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ABSTRACT

Estimating how a treatment affects units individually, known as het-
erogeneous treatment effect (HTE) estimation, is an essential part
of decision-making and policy implementation. The accumulation
of large amounts of data in many domains, such as healthcare and
e-commerce, has led to increased interest in developing data-driven
algorithms for estimating heterogeneous effects from observational
and experimental data. However, these methods often make strong
assumptions about the observed features and ignore the underlying
causal model structure, which can lead to biased HTE estimation.
At the same time, accounting for the causal structure of real-world
data is rarely trivial since the causal mechanisms that gave rise
to the data are typically unknown. To address this problem, we
develop a feature selection method that considers each feature’s
value for HTE estimation and learns the relevant parts of the causal
structure from data. We provide strong empirical evidence that
our method improves existing data-driven HTE estimation meth-
ods under arbitrary underlying causal structures. Our results on
synthetic, semi-synthetic, and real-world datasets show that our
feature selection algorithm leads to lower HTE estimation error.
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1 INTRODUCTION

Estimating heterogeneous treatment effects (HTEs) is essential in
many fields. HTE estimation aims to find subpopulations whose
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Figure 1: Causal models where data-driven HTE estimation
methods may perform poorly. Some variables (e.g., L, M, and
E) are not valid adjustment variables for estimating the ef-
fectof TonY.

causal effects differ from the effects of the population as a whole.
For example, if the treatment is a drug, some individuals may have
adverse reactions, and some individuals may benefit from treat-
ment [34]. Similarly, public policy may affect different sociodemo-
graphic groups differently [13]. HTE analysis allows the discovery
of these different subgroups of the population.

The accumulation of large amounts of data in many domains
has stimulated the increased development of algorithms tailored
for automated data-driven HTE estimation, relying on supervised
machine learning [3, 4, 13, 18-20, 34, 40]. The goal of data-driven
HTE estimators is to estimate the conditional average treatment
effect using the features available in the data.

While it is appropriate to use all possible features for general
supervised learning problems, unbiased estimation of causal effects
requires knowledge of the causal mechanisms underlying the data
and selecting an appropriate subset of variables from the data [25].
One way to select this subset is by modeling the underlying causal
mechanisms through structural causal models (SCMs) [25] and
selecting an adjustment set — a set of variables that are necessary
for unbiased estimation of a causal effect of interest [16, 25, 28].
However, the causal model structure is rarely known for real-world
data, and data-driven methods do not take it into consideration.
Our paper addresses this problem and improves data-driven HTE
estimation methods through causal feature selection under such
structure uncertainty.

A common assumption used by data-driven HTE estimators is
the assumption of strong ignorability which states that the treat-
ment assignment is independent of the potential outcomes given
the variables in the data [29, 34]. This untestable assumption im-
plies that all potential confounders, variables that can influence
both the treatment and the outcome, are observed in the data. In
turn, accounting for them would remove spurious associations and
allow for causal effect identification. However, hidden confounding
is not the only problem leading to biased HTE estimation. Even if
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all potential confounders are observed in the data, not all variables
should be used for adjustment. Another important and sometimes
implicit assumption is that all variables in the data are pre-treatment
variables, i.e., the variables that were measured before and thus
were unaffected by the treatment. When the temporal order of ob-
servations is unknown, many practitioners would simply use all
variables in the data [22]. To illustrate the problem of using all vari-
ables in data-driven methods, consider the SCMs in Figure 1 where
X is a confounding variable. According to SCM theory, we need to
adjust for X when estimating causal effects, but should not include
variables that will bias effect estimation, such as descendants of the
treatment or instrumental variables (e.g., L, M, A, B, D, E, G).

To address these deficiencies of data-driven methods, we define
the problem of causal feature selection for accurate data-driven HTE
estimation under structure uncertainty. One vanilla solution to this
problem is to first learn the causal structure from the data [16, 24, 38]
and then use an existing identification algorithm to find the ad-
justment set [16, 28, 35, 41]. However, structure learning is com-
putationally expensive when the space of feature is large, and it
may not work well when there is uncertainty in the learned struc-
ture [8, 15, 43]. Instead, we develop a feature selection method that
reduces this complexity by considering the value of each feature
for improving HTE estimation and learning only the relevant parts
of the causal structure from data. We provide strong empirical
evidence that our method improves existing data-driven HTE esti-
mation methods under arbitrary underlying causal structures. We
evaluate the benefits of our feature selection algorithm in reduc-
ing HTE estimation error through synthetic, semi-synthetic, and
real-world dataset experiments.

2 RELATED WORK

We provide a brief overview of related work on estimating hetero-
geneous treatment effects and structure learning.

Data-driven methods for HTE estimation. Many methods
have been developed for estimating heterogeneous treatment effects
(HTEs) from data. Several methods rely on recursive partitioning
using tree-based methods, which naturally partition the population
into subgroups that may contain heterogeneous effects [3, 4, 39,
40, 48]. Besides tree-based methods, methods have been developed
that use machine learning to predict causal effects, such as meta-
learners [19, 20] and neural networks [18, 33, 34]. However, these
methods do not consider the structure of the underlying causal
mechanisms that generate the data, introducing bias in estimation.

