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Real-world data often exhibit low-dimensional geometric structures and can be viewed as samples near

a low-dimensional manifold. This paper studies nonparametric regression of Hölder functions on low-

dimensional manifolds using deep Rectified Linear Unit (ReLU) networks. Suppose n training data

are sampled from a Hölder function in H s,α supported on a d-dimensional Riemannian manifold

isometrically embedded in R
D. A deep ReLU network architecture is designed to estimate the underlying

function from the training data. The mean squared error of the empirical estimator is proved to converge in

the order of n
− 2(s+α)

2(s+α)+d log3 n. This result shows that deep ReLU networks give rise to a fast convergence

rate depending on the data intrinsic dimension d, which is usually much smaller than the ambient

dimension D. It therefore demonstrates the adaptivity of deep ReLU networks to low-dimensional

geometric structures in data and partially explains the power of deep ReLU networks in tackling high-

dimensional data with low-dimensional geometric structures.

Keywords: nonparametric regression; low-dimensional manifolds; deep ReLU networks; sample com-

plexity; uniform approximation theory.

1. Introduction

Deep learning has made astonishing breakthroughs in various real-world applications, such as computer

vision [27, 45, 50], natural language processing [5, 28, 77], healthcare [38, 55], robotics [29], etc. For

example, in image classification, the winner of the 2017 ImageNet challenge retained a top-5 error rate

of 2.25% [36], whereas the data set consists of about 1.2 million labeled high-resolution images in 1000

categories. In speech recognition, [4] reported that deep neural networks outperformed humans with a

5.15% word error rate on the LibriSpeech corpus constructed from audio books [61]. Such a data set

consists of approximately 1000 hours of 16kHz read English speech from 8000 audio books.

The empirical success of deep learning brings new challenges to the conventional wisdom of

machine learning. Data sets in these applications are in high-dimensional spaces. In existing literature,

a minimax lower bound has been established for the optimal algorithm of learning Cs functions in R
D

© The Author(s) 2022. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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2 M. CHEN ET AL.

[31, 70]. Denote the underlying function by f0. The minimax lower bound suggests a pessimistic sample

complexity: to obtain an estimator f̂ for each Cs function f0 with an ε-error, uniformly for all Cs functions

(i.e. supf0∈Cs ‖f̂ − f0‖L2
≤ ε with ‖ · ‖L2

denoting the function L2 norm), the optimal algorithm requires

the sample size n � ε−
2s+D

s in the worst scenario (i.e. when f0 is the most difficult for the algorithm

to estimate). We instantiate such a sample complexity bound to the ImageNet data set, which consists

of RGB images with a resolution of 224 × 224. The theory above suggests that, to achieve an ε-error,

the number of samples has to scale as ε−224×224×3/s, where the smoothness parameter s is significantly

smaller than 224× 224× 3. Setting ε = 0.1 already gives rise to a huge number of samples far beyond

practical applications, which well exceeds 1.2 million labeled images in ImageNet.

To bridge the aforementioned gap between theory and practice, we take the low-dimensional

geometric structures in data sets into consideration. This is motivated by the fact that real-world data sets

often exhibit low-dimensional structures. Many images consist of projections of a 3D object followed

by some transformations, such as rotation, translation and skeleton. This generating mechanism induces

a small number of intrinsic parameters [34, 60]. Speech data are composed of words and sentences

following the grammar, and therefore have small degrees of freedom [21]. More broadly, visual,

acoustic, textual and many other types of data often have low-dimensional geometric structures due

to rich local regularities, global symmetries, repetitive patterns or redundant sampling [2, 15, 62, 69]. It

is therefore reasonable to assume that data lie on a manifold M of dimension d � D.

1.1 Summary of main results

In this paper, we study nonparametric regression problems [31, 70, 74] using neural networks in

exploitation of low-dimensional geometric structures of data. Specifically, we model data as samples

from a probability measure supported on a d-dimensional Riemannian manifold M isometrically

embedded in R
D where d � D. The goal is to recover the regression function f0 supported on M using

the samples Sn = {(xi, yi)}ni=1 with x ∈ M and y ∈ R. The xi’s are i.i.d. sampled from a distribution Dx

on M, and the response yi satisfies

yi = f0(xi)+ ξi,

where ξi’s are i.i.d. sub-Gaussian noise independent of xi’s.

We use multi-layer Rectified Linear Unit (ReLU) neural networks to recover f0. ReLU networks are

widely used in computer vision, speech recognition, natural language processing, etc. [25, 52, 56]. These

networks can ease the notorious vanishing gradient issue during training, which commonly arises with

sigmoid or hyperbolic tangent activations [25, 26]. Given an input x, an L-layer ReLU neural network

computes an output as

f (x) = WL · ReLU(WL−1 · · ·ReLU(W1x+ b1) · · · + bL−1)+ bL, (1.1)

where W1, . . . , WL and b1, . . . , bL are weight matrices and vectors of proper sizes, respectively, and

ReLU(·) denotes the entrywise rectified linear unit (i.e. ReLU(a) = max{0, a}). We denote F as a class

of neural networks with bounded weight parameters and bounded output (we refer to F as a ReLU
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NONPARAMETRIC REGRESSION ON LOW-DIMENSIONAL MANIFOLDS USING RELU NETWORKS 3

network structure throughout the rest of the paper):

F(R, κ , L, p, K) =
{

f | f (x)in the form (1.1) with L-layers and width bounded by p,

‖f‖∞ ≤ R, ‖Wi‖∞,∞ ≤ κ , ‖bi‖∞ ≤ κ for i = 1, . . . , L,

L
∑

i=1

‖Wi‖0 + ‖bi‖0 ≤ K
}

,

(1.2)

where ‖·‖0 denotes the number of nonzero entries in a vector or a matrix, ‖·‖∞ denotes �∞ norm of a

function or entrywise �∞ norm of a vector. For a matrix M, we have ‖M‖∞,∞ = maxi,j |Mij|.
To obtain an estimator f̂ ∈ F(R, κ , L, p, K) of f0, we minimize the empirical quadratic risk

f̂n = argmin
f∈F(R,κ ,L,p,K)

R̂n(f ) = argmin
f∈F(R,κ ,L,p,K)

1

n

n
∑

i=1

(

f (xi)− yi

)2
. (1.3)

The subscript n emphasizes that the estimator is obtained using n pairs of samples. Our theory shows

that f̂n converges to f0 at a fast rate depending on the intrinsic dimension d, under some mild regularity

conditions. We assume f0 ∈ H
s+α(M) is an (s+ α)-Hölder function on M, where s > 0 is an integer

and α ∈ (0, 1]. For the network class F(R, κ , L, p, K), we choose

L = Õ

(
s+ α

2(s+ α)+ d
log n

)

, p = Õ
(

n
d

2(s+α)+d

)

, K = Õ

(
s+ α

2(s+ α)+ d
n

d
2(s+α)+d log n

)

, R = ‖f0‖∞,

and set κ as a constant depending on s, f0, and M. Here we use Õ to hide factors depending on s, d and

logarithmic factors (e.g. log D). Then the empirical minimizer f̂n of (1.3] gives rise to

E

[∫

M

(

f̂n(x)− f0(x)
)2

dDx(x)

]

≤ c(R2 + σ 2)

(

n
− 2(s+α)

2(s+α)+d + D

n

)

log3 n,

where the expectation is taken over the training samples Sn, σ 2 is the variance proxy of sub-Gaussian

noise ξi, and c is a constant depending on log D, s, κ and M (see a formal statement in Theorem 3.3).

Our theory implies that, in order to estimate an (s + α)-Hölder function up to an ε-error, the

sample complexity is n � ε−
2(s+α)+d

s+α up to a log factor. This sample complexity depends on the

intrinsic dimension d, and thus largely improves on existing theories of nonparametric regression using

neural networks, where the sample complexity scales as Õ(ε−
2(s+α)+D

s+α ) [32, 40–42, 63]. Our result

partially explains the success of deep ReLU neural networks in tackling high-dimensional data with

low-dimensional geometric structures.

An ingredient in our analysis is an efficient universal approximation theory of deep ReLU networks

for (s + α)-Hölder functions on M (Theorem 3.1). A preliminary version of the approximation theory

appeared in [10]. Specifically, we show that, in order to uniformly approximate (s+α)-Hölder functions

on a d-dimensional manifold with an ε-error, the network consists of at most Õ(log 1/ε + log D) layers

and Õ(ε−d/(s+α) log 1/ε + D log 1/ε + D log D) neurons and weight parameters (Theorem 3.1). The

network size in our approximation theory weakly depends on the data dimension D, which significantly

improves on existing universal approximation theories of neural networks [7, 33, 51, 54, 76], where the
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4 M. CHEN ET AL.

Fig. 1. Practical network sizes for the ImageNet data set [68] versus the required size predicted by existing theories [76].

network size scales as Õ(ε−D/(s+α)). Figure 1 illustrates a huge gap between the network sizes used in

practice [68] and the required size predicted by existing theories, e.g. [76] for the ImageNet data set. Our

approximation theory partially bridges this gap by exploiting the data intrinsic geometric structures, and

justifies why neural networks of moderate size have achieved a great success in various applications.

Meanwhile, our network size also matches its lower bound up to logarithmic factors for a given manifold

M (Proposition 3.2).

1.2 Related work

Nonparametric regression has been widely studied in statistics. A variety of methods has been proposed

to estimate the regression function, including kernel methods, wavelets, splines and local polynomials

[3, 22, 31, 70, 73]. Nonetheless, there is limited study on regression using deep ReLU networks

until recently. The earliest works focused on neural networks with a single hidden layer and smooth

activations (e.g. sigmoidal and sinusoidal functions, [6, 53]). Later results achieved the minimax lower

bound for the mean squared error in the order of O(n−
2s

2s+D ) up to a logarithmic factor for Cs functions in

R
D [32, 40–42]. Theories for deep ReLU networks were developed in [63], where the estimate matches

the minimax lower bound up to a logarithmic factor for Hölder functions. Extensions to more general

function spaces, such as Besov spaces, can be found in [67] and results for classification problems can

be found in [39, 59].

The rate of convergence in the results above cannot fully explain the success of deep learning due

to the curse of the data dimension with a large D. Fortunately, many real-world data sets exhibit low-

dimensional geometric structures. It has been demonstrated that some classical methods are adaptive to

the low-dimensional structures of data sets and perform as well as if the low-dimensional structures were

known. Results in this direction include local linear regression [8, 11], multiscale polynomial regression

[49], k-nearest neighbor [43], kernel regression [44] and Bayesian Gaussian process regression [75],

where optimal rates depending on the intrinsic dimension were proved for functions having the second

order of continuity [8], globally Lipschitz functions [43] and Hölder functions with Hölder index no

more than 1 [44].
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NONPARAMETRIC REGRESSION ON LOW-DIMENSIONAL MANIFOLDS USING RELU NETWORKS 5

Recently, several independent works [14, 57, 64] justified the adaptability of deep neural networks to

the low-dimensional data structures. [64] considered function approximation and regression of Hölder

functions on a low-dimensional manifold, which is similar to the setup in this paper. The proofs in [64]

and this paper both utilize a collection of charts to map each point on M into a local coordinate in R
d,

and then approximate functions in R
d. There are two differences in the detailed proof: (i) in exploitation

of a positive reach property of M, we construct local coordinates on the manifold given by orthogonal

projections onto the tangent spaces, whereas [64] assumed the existence of smooth local coordinates; (ii)

a main novelty of our work is to explicitly construct a chart determination sub-network, which assigns

each data point to its proper chart. In [64], the chart determination is realized by the partition of unity.

In order to approximate functions in H
s,α(M), [64] required a uniform upper bound on the derivatives

of each coordinate map and each function in the partition of unity, up to order (s + α)D/d. Our proof

does not rely on such regularity conditions depending on the ambient dimension D. To describe the

intrinsic dimensionality of data, [57] applied the notion of Minkowski dimension, which can be defined

for a broader class of sets without smoothness restrictions. The intrinsic dimension of manifolds and the

Minkowski dimension are different notions for low-dimensional sets, and one does not naturally imply

the other. [64] and [57] established a O(n
− 2(s+α)

2(s+α)+d ) convergence rate of the mean squared error for

learning functions in H
s,α(M), where d is the manifold dimension in [64] and Minkowski dimension

in [57], respectively. Recently [14] studied the approximation and regression error of ReLU neural

networks for a class of functions in the form of f (x) = g(πM(x)), where x is near the low-dimensional

manifold M, πM is a projection onto M, and g is a Hölder function on M.

A crucial ingredient in the statistical analysis of neural networks is the universal approximation

ability of neural networks. Early works in literature justified the existence of two-layer networks with

continuous sigmoidal activations (a function σ(x) is sigmoidal, if σ(x) → 0 as x →−∞, and σ(x) → 1

as x → ∞) for a universal approximation of continuous functions in a unit hypercube [12, 18, 24, 35,

37, 48]. In these works, the number of neurons was not explicitly given. Later, [7, 54] proved that

the number of neurons can grow as ε−D/2 where ε is the uniform approximation error. Recently, [51],

[33] and [19] extended the universal approximation theory to networks of bounded width with ReLU

activations. The depth of such networks grows exponentially with respect to the dimension of data. [76]

showed that ReLU neural networks can uniformly approximate functions in Sobolev spaces, where the

network size scales exponentially with respect to the data dimension and matches the lower bound. [78]

also developed a universal approximation theory for deep convolutional neural networks [45], where the

depth of the network scales exponentially with respect to the data dimension.

The aforementioned results focus on functions on a compact subset (e.g. [0, 1]D) in R
D. Function

approximation on manifolds has been well studied using classical methods, such as local polynomials

[8] and wavelets [16]. However, studies using neural networks are limited. Two noticeable works are [13]

and [65]. In [13], high-order differentiable functions on manifolds are approximated by neural networks

with smooth activations, e.g. sigmoid activations and rectified quadratic unit functions (max2{0, x}).
These smooth activations are not commonly used in mainstream applications such as computer vision

[36, 45, 50]. In [65], a 4-layer network with ReLU activations was proposed to approximate C2 functions

on low-dimensional manifolds. This theory does not cover arbitrarily Cs functions. We are also aware

of a concurrent work of ours, [66], which established an approximation theory of ReLU networks for

Hölder functions in terms of a modulus of continuity. When the target function belongs to the Hölder

class H
0,α supported in a neighborhood of a d-dimensional manifold embedded in R

D, [66] constructed

a ReLU network, which yields an approximation error in the order of N−2α/dδ L−2α/dδ where N and L are

the width and depth of the network and d < dδ < D. Their proof utilizes a different approach compared
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6 M. CHEN ET AL.

to ours: they first construct a piecewise constant function to approximate the target function and then

implement the piecewise constant function using a ReLU network. The higher order smoothness for

H
s,α functions while s+ α > 1 is not exploited due to the use of piecewise constant approximations.

1.3 Roadmap and notations

The rest of the paper is organized as follows: Section 2 presents a brief introduction to manifolds

and functions on manifolds. Section 3 presents a statistical estimation theory of functions on low-

dimensional manifolds using deep ReLU neural networks and a universal approximation theory;

Section 4 sketches the proof of the approximation theory. Section 5 sketches the proof of the statistical

estimation theory in Section 3, and the detailed proofs are deferred to Appendix; Section 6 provides a

conclusion of the paper.

We use bold-faced letters to denote vectors, and normal font letters with a subscript to denote its

coordinate, e.g. x ∈ R
d and xk being the k-th coordinate of x. Given a vector s = [s1, . . . , sd]� ∈ N

d,

we define s!=
∏d

i=1 si! and |s| =
∑d

i=1 si. We define xs =
∏d

i=1 x
si

i . Given a function f : Rd 	→ R, we

denote its derivative as Dsf = ∂ |s|f
∂x

s1
1 ...∂x

sd
d

, and its �∞ norm as ‖f‖∞ = maxx |f (x)|. We use ◦ to denote

the composition operator.

2. Preliminaries

We briefly review manifolds, partition of unity and function spaces defined on smooth manifolds. Details

can be found in [71] and [46]. Let M be a d-dimensional Riemannian manifold isometrically embedded

in R
D.

Definition 2.1. A chart for M is a pair (U, φ) such that U ⊂M is open and φ : U 	→ R
d, where φ is

a homeomorphism (i.e. bijective, φ and φ−1 are both continuous).

