe = Slg)/l[fl ®) =L i) +HE) = 2] < 4RIf; =l

Therefore, the inequality 48,9, |-ll5,) < A(6/4R, F(R,k,L,p,K), |-l 5,) holds, which implies

2

1
log #(6/4R, F(R,k,L,p,K), |I-llo0) + (4 + ﬁ) d.
The proof is complete. 0

5.3 Covering number of neural networks

The upper bounds of 7| and 7, in Lemmas 5.1 and 5.2 both depend on the covering number of the
network class .#(R,«,L,p,K). In this section, we provide an upper bound on the covering number
N, F(R,k,L,p,K), |||l for a given aresolution § > 0. Since each weight parameter in the network
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is bounded by a constant x, we construct a covering by partitioning the range of each weight parameter
into a uniform grid. By choosing a proper grid size, we show the following lemma.

LEMMA 5.3. Given § > 0, the §-covering number of the neural network class Z#(R, «, L, p, K) satisfies

K

(5.2)

2[?(pl?%—2)KLpL+l
W(S’Q(R”QL’ILK): ””OO) = ( )

1)

Proof Sketch. Consider f,f € #(R,k,L,p,K) with each weight parameter differing at most 4. By an
induction on the number of layers in the network, we show that the £, norm of the difference f — f’
scales as

If —flloo < AL(PB + 2)(xp)=~1.

)Lfl

As aresult, to achieve a §-covering, it suffices to choose % such that hL(pB 4+ 2) (kp = §. Moreover,

2
there are (‘2) < (Lp»)X different choices of K non-zero entries out of Lp? weight parameters.
Therefore, the covering number is bounded by

K

2K)K - (2L2(pB+2)KLpL+1)
h) - 8

N\ K
N, FR KL, K o) = (L) (
The detailed proof is provided in Appendix C.3. (]

5.4 Bias—Variance trade-off

We are ready to finish the proof of Theorem 3.3. Combining the upper bounds of 7} in Lemma 5.1 and
T, in Lemma 5.2 together and substituting the covering number (5.2), we obtain

E[ / J/{(fn@)—fo(x))zd@x(x)] <4 ot [ 00 =107, )

feZF (R LpK)
s log A8, F(R, ik, L,p, K), ||l o) + 2
n

log A8, (R, k,L,p,K), ||: 2
+8f6/°g (0, PR 1, L,p, K, I1lloc) +2
n

+ 480

8

104R?
n

1
4+ —+8c)é.
+(+2R+ 0)

+ log =/V(8/4Ra E(R7K7L’p’ K)’ ””oo)
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It suffices to choose § = 1/n, which gives rise to

E[ / P —fo(X))zd%(X)} <4 ot [ 00 = /o)’ d7, ()

feF R LpK)

- (R?+ o2 o2
4+ O\ —KLlog(RxLpn) + — ), (5.3)
n n

where we also plug in the covering number upper bound in Lemma 5.2. We further set the approximation
error as €, i.e. inffey(R’K’L’p,K) If (xX) —fo(X)llo, < €. Theorem 3.1 suggests that we choose L = O(log é),

p= é(e_ﬁ) and K = O (E_H% log % + Dlog %) Substituting L, p, and K into (5.3), we have

. 2 - R*+0%/ _a 11
E [//// (fn(x) —fo(x)) d@x(x)] 0 (62 + TG (6 a4 D) log? - + ;) .

__d_ . . — st
To balance the error terms, we pick € satisfying € = rlle s+a  which gives € = n @726+a) . The proof of

___ sta
Theorem 3.3 is complete by plugging in € = n 4+26+e) and rearranging the terms.

6. Conclusion

We study nonparametric regression of functions supported on a d-dimensional Riemannian manifold
M isometrically embedded in RP, using deep ReLU neural networks. Our result establishes an
efficient statistical estimation theory for general regression functions including C* and Holder functions
supported on manifolds. We show that the L, loss for the estimation of f;y € 7% (.#) converges in the
__sta . N . .
order of n 26t@)+d To obtain an e-error for the estimation of f;, the sample complexity scales in the

order of e~ ~ s+« . This sample complexity depends on the intrinsic dimension d and demonstrates that

deep neural networks are adaptive to low-dimensional geometric structures of data sets. Such results can
be viewed as theoretical justifications for the empirical success of deep learning in various real-world
applications where the data sets exhibit low-dimensional structures.
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A. Proofs of the Preliminary Results in Section 4

A.1  Proof of Lemma 4.1

Proof. 'We partition the interval [0, 1] uniformly into 2N subintervals [ = [2%, kziNl] fork=0,...,2N—

1. We approximate f(x) = x? on these subintervals by a linear interpolation

W 2k+1 k K
fk:2—N(x_2_N)+22_N, forxe[k.

It is straightforward to check that fk meets f at the endpomts N k;,(,l of I.

We evaluate the approximation error of fk on the interval I;;:

V() f()‘ 2k + 1 +k2+k
max X) — X)) = max | X© — ——X —
xely k xely 2N 22N
2k +1)? 1
= I};}f YT ONFT ) T N2
1
= oNt2

Note that this approximation error does not depend on k. Thus, in order to achieve an € approximation
error, we only need

1 N> logé
2Nz =€ = 2log2

Since 2log2 > 1, we let N = lrlog %—I and denote fyy = Zilglfk]l{x € I, }. We compute the increment

from fy_, to fy forx € [Z,VL,I, 2";’—}1] as

K k K 4k+1 k k_ 2k+1
Fo i fu = 20N-1) +2 2 A o(x - N-T) — -1 — N \X T N X € [ 55-T> W
N-1 7JN = & +2 kil (p o k) Qk+D?  4k43 (. 2%kt xe |2l kil
22(N-1) oN-1 22N 2N 2N ’ 2N s 2N
1 k k_ 2k+1
wrT e € e 2_N)
- 1 k+1 2k+1 k+1Y)°
—wX+t ot X €| TN 2N—1)
We observe that fy,_; — fy is a triangular function on [2N T sz+ A1 The maximum is 22LN independent

of k attained at x = % The minimum is O attained at the endpoints 2]\5‘,1 s SNT I To implement > we
consider a triangular function representable by a one-layer ReLU network:

gx) =20(x) —4o(x—0.5) +20(x —1).