Causal structure learning. Many causal structure learning al-
gorithms have been developed for recovering SCMs from data [15,
43]. Heinze-Deml et al. provide a recent survey on causal structure
learning algorithms and evaluate their performance in various set-
tings [15]. However, learning the full causal structure from data can
be computationally expensive for high-dimensional datasets [8, 43].
Related to causal structure learning is local structure learning [2].
Aliferis et al. presented an algorithmic framework for learning local
causal structure around target variables, the parent-children set
(PC) and the Markov Blanket (MB). Yu et al. survey and evaluate
several local causal structure learning methods that learn both PC
and MB of target variables [47]. They study local structure learning
under the context of causality-based feature selection with the goal
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of improving supervised learning. In contrast, we study the problem
of causal feature selection. Local structure learning has been stud-
ied in the context of average treatment effect (ATE) estimation, but
not HTE estimation [7]. This work also does not consider excluding
mediators or descendants, which we do in our work.

3 BACKGROUND

We provide an introduction to heterogeneous treatment effects
under the potential outcomes framework [30] and structural causal
models [25].

3.1 Heterogeneous treatment effects

Let (X3, Yi(0), Y;(1), T;) ~ P be a distribution with N units which
are independently and identically distributed (i.i.d.). For any unit
i, define X; € RY be a d-dimensional feature vector, T; € {0,1}
to be the treatment assignment indicator, Y;(0) to be the poten-
tial outcome when i is not treated, and Y;(1) to be the potential
outcome when i is treated. The individual treatment effect (ITE)
is the difference in potential outcomes: 7; = Y;(1) — Y;(0). How-
ever, both potential outcomes Y;(1) and Y;(0) cannot be observed
at the same time and observed data D = (X, Y;, T;) contains only
Y; = Y;(T;). This is known as the fundamental problem of causal
inference. Since 7; can never be measured directly, its estimate is
expressed through the conditional average treatment effect (CATE):

i(x) = E[Y(1) = Y(0) | Xi]. (1)

The average treatment effect (ATE) of the population is: ATE =
E[Y(1) — Y(0)]. If CATE and ATE are not the same, then X; induce
heterogeneous treatment effects (HTE).

Given an observed dataset D, the goal of an HTE estimator is
to estimate CATE, 7, using the available features X in the data.
HTE estimators estimate CATE in a variety of ways. Some HTE
estimators rely on recursive partitioning using tree-based meth-
ods [3, 4, 40]. Other HTE estimators use predictions from machine
learning methods to train a causal effect estimator [19, 20] or to
predict counterfactual outcomes for estimation of effect [18, 34].
A common assumption used by data-driven HTE estimators is the
assumption of strong ignorability which states that the treatment
assignment is independent of the potential outcomes given a set of
variables X [29,34]: Y1,Y) L T | X,and 0 < p(T =1 | X) < 1 for
all X = x. One of the implications of this assumption is that there
is no hidden confounding. However, hidden confounding is not the
only problem that can lead to biased HTE estimation. In practice, it
is often assumed that all observed variables in the data are the set
of variables X that meets strong ignorability. This is problematic
because some of the variables may make T and Y dependent or
introduce new spurious dependencies [25]. Some variables, such
as mediators, should not be included in the estimation. Moreover,
when the temporal order of variables is unknown, practitioners
may consider all features in the data as pre-treatment variables [22].
Selecting the right variables is the goal of our work.

3.2 Structural Causal Models

A structural causal model (SCM), M, consists of two sets of variables,
U and V, and a set of structural equations, F, describing how values
are assigned to each endogenous variable V; € V based on the values
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of vand u [25]: v; = fj(v,u). A causal graph G is a directed acyclic
graph that captures the causal relationships among the variables.
The variables in U are considered exogenous. It is assumed that every
endogenous variable has a parent in U. The causal graph may omit
representing U explicitly. We denote the parents, children, ancestors,
and descendants of X in the graph as: pa(X), ch(X), an(X), de(X).
Every node is a descendant and ancestor of itself.

When the SCM underlying the dataset is known, its graph G
supports the use of graphical criteria for variable selection for
unbiased causal effect estimation, known as adjustment set selec-
tion [16, 28, 35, 37, 41]. One such criterion is the backdoor cri-
terion [25], which aims to find a set that blocks the paths from
treatment to the outcome, starting with an arrow into treatment.
For example, in Figure 1la, there is one backdoor path, namely,
T « X — Y, and so the set {X} sufficiently satisfies the backdoor
criterion. Several adjustment criteria have been developed, such
as the adjustment criterion [35, 41], generalized back-door crite-
rion [21], generalized adjustment criterion [28], and optimal adjust-
ment set (O-set) [16]. These adjustment sets defined by the various
adjustment criteria can be found through the ID algorithm [36], the
framework by Van der Zander et al. [41] or the pruning procedure
by Henckel et al. [16]. Once an adjustment set is found, they can
be used with an HTE estimator to estimate heterogeneous effects.

When the SCM for a dataset is unknown, and therefore there
is structure uncertainty of the causal mechanism, the adjustment
criteria cannot be applied. An alternative approach is to use causal
structure learning [15] to learn a causal graph from the data and
then apply an adjustment criterion for feature selection. However,
learning the full structure is computationally expensive for high-
dimensional datasets [8, 15, 43]. Instead, we propose reducing the
feature space by assessing the fit of each variable for HTE estimation
and learning the local structure, which we describe in Section 5.

3.2.1 HTEs in SCMs. In SCMs, heterogeneous effects are repre-
sented by an interaction or effect modification through ancestors
of Y [25]. For example, suppose Y is generated by the following
structural equation corresponding to the SCM in Figure 1c:

@)

Here, there is a fixed effect « of the treatment T and a heterogeneous
effect y due to the interaction between T and X. Interaction can
occur with any parent of Y (e.g., X, F in Figure 1c) or any parent of
a mediator (e.g., C in Figure 1c) [42].