The open set U is called a coordinate neighborhood, and φ is called a coordinate system on U. A

chart essentially defines a local coordinate system on M. Given a suitable coordinate neighborhood U

around a point c on the manifold M, we denote Pc as the orthogonal projection onto the tangent space

at c, which gives a particular coordinate system on U.

Example 2.2. (Projection to Tangent Space). Let Tc(M) be the tangent space of M at the point c ∈M

(see the formal definition in [71, Section 8.1)). We denote v1, . . . , vd as an orthonormal basis of Tc(M).

Then the orthogonal projection onto the tangent space Tc(M) is defined as Pc(x) = V�(x−c) for x ∈ U

with V = [v1, . . . , vd] ∈ R
D×d.

We say two charts (U, φ) and (V , ψ) on M are Ck compatible if and only if the transition functions,

φ ◦ ψ−1 : ψ(U ∩ V) 	→ φ(U ∩ V) and ψ ◦ φ−1 : φ(U ∩ V) 	→ ψ(U ∩ V)

are both Ck.

Definition 2.3. (Ck Atlas). A Ck atlas for M is a collection of pairwise Ck compatible charts

{(Ui, φi)}i∈A such that
⋃

i∈A Ui =M.

Definition 2.4. (Smooth Manifold). A smooth manifold is a manifold together with a C∞ atlas.
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NONPARAMETRIC REGRESSION ON LOW-DIMENSIONAL MANIFOLDS USING RELU NETWORKS 7

Classical examples of smooth manifolds are the Euclidean space R
D, the torus and the unit sphere.

We further define a Riemannian manifold as a pair (M, g), where M is a smooth manifold and g is a

Riemannian metric [47, Chapter 2). To better interpret Definition 2.3 and 2.4, we give an example of a

C∞ atlas on the unit sphere in R
3.

Example 2.5. We denote S
2 as the unit sphere in R

3, i.e. x2 + y2 + z2 = 1. The following atlas of S2

consists of 6 overlapping charts (U1,P1), . . . , (U6,P6) corresponding to hemispheres:

U1 = {(x, y, z) | x > 0}, P1(x, y, z) = (y, z), U2 = {(x, y, z) | x < 0}, P2(x, y, z) = (y, z),

U3 = {(x, y, z) | y > 0}, P3(x, y, z) = (x, z), U4 = {(x, y, z) | y < 0}, P4(x, y, z) = (x, z),

U5 = {(x, y, z) | z > 0}, P5(x, y, z) = (x, y), U6 = {(x, y, z) | z < 0}, P6(x, y, z) = (x, y).

Here Pi is the orthogonal projection onto the tangent space at the pole of each hemisphere. Moreover,

all the six charts are C∞ compatible, and therefore, (U1,P1), . . . , (U6,P6) form an atlas of S2.

For a general compact smooth manifold M, we can construct an atlas using orthogonal projections

to tangent spaces as local coordinate systems. Let Pc be the orthogonal projection to the tangent

space Tc(M) for c ∈ M. Let Uc be an open coordinate neighborhood containing c such that Pc is a

homeomorphism. Since M is compact, there exist a finite number of points {ci} such that the charts

{(Uci
,Pci

)} form an atlas of M.

The existence of an atlas on M allows us to define differentiable functions.

Definition 2.6. (Cs Functions on M). Let M be a d-dimensional Riemannian manifold isometrically

embedded in R
D. A function f : M 	→ R is Cs if for any chart (U, φ), the composition f ◦ φ−1 :

φ(U) 	→ R is continuously differentiable up to order s.

Remark 2.1. The definition of Cs functions is independent of the choice of the chart (U, φ). Suppose

(V , ψ) is another chart and V
⋂

U 
= ∅. Then we have

f ◦ ψ−1 = (f ◦ φ−1) ◦ (φ ◦ ψ−1).

Since M is a smooth manifold, (U, φ) and (V , ψ) are C∞ compatible. Thus, f ◦ φ−1 is Cs and φ ◦ ψ−1

is C∞, and their composition is Cs.

We next generalize the definition of Cs functions to Hölder functions on the smooth manifold M.

Definition 2.7. (Hölder Functions on M). Let M be a d-dimensional compact Riemannian manifold

isometrically embedded in R
D. Let {(Ui,Pi)}i∈A be an atlas of M where the Pi’s are orthogonal

projections onto tangent spaces. For a positive integer s and α ∈ (0, 1], a function f : M 	→ R is

(s+ α)-Hölder continuous if for each chart (Ui,Pi) in the atlas, we have

1. f ◦ P−1
i ∈ Cs with |Ds(f ◦ P−1

i )| ≤ 1 for any |s| ≤ s, x ∈ Ui;

2. for any |s| = s and x1, x2 ∈ Ui,

∣
∣
∣D

s(f ◦ P−1
i )

∣
∣
Pi(x1)

− Ds(f ◦ P−1
i )

∣
∣
Pi(x2)

∣
∣
∣ ≤

∥
∥
∥Pi(x1)− Pi(x2)

α
2 . (2.1)
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8 M. CHEN ET AL.

Moreover, we denote the collection of (s+ α)-Hölder functions on M as H
s,α(M).

Definition 2.7 requires that all s-th order derivatives of f ◦ P−1
i are Hölder continuous. We recover

the standard Hölder class on a Euclidean space if Pi is the identity mapping. We next introduce the

partition of unity, which plays a crucial role in our construction of neural networks.

Definition 2.8. (Partition of Unity, Definition 13.4 in (71)). A C∞ partition of unity on a manifold M

is a collection of nonnegative C∞ functions ρi : M 	→ R+ for i ∈ A such that

1. the collection of supports, {supp(ρi)}i∈A is locally finite, i.e. every point on M has a neighbor-

hood that meets only finitely many of supp(ρi)’s;

2.
∑

ρi = 1.

For a smooth manifold, a C∞ partition of unity always exists.

Proposition 2.9. (Existence of a C∞ partition of unity, Theorem 13.7 in (71)). Let {Ui}i∈A be an open

cover of a compact smooth manifold M. Then there is a C∞ partition of unity {ρi}i∈A where every ρi

has a compact support such that supp(ρi) ⊂ Ui.

Proposition 2.9 gives rise to the decomposition f =
∑∞

i=1 fi with fi = f ρi. Note that the fi’s have the

same regularity as f , since

fi ◦ φ−1
i = (f ◦ φ−1

i )× (ρi ◦ φ−1
i )

for a chart (Ui, φi). This decomposition implies that we can express f as a sum of the fi’s, where every fi
is only supported in a single chart.

To characterize the curvature of a manifold, we adopt the following geometric concept.

Definition 2.10. (Reach (23), Definition 2.1 in (1)). Denote

C(M) =
{

x ∈ R
D : ∃ p 
= q ∈M, ‖p− x‖2 = ‖q− x‖2 = inf

y∈M
‖y− x‖2

}

as the set of points that have at least two nearest neighbors on M. The reach τ > 0 is defined as

τ = inf
x∈M,y∈C(M)

‖x− y‖2.

Reach has a straightforward geometrical interpretation: at each point x ∈ M, the radius of the

osculating circle is greater or equal to τ . Intuitively, a large reach for M requires the manifold M not to

change ‘rapidly’ as shown in Figure 2.

In our proof for the universal approximation theory, reach determines a proper choice of an atlas for

M. In Section 4, we choose each chart Ui to be contained in a ball of radius less than τ2. For smooth

manifolds with a small τ , we need a large number of charts. Therefore, reach of a smooth manifold

reflects the complexity of the neural network for function approximation on M.
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NONPARAMETRIC REGRESSION ON LOW-DIMENSIONAL MANIFOLDS USING RELU NETWORKS 9

Fig. 2. Manifolds with large and small reaches.

3. Main results

This section contains our main statistical estimation theory for Hölder functions on low-dimensional

manifolds using deep neural networks. We begin with some assumptions on the regression model and

the manifold M.

Assumption 1. M is a d-dimensional compact Riemannian manifold isometrically embedded in R
D.

There exists a constant B > 0 such that, for any point x ∈M, we have |xj| ≤ B for all j = 1, . . . , D.

Assumption 2. The reach of M is τ > 0.

Assumption 3. The ground truth function f0 : M 	→ R belongs to the Hölder space H
s,α(M) with a

positive integer s and α ∈ (0, 1].

Assumption 4. The noise ξi’s are i.i.d. sub-Gaussian with E[ξi] = 0 and variance proxy σ 2, which are

independent of the xi’s.

3.1 Universal approximation theory

An accurate estimation of the nonparametric regression function f0 necessitates the existence of a good

approximation of f0 by our learning models—neural networks. To aid the choice of a proper neural

network class for learning f0, we first investigate the following questions:

• Given a desired approximation error ε > 0, does there exist a ReLU neural network, which

universally represents Hölder functions supported on M?

• If the answer is yes, what is the corresponding network architecture?

We provide a positive answer in the theorem below and defer the proof to Section 4.

Theorem 3.1. Suppose Assumptions 1 and 2 hold. Given any ε ∈ (0, 1), there exists a ReLU network

structure F(·, κ , L, p, K), such that, for any f : M → R satisfying Assumption 3, if the weight

parameters of the network are properly chosen, the network yields a function f̃ satisfying ‖f̃ − f‖∞ ≤ ε.

Such a network has

1. no more than L = c1(log 1
ε
+ log D) layers, with width bounded by p = c2(ε

− d
s+α + D),

2. at most K = c3(ε
− d

s+α log 1
ε
+D log 1

ε
+D log D) neurons and weight parameters, with the range

of weight parameters bounded by κ = c4 max{1, B, τ 2,
√

d},
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10 M. CHEN ET AL.

Fig. 3. The ReLU network identified by Theorem 3.1.

where c1, c2, c3 depend on d, s, τ , B, the surface area of M, and the upper bounds on the derivatives of

the coordinate systems φi’s and the ρi’s in the partition of unity, up to order s, and c4 depends on the

upper bound on the derivatives of the ρi’s, up to order s.

This network class F will be used later to estimate a regression function in Theorem 3.3. Our

approximation theory does not require the output range to be bounded by R in the network class (or

equivalently by setting R = +∞). The enforcement of ‖f‖∞ ≤ R is to be imposed for regression in

order to control the variance in statistical estimations.

The network structure identified by Theorem 3.1 consists of three sub-networks as shown in Figure 3

(The detailed construction of each sub-network is postponed to Section 4):

• Chart determination sub-network, which assigns each input to its corresponding neighborhood;

• Taylor approximation sub-network, which approximates f by polynomials in each neighborhood;

• Pairing sub-network, which yields multiplications of the proper pairs of the outputs from the chart

determination and the Taylor approximation sub-networks.

Theorem 3.1 significantly improves on existing approximation theories [76], where the network size

grows exponentially with respect to the ambient dimension D, i.e. ε−D/(s+α).

Theorem 3.1 also improves [65] for Cs functions in the case that s > 2. When s > 2, our network

size scales like ε−d/s, which is significantly smaller than the one in [65] in the order of ε−d/2.

Our approximation theory can be directly generalized to the Sobolev space W
k,∞, which is embedded

in Ck. The reason is that our proof of Theorem 3.1 relies on local Taylor polynomial approximations of

Hölder functions. For general Sobolev spaces W
k,p, one needs to consider averaged Taylor polynomials

and the Bramble–Hilbert lemma [9, Lemma 4.3.8). We refer to [30] for readers’ interests.

Moreover, the size of our ReLU network in Theorem 3.1 matches the lower bound in [20] up to a

logarithmic factor for the approximation of functions in the Hölder space H
s−1,1([0, 1]d) defined on

[0, 1]d.

Proposition 3.2. Fix d and s. Let W be a positive integer and T : RW 	→ C([0, 1]d) be any mapping.

Suppose there is a continuous map Θ : H
s−1,1([0, 1]d) 	→ R

W such that ‖f −T(Θ(f ))‖∞ ≤ ε for any

f ∈H
s−1,1([0, 1]d). Then W ≥ cε−

d
s with c depending on s only.
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NONPARAMETRIC REGRESSION ON LOW-DIMENSIONAL MANIFOLDS USING RELU NETWORKS 11

We take R
W as the parameter space of a ReLU network, and T as the transformation given by the

ReLU network. Theorem 3.2 implies that, to approximate any f ∈ H
s−1,1([0, 1]d), the ReLU network

needs to have at least cε−
d
s weight parameters. Although Proposition 3.2 holds for functions defined on

[0, 1]d, our network size remains in the same order up to a logarithmic factor even when the function is

supported on a manifold of dimension d.

On the other hand, the lower bound also reveals that the low-dimensional manifold model plays a

vital role to reduce the network size. To uniformly approximate functions in H
s−1,1([0, 1]D) with an

accuracy ε, the minimal number of weight parameters is O(ε−
D
s ). This lower bound cannot be improved

without low-dimensional structures of data.

3.2 Statistical estimation theory

Based on Theorem 3.1, we next present our main regression theorem, which characterizes the

convergence rate for the estimation of f0 using ReLU neural networks.

Theorem 3.3. Suppose Assumptions 1 - 3.3 hold. Let f̂n be the minimizer of empirical risk (1.3) with

the network class F(R, κ , L, p, K) properly designed such that

L = Õ

(
s+ α

2(s+ α)+ d
log n

)

, p = Õ
(

n
d

2(s+α)+d

)

, K = Õ

(
s+ α

2(s+ α)+ d
n

d
2(s+α)+d log n

)

,

R = ‖f0‖∞, and κ = O(max{1, B,
√

d, τ 2}).

Then we have

E

[∫

M

(

f̂n(x)− f0(x)
)2

dDx(x)

]

≤ c(R2 + σ 2)

(

n
− 2(s+α)

2(s+α)+d + D

n

)

log3 n,

where the expectation is taken over the training samples Sn, and c is a constant depending on log D, d,

s, τ , B, the surface area of M, and the upper bounds of derivatives of the coordinate systems φi’s and

partition of unity ρi’s, up to order s.

Theorem 3.3 is established by a bias–variance trade-off. We decompose the mean squared error to

a squared bias term and a variance term. The bias is quantified by Theorem 3.1, and the variance term

is proportional to the network size. A detailed proof of Theorem 3.3 is provided in Section 5. Here are

some remarks:

1. The network class in Theorem 3.3 is sparsely connected, i.e. K = O(Lp), while densely

connected networks satisfy K = O(Lp2).

2. The network class F(R, κ , L, p, K) has outputs uniformly bounded by R. Such a requirement can

be achieved by appending an additional clipping layer to the end of the network structure, i.e.

g(a) = max{−R, min{a, R}} = ReLU(a− R)− ReLU(a+ R)− R.

3. Each weight parameter in our network class is bounded by a constant κ only depending on the

curvature τ , the range B of the manifold M and the manifold dimension d. Such a boundedness
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12 M. CHEN ET AL.

condition is crucial to our theory and can be computationally realized by normalization after each

step of the stochastic gradient descent.

4. Proof of approximation theory

This section contains a proof sketch of Theorem 3.1. Before we proceed, we show how to approximate

the multiplication operation using ReLU networks. This operation is heavily used in the Taylor

approximation sub-network, since Taylor polynomials involve a sum of products. We first show ReLU

networks can approximate quadratic functions.

Lemma 4.1. (Proposition 2 in (76)). The function f (x) = x2 with x ∈ [0, 1] can be approximated by

a ReLU network with any error ε > 0. The network has depth and the number of neurons and weight

parameters no more than c log(1/ε) with an absolute constant c, and the width of the network is an

absolute constant.

This lemma is proved in Appendix A.1. The idea is to approximate quadratic functions using a

weighted sum of a series of sawtooth functions. Those sawtooth functions are obtained by compositing

the triangular function

g(x) = 2ReLU(x)− 4ReLU(x− 1/2)+ 2ReLU(x− 1),

which can be implemented by a single layer ReLU network.

We then approximate the multiplication operation by invoking the identity ab = 1
4
((a+b)2−(a−b)2)

where the two squares can be approximated by ReLU networks in Lemma 4.1.

Corollary 4.1. (Proposition 3 in (76)). Given a constant C > 0 and ε ∈ (0, C2), there is a ReLU

network that implements a function ×̂ : R2 	→ R such that: 1). For all inputs x and y satisfying |x| ≤ C

and |y| ≤ C, we have |×̂(x, y)− xy| ≤ ε; 2). The depth and the weight parameters of the network is no

more than c log C2

ε
with an absolute constant c.

The ReLU network in Theorem 3.1 is constructed in the following five steps.