Denote by g,, = g o go --- o g the composition of totally m functions g. Observe that g, is a
sawtooth function with 2"~! 2"'“ fork = 0,...,2" ! — 1, and we have gm(z’;,:l) = 1 for
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k=0,...,2""1 — 1. Then we have fy_, — fy = 2%gN. By induction, we have

1
In=In1~ N8N

1 1
N2~ 22—N8N ) EN—-1

N

X_Zﬁgk'

k=1

Therefore, f; can be implemented by a ReLU network of depth {log é-‘ <log é + 1. Meanwhile, each

layer consists of at most three neurons. Hence, the total number of neurons and weight parameters is no
more than clog é for an absolute constant c. (]

A.2  Proof of Corollary 4.1

Proof. Let J?a be an approximation of the quadratic function on [0, 1] with error § € (0, 1). We set

- o (XYY s (=
on=e(u(52) (")

Now we determine §. We bound the error of X

. sle (+yY x4y o =y x—y?
IX(x,y)—xy|:C%( 2C )_ 4C? —Js 2c )t e

el (BT | (ol eyl
- S\ 2c 4C2 s\ 2c 4C2
<2C%.

Thus, we pick § = 2% to ensure |>A<(x, y) — xy| < € for any inputs x and y. As shown in Lemma 4.1,

. AT 2
we can implement f; using a ReLU network of depth at most ¢’ log % = clog % with absolute constants
¢, c. The proof is complete. O

B. Proof of approximation theory of ReLLU network (Theorem 3.1)

This section consists of the detailed proofs of Lemma 4.2, Lemma 4.3, local approximation theory
Theorem 4.1, error decomposition in Lemma 4.4 and a technical Lemma B.1 for bounding the error,
as well as the configuration of the desired ReLU network class for universally approximating Holder
functions.

B.1  Proof of Lemma 4.2

Proof. We first show P; defined on U, is a homeomorphism, which implies (U;, P;) is a chart on the
manifold. Then by Proposition 6.10 in [71], we conclude P; is a diffeomorphism.
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30 M. CHEN ET AL.

To show P; is a homeomorphism on U;, we only need to show P; has a continuous inverse. By
Lemma 5.4 in [58], the derivative of P; is nonsingular in U;. The inverse function theorem implies
that P; is locally invertible in an open neighborhood %(c;, ct) () .4 for some constant ¢ > 0. In the
following, we show by contradiction that the constant ¢ > 1/4. Suppose not, there exist distinct points
a,b € U, such that P;(a) = P;(b) with |la—¢||, < 7/4 and ||b —¢,|l, < t/4. Using the triangle
inequality, we obtain |[a — b||, < 7/2. Applying Proposition 6.3 in [58], we derive

d y(@b) <t and d yac) <t(l— «/5/2) with d ,(-,-) being the geodesic distance.

Furthermore, using Proposition 6.2 in [58], we lower bound the angle between the tangent spaces T, (M)
and T, (.#) by

2 min max |(uv)|zl—%d///(a,ci)>«/§/2. (B.1)

cos (Z(T, s
( ( a(///) c,(%))) ueT, (M) VGTCi(///)

On the other hand, we consider a unit speed geodesic y (¢) starting from a and ending at b, with
y() =a, y(d 4(a,b)) =b,and |y|, = 1. Integration by parts yields

b—a=y@d ,@ab)) -y

d a,b)
= / M y(H)dt
0

d ab) ,t
=y(0)d ,4(a,b) + / 4 / 7 (s)dsdt.
0 0

Rearranging terms gives rise to

d_gfab) 1 d* (a,b)
Ib—a— 70)d @b, < /0 /0 155) lpdsdr < //g(—f (B2)

where the last inequality follows from Proposition 6.1 in [58]. Dividing (B.2) by d_,(a, b) and plugging
in d//Aa, b) < 7, we have

b—a ) 1
[0l <4

w(@Db) 22
For any unit vector v € T, (), we evaluate the inner product

b-— b-—
(7 O] < <y‘<0) - ///(aab)>v' + ’<—M(aab)>v’

o)

N T et

B ILELE

=la @) "7l

<%, (B.3)
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where (%)V = 0 in equality (i), since P;(a) = P;(b) by our assertion. Combining (B.1) and

(B.3), we obtain

2 1
v2 < cos (L(T,(AM), T (A))) < max_ [(y(O)v] < =,
2 VETC[’( ) 2

which is a contradiction. Therefore, we conclude that P; is injective, and hence invertible on the local
neighborhood #(c;, t/4) [ .#. The continuity of P; follows from its definition, and the inverse map of
a continuous map is also continuous. Therefore, P; is a homeomorphism on %(c;, r) () A for r < 7/4.

O

The last step is to show P, is also a diffeomorphism. We leverage the following proposition.

PROPOSITION A.1. (Proposition 6.10 in (71)). If (U, ¢) is a chart on a manifold .#, then the coordinate
map ¢ : U — ¢(U) is a diffeomorphism.

Since P; is a homeomorphism, we deduce that (U;, P;) is a chart of .Z. Applying Proposition A.1,
we conclude that P; is a diffeomorphism.
B.2  Proof of Lemma 4.3

Proof. Recall that we choose local coordinate neighborhood U; in Step 1 in Section 4. Let P; be the
projection onto the tangent space T, (.#). Then {(U;, P,)} is an atlas of .#. Without loss of generality,

we assume that {(U;, P,)} verifies the H6lder condition in Definition 2.7. Now we rewrite f; o q&i_l as

(Fod ) x(pjop"). (B.4)
N— ——
81 82

By the definition of the partition of unity, we know g, is C*°. This implies that g, is (s+ 1) continuously
differentiable. Since supp(p;) is compact, the k-th derivative of g, is uniformly bounded by 4;; for any
k <s+1.Let A; = max;_, | A; ;. We have for any [n| < nand x,,x, € U,

|D“g2(¢i(xl)) - D"g2(¢i(xz))| =< “/3)\1'||¢,'(X1) - ¢,‘(X2)||2
< Vdrb! %) — %, 157 N6;(x)) — $i (%) 115

The last inequality follows from ¢;(x) = bl-(ViT (x —¢;) +u;) and ||V;][, = 1. Observe that U,
is bounded; hence, we have ||x; — x2||;_a < (2r)!'7%. Absorbing [|x; — x2||é_°‘ into «/E)Lib}_“, we
have the derivative of g, is Holder continuous. We denote g; , = \/E)Lib} e < Vdren'e.
Similarly, g, is C*~! by Assumption 3. Then there exists a constant x; such that the k-th derivative of
g is uniformly bounded by u; for any k < n — 1. These derivatives are also Holder continuous with
coefficient 6, , < v/du;(2r)' .