Y=a- T+ -X+y-T-f(X)+Uy.

3.2.2 C-specific effects. Shpitser and Pearl provide a nonparamet-
ric estimand for HTEs with respect to some feature assignment
C = c, called c-specific effects [26, 35]. One issue with estimat-
ing c-specific effects is that it requires knowledge of the SCM and
which variables, C, exhibit heterogeneous effects. When the SCM
is known, the O-set [16] can be used on the learned structure since
it implicitly includes all potential heterogeneity-inducing variables,
while some identification algorithms may miss them. When the
SCM is unknown, the identifiability of c-specific effects cannot be
established. Moreover, when the set of heterogeneity-inducing vari-
ables C is unknown, then all combinations of features and feature
values would need to be checked for heterogeneity in effect, which
is exponential in the number of valid features. Circumventing this

1789

KDD ’22, August 14-18, 2022, Washington, DC, USA

exponential search is one of the main reasons why data-driven
methods are popular in practice.

4 PROBLEM SETUP

Our goal in this work is to augment data-driven methods to accu-
rately predict heterogeneous effects when both the SCM and the
variables that explain heterogeneity are unknown. More specifically,
the goal is to find a subset X, to which we refer as the causal
feature set, that improves data-driven estimation. In general, the
goal in HTE estimation is to obtain accurate estimation of CATE:

PrROBLEM 1. (Heterogeneous treatment effect (HTE) estimation)
Given a dataset D = (X, Y;, T;) of N instances with some true ITE t,
estimate CATE 7(X) such that the mean squared error is minimized:

1 N
= (= #X)2 3)
N 4

i=1

Since the true ITE is unknown in real-world scenarios, several
heuristic HTE evaluation metrics have been developed for evalu-
ating the performance of HTE estimators [31-33]. Instead of min-
imizing the true estimator error, we can instead minimize one of
these metrics, such as the 7-risk [23, 32].

A causal feature set is the feature set that minimizes the error in
HTE estimation.

PrROBLEM 2. (Causal feature selection (CFS) for HTE estimation)
Given a dataset D = (X;,Y;, T;) and a data-driven estimator 7(X),
find a causal feature set ng) C X; such that f’(X([)) results in the
lowest MSE:

N
o1 L (D7)
argmin — (T[ - #(X; )) .
X N ; !

4)

A data-driven estimator typically estimates 7(X) using all available
data. Our goal in this work is to select a causal feature set X such
that the error of the estimator is minimized.

In this work, we assume that it is unknown a priori whether
all observed features in the data are pre-treatment variables and
whether all of them meet the strong ignorability assumption. In-
stead, we use the following more general assumptions:

(1) Causal sufficiency: there are no latent variables.
(2) Causal faithfulness: if X4, Xp are conditionally independent
given Xz, then A, B are d-separated in the causal graph by
Z.
(3) Acyclicity: the underlying causal graphs are directed acyclic
graphs (DAGs).
(4) There is no selection bias.
Understanding how our methods need to be adjusted when these
assumptions do not hold is left for future work.

5 CAUSAL FEATURE SELECTION FOR HTE
ESTIMATION

When the SCM that generated the data is unknown, a vanilla solu-
tion for finding an adjustment set for HTE estimation is to learn
the causal structure and then find the optimal adjustment set (O-
set) [16]. However, structure learning is computationally expensive
in high-dimensional data, both in theory [8] and in practice [15, 43].
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Figure 2: Our causal feature selection method HTE-FS. Given the full set of features X, the first step in HTE-FS is to select a
subset of features that minimizes an HTE fit metric (e.g., Tau risk). Then, given the subset of features found, X(9), a structure
is learned on the path from T to Y. The final feature set is found by removing mediators and descendants of treatment (crossed
out in red), which results in the final feature subset of X ¢ x.

Instead of doing full structure learning, we propose Heterogeneous
Treatment Effect Feature Selection (HTE-FS), which relies on two
ideas to make feature selection more practical. First, instead of
considering all features, it assesses the value of each feature in
reducing the HTE estimation error and selects only the features
that contribute to error reduction. Second, instead of learning the
full structure, it focuses on learning the parts of the structure that
give sufficient information about selecting a valid adjustment set.
Figure 2 shows a high-level overview of HTE-FS, and we present
its main components, HTE-Fit and Structure-Fit, next.

5.1 HTE-Fit

The first component of our framework, HTE-Fit, proposes the use
of heuristic HTE evaluation metrics to sequentially select features
that are likely to reduce the HTE estimation error. This is shown as
the first step in Figure 2. It has two variants: forward (HTE-Fit-F)
and backward (HTE-Fit-B).

Since the ground truth of HTE effects in unknown, several heuris-
tic HTE evaluation metrics have been developed to approximate the
errors of HTE estimators, including z-risk [32], Nearest Neighbor
Precision in Estimating Heterogeneous Effects (NN-PEHE) [33],
Plug-in 7 [31], and Counterfactual Cross-validation (CFCV) [31].
The 7-risk takes as input the estimator 7 and approximates the
objective defined in (3) [32]. The second metric, NN-PEHE, uses
nearest neighbor matching for imputing treatment effects for train-
ing [33]. The plug-in 7 uses an arbitrary estimator for imputing
effects for computing error. The fourth metric, CFCV, uses a dou-
bly robust formulation with the plug-in 7 for imputing effects for
evaluation [31]. These metrics have been shown to correlate with
HTE estimator performance [31, 32]. Here, we propose to use these
metrics as causal feature selection criteria, which, to the best of our
knowledge, has not been studied in previous research.