Step 1. Construction of an atlas. Denote the open Euclidean ball with center c and radius r in R
D

by B(c, r). For any r, the collection {B(x, r)}x∈M is an open cover of M. Since M is compact, there

exists a finite collection of points ci for i = 1, . . . , CM such that M ⊂
⋃

i B(ci, r).

The following lemma says that when the radius r is properly chosen, Ui = B(ci, r) ∩ M is

diffeomorphic to R
d.

Lemma 4.2. Suppose Assumption 1 and 2 hold and let r ≤ τ/4. Then the local neighborhood Ui =
B(ci, r) ∩M is diffeomorphic to R

d. In particular, the orthogonal projection Pi onto the tangent space

Tci
(M) at ci is a diffeomorphism.

The proof is provided in Appendix B.1, which utilizes the results in [58]. Therefore, we pick radius

r ≤ τ/4, and let {(Ui, φi)}
C
M

i=1 be an atlas on M as illustrated in Figure 4, where φi is
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NONPARAMETRIC REGRESSION ON LOW-DIMENSIONAL MANIFOLDS USING RELU NETWORKS 13

Fig. 4. Curvature decides the number of charts: smaller reach requires more chart.

to be defined in Step 2. The number of charts CM is upper bounded by

CM ≤
⌈

SA(M)

rd
Td

⌉

,

where SA(M) is the surface area of M, and Td is the thickness of the Ui’s, which is defined as the

average number of Ui’s that contain a point on M (see Eq. (1) in Chapter 2 of [17]).

Remark 4.1. The thickness Td scales approximately linear in d. As shown in Eq. (19) in Chapter 2 of

[17], there exist coverings with d
e
√

e
� Td ≤ d log d + d log log d + 5d.

Step 2. Projection with rescaling and translation. We denote the tangent space at ci as

Tci
(M) = span(vi1, . . . , vid),

where {vi1, . . . , vid} form an orthonormal basis. We obtain the matrix Vi = [vi1, . . . , vid] ∈ R
D×d by

concatenating the vij’s as column vectors.

Define

φi(x) = bi(V
�
i (x− ci)+ ui) ∈ [0, 1]d

for any x ∈ Ui, where bi ∈ (0, 1] is a scaling factor and ui is a translation vector. Since Ui is bounded,

we can choose proper bi and ui to guarantee φi(x) ∈ [0, 1]d. We rescale and translate the projection to

ease the notation for the development of local Taylor approximations in Step 4. We also remark that

each φi is a linear function, and can be realized by a single layer linear network.

Step 3. Chart determination. This step is to assign a given input x to the proper charts to which

x belongs. This avoids projecting x using unmatched charts (i.e. x 
∈ Uj for some j) as illustrated in

Figure 5.

An input x can belong to multiple charts, and the chart determination sub-network determines all

these charts. This can be realized by compositing an indicator function and the squared Euclidean
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14 M. CHEN ET AL.

Fig. 5. Projecting xj using a matched chart (blue) (Uj, φj) and an unmatched chart (green) (Ui, φi).

Fig. 6. Chart determination utilizes the composition of approximated distance function d̂2
i

and the indicator function 1̂Δ.

distance

d2
i (x) = ‖x− ci‖2

2 =
D
∑

j=1

(xj − ci,j)
2

for i = 1, . . . , CM. The squared distance d2
i (x) is a sum of univariate quadratic functions; thus, we

can apply Lemma 4.1 to approximate d2
i (x) by ReLU networks. Denote ĥsq as an approximation of the

quadratic function x2 on [0, 1] with an approximation error ν. Then we define

d̂2
i (x) = 4B2

D
∑

j=1

ĥsq

(∣
∣
∣
∣

xj − ci,j

2B

∣
∣
∣
∣

)

.

as an approximation of d2
i (x). The approximation error is ‖d̂2

i − d2
i ‖∞ ≤ 4B2Dν, by the triangle

inequality. We consider an approximation of the indicator function 1(x ∈ [0, r2]) as in Figure 6:

1̂Δ(a) =

⎧

⎪
⎨

⎪
⎩

1 a ≤ r2 −Δ+ 4B2Dν

− 1
Δ−8B2Dν

a+ r2−4B2Dν

Δ−8B2Dν
a ∈ [r2 −Δ+ 4B2Dν, r2 − 4B2Dν]

0 a > r2 − 4B2Dν

, (4.1)

where Δ (Δ ≥ 8B2Dν) will be chosen later according to the accuracy ε.
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NONPARAMETRIC REGRESSION ON LOW-DIMENSIONAL MANIFOLDS USING RELU NETWORKS 15

Fig. 7. Locally approximate f in each chart (Ui, φi) using Taylor polynomials.

To implement 1̂Δ(a), we consider a basic step function g = 2ReLU(x − 0.5(r2 − 4B2Dν)) −
2ReLU(x− r2 + 4B2Dν). It is straightforward to check

gk(a) = g ◦ · · · ◦ g
︸ ︷︷ ︸

k

(a)

=

⎧

⎪
⎪
⎨

⎪
⎪
⎩

0 a < (1− 2−k)(r2 − 4B2Dν)

2k(a− r2 + 4B2Dν)+ r2 − 4B2Dν a ∈
[

(1− 1
2k )(r

2 − 4B2Dν), r2 − 4B2Dν
]

r2 − 4B2Dν a > r2 − 4B2Dν

.

Let 1̂Δ = 1− 1
r2−4B2Dν

gk. It suffices to choose k satisfying (1− 1
2k )(r

2 − 4B2Dν) ≥ r2 −Δ+ 4B2Dν,

which yields k =
⌈

log r2

Δ

⌉

. We use 1̂Δ ◦ d̂2
i to approximate the indicator function on Ui:

• if x 
∈ Ui, i.e. d2
i (x) ≥ r2, we have 1̂Δ ◦ d̂2

i (x) = 0;

• if x ∈ Ui and d2
i (x) ≤ r2 −Δ, we have 1̂Δ ◦ d̂2

i (x) = 1.

We remark that although the approximate indicator function 1̂Δ is a piecewise linear function with two

breakpoints, we implement it using a deep neural network to control the range of weight parameters in

the network. Otherwise, the parameter upper bound can be as large as 1/Δ due to the steep slope in 1̂Δ,

which undermines the statistical theory.

Step 4. Taylor approximation. In each chart (Ui, φi), we locally approximate f using Taylor

polynomials of order n as shown in Figure 7. Specifically, we decompose f as

f =
C
M∑

i=1

fi with fi = f ρi,

where ρi is an element in a C∞ partition of unity on M, which is supported inside Ui. The existence of

such a partition of unity is guaranteed by Proposition 2.9. Since M is a compact smooth manifold and

ρi is C∞, fi preserves the regularity (smoothness) of f such that fi ∈H
s,α(M) for i = 1, . . . , CM.
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16 M. CHEN ET AL.

Lemma 4.3. Suppose Assumption 3 holds. For i = 1, . . . , CM, the function fi is Hölder continuous on

M, in the sense that there exists a Hölder coefficient Li depending on d, the upper bounds of derivatives

of the partition of unity ρi and coordinate system φi, up to order s, such that for any |s| = s, we have

∣
∣
∣D

s(fi ◦ φ−1
i )

∣
∣
φi(x1)

− Ds(fi ◦ φ−1
i )

∣
∣
φi(x2)

∣
∣
∣ ≤ Li

∥
∥
∥φi(x1)− φi(x2)

∥
∥
∥

α

2
, ∀x1, x2 ∈ Ui.

Proof Sketch. We provide a sketch here. More details are deferred to Appendix B.2. Without loss of

generality, suppose Assumption 3 holds with the atlas chosen in Step 1. Denote g1 = f ◦ φ−1
i and

g2 = ρi ◦ φ−1
i . By the Leibniz rule, we have

Ds(fi ◦ φ−1
i ) = Ds(g1 × g2) =

∑

|p|+|q|=s

(
s

|p| )D
pg1Dqg2.

Consider each term in the sum: for any x1, x2 ∈ Ui,

∣
∣Dpg1Dqg2

∣
∣
φi(x1)

− Dpg1Dqg2

∣
∣
φi(x2)

∣
∣

≤
∣
∣Dpg1(φi(x1))

∣
∣
∣
∣Dqg2

∣
∣
φi(x1)

− Dqg2

∣
∣
φi(x2)

∣
∣+

∣
∣Dqg2(φi(x2))

∣
∣
∣
∣Dpg1

∣
∣
φi(x1)

− Dpg1

∣
∣
φi(x2)

∣
∣

≤ λiθi,α‖φi(x1)− φi(x2)‖α2 + μiβi,α‖φi(x1)− φi(x2)‖α2 .

Here λi and μi are uniform upper bounds on the derivatives of g1 and g2 with order up to s, respectively.

The quantities θi,α and βi,α in the last inequality above is chosen as follows: by the mean value theorem,

we have

∣
∣Dqg2|φi(x1)

− Dqg2|φi(x2)

∣
∣ ≤

√
dμi‖φi(x1)− φi(x2)‖2

=
√

dμi‖φi(x1)− φi(x2)‖1−α
2 ‖φi(x1)− φi(x2)‖α2

≤
√

dμi(2r)1−α‖φi(x1)− φi(x2)‖α2 ,

where the last inequality is due to the fact that ‖φi(x1)− φi(x2)‖2 ≤ bi‖Vi‖‖x1 − x2‖2 ≤ 2r. Then we

set θi,α =
√

dμi(2r)1−α and by a similar argument, we set βi,α =
√

dλi(2r)1−α . We complete the proof

by taking Li = 2s+1
√

dλiμi(2r)1−α . �

Lemma 4.3 is crucial for the error estimation in the local approximation of fi ◦ φ−1
i by Taylor

polynomials. This error estimate is given in the following theorem, where some of the proof techniques

are from Theorem 1 in [76].

Theorem 4.1. Let fi = f ρi as in Step 4. For any δ ∈ (0, 1), there exists a ReLU network structure that,

if the weight parameters are properly chosen, the network yields an approximation of fi ◦φ−1
i uniformly

with an L∞ error δ. Such a network has

1. no more than c1(log 1
δ
+ 1) layers, with width bounded by c2δ

−d/(s+α),
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NONPARAMETRIC REGRESSION ON LOW-DIMENSIONAL MANIFOLDS USING RELU NETWORKS 17

2. at most c3δ
− d

s+α (log 1
δ
+ 1) neurons and weight parameters, with the range of weight parameters

bounded by κ = c4 max{1,
√

d},
where c1, c2, c3 depend on s, d, τ , and the upper bound of derivatives of fi ◦ φ−1

i up to order s, and c4

depends on the upper bound of the derivatives of ρi’s up to order s.

Proof Sketch. The detailed proof is provided in Appendix B.3. The proof consists of two steps:

1. Approximate fi ◦ φ−1
i using a weighted sum of Taylor polynomials;

2. Implement the weighted sum of Taylor polynomials using ReLU networks.

Specifically, we set up a uniform grid and divide [0, 1]d into small cubes, and then approximate fi ◦ φ−1
i

by its s-th order Taylor polynomial in each cube. To implement such polynomials by ReLU networks,

we recursively apply the multiplication ×̂ operator in Corollary 4.1, since these polynomials are sums

of the products of different variables. �

Step 5. Estimating the total error. We have collected all the ingredients to implement the entire

ReLU network to approximate f on M. Recall that the network structure consists of 3 main sub-networks

as demonstrated in Figure 3. Let ×̂ be an approximation to the multiplication operator in the pairing sub-

network with error η. Accordingly, the function given by the whole network is

f̃ =
C
M∑

i=1

×̂(f̂i, 1̂Δ ◦ d̂2
i ) with f̂i = f̃i ◦ φi,

where f̃i is the approximation of fi ◦ φ−1
i using Taylor polynomials in Theorem 4.1. The total error can

be decomposed into three components according to Lemma 4.4 below. We denote 1(x ∈ Ui) as the

indicator function of Ui. Let the approximation errors of the multiplication operation ×̂ and the local

Taylor polynomial in Theorem 4.1 be η and δ, respectively.

Lemma 4.4. For any i = 1, . . . , CM, we have ‖f̃ − f‖∞ ≤
∑C

M
i=1 (Ai,1 + Ai,2 + Ai,3), where

Ai,1 =
∥
∥×̂(f̂i, 1̂Δ ◦ d̂2

i )− f̂i × (1̂Δ ◦ d̂2
i )
∥
∥
∞ ≤ η,

Ai,2 =
∥
∥f̂i × (1̂Δ ◦ d̂2

i )− fi × (1̂Δ ◦ d̂2
i )
∥
∥
∞ ≤ δ,

Ai,3 =
∥
∥fi × (1̂Δ ◦ d̂2

i )− fi × 1(x ∈ Ui)
∥
∥
∞ ≤

c(π + 1)

r(1− r/τ)
Δ for some constant c.

Lemma 4.4 is proved in Appendix B.4. In order to achieve an ε total approximation error, i.e. ‖f −
f̃‖∞ ≤ ε, we need to control the errors in the three sub-networks. In other words, we need to decide ν

for d̂2
i , Δ for 1̂Δ, δ for f̃i, and η for ×̂. Note that Ai,1 is the error from the pairing sub-network, Ai,2 is

the approximation error in the Taylor approximation sub-network, and Ai,3 is the error from the chart

determination sub-network. The error bounds on Ai,1, Ai,2 are straightforward from the constructions of

×̂ and f̂i. The estimate of Ai,3 involves some technical analysis since ‖1̂Δ ◦ d̂2
i − 1(x ∈ Ui)‖∞ = 1.
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18 M. CHEN ET AL.

Note that we have

1̂Δ ◦ d̂2
i (x)− 1(x ∈ Ui) = 0

whenever ‖x− ci‖2
2 < r2 − Δ or ‖x− ci‖2

2 > r2. Therefore, we only need to prove that |fi(x)| is

sufficiently small in the shell region

Ki = {x ∈M : r2 −Δ ≤ ‖x− ci‖2
2 ≤ r2}.

We bound the maximum of fi on Ki using a first-order Taylor expansion. Since fi vanishes at the

boundary of Ui due to the partition of unity ρi, we can show that supx∈Ki
|fi(x)| is proportional to the

width Δ of Ki. In particular, there exists a constant c depending on fi’s and φi’s such that

max
x∈Ki

|fi(x)| ≤ c(π + 1)

r(1− r/τ)
Δ for any i = 1, . . . , CM. (4.2)

Then (4.2) immediately implies the upper bound on Ai,3. The formal statement of (4.2) and its proof are

deferred to Lemma A.1 and Appendix B.5.

Given Lemma 4.4, we choose

η = δ = ε

3CM

and Δ = r(1− r/τ)ε

3c(π + 1)CM

(4.3)

so that the approximation error is bounded by ε. Moreover, we choose

ν = Δ

16B2D
(4.4)

to guarantee Δ > 8B2Dν so that the definition of 1̂Δ is valid.

Finally we quantify the size of the ReLU network. Recall that the chart determination sub-network

has c1 log 1
ν

layers, the Taylor approximation sub-network has c2 log 1
δ

layers, and the pairing sub-

network has c3 log 1
η

layers. Here c2 depends on d, s, f , and c1, c3 are absolute constants. Combining

these with (4.3) and (4.4) yields the depth in Theorem 3.1. By a similar argument, we can obtain the

number of neurons and weight parameters. A detailed analysis is given in Appendix B.6.

5. Proof of the statistical estimation theory

In the proof of Theorem 3.3, we decompose the mean squared error of the estimator f̂n into a squared
bias term and a variance term. We bound the bias and variance separately, where the bias is tackled
using the approximation theory (Theorem 3.1), and the variance is bounded using the metric entropy
arguments [31, 72]. We begin with an oracle-type decomposition of the L2 risk, in which we introduce
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NONPARAMETRIC REGRESSION ON LOW-DIMENSIONAL MANIFOLDS USING RELU NETWORKS 19

the empirical L2 risk as the intermediate term:

E

[∫

M

(

f̂n(x)− f0(x)
)2

dDx(x)

]

= 2E

⎡

⎣
1

n

n
∑

i=1

(f̂n(xi)− f0(xi))
2

⎤

⎦

︸ ︷︷ ︸

T1

+ E

[∫

M

(

f̂n(x)−f0(x)
)2

dDx(x)

]

−2E

⎡

⎣
1

n

n
∑

i=1

(f̂n(xi)− f0(xi))
2

⎤

⎦

︸ ︷︷ ︸

T2

,

where T1 reflects the squared bias of using neural networks for estimating f0 and T2 is the variance term.

We slightly abuse the notation i to denote the index of samples.