By the Leibniz rule, for any [s| = s, we expand the s-th derivative of f; o ¢, as

s
D(g x &) = Z ( )ngqu82~

Ipl
[pl+lq|=s
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Consider each summand in the above right-hand side. For any x,x, € U;, we derive
|DPgy(;(x1)) D, (¢;(x1)) — DPgy(;(%2))DYgy(¢;(x,)) |
=|DPg; (;(x)Dgy(¢;(x))) — DPg, (¢;(x))DIg, ($;(X,))
+ DPgy(;(x1))Dg,(¢;(x2)) — DPg;(;(%2))DYg, (¢(x,)) |
<IDPg;(¢;(x))|I1DYg,(¢;(x,)) — Dgy(;(x,))]
+ 1D, (¢;(x,))1IDPg; (¢;(x1)) — DPg;(¢;(x,))]
=i lli (X)) — B (XI5 + 180 19; (X)) — B;(X) 115
<2Vdp 3 2r) " [lgy(x)) — B, ()15

Observe that there are totally 2° summands in the right hand side of (B.4). Therefore, for any x;,x, € U;
and |s| = s, we have

\DS(f,» 08 Moy = D0 b7 Dy | = 277 Vdun 20 = ld(x)) — ¢;(x)15.

B.3  Proof of Theorem 4.1

Proof. The proof consists of two steps. We first approximate f; o ¢i_1 by a Taylor polynomial and then
implement the Taylor polynomial using a ReLU network. To ease the analysis, we extend f; o ¢i_1 to
the whole cube [0, 1]¢ by assigning f; o ¢, ! (x) = 0 for ¢;,(x) € [0, 14 \ ¢;(U;). It is straightforward
to check that this extension preserves the regularity of f; o ¢, ! since Jf; vanishes on the complement of
the compact set supp(p;) C U;. For notational simplicity, we denote fi¢ =fiop, ! with the extension.

Accordingly, Lemma 4.3 can be extended to the whole cube [0, 1]¢ without changing its proof, i.e. for
any x;,x, € [0, l]d and |s| = s, we have

D521, = D21 | = 2 Vi, 20 %, = xS, (B.5)

Step 1. We define a trapezoid function

1 lx] <1
YW =12-k 1<hl<2.
0 |x| > 2

Note that we have |||, = 1. Let N be a positive integer, we form a uniform grid on [0, 114 by dividing
each coordinate into N subintervals. We then consider a partition of unity on these grid defined by

o= [T0 (3 (5~ ™).
k=1

We can check that D" ¢,,(x) = 1 as in Figure A.8.
We also observe that supp(¢p,) = {x : |x, — 5| < %\,,k =1....d}C{x:|y— %< Il\,,k =1,.
....,d}. We use the slightly enlarged support set of length 2/N to simplify the constant computation.

2202 1snbny 9z uo Jasn ABojouyos ] Jo synsu eibioas) Aq 89ZSHS9/ 1L 00oBRI/IIBWI/SE0 L 0 | /I0p/8|o1B-00uBApe/Ielewl/woo dnoolwapese//:sd)y WoJ) papeojumod



NONPARAMETRIC REGRESSION ON LOW-DIMENSIONAL MANIFOLDS USING RELU NETWORKS 33

VBN (=) V(BN (a - 241))
('
FANENEE . W

|
mg mg+1
N i Tk

FiG. A.8. Tllustration of the construction of ¢y on the k-th coordinate.

Now we construct a Taylor polynomial of degree s for approximating fid’ at y:

Sf;¢ mh s
| oy

Pm() = z s!
Define f; = > ¢ {0....N}4 SmPm- We bound the approximation error Il — fi¢

_m
Is|<s X=N

lloo:

max Vi(x) — fi¢ (x)‘ = mfx

xe[0,1]4

> @ (P ®) — £ (%)

< max Z ‘Pm(X) —fiq) (X))

< max 2d max

P — /0|

X omfu— sy
(i) 2495 (1)°
< — Ds ; |m _Ds ¢ )
_m;?lx m (N) Eg fﬂw f, |y
(ii) 2945 (1N o4y -
= max — (ﬁ) 2 dpn(2r) “||ﬁ—x||§

pd+s+1 gs+a/2 ( 1 )S+a

s! N

< Vdpr,2n' v

Here y is the linear interpolation of % and x, determined by the Taylor remainder, and inequality (i)
follows from the Taylor expansion of fi¢ around m/N. Note that only s-th order derivative remains
in step (i) and there are at most d° terms. Inequality (i) is obtained by the Holder continuity in the
inequality (B.5).

By setting

2d+s+lds+oz/2 1\t S
l—a
N (ﬁ) <5

. l—and+s+2 gs+a/2 1 . . . . 7
N > (*/3“')"(2” (mz 47" )5 . Accordingly, the approximation error is bounded by I —
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Step 2. We next implement f by a ReLLU network that approximates f up to an error . We denote

P,(x) = Z Ams (x — %)s s

[s|<s

. Then we rewrite f; as

o= > > tntm® (x- %)s (B.6)

me{0,....N}4 [s|<s

where a,,

_m
X=N

Note that (B.6) is a linear combination of products ¢, (x — —) Each product involves at most d +
n univariate terms: d terms for ¢, and n terms for (x - ) We recursively apply Corollary 4.1 to

implement the product. Specifically, let x . be the approximation of the product operator in Corollary 4.1
with error €, which will be chosen later. Consider the following chain application of X o

Fns 00 = % (WBNxy =3m). % (o R (W BNty = mg). % vy = TLo.0))

Now we estimate the error of the above approximation. Note that we have | (3Nx;, — 3m;)| < 1 and
lxe — Re| < 1 forallk € {1,...,d} and x € [0, 1]9. We then have

Fins 0 = & (x = %)S = R (wGNx = 3mp). R (Rl = T 0)) = (x = %)s

< |x¢ (W BNx; —3my), x (¥ (3Nx, — 3my), ...))
— Y BN, = 3m) X (Y (3Nx, — 3my),...)|
+ [¥BNx; — m))| | % (¥ BNx, — 3m,),...) — Y (BNxy — 3my) % (...)]
+...
< (s +d)e.

Moreover, we have f, (X) = ¢y, (x — )° = 0, if x & supp(&,,). Now we define

Z Z am,s];m,s'

me(0,...,N}9 [s|<s

A

The approximation error is bounded by

fi(X)—fi(x)‘= > Y s (fna® - gm(x—_))

€{0,....N}d [s|<n

s+l 7 mys
=< max A 20 max Z Lfm,s(x) —Cm (X - N)

MIXESUPP(Gm) T

max
X

< ,u 28 (d + s)e.

s -
We choose € = AT s SO that |If; — fillo < S. Thus, we eventually have |f; — f¢||C>o < 4.