5.1.1 HTE-Fit — Forward. HTE-Fit-F starts with a feature with
the best (lowest) error metric, then iteratively adds features that
improve the metric. If there are no more features or improvements,
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the selection stops. We will use 7-risk as an example metric to make
this procedure more concrete. r-risk has been shown to lead to a
consistent high-performing model [32] and to have quasi-oracle
error bounds on the CATE [23]. The r-risk, denoted as R, takes
as input the estimator 7 and approximates the objective defined
in (3) [32]:

Z

1

2
S . 6)

rrisk(£) = R() = = 3 (=X~ (Ti=p(Xi) #(Xa) )

i=1

Here, m(X;) is an outcome estimate for unit i (i.e., E[Y;|X;]), and
Pp(X;) is an estimate of the propensity score, (i.e., E[T;|X;]). Both
1 and p are learned through supervised techniques and optimized
for predictive accuracy.

Suppose the feature vector of individuals has d dimensions, X =
(X1,...,Xy). Given the 7-risk, we can compute the feature fit for
one feature, say X; € X, by estimating 7({X;}) and inputting the
estimator into the 7-risk. For HTE-Fit-F, the first feature found is
the feature that minimizes R(7({X}}), and we define the initial set
of found features as X(9) = {X }. Now that the first feature is found,
we need to add another to X(g). For each feature Xj. € X, X ¢ X(g),

we estimate a new #(X(9) U {X&}) which is the current set of found
features X9 combined with a new feature. The next feature added
to X(9) is the feature that minimizes R(£(X(9) U {X})- This process
continues until there is no feature that, when combined with X(9,
minimizes the 7-risk or when there are no more features to add.

5.1.2 HTE-Fit — Backward. Backward feature selection (HTE-Fit-
B) works similar to forward feature selection. The difference is
that it starts with all features, X9 = X, and it iteratively removes
features until either the error metric does not improve or there
is only one feature left for estimation. Using 7-risk, it would first
compute R(#(X)) to get an initial score on the entire feature set.
For each X € X, it would compute R(7(X \ {X}}), and remove the
feature that results in the lowest 7-risk when removed.
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5.2 Structure-Fit

Now that we have selected the features that can contribute to
HTE estimation error reduction, the next step is to select only
the features which are a valid adjustment set. The second part
of our framework, Structure-Fit, iteratively applies local structure
learning [2, 47] to find a path from the treatment, T, to the outcome
Y, in order to remove mediators and descendants of treatment.
Step 2 of Figure 2 represents this part, Structure-Fit, where local
structures from T to Y are learned iteratively, and connected. A
local structure is a subgraph of the causal graph centered on a target
variable. For example, in Figure 2, the local structure of T are the
edges and variables connected to T (e.g., Xr(g),XI(,g),X}g)). Since Y
is the outcome variable and we are only interested in paths from T
to Y, Structure-Fit terminates and the final feature set is found by
removing mediators and descendants (crossed out in red).

This approach has two main advantages compared to full causal
structure learning. First, it only considers local structure around
causal nodes and does not need to consider all variables if they are
not connected to the causal path from T to Y. Second, it aims to only
select variables which do not bias causal effect estimation and allow
the HTE estimator to use features as appropriate for estimation.

5.2.1 Discovering local structure around target variables. Multi-
ple structures can encode the same conditional independences in
the data, making the task of finding the parent sets of T and Y,
pa(T), pa(Y), nontrivial. For example, X; = T — X3, X; « T «
Xy, and X7 « T — Xy, all encode that X; L X3|T and in one of
them X is a parent of T whereas in the other two X is a child.

We use two different ways to find the local structure. The first
way relies on finding the parent-children (PC) set around our tar-
get variables, T and Y [2], collider discovery, and edge orientation
methods to find causal directions [5, 9, 11]. Several PC discovery
algorithms have been developed [2, 6, 27, 47] and have mainly been
used for improving classification methods [47]. To distinguish be-
tween parents and children, we first discover the parents of each
target variable through collider discovery. If two variables are par-
ents of the target variable (e.g., X and A are parents of T), then
they are dependent if conditioning on the child and can be dis-
covered through conditional independence tests. However, if there
is zero or one parent, we will not leverage collider discovery. In-
stead, we orient the remaining edges using an edge orientation
algorithm [5, 9, 11] and then check if there is a parent in the set. Us-
ing these algorithms, we can check for any variable in PC whether
an arrow is pointing in or away from the target variable (i.e., T and
Y) and thus identify pa(T), pa(Y), ch(T), and ch(Y).

The second way to find local structures is to utilize more recent
local structure learning algorithms, such as PCD-by-PCD [46], MB-
by-MB [44], and Causal Markov Blanket [12] These algorithms
discover the PC or Markov Blanket (MB) while partially orienting
edges. We can find a partially oriented local structure and orient
edges using edge orientation methods.

5.2.2  Learning partial structures. Using the process to discover
local structure around target variables, we propose an iterative
algorithm to remove post-treatment variables from HTE-Fit, which
we call Structure-Fit. We apply local structure learning on the treat-
ment variable, T, and then iteratively apply local structure learning
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on children of T in a breadth-first-search manner until we reach
the outcome variable Y. Then, local structures are put together to
form a subgraph of the causal graph over the variables selected by
HTE-Fit. After learning the local structure, we can apply an identi-
fication algorithm to find an adjustment set, such as the O-set [16].
Another option is to only remove all descendants of treatment.