5.1 Bias characterization—bounding T1

Since T1 is the empirical L2 risk of f̂n evaluated on the samples Sn, we relate T1 to the empirical risk

(1.3) by rewriting f0(xi) = yi − ξi. Substituting into T1, we derive the following decomposition,

T1 = 2E

[

1

n

n
∑

i=1

(f̂n(xi)− yi + ξi)
2

]

(i)= 2E

[

1

n

n
∑

i=1

[

(f̂n(xi)− yi)
2 + 2ξi f̂n(xi)− ξ2

i

]
]

= 2E

[

inf
f∈F(R,κ ,L,p,K)

1

n

n
∑

i=1

[

(f (xi)− yi)
2 − ξ2

i + 2ξi f̂n(xi)
]
]

(ii)
≤ 2 inf

f∈F(R,κ ,L,p,K)

∫

M
(f (x)− f0(x))2dDx(x)

︸ ︷︷ ︸

(A)

+4E

[

1

n

n
∑

i=1

ξi f̂n(xi)

]

︸ ︷︷ ︸

(B)

. (5.1)

Equality (i) is obtained by expanding the square, where the cross term E[ξiyi] = E[ξi(f0(xi) + ξi)] =
E[ξ2

i ] due to the independence between xi and ξi. Inequality (ii) invokes the Jensen’s inequality to pass

the expectation. To obtain term (A), we expand (f (xi) − yi)
2 = (f (xi) − f0(xi) − ξi)

2, and observe the

cancellation of −ξ2
i . Note that term (A) is the squared approximation error of neural networks and we

will tackle it later using Theorem 3.1. We bound term (B) by quantifying the complexity of the network

class F(R, κ , L, p, K). A precise upper bound of T1 is given in the following lemma, whose proof follows

a similar argument in [63, Lemma 4).
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20 M. CHEN ET AL.

Lemma 5.1. Fix the neural network class F(R, κ , L, p, K). For any constant δ ∈ (0, 2R), we have

T1 ≤ 4 inf
f∈F(R,κ ,L,p,K)

∫

M
(f (x)− f0(x))2dDx(x)+ 48σ 2 log N (δ, F(R, κ , L, p, K), ‖·‖∞)+ 2

n

+ (8
√

6

√

log N (δ, F(R, κ , L, p, K), ‖·‖∞)+ 2

n
+ 8)σδ,

where N (δ, F(R, κ , L, p, K), ‖·‖∞) denotes the δ-covering number of F(R, κ , L, p, K) with respect

to the �∞ norm, i.e. there exists a discretization of F(R, κ , L, p, K) into N (δ, F(R, κ , L, p, K), ‖·‖∞)

distinct elements, such that for any f ∈ F, there is f̄ in the discretization satisfying ‖f̄ − f‖∞ ≤ ε.

Proof Sketch. Given the derivation in (5.1), we need to bound term (B). We discretize the neural

network class F(R, κ , L, p, K) as {f ∗i }
N (δ,F(R,κ ,L,p,K),‖·‖∞)

i=1 . By the definition of covering, there exists

f ∗ such that ‖f̂n − f ∗‖∞ ≤ δ. Denoting ‖f − f0‖n = 1
n

∑n
i=1(f (xi)− f0(xi))

2, we cast (B) into

(B) = E

[

1

n

n
∑

i=1

ξi(f̂n(xi)− f ∗(xi)+ f ∗(xi)− f0(xi))

]

(i)
≤ E

[

1

n

n
∑

i=1

ξi(f
∗(xi)− f0(xi))

]

+ δσ

= E

[‖f ∗ − f0‖n√
n

∑n
i=1 ξi(f

∗(xi)− f0(xi))√
n‖f ∗ − f0‖n

]

+ δσ

(ii)
≤
√

2E

[

‖f̂n − f0‖n + δ√
n

∣
∣
∣
∣

∑n
i=1 ξi(f

∗(xi)− f0(xi))√
n‖f ∗ − f0‖n

∣
∣
∣
∣

]

+ δσ ,

where (i) follows from Hölder’s inequality and (ii) is obtained by some algebraic manipulation. To break

the dependence between f ∗ and the samples, we replace f ∗ by any f ∗j in the δ-covering and observe that
∣
∣
∣

∑n
i=1 ξi(f

∗(xi)−f0(xi))√
n‖f ∗−f0‖n

∣
∣
∣ ≤ maxj

∣
∣
∣
∣

∑n
i=1 ξi(f

∗
j (xi)−f0(xi))√

n‖f ∗j −f0‖n

∣
∣
∣
∣
. Applying the Cauchy–Schwarz inequality, we can

show

(B) ≤
√

2

(√

1

n
E

[

‖f̂n − f0‖2
n

]

+ δ√
n

)√

E

[

max
j

z2
j

]

+ δσ ,

where zj =
∣
∣
∣

∑n
i=1 ξi(f

∗(xi)−f0(xi))√
n‖f ∗−f0‖n

∣
∣
∣. Given x1, . . . , xn, we note that zj is a sub-Gaussian random variable

with parameter σ (i.e. its variance is bounded by σ 2). It is well established in the existing literature on

empirical processes [72] that the maximum of a collection of squared sub-Gaussian random variables

satisfies

E

[

max
j

z2
j | x1, . . . , xn

]

≤ 3σ 2 log N (δ, F(R, κ , L, p, K), ‖·‖∞)+ 6σ 2.
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NONPARAMETRIC REGRESSION ON LOW-DIMENSIONAL MANIFOLDS USING RELU NETWORKS 21

Substituting the above inequality into (B) and combining (A) and (B), we have

T1 = 2E
[

‖f̂n − f0‖2
n

]

≤ 2 inf
f∈F(R,κ ,L,p,K)

E

[

(f (x)− f0(x))2
]

+ 4δσ

+ 4
√

6σ

(√

E

[

‖f̂n − f0‖2
n

]

+ δ

)√

log N (δ, F(R, κ , L, p, K), ‖·‖∞)+ 2

n
.

Some manipulation gives rise to the desired result

T1 ≤ 4 inf
f∈F(R,κ ,L,p,K)

∫

M
(f (x)− f0(x))2dDx(x)+ 48σ 2 log N (δ, F(R, κ , L, p, K), ‖·‖∞)+ 2

n

+ (8
√

6

√

log N (δ, F(R, κ , L, p, K), ‖·‖∞)+ 2

n
+ 8)σδ.

See proof details in Appendix C.1. �

5.2 Variance characterization—bounding T2

We observe that T2 is the difference between the population L2 risk of f̂n and its empirical counterpart.

However, bounding such a difference is distinct from conventional concentration results due to the

scaling factor 2 before the empirical risk. In particular, we split the empirical risk evenly into two parts,

and bound one part using its higher-order moment (fourth moment). Using Bernstein-type inequality

allows us to establish a 1/n convergence rate of T2; the corresponding upper bound is presented in the

following lemma.

Lemma 5.2. For any constant δ ∈ (0, 2R), T2 satisfies

T2 ≤
104R2

3n
log N (δ/4R, F(R, κ , L, p, K), ‖·‖∞)+

(

4+ 1

2R

)

δ.

Proof Sketch. The detailed proof is deferred to Appendix C.2. For notational simplicity, we denote

ĝ(x) = (f̂n(x) − f0(x))2 and ‖ĝ‖∞ ≤ 4R2. Applying the inequality
∫

M ĝ2dDx(x) ≤ 4R2
∫

M ĝdDx(x)

[6], we rewrite T2 as

T2 = E

[
∫

M
ĝ(x)dDx(x)− 2

n

n
∑

i=1

ĝ(xi)

]

= 2E

[
∫

M
ĝ(x)dDx(x)− 1

n

n
∑

i=1

ĝ(xi)−
1

2

∫

M
ĝ(x)dDx(x)

]

≤ 2E

[
∫

M
ĝ(x)dDx(x)− 1

n

n
∑

i=1

ĝ(xi)−
1

8R2

∫

M
ĝ2(x)dDx(x)

]

.
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22 M. CHEN ET AL.

We now utilize ghost samples of x to bound T2, which is a common technique in existing liter-

ature on nonparametric statistics [31; 72]. Specifically, let x̄i’s be independent replications of xi’s.

We bound T2 as

T2 ≤ 2E

[

sup
g∈G

∫

M
g(x)dDx(x)− 1

n

n
∑

i=1

g(xi)−
1

8R2

∫

M
g2(x)dDx(x)

]

≤ 2Ex,x̄

[

sup
g∈G

1

n

n
∑

i=1

(g(x̄i)− g(xi))−
1

16R2
Ex,x̄

[

g2(x)+ g2(x̄)
]
]

,

where G = {g = (f − f0)
2 | f ∈ F(R, κ , L, p, K)}. We use the shorthand Ex,x̄[·] to denote the double

integral
∫

M

∫

M ·dDx(x)dDx(x̄) with respect to the joint distribution of (x, x̄). The last inequality holds

due to Jensen’s inequality. Note here g2(x) + g2(x̄) contributes as the variance term of g(x̄i) − g(xi),

which yields a fast convergence of T2 as n grows.

Similar to bounding T1, we discretize the function space G using a δ-covering denoted by G
∗. This

allows us to replace the supremum by the maximum over a finite set:

T2 ≤ 2Ex̄,x

[

sup

g∗∈G∗
1

n

n
∑

i=1

(g∗(x̄i)− g∗(xi))−
1

16R2
Ex,x̄

[

(g∗)2(x)+ (g∗)2(x̄)
]
]

+
(

4+ 1

2R

)

δ.

We can bound the above maximum by the Bernstein’s inequality, which yields

T2 ≤
104R2

3n
log N (δ, G, ‖·‖∞)+

(

4+ 1

2R

)

δ.

The last step is to relate the covering number of G to that of F(R, κ , L, p, K). Specifically, consider

any g1, g2 ∈ G with g1 = (f1 − f0)
2 and g2 = (f2 − f0)

2, respectively. We can derive

‖g1 − g2‖∞ = sup
x∈M

∣
∣f1(x)− f2(x)

∣
∣
∣
∣f1(x)+ f2(x)− 2f0(x)

∣
∣ ≤ 4R‖f1 − f2‖∞.

Therefore, the inequality N (δ, G, ‖·‖∞) ≤ N (δ/4R, F(R, κ , L, p, K), ‖·‖∞) holds, which implies

T2 ≤
104R2

3n
log N (δ/4R, F(R, κ , L, p, K), ‖·‖∞)+

(

4+ 1

2R

)

δ.

The proof is complete. �

5.3 Covering number of neural networks

The upper bounds of T1 and T2 in Lemmas 5.1 and 5.2 both depend on the covering number of the

network class F(R, κ , L, p, K). In this section, we provide an upper bound on the covering number

N (δ, F(R, κ , L, p, K), ‖·‖∞) for a given a resolution δ > 0. Since each weight parameter in the network
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is bounded by a constant κ , we construct a covering by partitioning the range of each weight parameter

into a uniform grid. By choosing a proper grid size, we show the following lemma.

Lemma 5.3. Given δ > 0, the δ-covering number of the neural network class F(R, κ , L, p, K) satisfies

N (δ, F(R, κ , L, p, K), ‖·‖∞) ≤
(

2L2(pB+ 2)κLpL+1

δ

)K

. (5.2)

Proof Sketch. Consider f , f ′ ∈ F(R, κ , L, p, K) with each weight parameter differing at most h. By an

induction on the number of layers in the network, we show that the �∞ norm of the difference f − f ′

scales as

‖f − f ′‖∞ ≤ hL(pB+ 2)(κp)L−1.

As a result, to achieve a δ-covering, it suffices to choose h such that hL(pB+ 2)(κp)L−1 = δ. Moreover,

there are
(

Lp2

K

)

≤ (Lp2)K different choices of K non-zero entries out of Lp2 weight parameters.

Therefore, the covering number is bounded by

N (δ, F(R, κ , L, p, K), ‖·‖∞) ≤
(

Lp2
)K

(
2κ

h

)K

≤
(

2L2(pB+ 2)κLpL+1

δ

)K

.

The detailed proof is provided in Appendix C.3. �

5.4 Bias–Variance trade-off

We are ready to finish the proof of Theorem 3.3. Combining the upper bounds of T1 in Lemma 5.1 and

T2 in Lemma 5.2 together and substituting the covering number (5.2), we obtain

E

[∫

M

(

f̂n(x)− f0(x)
)2

dDx(x)

]

≤ 4 inf
f∈F(R,κ ,L,p,K)

∫

M
(f (x)− f0(x))2dDx(x)

+ 48σ 2 log N (δ, F(R, κ , L, p, K), ‖·‖∞)+ 2

n

+ 8
√

6

√

log N (δ, F(R, κ , L, p, K), ‖·‖∞)+ 2

n
σδ

+ 104R2

3n
log N (δ/4R, F(R, κ , L, p, K), ‖·‖∞)

+
(

4+ 1

2R
+ 8σ

)

δ.
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It suffices to choose δ = 1/n, which gives rise to

E

[∫

M

(

f̂n(x)− f0(x)
)2

dDx(x)

]

≤ 4 inf
f∈F(R,κ ,L,p,K)

∫

M
(f (x)− f0(x))2dDx(x)

+ Õ

(
R2 + σ 2

n
KL log(RκLpn)+ σ 2

n

)

, (5.3)

where we also plug in the covering number upper bound in Lemma 5.2. We further set the approximation

error as ε, i.e. inff∈F(R,κ ,L,p,K)‖f (x)−f0(x)‖∞ ≤ ε. Theorem 3.1 suggests that we choose L = Õ(log 1
ε
),

p = Õ(ε−
d

s+α ) and K = Õ
(

ε−
d

s+α log 1
ε
+ D log 1

ε

)

. Substituting L, p, and K into (5.3), we have

E

[∫

M

(

f̂n(x)− f0(x)
)2

dDx(x)

]

= Õ

(

ε2 + R2 + σ 2

n

(

ε−
d

s+α + D
)

log3 1

ε
+ 1

n

)

.

To balance the error terms, we pick ε satisfying ε2 = 1
n
ε−

d
s+α , which gives ε = n

− s+α
d+2(s+α) . The proof of

Theorem 3.3 is complete by plugging in ε = n
− s+α

d+2(s+α) and rearranging the terms.

6. Conclusion

We study nonparametric regression of functions supported on a d-dimensional Riemannian manifold

M isometrically embedded in R
D, using deep ReLU neural networks. Our result establishes an

efficient statistical estimation theory for general regression functions including Cs and Hölder functions

supported on manifolds. We show that the L2 loss for the estimation of f0 ∈ H
s,α(M) converges in the

order of n
− s+α

2(s+α)+d . To obtain an ε-error for the estimation of f0, the sample complexity scales in the

order of ε−
2(s+α)+d

s+α . This sample complexity depends on the intrinsic dimension d and demonstrates that

deep neural networks are adaptive to low-dimensional geometric structures of data sets. Such results can

be viewed as theoretical justifications for the empirical success of deep learning in various real-world

applications where the data sets exhibit low-dimensional structures.
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A. Proofs of the Preliminary Results in Section 4

A.1 Proof of Lemma 4.1

Proof. We partition the interval [0, 1] uniformly into 2N subintervals Ik = [ k
2N , k+1

2N ] for k = 0, . . . , 2N−
1. We approximate f (x) = x2 on these subintervals by a linear interpolation

f̂k =
2k + 1

2N

(

x− k

2N

)

+ k2

22N
, for x ∈ Ik.

It is straightforward to check that f̂k meets f at the endpoints k
2N , k+1

2N of Ik.

We evaluate the approximation error of f̂k on the interval Ik:

max
x∈Ik

∣
∣
∣f (x)− f̂k(x)

∣
∣
∣ = max

x∈Ik

∣
∣
∣
∣
x2 − 2k + 1

2N
x+ k2 + k

22N

∣
∣
∣
∣

= max
x∈Ik

∣
∣
∣
∣
∣

(

x− 2k + 1

2N+1

)2

− 1

22N+2

∣
∣
∣
∣
∣

= 1

22N+2
.

Note that this approximation error does not depend on k. Thus, in order to achieve an ε approximation

error, we only need

1

22N+2
≤ ε �⇒ N ≥

log 1
ε

2 log 2
− 1.