Now we compute the depth and computational units for implement fi. fl- can be implemented by a
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collection of parallel sub-networks that compute each fm’s. The total number of parallel sub-networks
is bounded by d*(N + 1)¢. For each sub-network, we observe that ¥ can be exactly implemented by a
single layer ReLU network, i.e. ¥ (x) = ReLU(x + 2) — ReLU(x + 1) — ReLU(x — 1) + ReLU(x —
2). Corollary 4.1 shows that >2€ can be implemented by a depth ¢, log% ReLU network. Therefore,
the whole network for implementing fl has no more than ¢} (log % + 1) layers with width bounded by

O(d* (N + D) and cyd* (N + 14 (log é + 1) neurons and weight parameters. With € = 8

Aiui2d+x+2dx(d+s)
W l—and+s+2 gs+a/2 1 .
and N = [(#22) ;! 4" )53 ], we obtain that the whole network has no more than L = ¢, log %

d d
layers, with width bounded by p = ¢, s+«, and at most K = ¢,6 s+« (log % + 1) neurons and weight

parameters, for constants ¢y, ¢,, ¢; depending on d, s, T, and upper bound of derivatives of f; o ¢l._] ,up to
order s. Lastly, from (B.6), we see each parameter has a range bounded by the upper bound of derivatives
of f;o qbi_l up to order s — scales as V/d as in (B.5). ([

B.4  Proof of Lemma 4.4

Proof. We expand the estimation error as

I = flloo

C%A o )
:HZx(fi,]led?)—fpi]l(xeUi)‘oo
i=1

A
< ; Xl 0d?) —fl(x e U) .
C
< iE iiaod® —ji-(Aa0dDt Aaodd—f- Aaoddaf- Ayod)—fi-1xe U]
i=1
A
=D |5Giaed) —fixdaodd| +[ixds0@ —fixdsodd|_
i=1 " e
+(ﬁx(iAoaf)—ﬁx1(er,.)|oo.

Aij3

The first two terms A; |, A; , are straightforward to handle, since by the construction we have

Ay = Ix(F i o0d)) —f- (A 0dD)ll <n. and

Ap=Ifixdyod)—f-Ap0d) e < IIfi = filloollly 0 dPllo < 6.
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By Lemma B.1, we have max__ K ;@] < FEYT_J;/]T)) A for a constant ¢ depending on f;. Then we bound
A;jas
A A c(r+1)
A=t xA,0d®) —Ff x1(xeU. < . < 7
= Wix Ay o)) =i x Lx € Ul < max (0] < =

B.5  Helper Lemma for bounding A, 5 and its Proof
LemMA A.1. Foranyi=1,..., C///’ denote
Hi={xeM:r*—A<|x—c¢l3<r)

Then there exists a constant ¢ depending on the upper bounds of the first derivatives of the partition of
unity p;’s and coordinate system ¢;’s such that

c(mr+1)
r(l —r/7)

max |f;(x)] <
Xe

Proof. We extend f; o ¢i_l to the whole cube [0, 1]¢ as in the proof of Theorem 4.1. We also have
f;(x) = 0 for [|x — ¢;||, = r. By the first order Taylor expansion, for any x,y € U;, we have

i) — £, | = | f;0 87 (9:0)) — f: 0 ;7 (@i (y)
< IV(f; 0 07 Y@, 16:(%) — ¢; V)l
< IV(f 0 67 H@ 251 V; 151X = ¥l

where z is a linear interpolation of ¢;(x) and ¢;(y) satisfying the mean value theorem. Since f; o ¢>i’] is
C* in [0, 11¢, the first derivative is uniformly bounded, i.e. (IVf; o qbfl (@), < «; forany z € [0, 174 Let
y € U; satisfying f;(y) = 0. In order to bound the function value for any x € .%;, we only need to bound
the Euclidean distance between x and y. More specifically, for any x € .%;, we need to show that there
exists y € U, satisfying f;(y) = 0, such that ||x — y|l, is sufficiently small.

Before continuing with the proof, we introduce some notations. Let y (f) be a geodesic on .#
parameterized by the arc length. In the following context, we use y and § to denote the first and second
derivatives of y with respect to ¢. By the definition of geodesic, we have ||y (¢)|l, = 1 (unit speed) and
¥ Ly®.

Without loss of generality, we shift ¢; to 0. We consider a geodesic starting from x with initial

‘velocity’ y (0) = v in the tangent space of ./ at x. To utilize polar coordinate, we define two auxiliary

quantities: £(t) = [ly ()|, and 6(¢) = arccos y”()’/)(:)’.’”(;) € [0,7]. As can be seen in Figure B9, ¢ and

0 have clear geometrical interpretations: £ is the radial distance from the center c;, and 6 is the angle
between the velocity and y (7).

Suppose y = y(T), we need to upper bound 7. Note that £(T) — £(0) < r —/r2 — A < A/r.
Moreover, observe that the derivative of £ is é(t) = cos O(t), since y has unit speed. It suffices to find a
lower bound on £(7) = cos6(¢) so that T <

rinf, €(r)
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FiG. A.9. Illustration of £ and 6 along a parametric curve y.

We immediately have the second derivative of ¢ as E(t) = — sin9(t)é(t). Meanwhile, using the

equation £(f) = /¥ (1) Ty (¢), we also have
FOTyO+7OTyO)Vy®Ty @) - (J/(t)TJ?(t))2 INy@Ty@®

y®O Ty @

Note that by definition, we have y(1)Ty(r) = 1 and y (1) Ty (t) = cos0(1)/y (1) Ty (r). Plugging into
(B.7), we can derive

() = ) (B.7)

1+ 70Ty (1) —cos?0()  sin?0(t) + (1) Ty (1)
(t) N (1) '

Now we find a lower bound on j (¢) T y (¢). Specifically, by Cauchy—Schwarz inequality, we have
POy @) = =7 Ol ly @)l lcos £ G @), y )]

r .
- lcos £ (7 (1), y ()] .

() = (B.8)

v

Ly @),y @), given L(y(t),y(®) = 6() and y() L y(r). Consider the following optimization
problem,

The last inequality follows from ||y (5)ll, < % [58] and [y (®)ll, < r. We now need to bound

min a'x, (B.9)

subject to X' x= 1,
bTx=0.

By assigning a = H;/(% and b = H)f(%’ the optimal objective value is exactly the minimum of

cos Z (¥ (#), y). Additionally, we can find the maximum of cos Z (} (¢), y) by replacing the minimization
in (B.9) by maximization. We solve (B.9) by the Lagrangian method. More precisely, let

L) =—a x+ A0 x—1) + u®d ).

We have the optimal solution x* satisfying V,.% = 0, which implies x* = ﬁ (a — pu*b) with u* and 1*
being the optimal dual variable. By the primal feasibility, we have u* = a' b and A* = —%\/ 1 — (aTh)2.
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Therefore, the optimal objective value is —/1 — (a' b)2. Similarly, the maximumis /1 — (a' b)2. Note
that a " b = cos 6(f), we then get

v Ty > —2 sin6.().