We demonstrate Structure-Fit using Figure 1c. We first find
PC(T) = {A,X,B,D} and ch(T) = {B,D}. We proceed to itera-
tively find the PC on each child, B, D. Since B has no children, we
move to D and find PC(D) = {T,C,E,Y} and ch(D) = {E, Y}. Fi-
nally, E has no children, and we have reached the outcome variable,
Y and find PC(Y) = {X, C, F, G}. Using the local structures, we find
the causal graph shown in Figure 1c. In practice, we only use the
output of HTE-Fit in Structure-Fit, so not all variable will be used.

While HTE-Fit and Structure-Fit are both important parts of the
framework, each one can be used independently for causal feature
selection as well. However, each component has limitations, which
can be addressed by combining them into one framework. One lim-
itation of HTE-Fit is that it is based on a heuristic evaluation metric
for HTE estimation. While the evaluation metric is correlated with
the true performance [32], these metrics may still include non-valid
adjustment variables. This issue can be addressed by discovering
mediators and descendants of treatment and excluding them from
the final estimation. One limitation of using Structure-Fit is that
variables that are potentially irrelevant for HTE estimation are
considered in the local structure learning, which can lead to noisy
independence tests and discovered structures. This is addressed by
finding the most important subset of features for HTE estimation.
HTE-FS takes advantages of HTE-Fit and Structure-Fit to address
limitations of both methods. Pseudocode of HTE-Fit and Structure-
Fit is available in the Appendix in Sections 9.1 and 9.2, respectively,
and a discussion of complexity is available in Section 9.3.

6 EXPERIMENTS

To evaluate whether and how much feature selection improves ex-
isting data-driven HTE algorithms, we generate synthetic datasets
which contain ground-truth causal effects. We also use a semi-
synthetic dataset and two real-world datasets.

6.1 Experimental setup

In our experiments, we make a distinction between four classes of
estimation methods: base learners, baseline feature selection, our fea-
ture selection, and oracle. A base learner is an HTE estimator without
feature selection, and it uses all features for estimation. We consider
several prominent HTE estimators as base learners: Causal Tree
Learn [40], Causal Forest [4], Meta-learners (S, T, XLearners) [20],
Doubly Robust learner (DRLearner) [19], Balancing Neural Network
(BNN) [18], and TARNet [34].

The baseline feature selection methods use local structure learn-
ing [47] and causal structure learning [15, 16] to select an adjust-
ment set. The first baseline, PC Simple (Parents), uses a local struc-
ture learning method on the treatment to find parents. PC Simple
has been used for selecting variables for classification [47] but
not for HTE estimation. We employ PC Simple to learn the local
structure on the treatment variable and select the treatment par-
ents as an adjustment set. Since our setting only considers one
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treatment variable, the parents of treatment are a valid adjustment
set [45]. Two other baselines we consider are based on causal struc-
ture learning [15, 16], which we refer to as Full Structure Learning
(FSL). We use GFCI [24] to learn a causal structure and apply two
adjustment criteria: optimal adjustment set (O-set) and removing
post-treatment variables only (Valid). Then a base learner uses the
adjustment set for estimation (e.g., TLearner).

For our feature selection methods, we consider our framework
HTE-FS and each component, HTE-Fit and Structure-Fit, separately.
For HTE-Fit, we use both variants: HTE-Fit-F and HTE-Fit-B. We
use four HTE fit metrics: 7-risk [32], Nearest Neighbor Precision in
Estimating Heterogeneous Effects (NN-PEHE) [33], plug-in 7 [31],
and Counterfactual Cross-validation (CFCV) [31]. We report results
using HTE-Fit-F and r-risk since this combination performed the
best in our experiments.

For Structure-Fit we used PC-Simple [6], GetPC [27], and HITON-
PC [2], CMB [12], and PCD-by-PCD [46]. For pairwise edge orienta-
tion, we use Conditional Distribution Similarity Statistic (CDS) [11],
Information Geometric Causal Inference (IGCI) [9], and Regression
Error based Causal Inference (RECI) [5]. In order to find an adjust-
ment set, we only remove mediators and descendants, and allow
data-driven HTE estimators to decide which variables to use in es-
timation. We report results using PC Simple with RECI (PC, RECI)
and CMB since these two combinations represent different variants
of Structure-Fit and perform the best in our experiments.

For HTE-FS, we report results using HTE-Fit-F with 7-risk and
Structure-Fit with CMB, since this combination performed the best
in experiments. We compare against using Oracle (Known Struc-
ture), which uses the true optimal adjustment set.

6.2 Datasets

We use three types of datasets. The first dataset is a set of synthetic
datasets, in which random SCMs are generated, and data is gener-
ated following each SCM. The second dataset is based on the Infant
Health and Development Program (IHDP) dataset [17]. The third
type are real-world datasets, League of Legends and Cannabis.