Since 2 log 2 > 1, we let N =
⌈

log 1
ε

⌉

and denote fN =
∑2N−1

k=0 f̂k1{x ∈ Ik}. We compute the increment

from fN−1 to fN for x ∈
[

k

2N−1 , k+1
2N−1

]

as

fN−1 − fN =

⎧

⎨

⎩

k2

22(N−1) + 2k+1
2N−1

(

x− k

2N−1

)

− k2

22(N−1) − 4k+1
2N

(

x− k

2N−1

)

, x ∈
[

k

2N−1 , 2k+1
2N

)

k2

22(N−1) + 2k+1
2N−1

(

x− k

2N−1

)

− (2k+1)2

22N − 4k+3
2N

(

x− 2k+1
2N

)

, x ∈
[

2k+1
2N , k+1

2N−1

)

=

⎧

⎨

⎩

1
2N x− k

22N−1 , x ∈
[

k

2N−1 , 2k+1
2N

)

− 1
2N x+ k+1

22N−1 , x ∈
[

2k+1
2N , k+1

2N−1

) .

We observe that fN−1 − fN is a triangular function on [ k

2N−1 , k+1
2N−1 ]. The maximum is 1

22N independent

of k attained at x = 2k+1
2N . The minimum is 0 attained at the endpoints k

2N−1 , k+1
2N−1 . To implement fN , we

consider a triangular function representable by a one-layer ReLU network:

g(x) = 2σ(x)− 4σ(x− 0.5)+ 2σ(x− 1).

Denote by gm = g ◦ g ◦ · · · ◦ g the composition of totally m functions g. Observe that gm is a

sawtooth function with 2m−1 peaks at 2k+1
2m for k = 0, . . . , 2m−1 − 1, and we have gm( 2k+1

2m ) = 1 for
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NONPARAMETRIC REGRESSION ON LOW-DIMENSIONAL MANIFOLDS USING RELU NETWORKS 29

k = 0, . . . , 2m−1 − 1. Then we have fN−1 − fN = 1
22N gN . By induction, we have

fN = fN−1 −
1

22N
gN

= fN−2 −
1

22N
gN −

1

22N−2
gN−1

= · · ·

= x−
N
∑

k=1

1

22k
gk.

Therefore, fN can be implemented by a ReLU network of depth
⌈

log 1
ε

⌉

≤ log 1
ε
+ 1. Meanwhile, each

layer consists of at most three neurons. Hence, the total number of neurons and weight parameters is no

more than c log 1
ε

for an absolute constant c. �

A.2 Proof of Corollary 4.1

Proof. Let f̂δ be an approximation of the quadratic function on [0, 1] with error δ ∈ (0, 1). We set

×̂(x, y) = C2

(

f̂δ

( |x+ y|
2C

)

− f̂δ

( |x− y|
2C

))

.

Now we determine δ. We bound the error of ×̂
∣
∣×̂(x, y)− xy

∣
∣ = C2

∣
∣
∣
∣
f̂δ

( |x+ y|
2C

)

− |x+ y|2
4C2

− f̂δ

( |x− y|
2C

)

+ |x− y|2
4C2

∣
∣
∣
∣

≤ C2

∣
∣
∣
∣
f̂δ

( |x+ y|
2C

)

− |x+ y|2
4C2

∣
∣
∣
∣
+

∣
∣
∣
∣
f̂δ

( |x− y|
2C

)

− |x− y|2
4C2

∣
∣
∣
∣

≤ 2C2δ.

Thus, we pick δ = ε

2C2 to ensure
∣
∣×̂(x, y)− xy

∣
∣ ≤ ε for any inputs x and y. As shown in Lemma 4.1,

we can implement f̂δ using a ReLU network of depth at most c′ log 1
δ
= c log C2

ε
with absolute constants

c′, c. The proof is complete. �

B. Proof of approximation theory of ReLU network (Theorem 3.1)

This section consists of the detailed proofs of Lemma 4.2, Lemma 4.3, local approximation theory

Theorem 4.1, error decomposition in Lemma 4.4 and a technical Lemma B.1 for bounding the error,

as well as the configuration of the desired ReLU network class for universally approximating Hölder

functions.

B.1 Proof of Lemma 4.2

Proof. We first show Pi defined on Ui is a homeomorphism, which implies (Ui,Pi) is a chart on the

manifold. Then by Proposition 6.10 in [71], we conclude Pi is a diffeomorphism.
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30 M. CHEN ET AL.

To show Pi is a homeomorphism on Ui, we only need to show Pi has a continuous inverse. By

Lemma 5.4 in [58], the derivative of Pi is nonsingular in Ui. The inverse function theorem implies

that Pi is locally invertible in an open neighborhood B(ci, cτ)
⋂

M for some constant c > 0. In the

following, we show by contradiction that the constant c ≥ 1/4. Suppose not, there exist distinct points

a, b ∈ Ui such that Pi(a) = Pi(b) with ‖a− ci‖2 < τ/4 and ‖b− ci‖2 < τ/4. Using the triangle

inequality, we obtain ‖a− b‖2 < τ/2. Applying Proposition 6.3 in [58], we derive

dM(a, b) < τ and dM(a, ci) < τ(1−
√

2/2) with dM(·, ·) being the geodesic distance.

Furthermore, using Proposition 6.2 in [58], we lower bound the angle between the tangent spaces Tci
(M)

and Ta(M) by

cos
(

 (Ta(M), Tci

(M))
) �= min

u∈Ta(M)

max
v∈Tci

(M)

|〈uv〉| ≥ 1− 1

τ
dM(a, ci) >

√
2/2. (B.1)

On the other hand, we consider a unit speed geodesic γ (t) starting from a and ending at b, with

γ (0) = a, γ (dM(a, b)) = b, and ‖γ̇ ‖2 = 1. Integration by parts yields

b− a = γ (dM(a, b))− γ (0)

=
∫ d

M
(a,b)

0

γ̇ (t)dt

= γ̇ (0)dM(a, b)+
∫ d

M
(a,b)

0

∫ t

0

γ̈ (s)dsdt.

Rearranging terms gives rise to

‖b− a− γ̇ (0)dM(a, b)‖2 ≤
∫ d

M
(a,b)

0

∫ t

0

‖γ̈ (s)‖2dsdt ≤
d2

M
(a, b)

2τ
, (B.2)

where the last inequality follows from Proposition 6.1 in [58]. Dividing (B.2) by dM(a, b) and plugging

in dM(a, b) ≤ τ , we have

∥
∥
∥

b− a

dM(a, b)
− γ̇ (0)

∥
∥
∥

2
<

1

2
.

For any unit vector v ∈ Tci
(M), we evaluate the inner product

|〈γ̇ (0)〉v| ≤
∣
∣
∣
∣

〈

γ̇ (0)− b− a

dM(a, b)

〉

v

∣
∣
∣
∣
+

∣
∣
∣
∣

〈
b− a

dM(a, b)

〉

v

∣
∣
∣
∣

(i)=
∣
∣
∣
∣

〈

γ̇ (0)− b− a

dM(a, b)

〉

v

∣
∣
∣
∣

≤
∥
∥
∥

b− a

dM(a, b)
− γ̇ (0)

∥
∥
∥

2

<
1

2
, (B.3)
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NONPARAMETRIC REGRESSION ON LOW-DIMENSIONAL MANIFOLDS USING RELU NETWORKS 31

where

∣
∣
∣
∣
〈 b−a

d
M

(a,b)
〉v
∣
∣
∣
∣
= 0 in equality (i), since Pi(a) = Pi(b) by our assertion. Combining (B.1) and

(B.3), we obtain

√
2

2
< cos

(

 (Ta(M), Tci

(M))
)

≤ max
v∈Tci

(M)

|〈γ̇ (0)〉v| < 1

2
,

which is a contradiction. Therefore, we conclude that Pi is injective, and hence invertible on the local

neighborhood B(ci, τ/4)
⋂

M. The continuity of Pi follows from its definition, and the inverse map of

a continuous map is also continuous. Therefore, Pi is a homeomorphism on B(ci, r)
⋂

M for r ≤ τ/4.

�

The last step is to show Pi is also a diffeomorphism. We leverage the following proposition.

Proposition A.1. (Proposition 6.10 in (71)). If (U, φ) is a chart on a manifold M, then the coordinate

map φ : U 	→ φ(U) is a diffeomorphism.

Since Pi is a homeomorphism, we deduce that (Ui,Pi) is a chart of M. Applying Proposition A.1,

we conclude that Pi is a diffeomorphism.

B.2 Proof of Lemma 4.3

Proof. Recall that we choose local coordinate neighborhood Ui in Step 1 in Section 4. Let Pi be the

projection onto the tangent space Tci
(M). Then {(Ui,Pi)} is an atlas of M. Without loss of generality,

we assume that {(Ui,Pi)} verifies the Hölder condition in Definition 2.7. Now we rewrite fi ◦ φ−1
i as

(f ◦ φ−1
i )

︸ ︷︷ ︸

g1

× (ρi ◦ φ−1
i )

︸ ︷︷ ︸

g2

. (B.4)

By the definition of the partition of unity, we know g2 is C∞. This implies that g2 is (s+1) continuously

differentiable. Since supp(ρi) is compact, the k-th derivative of g2 is uniformly bounded by λi,k for any

k ≤ s+ 1. Let λi = maxk≤n+1 λi,k. We have for any |n| ≤ n and x1, x2 ∈ Ui,

∣
∣Dng2(φi(x1))− Dng2(φi(x2))

∣
∣ ≤

√
dλi‖φi(x1)− φi(x2)‖2

≤
√

dλib
1−α
i ‖x1 − x2‖1−α

2 ‖φi(x1)− φi(x2)‖α2 .

The last inequality follows from φi(x) = bi(V
�
i (x − ci) + ui) and ‖Vi‖2 = 1. Observe that Ui

is bounded; hence, we have ‖x1 − x2‖1−α
2 ≤ (2r)1−α . Absorbing ‖x1 − x2‖1−α

2 into
√

dλib
1−α
i , we

have the derivative of g2 is Hölder continuous. We denote βi,α =
√

dλib
1−α
i (2r)1−α ≤

√
dλi(2r)1−α .

Similarly, g1 is Cs−1 by Assumption 3. Then there exists a constant μi such that the k-th derivative of

g1 is uniformly bounded by μi for any k ≤ n − 1. These derivatives are also Hölder continuous with

coefficient θi,α ≤
√

dμi(2r)1−α .

By the Leibniz rule, for any |s| = s, we expand the s-th derivative of fi ◦ φ−1
i as

Ds(g1 × g2) =
∑

|p|+|q|=s

(

s

|p|

)

Dpg1Dqg2.
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32 M. CHEN ET AL.

Consider each summand in the above right-hand side. For any x1, x2 ∈ Ui, we derive
∣
∣Dpg1(φi(x1))D

qg2(φi(x1))− Dpg1(φi(x2))D
qg2(φi(x2))

∣
∣

=
∣
∣Dpg1(φi(x1))D

qg2(φi(x1))− Dpg1(φi(x1))D
qg2(φi(x2))

+ Dpg1(φi(x1))D
qg2(φi(x2))− Dpg1(φi(x2))D

qg2(φi(x2))
∣
∣

≤|Dpg1(φi(x1))||Dqg2(φi(x1))− Dqg2(φi(x2))|
+ |Dqg2(φi(x2))||Dpg1(φi(x1))− Dpg1(φi(x2))|

≤μiθi,α‖φi(x1)− φi(x2)‖α2 + λiβi,α‖φi(x1)− φi(x2)‖α2
≤2
√

dμiλi(2r)1−α‖φi(x1)− φi(x2)‖α2 .

Observe that there are totally 2s summands in the right hand side of (B.4). Therefore, for any x1, x2 ∈ Ui

and |s| = s, we have
∣
∣
∣D

s(fi ◦ φ−1
i )

∣
∣
φi(x1)

− Ds(fi ◦ φ−1
i )

∣
∣
φi(x2)

∣
∣
∣ ≤ 2s+1

√
dμiλi(2r)1−α‖φi(x1)− φi(x2)‖α2 .

�

B.3 Proof of Theorem 4.1

Proof. The proof consists of two steps. We first approximate fi ◦ φ−1
i by a Taylor polynomial and then

implement the Taylor polynomial using a ReLU network. To ease the analysis, we extend fi ◦ φ−1
i to

the whole cube [0, 1]d by assigning fi ◦ φ−1
i (x) = 0 for φi(x) ∈ [0, 1]d \ φi(Ui). It is straightforward

to check that this extension preserves the regularity of fi ◦ φ−1
i , since fi vanishes on the complement of

the compact set supp(ρi) ⊂ Ui. For notational simplicity, we denote f
φ
i = fi ◦ φ−1

i with the extension.

Accordingly, Lemma 4.3 can be extended to the whole cube [0, 1]d without changing its proof, i.e. for

any x1, x2 ∈ [0, 1]d and |s| = s, we have
∣
∣
∣D

sf
φ
i

∣
∣
x1
− Dsf

φ
i

∣
∣
x2

∣
∣
∣ ≤ 2s+1

√
dμiλi(2r)1−α‖x1 − x2‖α2 . (B.5)

Step 1. We define a trapezoid function

ψ(x) =

⎧

⎪
⎨

⎪
⎩

1 |x| < 1

2− |x| 1 ≤ |x| ≤ 2

0 |x| > 2

.

Note that we have ‖ψ‖∞ = 1. Let N be a positive integer, we form a uniform grid on [0, 1]d by dividing

each coordinate into N subintervals. We then consider a partition of unity on these grid defined by

ζm(x) =
d
∏

k=1

ψ
(

3N
(

xk −
mk

N

))

.

We can check that
∑

m ζm(x) = 1 as in Figure A.8.

We also observe that supp(ζm) = {x : |xk − mk

N
| ≤ 2

3N
, k = 1, . . . , d} ⊂ {x : |xk − mk

N
| ≤ 1

N
, k = 1, .

. . . . , d}. We use the slightly enlarged support set of length 2/N to simplify the constant computation.
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NONPARAMETRIC REGRESSION ON LOW-DIMENSIONAL MANIFOLDS USING RELU NETWORKS 33

Fig. A.8. Illustration of the construction of ζm on the k-th coordinate.

Now we construct a Taylor polynomial of degree s for approximating f
φ
i at m

N
:

Pm(x) =
∑

|s|≤s

Dsf
φ
i

s!

∣
∣
∣
∣
x=m

N

(

x− m

N

)s

.

Define f̄i =
∑

m∈{0,...,N}d ζmPm. We bound the approximation error ‖f̄i − f
φ
i ‖∞:

max
x∈[0,1]d

∣
∣
∣f̄i(x)− f

φ
i (x)

∣
∣
∣ = max

x

∣
∣
∣
∣
∣

∑

m

φm(x)(Pm(x)− f
φ
i (x))

∣
∣
∣
∣
∣

≤ max
x

∑

m:
∣
∣xk−mk

N

∣
∣≤ 1

N

∣
∣
∣Pm(x)− f

φ
i (x)

∣
∣
∣

≤ max
x

2d max
m:

∣
∣xk−mk

N

∣
∣≤ 1

N

∣
∣
∣Pm(x)− f

φ
i (x)

∣
∣
∣

(i)
≤ max

x

2dds

s!

(
1

N

)s

max
|s|=s

∣
∣
∣D

sf
φ
i

∣
∣

m
N
− Dsf

φ
i

∣
∣
y

∣
∣
∣

(ii)
≤ max

x

2dds

s!

(
1

N

)s

2s+1
√

dμiλi(2r)1−α‖m

N
− x‖α2

≤
√

dμiλi(2r)1−α 2d+s+1ds+α/2

s!

(
1

N

)s+α

.

Here y is the linear interpolation of m
N

and x, determined by the Taylor remainder, and inequality (i)

follows from the Taylor expansion of f
φ
i around m/N. Note that only s-th order derivative remains

in step (i) and there are at most ds terms. Inequality (ii) is obtained by the Hölder continuity in the

inequality (B.5).

By setting

√
dμiλi(2r)1−α 2d+s+1ds+α/2

s!

(
1

N

)s+α

≤ δ

2
,

we get N ≥ (
√

dμiλi(2r)1−α2d+s+2ds+α/2

δs!
)

1
s+α . Accordingly, the approximation error is bounded by ‖f̄i −

f
φ
i ‖∞ ≤ δ

2
.
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34 M. CHEN ET AL.

Step 2. We next implement f̃i by a ReLU network that approximates f̄i up to an error δ
2

. We denote

Pm(x) =
∑

|s|≤s

am,s

(

x− m

N

)s

,

where am,s =
Dsf

φ
i

s!