Substituting into (B.8), we have the following lower bound

s sin@?@O+7O Ty _ 1 o, r
i) = o 2 30 (sm o) - = sm@(t)).
Now combining with #(1) = — sin0(1)6 (), we can derive
B) < ——— (sin@(t) _ f) (B.10)
~ L) )’ '

Inequality (B.10) has an important implication: when sin6(f) > =, as ¢ increasing, 6(t) is monotone

decreasing until sin6 (') = = for some ¢’ = t. Thus, we distinguish two cases depending on the value
of 6(0). Indeed, we only need to consider 8(0) € [0, 7/2]. The reason behind is that if 6(0) € (w/2, 7],
we only need to set the initial velocity in the opposite direction.

Case 1: 6(0) € [0, arcsin £ ]. We claim that 6(¢) € [0, arcsin £] for all 7 < T In fact, suppose there
exists some #; < T such that 6(¢;) > arcsin Z. By the continuity of 6, there exists #, < #;, such that
0(ty) = arcsin f and 0(¢) > arcsinf for t € [ty,1]. This already gives us a contradiction:

t

0(ty) < 0(1)) = 0(1p) +/ 1 O(ndt < 0(ty).
fo

———
<0

5 . 2
Therefore, we have £(f) > cosarcsin - = /1 — %, and thus 7 < —24 -

r/l1—5
2

Case 2: 6(0) € (arcsin 4 /2]. It is enough to show that 6(0) can be bounded sufficiently away
from /2. Let y.y C .# be a geodesic from ¢; to x. We analogously define 6, and ¢ as for the
geodesic from x to y. Let T}, = sup{r: £ (1) < r/2 — A/r}, and denote z = (T, ;). We must
have 6., (T, 5) € [0,7/2] and £ (T, /,) = r/2 — A/r, otherwise there exists T;/Z > T, , satisfying
ZC’X(T;/Z) < r/2. Denote Ty satisfying X = y, (7). We bound 6, (T) as follows,

Ix |
ec,x(Tx) = QC,X(Tr/2) +/ ec,x(t)dt

Typ2

b4 L ) r
<= —/ (sm@cx(t) — —) dt.
2 T, Lex(®) ’ T

N
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If there exists some ¢ € (Tr/z,Tx] such that sin Oc’x(t) < f by the previous reasoning, we have

sinf(Ty) < 7. Thus, we only need to handle the case when sin6, (1) > £ forall 1 € (7,5, T, ].

In this case, 6, , () is monotone decreasing, hence we further have

Tx 1
0, (T) < = —/ (sin@cx(Tx) - £) dt
: 2 Jrp lex® : T

=

T 1/, r
3 — (=T~ (sin0e (T — =)
T
<
=2

1 /. r
—3 (sm Oex(Ty) — ;) .

2

The last inequality follows from T, — T, = r/2. Using the fact, sinx > ZXx, we can derive

1/2 r
"o\l oy

O x(Ty) <

= Oox(Ty) <

We can then set 6(0) = 6, ,(Ty), and thus

1—
cos B (0) > cos er/r = cos T 1- r/e
2 m+1 2 T+1

Therefore, we have T < - cosAG(O) < r(ffr}r)A. By the choice of r < t/4, we immediately have
T r+1

/c2_,2 < 1—r/t"

Hence, combining case 1 and case 2, we conclude

7 +1
< -
“r(l—=r/7)
Therefore, the function value f(x) on .%; is bounded by aiﬁA. It suffices to set ¢ =
max; «;b;||V;|l,, and we complete the proof. O

B.6  Characterization of the size of the ReLU network

Proof. We evenly split the error € into 3 parts for A

il

A;,, and A, 5, respectively. We pick n = ﬁ—///

c
so that Zi:/l// A;; < 5. The same argument yields § = ﬁ//{ Analogously, we can choose A =

1— . .
% . Finally, we pick v = léb#zD so that 8B2Dv < A.
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Now we compute the number of layers, width, the number of neurons and weight parameters, and
the range of each weight parameter in the ReLU network identified by Theorem 3.1.

1. For the chart determination sub-network, 1 4 can be implemented by a ReLU network with
[log %1 layers and two neurons in each layer. The weight parameters in the network is bounded
by O(max{t?,1}). The approximation of the distance function 2112 can be implemented by a
network of depth O(log %), width bounded by a constant, and the number of neurons and
weight parameters is at most O(log %). Each weight parameter is bounded by B. Plugging
in our choice of v and A, we have the depth is no greater than cl(logé + log D) with ¢,
depending on d, f, t and the surface area of .#. The number of neurons and weight parameters
is also ¢} (log % + log D) except for a different constant. Note that there are D parallel networks
computing 2112 fori =1,...,C ,. Hence, the total number of neurons and weight parameters is
c|C 4D(log é + log D) with ¢ depending on d,f, T and the surface area of ./. As can be seen,
the width of the chart-determination network is bounded by O(C /D), and the weight parameter
is bounded by O(max{1, 72, B}).

2. For the Taylor polynomial sub-network, ¢; can be implemented by a linear network with at
most Dd weight parameters. To implement each fi, we need a ReLU network of depth ¢4 log %
The number of neurons and weight parameters is ¢} ~7a log %, and the width is bounded by
CZS_H%. Here c¢,,cj,c, depend on s,d,7.f; o ¢, ! In addition, all the weight parameters are
bounded by the upper bound of the derivatives of f; o ¢;” ! up to order s (which scales as +/d as
in Lemma 4.3). Substituting § = 3Cf_/// , we get the depth is ¢, log é and the number of neurons

and weight parameters is cée_ﬁ log % There are totally C ,, parallel fi’s; hence, the width is
further bounded by ¢, C e~ i . Meanwhile, the total number of neurons and weight parameters
is ¢,C ///e_ﬁ log é Here constants ¢, and ¢/, depend on d, s, f; o ¢l._1, 7, and the surface area
of .

3. For the product sub-network, the analysis is similar to the chart determination sub-network.
The depth is O(log %), the width is bounded by a constant, the number of neurons and weight
parameters is O(log %) and all the weight parameters are bounded by a constant. The choice of

n yields that the depth is c; log é, and the number of neurons and weight parameters is ¢} log %
There are C , parallel pairs of outputs from the chart determination and the Taylor polynomial
sub-networks. Hence, the total number of weight parameters is ¢;C ,/log é with ¢} depending
on d, T and the surface area of ./Z.