6.2.1 Synthetic dataset. We generate SCMs by following a proce-
dure similar to one for evaluating causal structure learning algo-
rithms [15]. SCMs and their corresponding datasets differ in the
following characteristics: the number of variables d; the probability
of edge creation p; the variance in the noise o; the strength of the
noise term in non-source nodes p. We add parameters to control
confounding y, mediation m, and heterogeneity in treatment effects
Ph» mp. We initialize a set of parameters as follows:

(1) Number of variables: d € [10, 20, 30]

(2) Edge probability parameter: p, € [0.1,0.3,0.5]

(3) Noise variance: o € [0.2,0.4,0.6]

(4) Magnitude in noise: p € [0.1,0.5,0.9]

(5) Confounder: y € [True, False]

(6) Mediator chain length: m € [0, 1, 2]

(7) Number of HTE inducing parents: p;, € [0, 1, 2]

(8) HTE from mediating parents: my, € [True, False]

For each parameter value, we randomly sample from all other
parameter values 500 times to generate SCMs. For each of the 11, 500
SCMs, we create one dataset of size 10,000. Root node variables
are generated from a normal distribution, and non-root nodes are
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TLearner XLearner DRLearner Causal Tree
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Figure 3: Average MSE for all SCMs generated using: 30 vari-
ables, confounding, mediator chain length of 2, 2 HTE in-
ducing parents, and HTE induced by mediating parents (i.e.,
(d,y,m, pp, mp) = (30,True, 2,2, True)). We show how feature
selection methods improve several HTE estimators.

generated linearly from parents. The detailed dataset generation
description is available in the Appendix in Section 9.4, and the link
for the code is available in Section 9.5.

6.2.2 Semi-synthetic dataset: IHDP. The covariates in the Infant
Health and Development Program (IHDP) dataset come from a
randomized experiment studying the effects of specialist home visits
on future cognitive test scores [17]. Outcomes can be simulated
using the covariates. We simulate 1,000 instances of simulated
outcomes and average all results!.

6.2.3 Real-world datasets. We use two real-world datasets: League
of Legends and Cannabis. League of Legends (LoL) is a popular
multiplayer online battle arena (MOBA) game. Riot Games, the
developer of LoL, regularly creates software patches to the game
that update various parts of the game, affecting balance and how
players decide to play the game. We use a dataset consisting of
player, match, and patch information over time [14]. The treatment
variable of interest is a software patch, and the outcome of interest
is the number of kills of a team in a single match, which is a post-
match statistic. We average results over patches in the dataset.
Cannabis is a dataset consisting of tweets about the e-cigarette
Juul and cannabis-related topics [1]. English tweets related to the
e-cigarette Juul were collected from 2016 to 2018. For the users who
mention Juul, cannabis-related tweets are collected from 2014 to
2018. In this dataset, tweets’ stances towards Juul and cannabis are
crowdsourced, and a model is trained for stance detection. In this
work, we are interested in how users’ stance on Juul affects their
stance on cannabis. To do this, we find users who have Juul-related
tweets occurring before a cannabis-related tweet and detect their
stance on Juul and cannabis using the classifier from [1], where
features are the word embeddings for tweets using BERT [10]. The
treatment variable of interest is a user’s stance on Juul, in favor (1)
or against (0). The outcome variable is their stance on cannabis, in
favor (1) or against (0). Since this dataset contains only one group,
we bootstrap the estimators to compute the standard deviation.

!Outcomes are generated using the JustCause package:
https://github.com/inovex/justcause
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Mediator Mediator Mediator .