∣
∣
∣
∣
x=m

N

. Then we rewrite f̄i as

f̄i(x) =
∑

m∈{0,...,N}d

∑

|s|≤s

am,sζm(x)
(

x− m

N

)s

. (B.6)

Note that (B.6) is a linear combination of products ζm

(

x− m
N

)s
. Each product involves at most d +

n univariate terms: d terms for ζm and n terms for
(

x− m
N

)s
. We recursively apply Corollary 4.1 to

implement the product. Specifically, let ×̂ε be the approximation of the product operator in Corollary 4.1

with error ε, which will be chosen later. Consider the following chain application of ×̂ε :

f̃m,s(x) = ×̂ε

(

ψ(3Nx1 − 3m1), ×̂ε

(

. . . , ×̂ε

(

ψ(3Ndxd − md), ×̂ε

(

x1 −
m1

N
, . . .

))
))

.

Now we estimate the error of the above approximation. Note that we have |ψ(3Nxk − 3mk)| ≤ 1 and
∣
∣xk − mk

N

∣
∣ ≤ 1 for all k ∈ {1, . . . , d} and x ∈ [0, 1]d. We then have

∣
∣
∣f̃m,s(x)− ζm

(

x− m

N

)s∣
∣
∣ =

∣
∣
∣
∣
×̂ε

(

ψ(3Nx1 − 3m1), ×̂ε

(

. . . , ×̂ε(x1 −
m1

N
, . . . )

)
)

− ζm

(

x− m

N

)s
∣
∣
∣
∣

≤
∣
∣×̂ε

(

ψ(3Nx1 − 3m1), ×̂ε(ψ(3Nx2 − 3m2), . . . )
)

− ψ(3N1 − 3m1)×̂ε(ψ(3Nx2 − 3m2), . . . )
∣
∣

+
∣
∣ψ(3Nx1 − m1)

∣
∣
∣
∣×̂ε(ψ(3Nx2 − 3m2), . . . )− ψ(3Nx2 − 3m2)×̂ε(. . . )

∣
∣

+ . . .

≤ (s+ d)ε.

Moreover, we have f̃m,s(x) = ζm

(

x− m
N

)s = 0, if x 
∈ supp(ζm). Now we define

f̃i =
∑

m∈{0,...,N}d

∑

|s|≤s

am,s f̃m,s.

The approximation error is bounded by

max
x

∣
∣
∣ f̃i(x)− f̄i(x)

∣
∣
∣ =

∣
∣
∣
∣
∣
∣

∑

m∈{0,...,N}d

∑

|s|≤n

am,s

(

f̃m,n(x)− ζm

(

x− m

N

)s)

∣
∣
∣
∣
∣
∣

≤ max
x

λiμi2
d+s+1 max

m:x∈supp(ζm)

∑

|s|≤s

∣
∣
∣f̃m,s(x)− ζm

(

x− m

N

)s∣
∣
∣

≤ λiμi2
d+s+1ds(d + s)ε.

We choose ε = δ

λiμi2d+s+2ds(d+s)
, so that ‖f̄i − f̃i‖∞ ≤ δ

2
. Thus, we eventually have ‖f̃i − f

φ
i ‖∞ ≤ δ.

Now we compute the depth and computational units for implement f̃i. f̃i can be implemented by a
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NONPARAMETRIC REGRESSION ON LOW-DIMENSIONAL MANIFOLDS USING RELU NETWORKS 35

collection of parallel sub-networks that compute each f̃m,s. The total number of parallel sub-networks

is bounded by ds(N + 1)d. For each sub-network, we observe that ψ can be exactly implemented by a

single layer ReLU network, i.e. ψ(x) = ReLU(x + 2) − ReLU(x + 1) − ReLU(x − 1) + ReLU(x −
2). Corollary 4.1 shows that ×̂ε can be implemented by a depth c1 log 1

ε
ReLU network. Therefore,

the whole network for implementing f̃i has no more than c′1(log 1
ε
+ 1) layers with width bounded by

O(ds(N + 1)d) and c′1ds(N + 1)d(log 1
ε
+ 1) neurons and weight parameters. With ε = δ

λiμi2d+s+2ds(d+s)

and N = �(μiλi(2r)1−α2d+s+2ds+α/2

δs!
)

1
s+α �, we obtain that the whole network has no more than L = c1 log 1

δ

layers, with width bounded by p = c2δ
− d

s+α , and at most K = c2δ
− d

s+α (log 1
δ
+ 1) neurons and weight

parameters, for constants c1, c2, c3 depending on d, s, τ , and upper bound of derivatives of fi ◦φ−1
i , up to

order s. Lastly, from (B.6), we see each parameter has a range bounded by the upper bound of derivatives

of fi ◦ φ−1
i up to order s — scales as

√
d as in (B.5). �

B.4 Proof of Lemma 4.4

Proof. We expand the estimation error as

‖f̂ − f‖∞

=
∥
∥
∥

C
M∑

i=1

×̂(f̂i, 1̂Δ ◦ d̂2
i )− f

∥
∥
∥
∞

=
∥
∥
∥

C
M∑

i=1

×̂(f̂i, 1̂Δ ◦ d̂2
i )− f ρi1(x ∈ Ui)

∥
∥
∥
∞

≤
C
M∑

i=1

∥
∥
∥×̂(f̂i, 1̂Δ ◦ d̂2

i )− fi1(x ∈ Ui)

∥
∥
∥
∞

≤
C
M∑

i=1

∥
∥
∥×̂(f̂i, 1̂Δ ◦ d̂2

i )− f̂i · (1̂Δ ◦ d̂2
i )+ f̂i · (1̂Δ ◦ d̂2

i )−fi · (1̂Δ ◦ d̂2
i )+fi · (1̂Δ ◦ d̂2

i )−fi · 1(x ∈ Ui)

∥
∥
∥
∞

≤
C
M∑

i=1

∥
∥
∥×̂(f̂i, 1̂Δ ◦ d̂2

i )− f̂i × (1̂Δ ◦ d̂2
i )

∥
∥
∥
∞

︸ ︷︷ ︸

Ai,1

+
∥
∥
∥f̂i × (1̂Δ ◦ d̂2

i )− fi × (1̂Δ ◦ d̂2
i )

∥
∥
∥
∞

︸ ︷︷ ︸

Ai,2

+
∥
∥
∥ fi × (1̂Δ ◦ d̂2

i )− fi × 1(x ∈ Ui)

∥
∥
∥
∞

︸ ︷︷ ︸

Ai,3

.

The first two terms Ai,1, Ai,2 are straightforward to handle, since by the construction we have

Ai,1 = ‖×̂(f̂i, 1̂Δ ◦ d̂2
i )− f̂i · (1̂Δ ◦ d̂2

i )‖∞ ≤ η, and

Ai,2 = ‖ f̂i × (1̂Δ ◦ d̂2
i )− fi · (1̂Δ ◦ d̂2

i )‖∞ ≤ ‖ f̂i − fi‖∞‖1̂Δ ◦ d̂2
i ‖∞ ≤ δ.
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36 M. CHEN ET AL.

By Lemma B.1, we have maxx∈Ki
|fi(x)| ≤ c(π+1)

r(1−r/τ)
Δ for a constant c depending on fi. Then we bound

Ai,3 as

Ai,3 = ‖fi × (1̂Δ ◦ d̂2
i )− fi × 1(x ∈ Ui)‖∞ ≤ max

x∈Ki

|fi(x)| ≤ c(π + 1)

r(1− r/τ)
Δ.

�

B.5 Helper Lemma for bounding Ai,3 and its Proof

Lemma A.1. For any i = 1, . . . , CM, denote

Ki = {x ∈M : r2 −Δ ≤ ‖x− ci‖2
2 ≤ r2}.

Then there exists a constant c depending on the upper bounds of the first derivatives of the partition of

unity ρi’s and coordinate system φi’s such that

max
x∈Ki

| fi(x)| ≤ c(π + 1)

r(1− r/τ)
Δ.

Proof. We extend fi ◦ φ−1
i to the whole cube [0, 1]d as in the proof of Theorem 4.1. We also have

fi(x) = 0 for ‖x− ci‖2 = r. By the first order Taylor expansion, for any x, y ∈ Ui, we have

∣
∣fi(x)− fi(y)

∣
∣ =

∣
∣
∣ fi ◦ φ−1

i (φi(x))− fi ◦ φ−1
i (φi(y))

∣
∣
∣

≤ ‖∇( fi ◦ φ−1
i )(z)‖2‖φi(x)− φi(y)‖2

≤ ‖∇( fi ◦ φ−1
i )(z)‖2bi‖Vi‖2‖x− y‖2,

where z is a linear interpolation of φi(x) and φi(y) satisfying the mean value theorem. Since fi ◦ φ−1
i is

Cs in [0, 1]d, the first derivative is uniformly bounded, i.e. ‖∇fi ◦ φ−1
i (z)‖2 ≤ αi for any z ∈ [0, 1]d. Let

y ∈ Ui satisfying fi(y) = 0. In order to bound the function value for any x ∈ Ki, we only need to bound

the Euclidean distance between x and y. More specifically, for any x ∈ Ki, we need to show that there

exists y ∈ Ui satisfying fi(y) = 0, such that ‖x− y‖2 is sufficiently small.

Before continuing with the proof, we introduce some notations. Let γ (t) be a geodesic on M

parameterized by the arc length. In the following context, we use γ̇ and γ̈ to denote the first and second

derivatives of γ with respect to t. By the definition of geodesic, we have ‖γ̇ (t)‖2 = 1 (unit speed) and

γ̈ (t) ⊥ γ̇ (t).

Without loss of generality, we shift ci to 0. We consider a geodesic starting from x with initial

‘velocity’ γ̇ (0) = v in the tangent space of M at x. To utilize polar coordinate, we define two auxiliary

quantities: �(t) = ‖γ (t)‖2 and θ(t) = arccos
γ (t)�γ̇ (t)
‖γ (t)‖2

∈ [0, π ]. As can be seen in Figure B9, � and

θ have clear geometrical interpretations: � is the radial distance from the center ci, and θ is the angle

between the velocity and γ (t).

Suppose y = γ (T), we need to upper bound T . Note that �(T) − �(0) ≤ r −
√

r2 −Δ ≤ Δ/r.

Moreover, observe that the derivative of � is �̇(t) = cos θ(t), since γ has unit speed. It suffices to find a

lower bound on �̇(t) = cos θ(t) so that T ≤ Δ

r inft �̇(t)
.
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NONPARAMETRIC REGRESSION ON LOW-DIMENSIONAL MANIFOLDS USING RELU NETWORKS 37

Fig. A.9. Illustration of � and θ along a parametric curve γ .

We immediately have the second derivative of � as �̈(t) = − sin θ(t)θ̇(t). Meanwhile, using the

equation �(t) =
√

γ (t)�γ (t), we also have

�̈(t) =
(

γ̈ (t)�γ (t)+ γ̇ (t)�γ̇ (t)
)√

γ (t)�γ (t)−
(

γ (t)�γ̇ (t)
)2

/
√

γ (t)�γ (t)

γ (t)�γ (t)
. (B.7)

Note that by definition, we have γ̇ (t)�γ̇ (t) = 1 and γ (t)�γ̇ (t) = cos θ(t)
√

γ (t)�γ (t). Plugging into

(B.7), we can derive

�̈(t) = 1+ γ̈ (t)�γ (t)− cos2 θ(t)

�(t)
= sin2 θ(t)+ γ̈ (t)�γ (t)

�(t)
. (B.8)

Now we find a lower bound on γ̈ (t)�γ (t). Specifically, by Cauchy–Schwarz inequality, we have

γ̈ (t)�γ (t) ≥ −‖γ̈ (t)‖2‖γ (t)‖2 |cos 
 (γ̈ (t), γ (t))|

≥ − r

τ
|cos 
 (γ̈ (t), γ (t))| .

The last inequality follows from ‖γ̈ (t)‖2 ≤ 1
τ

[58] and ‖γ (t)‖2 ≤ r. We now need to bound

 (γ̈ (t), γ (t)), given 
 (γ (t), γ̇ (t)) = θ(t) and γ̈ (t) ⊥ γ̇ (t). Consider the following optimization

problem,

min a�x, (B.9)

subject to x�x = 1,

b�x = 0.

By assigning a = γ (t)
‖γ (t)‖2

and b = γ̇ (t)
‖γ̇ (t)‖2

, the optimal objective value is exactly the minimum of

cos 
 (γ̈ (t), γ ). Additionally, we can find the maximum of cos 
 (γ̈ (t), γ ) by replacing the minimization

in (B.9) by maximization. We solve (B.9) by the Lagrangian method. More precisely, let

L(x, λ, μ) = −a�x+ λ(x�x− 1)+ μ(b�x).

We have the optimal solution x∗ satisfying ∇xL = 0, which implies x∗ = 1
2λ∗ (a−μ∗b) with μ∗ and λ∗

being the optimal dual variable. By the primal feasibility, we have μ∗ = a�b and λ∗ = − 1
2

√

1− (a�b)2.
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38 M. CHEN ET AL.

Therefore, the optimal objective value is−
√

1− (a�b)2. Similarly, the maximum is
√

1− (a�b)2. Note

that a�b = cos θ(t), we then get

γ̈ (t)�γ (t) ≥ − r

τ
sin θ(t).

Substituting into (B.8), we have the following lower bound

�̈(t) = sin θ2(t)+ γ̈ (t)�γ (t)

�(t)
≥ 1

�(t)

(

sin2 θ(t)− r

τ
sin θ(t)

)

.

Now combining with �̈(t) = − sin θ(t)θ̇(t), we can derive

θ̇ (t) ≤ − 1

�(t)

(

sin θ(t)− r

τ

)

. (B.10)

Inequality (B.10) has an important implication: when sin θ(t) > r
τ

, as t increasing, θ(t) is monotone

decreasing until sin θ(t′) = r
τ

for some t′ = t. Thus, we distinguish two cases depending on the value

of θ(0). Indeed, we only need to consider θ(0) ∈ [0, π/2]. The reason behind is that if θ(0) ∈ (π/2, π ],

we only need to set the initial velocity in the opposite direction.

Case 1: θ(0) ∈
[

0, arcsin r
τ

]

. We claim that θ(t) ∈
[

0, arcsin r
τ

]

for all t ≤ T . In fact, suppose there

exists some t1 ≤ T such that θ(t1) > arcsin r
τ

. By the continuity of θ , there exists t0 < t1, such that

θ(t0) = arcsin r
τ

and θ(t) ≥ arcsin r
τ

for t ∈ [t0, t1]. This already gives us a contradiction:

θ(t0) < θ(t1) = θ(t0)+
∫ t1

t0

θ̇ (t)dt

︸ ︷︷ ︸

≤0

≤ θ(t0).

Therefore, we have �̇(t) ≥ cos arcsin r
τ
=

√

1− r2

τ 2 , and thus T ≤ Δ

r

√

1− r2

τ2

.

Case 2: θ(0) ∈
(

arcsin r
τ

, π/2
]

. It is enough to show that θ(0) can be bounded sufficiently away

from π/2. Let γc,x ⊂ M be a geodesic from ci to x. We analogously define θc,x and �c,x as for the

geodesic from x to y. Let Tr/2 = sup {t : �c,x(t) ≤ r/2−Δ/r}, and denote z = γc,x(Tr/2). We must

have θc,x(Tr/2) ∈ [0, π/2] and �c,x(Tr/2) = r/2 − Δ/r, otherwise there exists T ′r/2 > Tr/2 satisfying

�c,x(T
′
r/2) ≤ r/2. Denote Tx satisfying x = γc,x(Tx). We bound θc,x(Tx) as follows,

θc,x(Tx) = θc,x(Tr/2)+
∫ Tx

Tr/2

θ̇c,x(t)dt

≤ π

2
−

∫ Tx

Tr/2

1

�c,x(t)

(

sin θc,x(t)−
r

τ

)

dt.
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NONPARAMETRIC REGRESSION ON LOW-DIMENSIONAL MANIFOLDS USING RELU NETWORKS 39

If there exists some t ∈ (Tr/2, Tx] such that sin θc,x(t) ≤ r
τ

, by the previous reasoning, we have

sin θc,x(Tx) ≤ r
τ

. Thus, we only need to handle the case when sin θc,x(t) > r
τ

for all t ∈ (Tr/2, Tx].

In this case, θc,x(t) is monotone decreasing, hence we further have

θc,x(Tx) ≤
π

2
−

∫ Tx

Tr/2

1

�c,x(t)

(

sin θc,x(Tx)−
r

τ

)

dt

≤ π

2
− (Tx − Tr/2)

1

r

(

sin θc,x(Tx)−
r

τ

)

≤ π

2
− 1

2

(

sin θc,x(Tx)−
r

τ

)

.