Combining these 3 sub-networks, and redefining the constants ¢y, ¢,, ¢3 and ¢, in the sequel, we obtain
that the depth of the full network is L = ¢;(log % + log D) for some constant ¢; depending on d, s, T

and the surface area of .#. The depth of the neural network is bounded by p = ¢, (e_ﬁ + D) with ¢,
depending on d, s, T, the surface area of .#, and the upper bounds on derivatives of ¢;’s and p,’s, up to
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order s. The total number of neurons and weight parameters is K = c3 (6_% log % +Dlog % +Dlog D)
for some constant c; depending on d, s, f, T and the surface area of .#. Lastly, all the weight parameters
in the network is bounded by ¢, max{1, 72, B, «/Zl} with ¢, depends on the upper bound of derivatives of
0;°s up to order s. O

C. Proof of statistical recovery of ReLU network (Theorem 3.2)

This section consists of the detailed proofs, in Section C.1, C.2 and C.3, respectively, for upper bounding
bias in Lemma 5.1, upper bounding variance in Lemma 5.2 and upper bounding covering number in
Lemma 5.3. Lastly, the statistical bound in Theorem 3.3 is established in Section C.4 by choosing a
proper approximation error and covering accuracy via the bias—variance trade-off argument.

C.1  Proof of Lemma 5.1

Proof. T, essentially reflects the bias of estimating f:
2 s
I =E |:; ;(fn(X,) —foxp) — &+ éi)2j|
2 [, .
=-E Z(fn(xi) _f()(xi) - éi)z + 2~§i(fn(xi) _f()(xi) - S,) + 512:|

Li=1

2 [ A
=-E Z(fn(xi) _fo(X,') - ‘5,')2 + z‘fgfn(x,') - §i2:|

Li=1

2 [& . X
= "E| > (f,(x) — ) +287,(x) — 53}

Li=1

2 i n )
=ZE inf <) — )2 426 (x) — £2
n|re y(R’K’LM);(f( D =) Ef, () &}

i) , 1< 4.
<2 inf E |:; Z(f(xi) —foxp) — )% — 5,-2} +E [Z ;Eifn(xi)}

feF R ,Lp.K) P

feZF Rk LpK)

. I < 4
=2 inf E |:; ;(f(xl) _fo(xi))z —2&(f(x) _fo(xi)):| +E |:; ;Elfn(xl):|

4 < .
=2 inf ////(f(x) —fo(x))zd@x(x) +E |:; Zéifn(xi)] s (C.1)
=1

feF Rk Lp.K)

where (i) follows from E[£,f,(x;)] = 0 due to the independence between &; and x and (ii) follows from
Jensen’s inequality. Now we need to bound E[}l Z;’Zl Efn (x;)]. We discretize the class F(R,k,L,p,K)
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a7,
into Z*(R,k,L,p,K) = {f*};{l(“"’ R LpRMI) - where (8, Z(R, k,L,p.K), ||||,) denotes the -

1
covering number with respect to the £, norm. Accordingly, there exists f* such that || f* — 1, |l < §.

Denote |If, — foll2 = L % | (f,(x;) — fy(x,)?. Then we have

1< . 1S
E |:; zgfn(xl):| =E ; Zfi(fn(xi) _f*(xi) +f*(xi) _fo(Xj)):|
i=1

L i=l

O _[1& .,
SE| =D () —f0<x,->)} + 80

L i=1

Il —foll, Z?:l éfi(f*(xi) _fO(Xi))i| 5
NG N T
(i) Ify = foll, + 8 | 0y (P () — fy(x)

\/EE n 0lln ' i=1Si i 0\&
: [ J Al = ol

H + 0. (C.2)

Here (i) is obtained by applying Holder’s inequality to Si(fn(xi) — f*(x;)) and invoking the Jensen’s
inequality:

I, s . 1 < . 2
E [; ;s,-(fnm) —f (x,-))} <E [; ; &Il —fnlloo}
l S E )
n; (11

1 n
- ;,/Enalz]a

< éo.

IA

IA

Step (ii) holds, since by invoking the inequality 2ab < a*> + b*, we have

1< 5 5
I = folla = | = D20 0x) = Fu %) +1, (%) = fy(x))?
\ - i=l

IA

p . .
= 2 () = [0 + %) = fo(x)?
\ i=1

P R
= |22 |2+ —fox?]
A\ =
< V2If, = foll, + V28
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To bound the expectation term in (C.2), we first break the dependence between f* and the samples

(x;,¥;). In detail, we replace f* by any j;* in the §-covering and observe that 2o X))

Z Z \/ﬁlv*_fol‘n -
i1 & (f () —fo (%)) . T o i1 S () —fo(x:) .
max; VT For notational simplicity, we denote z; = RV T P Applying

Cauchy—Schwarz inequality, we cast the expectation term in (C.2) as

117, = foll, + 8 ‘2:;1 £ (%) — fy(x))) ‘
\/ﬁ \/ﬁuf* _fO”n

max i

SE_llfi,—ﬁ)ﬁll,ﬂrrs ] ‘Zq

He e o +%mf"“z"ﬂ

T 5
<E (,/;E[|Vn—follﬁ]+%) E[m]._ax z}ﬂ. (C.3)

i1 S ) —fo(xi) .

For given xy, ..., Xx,, each term is sub-Guassian with parameter o . Consequently, the

T \/ﬁ‘lfj*_f()‘ln
last inequality (C.3) involves the maximum of a collection of squared sub-Gaussian random variables
z2. Indeed, zjz is sub-exponential for each j. We can bound it using the moment generating function: for
any t > 0, we have

1
E |:max zj2 | xl,...,xn] = ;logexp (tE[max zj2 | Xl,...,Xn])
J i

@ 1 i
é ?logIE exp (tmax ij) |x1,...,xni|
L J

IA

1 2
;log]E Zexp(tzj)|x1,...,xn
L J

IA

1 1
; log ’/V((Ss y(R’K’L3p$ K)? ||'||oo) + ; IOgE[eXp(tZ%)lxl, L 9Xn]' (C'4)
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Since z; is o2-sub-Gaussian given xy,...,X,, we derive
2 i IP]E[Z%p|X1, X,
Elexp(tz)Ixy,...,x,] =1+ Z '
p=1 P

—[# [® 1/2
=1+Z — P(|z;| > u!/?)du
= LptJo

X rp o ul/p
—/ exp| —=— ) du
— | p! Jo 202

o0
=142 Qo).
p=1

A
+
[\

M

Taking t = (3o2)~! and substituting into (C.4), we deduce E [maxj ZJZ [ Xp,.0s xn] is bounded by

E |:max zj2 I x,... ,xn] < 30210g NG, FR,k,L,p,K), |I'lo) + 30210g5
J
<302 log N8, (R, k,L,p, K), |-l o) + 60> (C.5)

Combining (C.5), (C.3), (C.2) and substituting back into (C.1), we obtain the following implicit error
estimation on 7:

T, =2E|IIf, = fol?| <2 _inf / X) — fo(X))2d 2, (x) + 45
V=[] <2 it (0~ fim0)%d, + 450

n

We denote v = [E [an — f0||%]. Then the above implicit bound on 7 implies

v < b+ 2av (C.6)
Wlth a:Jgg\/logf/‘/(a’y(R’K’L’psK)’”||oo)+2’
n
b = 1nf / (f(x) _f (X))Zd@x(x)
feFRu,.Lp.K)J M 0

n

1 590\R7 ,L9 ’Ks : 2
+(N5\/og</V( FR, 1, Lp, K), [-l0) + +2)08.
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Rearranging (C.6) for a,b > 0, we deduce (v — a)? < b+ a*. Some manipulation then yields Vo<
4a? + 2b, which implies

FR,k,L,p,K), ||l o) +2

T, =2"<4 _inf / s £ (02, (x) + 480> 22

feF(Ru,LpK) n
log A8, 7R, ,L,p,K), ||- 2
+(8ﬁ/og (6, PRk, L,p, K, [llo0) + +8)08.
n
The proof is complete. ]

C.2  Proof of Lemma 5.2

Proof. Recall that we denote g2(x) = (fn x) —fo (x))2. We rewrite T, as

. 2
T,=E [ / | p0d2,00 Zg(x,-)}

i=1

—2m [ [ a3 -5 | ///g'(x)d@x(x)}

. 1. 1 .
<K [ / PR ;mx» - / ///g%x)d@x(x)} .

We lower bound f ///g’(x)d@x(x) by its second moment:
. " 4
/ 047,00 = / y (.0 =) a7,
= / Py (0 —fo(X))zé(X)d%(X)
< | 4R’§(x)d2,(%).
< ///{ §30d7,(x)
The last inequality follows from ‘fn x) —fo (x)‘ < 2R. Now we cast T, into

. . 1 .
T, < 2E [ ////g(x)d@xoc) - gl‘,g(xi) - / ///g%x)d%(x)} : (C.7)

Introducing the second moment allows us to establish a fast convergence of T,. Specifically, we denote
X;’s as independent copies of x;’s following the same distribution. We also denote

9= {s00 = (0 ~ /o)’ | f € FR.,L.p. K
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as the function class induced by Z(R, «, L, p, K). Then we upper bound (C.7) as

T, < 2K [sué( | e@az, (x)——Zg( -/, g%x)d%(x))]

ge<

0) l—
<2F_. [S:%;Z(g(xi)— g(x;) — 16R2 Ecxlg (X)+g(x)]i| (C.8)

where (i) follows from Jensen’s inequality and shorthand E, ¢[-] denotes the expectation (double integral
L | yd2,.(x)d2, (X)) with respect to the joint distribution of (x,X).

We discretize ¢ with respect to the £,, norm. The §-covering number is denoted as A8, %, |- 1l 5,)
{g*}ma,%\~\|oo)

and the elements in the covering is denoted as ¥* = {g/ 1
a g* satistying [|g — g"lloc < ¢
We replace ¢ € ¥ by g* € 4" in bounding T,, which then boils down to deriving concentration

results on a finite concept class. Specifically, for g* satisfying ||g — g*||, < 8, we have

, that is, for any g € ¥, there exists

g(%) — g(x;) = g(X;) — g"(X) + g*(X) — " (x;) + g"(x,) — g(x,)
< g" (X)) —g"(x;) +28.
We also have
F® +2m = [£® - @@+ [97® + ¢*®] - [0 - £
= (gM2® + (€)*®) + @& — @)X + g X)) + (g* (%) — gX))(g*(X) + g(x))
> (87X + (82X — [g®) — g ®)] |g®) + & ®)] — |g*®) — g™ [g*X) + g)]
> (€%)*(X) + (¢)*(x) — 2R8 — 2RS.
Plugging the above two items into (C.8), we upper bound 7, as

1 < 1
T252Ex,g[sup S (&) — g7 () - 16R2 Ez[(€2®) + () (X)]] ( +2—)3

e T

1 & .. i} 1
= ZEX,)—( |:m]ax ; Z (gj (Xl) — gj (Xi)) 16R2 xx[(g]) (x) + (gj) (X)]:| ( + 2—) S.

i=1

Denote hj(i) = gj’.k (x;) — gj’f (x;). By symmetry, it is straightforward to see E[hj(i)] = 0. The variance of
hj(i) is computed as

Varlly ()] = E[12()] = E [(g;(i,-> -8 (x,-))z] 298 () + € xp)]-

The last inequality (i) utilizes the identity (a — b)? < 2(a* + b?). Therefore, we derive the following
upper bound for 7,,

I, . 11« _ 1
T, <2E |:mjax W ;hj(l) TR ;Var[hj(z)]] + ( + 2R) 8.
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We invoke the moment generating function to bound 7,. Note that we have ||hj||<>o < (2R)?. Then by

Taylor expansion, for 0 < t/n < % and any j, we have

I > (t/n)* (i)
E [exp (%hj(i))] —E|1+ éhj(i) ¥ k; %}

IA
=

t
Lk hy(0) + > R

L k=2

2p2 () & k=204 p2\k—2
=E|1+ £hj(i)+ WA © < @/ (iR)
o 2 = 3k

(t/n)*h3 (i) 1 }

> (t/n)kh}a)(mz)kq

t
=E |1+ -h()+
n

2 1—4R2/(3n)

1+ (r/n)zwﬂh;(iﬂm

3(t/n)? )

6 — 8tR%/n €9

%) exp (Var[hj(i)]

Step (i) follows from the fact 1 + x < exp(x) for x > 0. Given (C.9), we proceed to bound T,. To ease
the presentation, we temporarily neglect (4 + ﬁ) 8 term and denote T%) = T, — (4 + ﬁ) 8. Then for

0<t/n< we have

3
ar?>

7\ e, .
exp (t;) = exp (tIE |:mJax - ; hj(z) 32R2 Z Var[h: (z)]:|)
o [ 13
<E|exp (r max ; hi(i) — 32R2 Z Var[h. (z)])]

i=1

<E Zexp( Zh(l) 32R2 ZVar[hj(i)])
L J

(u) 2 1
Z exp (Z Var(h;(i)] (;/t’;)z/ DR Var[h (l)])

=F Zexp (Z Zvar[hj(l)] (6 —8tR2/n 32R2))
j i=1

Step (i) follows from Jensen’s inequality, and step (ii) invokes (C.9) for each h(i). We now choose ¢ so

3t/n — 3n 3n
that —— — I 32R2 = 0, which yields t = SRz < 4R2 Substituting our choice of 7 into exp(1T;/2), we

2202 1snbny 9z uo Jasn ABojouyos ] Jo synsu eibioas) Aq 89ZSHS9/ 1L 00oBRI/IIBWI/SE0 L 0 | /I0p/8|o1B-00uBApe/Ielewl/woo dnoolwapese//:sd)y WoJ) papeojumod