Chain é‘ength Chain 1Length Chain ;ength C()Cn‘;.g‘tla;gfng Conﬁl)\fl c;l ding lf')alr{e—fl}fs 1 HTE Parent lfalx{e?tss 10 Variables 20 Variables 30 Variables
SLearner 10.58 + 2.25 10.39 + 231 10.38 + 2.19 10.55 + 2.08 10.36 + 2.38 10.55 + 2.22 10.08 + 2.38 10.63 + 2.16 10.56 + 2.41 10.26 + 2.30 10.55 + 2.09
TLearner 8.18 £2.10 8.07 £ 2.17 8.35+2.14 8.32 + 2.04 8.07 +2.22 8.26 + 2.06 7.93 +£2.32 8.32 £ 2.04 8.06 + 2.22 8.06 + 2.22 8.40 + 1.98
Base XLearner 8.31 £ 2.30 8.37 £ 2.28 8.13 £2.20 8.28 +2.14 8.30 £2.35 8.24 +2.24 8.04 + 2.36 8.51 £2.18 8.32 + 2.46 8.15£2.29 8.44 + 2.08
Leamers DRLearner 9.64 + 2.53 9.28 +2.72 9.73 £2.73 9.57 + 2.65 9.42 £ 2.71 9.78 + 2.36 9.14 + 2.90 9.60 + 2.66 8.94 + 2.66 9.30 £2.73 10.11 + 2.53
Causal Tree 7.89 + 4.57 7.33 £4.23 7.61 + 4.30 8.04 + 4.48 7.18 £4.21 7.67 + 4.59 8.02 + 4.22 7.08 + 4.25 6.71 + 4.30 8.06 £ 4.31 7.45 + 4.32
Causal Forest 6.92 £3.49 8.14 + 3.63 6.88 +£3.53 6.90 + 3.51 7.93 + 3.64 6.67 £ 3.39 7.15 + 3.65 8.26 £3.59 8.02 +3.49 7.07 £ 3.65 7.70 + 3.63
BNN 7.28 +3.07 7.65 + 2.98 7.40 +3.20 7.49 +3.18 7.49 £2.98 7.72 £ 3.10 7.65 +3.13 7.25 +2.98 7.75 £ 2.92 7.61 £3.17 7.18 £ 3.01
TARNet 8.48 +3.08 9.01 + 3.07 8.40 £ 3.34 8.44 +3.28 8.91 £ 3.06 8.97 +2.92 8.54 +3.25 8.71 £3.22 9.19 + 3.02 8.58 £ 3.20 8.57 +3.18
?aseline PC Simple (Parents) 6.51 £3.01 6.50 + 3.52 7.29 + 3.69 7.11 £3.23 6.45 + 3.26 7.18 £ 3.03 6.80 + 3.56 6.92 + 2.86 6.74 + 3.66 7.41+£333 6.61 + 3.38
S;f;;riin FSL (O-set) 4.86 £ 2.99 4.37 +2.85 4.86 £ 2.98 4.73 + 2.88 4.54 +£2.97 4.52 £2.93 4.89 +3.09 4.45 £ 2.78 4.25 £+ 3.01 4.81 £ 3.02 4.64 £ 2.73
¥£te};rner FSL (Valid) 4.82 +£3.14 4.46 + 2.95 5.04 +3.22 4.81 +£3.08 4.63 £3.21 4.49 +£3.05 5.04 +3.35 4.39 £3.03 4.18 +3.19 4.72 £3.20 4.82 +£3.00
I(:)e“ar‘ure HTE-Fit (Tau Risk) 4.32 £ 1.90 4.33 £ 1.76 4.40 £ 2.05 4.30 £ 1.98 4.37 £ 1.79 4.38 £1.92 4.24 £ 191 4.43 £ 1.83 4.63 £ 1.92 4.22 +1.87 4.33 £ 1.82
Se_leCtiOn Structure-Fit (PC, RECI) 5.82 +3.18 574 +3.23 5.99 +3.37 5.69 +3.18 5.93 +£3.31 5.72 £ 3.19 6.28 + 3.58 5.53 +2.98 5.80 + 3.23 6.11 +£3.45 5.48 +2.99
’Iw{tek;mer Structure-Fit (CMB) 3.84 +3.21 3.51 £ 2.92 3.99 £3.03 3.59 +3.10 3.62 + 3.09 3.72 £ 2.96 4.12 £3.31 3.51 +2.80 3.67 + 3.10 4.01 £3.05 3.53 +£2.75
HTE-FS (Tau, CMB) 3.67 + 1.96 3.30 +2.13 3.69 + 2.32 3.56 + 2.19 3.69 £ 2.53 3.26 + 2.33 3.94 +2.73 3.47 + 2.40 3.73 £ 2.59 3.68 + 2.61 3.30 + 1.89
Olfacle ‘ Known Structure ‘ 2.82 +3.44 242 +3.28 298 £3.45 2.79 +3.34 2.58 +3.40 2.62 +3.21 3.14 + 3.64 2.33 +3.21 2.88 +3.44 2.88 £3.46 2.26 +3.17

}IV{':IBIHEI

Table 1: Average rank for different HTE estimation methods under varying causal structures. Each column shows a fixed
parameter value, and averaged ranks over all other settings. The top section shows HTE estimators without feature selection.
The second section of the table shows baseline causal feature selection methods, using TLearner as the base HTE estimator.
The third section shows our proposed causal feature selection methods. The bottom section shows the Oracle. Bolded results

indicate best average rank (ignoring Oracle estimation).

6.3 Evaluation

We use the mean squared error (MSE) for evaluating HTE estima-
tions since the true causal effect is known with synthetic and semi-
synthetic data: MSE = % Zfil (r(X)—#(X;))?. For each dataset, we
split the data into 80/20 training and test sets. Since different SCMs
will result in different MSEs, we first rank all estimation methods
based on their MSE for a particular SCM. Then we average the
rank of each method across SCMs and report on the average rank.
To study their performance under specific settings, we also report
on average ranks for subsets of parameter settings. For real-world
datasets, we report results using z-risk [23, 32], which we defined
in eq (5). Similar to MSE, we report rankings based on 7-risk.

In addition, for datasets in which we can decide which variables
post-treatment variables, we compute the percentage of included
by each feature selection method, which we denote as inclusion
error (IE). Given the post-treatment set, ¥, and the predicted causal
feature set X9, we compute the inclusion error as:

X0 Nl
|71
Some variables occur after treatment for real-world datasets, such

as other post-match statistics in LoL and tweets related to cannabis
after the initial cannabis-related tweet in the Cannabis dataset.

IE = (6)

6.4 Evaluation on synthetic data

We first present the results on synthetic datasets. We first show
how our feature selection method improves multiple base learners.
Then we show how feature selection improves base learners across
multiple structural configurations.
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6.4.1 Feature selection helps all base learners. Figure 3 shows the
MSE comparisons between several HTE estimators and feature
selection methods on SCMs which are generated using: 30 variables,
confounding, mediator chain length of 2, 2 HTE inducing parents,
and HTE induced by mediating parents (i.e., (d,y, m, pp, mp) =
(30, True, 2,2, True)). We average MSE over all other parameters
(i.e., pe, 0, p). We show the best performing Structure-Fit, HTE-Fit-
F, HTE-FS. This figure shows that adding feature selection improves
MSE for all HTE estimators. In addition, feature selection reduces
the error bars for all base learners. In general, HTE-FS (Tau risk,
CMB) performs the best, compared to using HTE-Fit-F or Structure-
Fit alone. Structure-Fit with CMB performs better than Structure-Fit
with PC Simple and RECI, although the latter still reduces error
overall compared to using the base learner on all features.