The last inequality follows from Tx − Tr/2 ≥ r/2. Using the fact, sin x ≥ 2
π

x, we can derive

θc,x(Tx) ≤
π

2
− 1

2

(
2

π
θc,x(Tx)−

r

τ

)

�⇒ θc,x(Tx) ≤
π

2

(
π + r/τ

π + 1

)

.

We can then set θ(0) = θc,x(Tx), and thus

cos θ(0) ≥ cos

(
π

2

π + r/τ

π + 1

)

= cos

(
π

2

(

1− 1− r/τ

π + 1

))

= sin

(
π

2

1− r/τ

π + 1

)

≥ 1− r/τ

π + 1
.

Therefore, we have T ≤ Δ
r cos θ(0)

≤ π+1
r(1−r/τ)

Δ. By the choice of r ≤ τ/4, we immediately have
τ√

τ 2−r2
< π+1

1−r/τ
. Hence, combining case 1 and case 2, we conclude

T ≤ π + 1

r(1− r/τ)
Δ.

Therefore, the function value f (x) on Ki is bounded by αi
π+1

r(1−r/τ)
Δ. It suffices to set c =

maxi αibi‖Vi‖2, and we complete the proof. �

B.6 Characterization of the size of the ReLU network

Proof. We evenly split the error ε into 3 parts for Ai,1, Ai,2, and Ai,3, respectively. We pick η = ε
3C

M

so that
∑C

M
i=1 Ai,1 ≤ ε

3
. The same argument yields δ = ε

3C
M

. Analogously, we can choose Δ =
r(1−r/τ)ε

3c(π+1)C
M

. Finally, we pick ν = Δ

16B2D
so that 8B2Dν < Δ.
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40 M. CHEN ET AL.

Now we compute the number of layers, width, the number of neurons and weight parameters, and

the range of each weight parameter in the ReLU network identified by Theorem 3.1.

1. For the chart determination sub-network, 1̂Δ can be implemented by a ReLU network with

�log r2

Δ
� layers and two neurons in each layer. The weight parameters in the network is bounded

by O(max{τ 2, 1}). The approximation of the distance function d̂2
i can be implemented by a

network of depth O(log 1
ν
), width bounded by a constant, and the number of neurons and

weight parameters is at most O(log 1
ν
). Each weight parameter is bounded by B. Plugging

in our choice of ν and Δ, we have the depth is no greater than c1(log 1
ε
+ log D) with c1

depending on d, f , τ and the surface area of M. The number of neurons and weight parameters

is also c′1(log 1
ε
+ log D) except for a different constant. Note that there are D parallel networks

computing d̂2
i for i = 1, . . . , CM. Hence, the total number of neurons and weight parameters is

c′1CMD(log 1
ε
+ log D) with c′1 depending on d, f , τ and the surface area of M. As can be seen,

the width of the chart-determination network is bounded by O(CMD), and the weight parameter

is bounded by O(max{1, τ 2, B}).
2. For the Taylor polynomial sub-network, φi can be implemented by a linear network with at

most Dd weight parameters. To implement each f̂i, we need a ReLU network of depth c4 log 1
δ
.

The number of neurons and weight parameters is c′4δ
− d

s+α log 1
δ
, and the width is bounded by

c′′4δ
− d

s+α . Here c4, c′4, c′′4 depend on s, d, τ , fi ◦ φ−1
i . In addition, all the weight parameters are

bounded by the upper bound of the derivatives of fi ◦ φ−1
i up to order s (which scales as

√
d as

in Lemma 4.3). Substituting δ = ε
3C

M
, we get the depth is c2 log 1

ε
and the number of neurons

and weight parameters is c′2ε
− d

s+α log 1
ε
. There are totally CM parallel f̂i’s; hence, the width is

further bounded by c′′2CMε−
d

s+α . Meanwhile, the total number of neurons and weight parameters

is c′2CMε−
d

s+α log 1
ε
. Here constants c′2 and c′′2 depend on d, s, fi ◦ φ−1

i , τ , and the surface area

of M.

3. For the product sub-network, the analysis is similar to the chart determination sub-network.

The depth is O(log 1
η
), the width is bounded by a constant, the number of neurons and weight

parameters is O(log 1
η
) and all the weight parameters are bounded by a constant. The choice of

η yields that the depth is c3 log 1
ε
, and the number of neurons and weight parameters is c′3 log 1

ε
.

There are CM parallel pairs of outputs from the chart determination and the Taylor polynomial

sub-networks. Hence, the total number of weight parameters is c′3CM log 1
ε

with c′3 depending

on d, τ and the surface area of M.

Combining these 3 sub-networks, and redefining the constants c1, c2, c3 and c4 in the sequel, we obtain

that the depth of the full network is L = c1(log 1
ε
+ log D) for some constant c1 depending on d, s, τ

and the surface area of M. The depth of the neural network is bounded by p = c2(ε
− d

s+α + D) with c2

depending on d, s, τ , the surface area of M, and the upper bounds on derivatives of φi’s and ρi’s, up to
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NONPARAMETRIC REGRESSION ON LOW-DIMENSIONAL MANIFOLDS USING RELU NETWORKS 41

order s. The total number of neurons and weight parameters is K = c3(ε
− d

s+α log 1
ε
+D log 1

ε
+D log D)

for some constant c3 depending on d, s, f , τ and the surface area of M. Lastly, all the weight parameters

in the network is bounded by c4 max{1, τ 2, B,
√

d} with c4 depends on the upper bound of derivatives of

ρi’s up to order s. �

C. Proof of statistical recovery of ReLU network (Theorem 3.2)

This section consists of the detailed proofs, in Section C.1, C.2 and C.3, respectively, for upper bounding

bias in Lemma 5.1, upper bounding variance in Lemma 5.2 and upper bounding covering number in

Lemma 5.3. Lastly, the statistical bound in Theorem 3.3 is established in Section C.4 by choosing a

proper approximation error and covering accuracy via the bias–variance trade-off argument.

C.1 Proof of Lemma 5.1

Proof. T1 essentially reflects the bias of estimating f0:

T1 = E

[

2

n

n
∑

i=1

(f̂n(xi)− f0(xi)− ξi + ξi)
2

]

= 2

n
E

[
n

∑

i=1

(f̂n(xi)− f0(xi)− ξi)
2 + 2ξi(f̂n(xi)− f0(xi)− ξi)+ ξ2

i

]

(i)= 2

n
E

[
n

∑

i=1

(f̂n(xi)− f0(xi)− ξi)
2 + 2ξi f̂n(xi)− ξ2

i

]

= 2

n
E

[
n

∑

i=1

(f̂n(xi)− yi)
2 + 2ξi f̂n(xi)− ξ2

i

]

= 2

n
E

[

inf
f∈F(R,κ ,L,p,K)

n
∑

i=1

(f (xi)− yi)
2 + 2ξi f̂n(xi)− ξ2

i

]

(ii)
≤ 2 inf

f∈F(R,κ ,L,p,K)

E

[

1

n

n
∑

i=1

(f (xi)− f0(xi)− ξi)
2 − ξ2

i

]

+ E

[

4

n

n
∑

i=1

ξi f̂n(xi)

]

= 2 inf
f∈F(R,κ ,L,p,K)

E

[

1

n

n
∑

i=1

(f (xi)− f0(xi))
2 − 2ξi(f (xi)− f0(xi))

]

+ E

[

4

n

n
∑

i=1

ξi f̂n(xi)

]

= 2 inf
f∈F(R,κ ,L,p,K)

∫

M
(f (x)− f0(x))2dDx(x)+ E

[

4

n

n
∑

i=1

ξi f̂n(xi)

]

, (C.1)

where (i) follows from E[ξif0(xi)] = 0 due to the independence between ξi and x and (ii) follows from

Jensen’s inequality. Now we need to bound E[ 1
n

∑n
i=1 ξi f̂n(xi)]. We discretize the class F(R, κ , L, p, K)
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42 M. CHEN ET AL.

into F
∗(R, κ , L, p, K) = {f ∗i }

N (δ,F(R,κ ,L,p,K),‖·‖∞)

i=1 , where N (δ, F(R, κ , L, p, K), ‖·‖∞) denotes the δ-

covering number with respect to the �∞ norm. Accordingly, there exists f ∗ such that ‖ f ∗ − f̂n‖∞ ≤ δ.

Denote ‖f̂n − f0‖2
n = 1

n

∑n
i=1(f̂n(xi)− f0(xi))

2. Then we have

E

[

1

n

n
∑

i=1

ξi f̂n(xi)

]

= E

[

1

n

n
∑

i=1

ξi(f̂n(xi)− f ∗(xi)+ f ∗(xi)− f0(xi))

]

(i)
≤ E

[

1

n

n
∑

i=1

ξi(f
∗(xi)− f0(xi))

]

+ δσ

= E

[‖f ∗ − f0‖n√
n

∑n
i=1 ξi(f

∗(xi)− f0(xi))√
n‖f ∗ − f0‖n

]

+ δσ

(ii)
≤
√

2E

[

‖f̂n − f0‖n + δ√
n

∣
∣
∣
∣

∑n
i=1 ξi(f

∗(xi)− f0(xi))√
n‖f ∗ − f0‖n

∣
∣
∣
∣

]

+ δσ . (C.2)

Here (i) is obtained by applying Hölder’s inequality to ξi(f̂n(xi) − f ∗(xi)) and invoking the Jensen’s

inequality:

E

[

1

n

n
∑

i=1

ξi(f̂n(xi)− f ∗(xi))

]

≤ E

[

1

n

n
∑

i=1

|ξi|‖f ∗ − f̂n‖∞

]

≤ 1

n

n
∑

i=1

E[|ξi|]δ

≤ 1

n

n
∑

i=1

√

E[|ξi|2]δ

≤ δσ .

Step (ii) holds, since by invoking the inequality 2ab ≤ a2 + b2, we have

‖ f ∗ − f0‖n =

√
√
√
√

1

n

n
∑

i=1

(f ∗(xi)− f̂n(xi)+ f̂n(xi)− f0(xi))
2

≤

√
√
√
√

2

n

n
∑

i=1

(f ∗(xi)− f̂n(xi))
2 + (f̂n(xi)− f0(xi))

2

≤

√
√
√
√

2

n

n
∑

i=1

[

δ2 + f̂n(xi)− f0(xi))
2
]

≤
√

2‖ f̂n − f0‖n +
√

2δ.
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To bound the expectation term in (C.2), we first break the dependence between f ∗ and the samples

(xi, yi). In detail, we replace f ∗ by any f ∗j in the δ-covering and observe that
∑n

i=1 ξi(f
∗(xi)−f0(xi))√

n‖f ∗−f0‖n
≤

maxj

∑n
i=1 ξi(f

∗
j (xi)−f0(xi))√

n‖f ∗j −f0‖n
. For notational simplicity, we denote zj =

∑n
i=1 ξi(f

∗
j (xi)−f0(xi))√

n‖f ∗j −f0‖n
. Applying

Cauchy–Schwarz inequality, we cast the expectation term in (C.2) as

E

[

‖ f̂n − f0‖n + δ√
n

∣
∣
∣
∣

∑n
i=1 ξi(f

∗(xi)− f0(xi))√
n‖f ∗ − f0‖n

∣
∣
∣
∣

]

≤ E

[

‖ f̂n − f0‖n + δ√
n

max
j

∣
∣
∣zj

∣
∣
∣

]

= E

[

‖f̂n − f0‖n√
n

max
j

∣
∣
∣zj

∣
∣
∣+

δ√
n

max
j

∣
∣
∣zj

∣
∣
∣

]

≤ E

[(√

1

n
E

[

‖f̂n − f0‖2
n

]

+ δ√
n

)√

E

[

max
j

z2
j

]
]

. (C.3)

For given x1, . . . , xn, each term

∑n
i=1 ξi(f

∗
j (xi)−f0(xi))√

n‖f ∗j −f0‖n
is sub-Guassian with parameter σ . Consequently, the

last inequality (C.3) involves the maximum of a collection of squared sub-Gaussian random variables

z2
j . Indeed, z2

j is sub-exponential for each j. We can bound it using the moment generating function: for

any t > 0, we have

E

[

max
j

z2
j | x1, . . . , xn

]

= 1

t
log exp

(

tE[max
j

z2
j | x1, . . . , xn]

)

(i)
≤ 1

t
logE

[

exp

(

t max
j

z2
j

)

|x1, . . . , xn

]

≤ 1

t
logE

⎡

⎣

∑

j

exp
(

tz2
j

)

|x1, . . . , xn

⎤

⎦

≤ 1

t
log N (δ, F(R, κ , L, p, K), ‖·‖∞)+ 1

t
logE[exp(tz2

1)|x1, . . . , xn]. (C.4)
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44 M. CHEN ET AL.

Since z1 is σ 2-sub-Gaussian given x1, . . . , xn, we derive

E[exp(tz2
1)|x1, . . . , xn] = 1+

∞
∑

p=1

tpE[z
2p

1 |x1, . . . , xn]

p!

= 1+
∞
∑

p=1

[
tp

p!

∫ ∞

0

P(|z1| ≥ u1/2p)du

]

≤ 1+ 2

∞
∑

p=1

[
tp

p!

∫ ∞

0

exp

(

−u1/p

2σ 2

)

du

]

= 1+ 2

∞
∑

p=1

(2tσ 2)p.

Taking t = (3σ 2)−1 and substituting into (C.4), we deduce E

[

maxj z2
j | x1, . . . , xn

]

is bounded by

E

[

max
j

z2
j | x1, . . . , xn

]

≤ 3σ 2 log N (δ, F(R, κ , L, p, K), ‖·‖∞)+ 3σ 2 log 5

≤ 3σ 2 log N (δ, F(R, κ , L, p, K), ‖·‖∞)+ 6σ 2. (C.5)

Combining (C.5), (C.3), (C.2) and substituting back into (C.1), we obtain the following implicit error

estimation on T1:

T1 = 2E
[

‖f̂n − f0‖2
n

]

≤ 2 inf
f∈F(R,κ ,L,p,K)

∫

M
(f (x)− f0(x))2dDx(x)+ 4δσ

+ 4
√

6σ

(√

E

[

‖f̂n − f0‖2
n

]

+ δ

)√

log N (δ, F(R, κ , L, p, K), ‖·‖∞)+ 2

n
.

We denote v =
√

E

[

‖f̂n − f0‖2
n

]

. Then the above implicit bound on T1 implies

v2 ≤ b+ 2av (C.6)

with a =
√

6σ

√

log N (δ, F(R, κ , L, p, K), ‖·‖∞)+ 2

n
,

b = inf
f∈F(R,κ ,L,p,K)

∫

M
(f (x)− f0(x))2dDx(x)

+
(

2
√

6

√

log N (δ, F(R, κ , L, p, K), ‖·‖∞)+ 2

n
+ 2

)

σδ.
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Rearranging (C.6) for a, b > 0, we deduce (v − a)2 ≤ b + a2. Some manipulation then yields v2 ≤
4a2 + 2b, which implies

T1 = 2v2 ≤ 4 inf
f∈F(R,κ ,L,p,K)

∫

M
(f (x)− f0(x))2dDx(x)+ 48σ 2 log N (δ, F(R, κ , L, p, K), ‖·‖∞)+ 2

n

+
(

8
√

6

√

log N (δ, F(R, κ , L, p, K), ‖·‖∞)+ 2

n
+ 8

)

σδ.

The proof is complete. �

C.2 Proof of Lemma 5.2

Proof. Recall that we denote ĝ(x) = (f̂n(x)− f0(x))2. We rewrite T2 as

T2 = E

[
∫

M
ĝ(x)dDx(x)− 2

n

n
∑

i=1

ĝ(xi)

]

= 2E

[
∫

M
ĝ(x)dDx(x)− 1

n

n
∑

i=1

ĝ(xi)−
1

2

∫

M
ĝ(x)dDx(x)

]

≤ 2E

[
∫

M
ĝ(x)dDx(x)− 1

n

n
∑

i=1

ĝ(xi)−
1

8R2

∫

M
ĝ2(x)dDx(x)

]

.

We lower bound
∫

M ĝ(x)dDx(x) by its second moment:

∫

M
ĝ(x)dDx(x) =

∫

M

(

f̂n(x)− f0(x)
)4

dDx(x)

=
∫

M

(

f̂n(x)− f0(x)
)2

ĝ(x)dDx(x)

≤
∫

M
4R2ĝ(x)dDx(x).