48 M. CHEN ET AL.
have

4

T 2 104R?
t?2 < 1ogZexp(O) =T < ;log/(ﬁ,g, I-loe) =
J

log A8, Il o0)-

n

To complete the proof, we relate the covering number of ¢ to that of .Z#(R, «, L, p, K). Consider any
81,8 € Ywith g, = (fj —fO)2 and g, = (f, —fo)z, respectively, for f;,f, € Z#(R,k,L,p,K). We can
derive

g1 = g2lloc = sup | (00 = f500)” = (200 = fo00)’|
= sup |f;(x) — L™ [ (X +£x) — 2f,x)|

<4R|f; —f2ll oo

The above characterization immediately implies A4(8,%, ||-llo.) < A(8/4R, F(R,k,L,p,K), |||l so)-
Therefore, we derive the desired upper bound on 7,:

2

1
7, < 220 tog M6 /AR, FR K, Lp KO, 100) + (4 ; ﬁ) 5.

n

C.3  Proof of Lemma 5.3

Proof. To construct a covering for #(R, k, L, p, K), we discretize each weight parameter by a uniform
grid with grid size h. Recall we write f € Z#(R,«,L,p,K) as f = W; - ReLUW;_, ---ReLU(Wx +
b)) ---+b,_)+b;.Letf,f" € .Z with all the weight parameters at most 4 from each other. Denoting the
weight matrices in f,f" as W;,...,W;,b;,...,b; and Wi, e Wi, b/L, - ,b’l, respectively, we bound
the £, difference ||f — f'|| o, as

If =f'lloo = | W, - ReLUW, _, ---ReLUW,x+b;)---+b;_) + b,
— (Wp - ReLU(W_; - --ReLU(W{x + b)) - -+ by _) = b))
<lby =bplloe + W, = WLl IW_; - --ReLUW;x +by)--- +by_ o
+ Wl IW,_; - - ReLUW;x+by) - - -+ b, _;—(W;_, -+ - ReLUW{x+Db}) - -+b;_ )~
<h+hp|W,_,---ReLUW;x+by)---+b; ]
+kplW_y---ReLUW;x+by)---+b,_;—(W,_; - -ReLUW[X+ b)) -+ + b} _)llo-
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We derive the following bound on ||[W;_; ---ReLU(W;x+b;)--- +b; _;ll:
IW;_;---ReLUW;x+by)---+b;_illoo < IW;_1(---ReLUW x4+ by) )l + IIby 11l
= ||WL_1 ||1||WL_2(' : -ReLU(Wlx + bl) te )+bL_2||oo+K
<kplW; _,(--ReLUW;x+by)---) +b; 5l + &

0 =
< wp)" "B+ D (kp)
i=0

< (kp) "B+ Kk (kp)F72,

where (i) is obtained by induction and ||x||,, < B. The last inequality holds, since xp > 1. Substituting
back into the bound for ||f — || .., we have

If —f lloo < kPIW,_; - ReLUW;x+by)---+b,_; — (W;_,---ReLUW|x + b)) -+ +b;_ Dl
+h+hp [(Kp)L_lB + K(Kp)l‘_z]
< kpl|W,_;---ReLUW;x+b))---+b, | — (W, _,---ReLUW[x+ b)) --- + b} Dl
+h(pB +2)(kp)™ !

(1) _ _
< (kep)X W, x + by — Wix — b || + AL — D)(pB +2)(kp)=~!
< hL(pB + 2)(kp)= 1,

where (7) is obtained by induction. We choose # satisfying hL(pB + 2) (Kp)L_l = 4. Then discretizing

2
each parameter uniformly into 2« /h grid points yields a §-covering on .%. Note that there are (L[’; ) <
(Lp*»X different choices of K non-zero entries out of Lp® total weight parameters. Therefore, the
covering number is upper bounded by

2K K

K
N, FR.1,Lp. K, |-l o0) < LpDK (7) < (

2L%(pB + 2)iclpt+! )
8

C.4  Proof of Theorem 3.2—bias—variance trade-off

R 2
Proof. 'We recall the bias and variance decomposition of E |: J i (fn (x) — fo(x)) d@x(x):| as

E [ / » (0~ o) d%(x)] =E {i Z}j(ﬂ(x» —fo(Xi))z}

T,

+E [///[ (f‘n(X) —fo(x))zd%(x)] -E [i > (i) _fO(Xi))2:| _

i=1

T
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Combining the upper bounds on 7'} and 7, in Lemmas 5.1 and 5.2, we can derive

E[ / P —fo(X))2d@x(X)} <4 ot [ 00 = /o7, ()

feF Rk LpK)
N 480210g NG, FR,k,L,p,K), 'l o) +2

n
log 48, Z(R,k,L,p,K), || 2
+8J8\/°g G, PR, L,p,K), Illoc) +2_
n
104R?
+ logf/V(a/“'R? y(R’K’I#p?K)a “”oo)

n

1
44+ —+28c 4.
+(+2R+ U)

By our choice of #(R, k, L, p, K), there exists a network class which can yield a function f satisfying
If —folloo < € for e € (0,1). We will choose ¢ later for the bias—variance trade-off. Such a network

~ ~ d
consists of L = O (log é) layers and K = O ((G_W + D) log %) weight parameters. Invoking the
upper bound of the covering number in Lemma 5.3, we derive

E [ //// (f‘n(x) _ fo(x))2 d@x(x)} <4e + ? (K log (2R2L2(pB + 2)ckplt! /3) + 2)

Klog (2RL2(pB + 2)kLpl+l/s
+M/ g (2RI (pB + 2)ctp+1/8)
n

8

104R?
+

K log (8R2L2 (B + 2)ickptt! /5)
n

1
44 —+80)$6
+(+2R+0)

_ ("')(62 N R2 + 02 1 L2(KP)L+1
n

(G_Hia + D) log — log
€ )

d
(G_m +D) log%log%ﬂ

n

o2
+ 06 +06+—).
n

(C.10)
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. __d . . —_sta . .
Now we choose € to satisfy €2 = %e s+« which gives € = n 426t It suffices to pick § = %

Substitute both € and § into (C.10), we deduce the desired estimation error bound

7 2 ~ R? 2 1 12 L+1
. [///1 (a0 =o0) d%‘(")} - 0(62 + 51T (s 4 D) log 1og TP
(e_ﬁ + D) log % log _L2(K§)L+1 2
+08 s+ _)
n n

s+a)

X D
< C(R2 + 0-2) (n a2+ —) 10g3 n,
n

where constant ¢ depends on depending on log D, d, s, T, B, the surface area of ./ and the upper bounds
of derivatives of the coordinate systems ¢,’s and partition of unity p;’s, up to order s. O
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