The last inequality follows from

∣
∣
∣f̂n(x)− f0(x)

∣
∣
∣ ≤ 2R. Now we cast T2 into

T2 ≤ 2E

[
∫

M
ĝ(x)dDx(x)− 1

n

n
∑

i=1

ĝ(xi)−
1

8R2

∫

M
ĝ2(x)dDx(x)

]

. (C.7)

Introducing the second moment allows us to establish a fast convergence of T2. Specifically, we denote

x̄i’s as independent copies of xi’s following the same distribution. We also denote

G =
{

g(x) =
(

f (x)− f0(x)
)2 ∣

∣ f ∈ F(R, κ , L, p, K)
}
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46 M. CHEN ET AL.

as the function class induced by F(R, κ , L, p, K). Then we upper bound (C.7) as

T2 ≤ 2E

[

sup
g∈G

(
∫

M
g(x̄)dDx(x̄)− 1

n

n
∑

i=1

g(xi)−
1

8R2

∫

M
g2(x)dDx(x)

)]

(i)
≤ 2Ex,x̄

[

sup
g∈G

1

n

n
∑

i=1

(g(x̄i)− g(xi))−
1

16R2
Ex,x̄[g2(x̄)+ g2(x)]

]

, (C.8)

where (i) follows from Jensen’s inequality and shorthand Ex,x̄[·] denotes the expectation (double integral
∫

M

∫

M ·dDx(x)dDx(x̄)) with respect to the joint distribution of (x, x̄).

We discretize G with respect to the �∞ norm. The δ-covering number is denoted as N (δ, G, ‖·‖∞)

and the elements in the covering is denoted as G
∗ =

{

g∗i
}N (δ,G,‖·‖∞)

i=1
, that is, for any g ∈ G, there exists

a g∗ satisfying ‖g− g∗‖∞ ≤ δ.

We replace g ∈ G by g∗ ∈ G
∗ in bounding T2, which then boils down to deriving concentration

results on a finite concept class. Specifically, for g∗ satisfying ‖g− g∗‖∞ ≤ δ, we have

g(x̄i)− g(xi) = g(x̄i)− g∗(x̄i)+ g∗(x̄i)− g∗(xi)+ g∗(xi)− g(xi)

≤ g∗(x̄i)− g∗(xi)+ 2δ.

We also have

g2(x̄)+ g2(x) =
[

g2(x̄)− (g∗)2(x̄)
]

+
[

(g∗)2(x̄)+ (g∗)2(x)
]

−
[

(g∗)2(x)− g2(x)
]

= (g∗)2(x̄)+ (g∗)2(x)+ (g(x̄)− g∗(x̄))(g(x̄)+ g∗(x̄))+ (g∗(x)− g(x))(g∗(x)+ g(x))

≥ (g∗)2(x̄)+ (g∗)2(x)−
∣
∣g(x̄)− g∗(x̄)

∣
∣
∣
∣g(x̄)+ g∗(x̄)

∣
∣−

∣
∣g∗(x)− g(x)

∣
∣
∣
∣g∗(x)+ g(x)

∣
∣

≥ (g∗)2(x̄)+ (g∗)2(x)− 2Rδ − 2Rδ.

Plugging the above two items into (C.8), we upper bound T2 as

T2 ≤ 2Ex,x̄

[

sup

g∗∈G∗
1

n

n
∑

i=1

(

g∗(x̄i)− g∗(xi)
)

− 1

16R2
Ex,x̄[(g∗)2(x̄)+ (g∗)2(x)]

]

+
(

4+ 1

2R

)

δ

= 2Ex,x̄

[

max
j

1

n

n
∑

i=1

(

g∗j (x̄i)− g∗j (xi)
)

− 1

16R2
Ex,x̄[(g∗j )

2(x̄)+ (g∗j )
2(x)]

]

+
(

4+ 1

2R

)

δ.

Denote hj(i) = g∗j (x̄i)− g∗j (xi). By symmetry, it is straightforward to see E[hj(i)] = 0. The variance of

hj(i) is computed as

Var[hj(i)] = E

[

h2
j (i)

]

= E

[
(

g∗j (x̄i)− g∗j (xi)
)2

]
(i)
≤ 2E

[

(g∗j )
2(x̄i)+ (g∗j )

2(xi)
]

.

The last inequality (i) utilizes the identity (a − b)2 ≤ 2(a2 + b2). Therefore, we derive the following

upper bound for T2,

T2 ≤ 2E

[

max
j

1

n

n
∑

i=1

hj(i)−
1

32R2

1

n

n
∑

i=1

Var[hj(i)]

]

+
(

4+ 1

2R

)

δ.
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We invoke the moment generating function to bound T2. Note that we have ‖hj‖∞ ≤ (2R)2. Then by

Taylor expansion, for 0 < t/n < 3
4R2 and any j, we have

E

[

exp
( t

n
hj(i)

)]

= E

[

1+ t

n
hj(i)+

∞
∑

k=2

(t/n)khk
j (i)

k!

]

≤ E

[

1+ t

n
hj(i)+

∞
∑

k=2

(t/n)kh2
j (i)(4R2)k−2

2× 3k−2

]

= E

[

1+ t

n
hj(i)+

(t/n)2h2
j (i)

2

∞
∑

k=2

(t/n)k−2(4R2)k−2

3k−2

]

= E

[

1+ t

n
hj(i)+

(t/n)2h2
j (i)

2

1

1− 4tR2/(3n)

]

= 1+ (t/n)2Var[hj(i)]
1

2− 8tR2/(3n)

(i)
≤ exp

(

Var[hj(i)]
3(t/n)2

6− 8tR2/n

)

. (C.9)

Step (i) follows from the fact 1 + x ≤ exp(x) for x ≥ 0. Given (C.9), we proceed to bound T2. To ease

the presentation, we temporarily neglect
(

4+ 1
2R

)

δ term and denote T ′2 = T2 −
(

4+ 1
2R

)

δ. Then for

0 < t/n < 3
4R2 , we have

exp

(

t
T ′2
2

)

= exp

(

tE

[

max
j

1

n

n
∑

i=1

hj(i)−
1

32R2

1

n

n
∑

i=1

Var[hj(i)]

])

(i)
≤ E

[

exp

(

t max
j

1

n

n
∑

i=1

hj(i)−
1

32R2

1

n

n
∑

i=1

Var[hj(i)]

)]

≤ E

⎡

⎣

∑

j

exp

(

t

n

n
∑

i=1

hj(i)−
1

32R2

t

n

n
∑

i=1

Var[hj(i)]

)
⎤

⎦

(ii)
≤ E

⎡

⎣

∑

j

exp

(
n

∑

i=1

Var[hj(i)]
3(t/n)2

6− 8tR2/n
− 1

32R2

t

n
Var[hj(i)]

)
⎤

⎦

= E

⎡

⎣

∑

j

exp

(
n

∑

i=1

t

n
Var[hj(i)]

(
3t/n

6− 8tR2/n
− 1

32R2

)
)
⎤

⎦ .

Step (i) follows from Jensen’s inequality, and step (ii) invokes (C.9) for each h(i). We now choose t so

that
3t/n

6−8tR2/n
− 1

32R2 = 0, which yields t = 3n

52R2 < 3n

4R2 . Substituting our choice of t into exp(tT ′2/2), we

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
a
ia

i/a
d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/im

a
ia

i/ia
a
c
0
0
1
/6

5
4
5
2
6
8
 b

y
 G

e
o
rg

ia
 In

s
titu

te
 o

f T
e
c
h
n
o
lo

g
y
 u

s
e
r o

n
 2

6
 A

u
g
u
s
t 2

0
2
2



48 M. CHEN ET AL.

have

t
T ′2
2
≤ log

∑

j

exp(0) �⇒ T ′2 ≤
2

t
log N (δ, G, ‖·‖∞) = 104R2

3n
log N (δ, G, ‖·‖∞).

To complete the proof, we relate the covering number of G to that of F(R, κ , L, p, K). Consider any

g1, g2 ∈ G with g1 = (f1 − f0)
2 and g2 = (f2 − f0)

2, respectively, for f1, f2 ∈ F(R, κ , L, p, K). We can

derive

‖g1 − g2‖∞ = sup
x

∣
∣
∣

(

f1(x)− f0(x)
)2 −

(

f2(x)− f0(x)
)2
∣
∣
∣

= sup
x

∣
∣f1(x)− f2(x)

∣
∣
∣
∣f1(x)+ f2(x)− 2f0(x)

∣
∣

≤ 4R‖f1 − f2‖∞.

The above characterization immediately implies N (δ, G, ‖·‖∞) ≤ N (δ/4R, F(R, κ , L, p, K), ‖·‖∞).

Therefore, we derive the desired upper bound on T2:

T2 ≤
104R2

3n
log N (δ/4R, F(R, κ , L, p, K), ‖·‖∞)+

(

4+ 1

2R

)

δ.

�

C.3 Proof of Lemma 5.3

Proof. To construct a covering for F(R, κ , L, p, K), we discretize each weight parameter by a uniform

grid with grid size h. Recall we write f ∈ F(R, κ , L, p, K) as f = WL · ReLU(WL−1 · · ·ReLU(W1x +
b1) · · ·+bL−1)+bL. Let f , f ′ ∈ F with all the weight parameters at most h from each other. Denoting the

weight matrices in f , f ′ as WL, . . . , W1, bL, . . . , b1 and W ′
L, . . . , W ′

1, b′L, . . . , b′1, respectively, we bound

the �∞ difference ‖f − f ′‖∞ as

‖f − f ′‖∞ =
∥
∥WL · ReLU(WL−1 · · ·ReLU(W1x+ b1) · · · + bL−1)+ bL

− (W ′
L · ReLU(W ′

L−1 · · ·ReLU(W ′
1x+ b′1) · · · + b′L−1)− b′L)

∥
∥
∞

≤ ‖bL − b′L‖∞ + ‖WL −W ′
L‖1‖WL−1 · · ·ReLU(W1x+ b1) · · · + bL−1‖∞

+ ‖WL‖1‖WL−1 · · ·ReLU(W1x+b1) · · ·+ bL−1−(W ′
L−1 · · ·ReLU(W ′

1x+b′1) · · ·+b′L−1)‖∞
≤ h+ hp‖WL−1 · · ·ReLU(W1x+ b1) · · · + bL−1‖∞
+ κp‖WL−1 · · ·ReLU(W1x+ b1) · · · + bL−1−(W ′

L−1 · · ·ReLU(W ′
1x+ b′1) · · · + b′L−1)‖∞.
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We derive the following bound on ‖WL−1 · · ·ReLU(W1x+ b1) · · · + bL−1‖∞:

‖WL−1 · · ·ReLU(W1x+ b1) · · · + bL−1‖∞ ≤ ‖WL−1(· · ·ReLU(W1x+ b1) · · · )‖∞ + ‖bL−1‖∞
≤ ‖WL−1‖1‖WL−2(· · ·ReLU(W1x+ b1) · · · )+bL−2‖∞+κ

≤ κp‖WL−2(· · ·ReLU(W1x+ b1) · · · )+ bL−2‖∞ + κ

(i)
≤ (κp)L−1B+ κ

L−3
∑

i=0

(κp)i

≤ (κp)L−1B+ κ(κp)L−2,

where (i) is obtained by induction and ‖x‖∞ ≤ B. The last inequality holds, since κp > 1. Substituting

back into the bound for ‖f − f ′‖∞, we have

‖f − f ′‖∞ ≤ κp‖WL−1 · · ·ReLU(W1x+ b1) · · · + bL−1 − (W ′
L−1 · · ·ReLU(W ′

1x+ b′1) · · · + b′L−1)‖∞

+ h+ hp
[

(κp)L−1B+ κ(κp)L−2
]

≤ κp‖WL−1 · · ·ReLU(W1x+ b1) · · · + bL−1 − (W ′
L−1 · · ·ReLU(W ′

1x+ b′1) · · · + b′L−1)‖∞
+ h(pB+ 2)(κp)L−1

(i)
≤ (κp)L−1‖W1x+ b1 −W ′

1x− b′1‖∞ + h(L− 1)(pB+ 2)(κp)L−1

≤ hL(pB+ 2)(κp)L−1,

where (i) is obtained by induction. We choose h satisfying hL(pB + 2)(κp)L−1 = δ. Then discretizing

each parameter uniformly into 2κ/h grid points yields a δ-covering on F. Note that there are
(

Lp2

K

)

≤
(Lp2)K different choices of K non-zero entries out of Lp2 total weight parameters. Therefore, the

covering number is upper bounded by

N (δ, F(R, κ , L, p, K), ‖·‖∞) ≤ (Lp2)K

(
2κ

h

)K

≤
(

2L2(pB+ 2)κLpL+1

δ

)K

. �

C.4 Proof of Theorem 3.2—bias–variance trade-off

Proof. We recall the bias and variance decomposition of E

[
∫

M

(

f̂n(x)− f0(x)
)2

dDx(x)

]

as

E

[∫

M

(

f̂n(x)− f0(x)
)2

dDx(x)

]

= E

⎡

⎣
2

n

n
∑

i=1

(f̂n(xi)− f0(xi))
2

⎤

⎦

︸ ︷︷ ︸

T1

+ E

[∫

M

(

f̂n(x)− f0(x)
)2

dDx(x)

]

− E

⎡

⎣
2

n

n
∑

i=1

(f̂n(xi)− f0(xi))
2

⎤

⎦

︸ ︷︷ ︸

T2

.
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50 M. CHEN ET AL.

Combining the upper bounds on T1 and T2 in Lemmas 5.1 and 5.2, we can derive

E

[∫

M

(

f̂n(x)− f0(x)
)2

dDx(x)

]

≤ 4 inf
f∈F(R,κ ,L,p,K)

∫

M
(f (x)− f0(x))2dDx(x)

+ 48σ 2 log N (δ, F(R, κ , L, p, K), ‖·‖∞)+ 2

n

+ 8
√

6

√

log N (δ, F(R, κ , L, p, K), ‖·‖∞)+ 2

n
σδ

+ 104R2

3n
log N (δ/4R, F(R, κ , L, p, K), ‖·‖∞)

+
(

4+ 1

2R
+ 8σ

)

δ.

By our choice of F(R, κ , L, p, K), there exists a network class which can yield a function f satisfying

‖f − f0‖∞ ≤ ε for ε ∈ (0, 1). We will choose ε later for the bias–variance trade-off. Such a network

consists of L = Õ
(

log 1
ε

)

layers and K = Õ
((

ε−
d

s+α + D
)

log 1
ε

)

weight parameters. Invoking the

upper bound of the covering number in Lemma 5.3, we derive

E

[∫

M

(

f̂n(x)− f0(x)
)2

dDx(x)

]

≤ 4ε2 + 48σ 2

n

(

K log
(

2R2L2(pB+ 2)κLpL+1/δ
)

+ 2
)

+ 8
√

6

√

K log
(

2RL2(pB+ 2)κLpL+1/δ
)

n
σδ

+ 104R2

3n
K log

(

8R2L2(pB+ 2)κLpL+1/δ
)

+
(

4+ 1

2R
+ 8σ

)

δ

= Õ

(

ε2 + R2 + σ 2

n

(

ε−
d

s+α + D
)

log
1

ε
log

L2(κp)L+1

δ

+ σδ

√
√
√
√

(

ε−
d

s+α + D
)

log 1
ε

log
L2(κp)L+1

δ

n
+ σδ + σ 2

n

)

.

(C.10)
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Now we choose ε to satisfy ε2 = 1
n
ε−

d
s+α , which gives ε = n

− s+α
d+2(s+α) . It suffices to pick δ = 1

n
.

Substitute both ε and δ into (C.10), we deduce the desired estimation error bound

E

[∫

M

(

f̂n(x)− f0(x)
)2

dDx(x)

]

= Õ

(

ε2 + R2 + σ 2

n

(

ε−
d

s+α + D
)

log
1

ε
log

L2(κp)L+1

δ

+ σδ

√
√
√
√

(

ε−
d

s+α + D
)

log 1
ε

log
L2(κp)L+1

δ

n
+ σδ + σ 2

n

)

≤ c(R2 + σ 2)

(

n
− 2(s+α)

d+2(s+α) + D

n

)

log3 n,

where constant c depends on depending on log D, d, s, τ , B, the surface area of M and the upper bounds

of derivatives of the coordinate systems φi’s and partition of unity ρi’s, up to order s. �
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