6.4.2 Feature selection improves base learners for different types
of structures. Table 1 ranks the feature selection methods using
TLearner as the base learner vs. several other HTE estimators (with-
out using feature selection) under a range of structural scenarios.
We choose TLearner as the base learner since it is a relatively simple
model and performs consistently in all settings. One experimental
parameter that affects the causal structure is fixed in each column
while averaging over the other parameters. The top section shows
the average rank for base learners without feature selection, the
second section shows baseline feature selection methods, the third
section shows our feature selection methods, and the bottom sec-
tion shows the Oracle method. Bolded results indicate the best rank
in the column (ignoring the Oracle estimator). The large variety of
underlying structures explains the high variance in rank.
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Figure 4: How often feature selection methods include de-
scendants of treatment (lower is better). The grey line de-
notes 50%, or selected at random.

The table shows that our feature selection methods improve base
learners for different structures, perform better than baseline fea-
ture selection methods, and perform better than other base learners
without feature selection. HTE-FS performs the best overall. In
two settings, with no confounding and a low number of variables,
Structure-Fit with CMB performs the best. While our methods per-
form better than baseline methods, baseline methods still improve
base learners, compared to no feature selection.

6.4.3 Feature selection reduces inclusion of wrong variables. In ad-
dition to performance in terms of MSE, we investigate the inclusion
error (IE) of feature selection methods. Figure 4 shows the inclusion
error for each feature selection method, averaged over all experi-
ments, where lower is better. The grey line represents the case of
randomly selected features. The first set of bars shows the average
percentage of overall synthetic datasets. All feature selection meth-
ods do better than random feature selection. HTE-FS has the lowest
chance to include wrong variables, at about 8% inclusion rate. This
result supports the results shown in Table 1, that HTE-FS has the
lowest error, followed by Structure-Fit with CMB and HTE-Fit-F.

6.5 Evaluation on IHDP dataset

Table 2 shows the average rankings on the IHDP dataset using MSE
and 7-risk. We used TLearner as the base learner and showed the
same variations in feature selection as in Table 1. We see that all
feature selection methods perform better on average than the base
estimators, with HTE-FS performing the best. Since TLearner is a
linear model close to the data generation process for this dataset,
it already performs very well on it. Since this dataset contains
pre-treatment features only, we do not evaluate inclusion error.

6.6 Evaluation on real-world datasets

Finally, we show results on real-world datasets. Since these datasets
do not contain ground truth effects, we evaluate methods using
r-risk rankings.
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LoL 7-risk Cannabis
MSE k -risk k
SE Ran| 7-risk Ran Rank 7-risk Rank
SLearner 7.82 + 2.07 9.01 +231 12.02+0.51 14.06 +0.80
TLearner 4.65+1.63 516+1.79 4.97+0.50 7.86+1.03
Base
Learners | XLearner 503+1.84 536+170 4.72+0.36 6.22+0.97
DRLearner 9.29 +2.33 9.44+205 10.74+0.45 14.58 +£0.58
Causal Tree 884 +251 9.14+3.02 848+0.58 7.01%0.92
Causal Forest 10.01 £ 2.46 7.12+3.01 1093 +0.46 9.68 +0.99
BNN 851+1.74 855+271 10.45+0.69 13.01+0.85
TARNet 924 £1.61 8.08+279 9.09+0.54 12.02 %082
Baseline | PC Simple (Parents) 461+ 167 419+182 651+064 11.07+0.76
Feature
\S‘thic“m FSL (O-set) 348 +1.94 3.99+£234 347+047 282+ 156
TLearner
FSL (Valid) 423+1.70 517+132 444+037 5.02+0.61
Our HTE-Fit-F (Tau Risk) 330+ 1.89 3.84+237 397+044 276+0.88
Selection
with Structure-Fit (PC,RECI) | 3.53 +£1.94  4.01 +2.34 5.66 +0.49  9.20 £ 0.76
TLearner
Structure-Fit (CMB) 325+ 175 345+1.88 3.27+037 274 +0.90
HTE-FS (Tau, CMB) 277+ 170 337 +147 248+0.44 195+ 1.27

Table 2: Average rank of estimation methods for the IHDP,
LoL, and Cannabis datasets.

6.6.1 Lol dataset. The average rank for each method in terms of
r-risk for the LoL dataset is shown in Table 2. Overall, HTE-FS
achieves the lowest 7-risk rank among all estimators. We see that
TLearner performs the best among base learners and has a lower
rank than some feature selection methods. One reason could be
that some methods are not suitable for high dimensional datasets,
such as Structure-Fit with PC Simple. However, Structure-Fit with
CMB performs much better than PC Simple, HTE-Fit-F, and FSL.

In the LoL dataset, there are pre-match and post-match features.
Since our outcome kills is a post-match feature, other post-match
features should not be included in the estimation, which is the
post-treatment set in this setting. The second set of bars in Figure 4
show the inclusion error for the LoL datasets. Overall, each feature
selection method has a higher IE than in the synthetic dataset. HTE-
FS, Structure-Fit with CMB, and HTE-Fit-F reduce the inclusion
error rate on average, while Structure-Fit with PC-Simple and FSL
do not reduce the inclusion error more than random selection.

6.6.2 Cannabis. The rank in terms of 7-risk for the Cannabis
dataset is shown in Table 2. Since this dataset contains only one
set of data, we bootstrap each estimator. In this dataset, HTE-FS
achieves the lowest r-risk, followed by FSL and HTE-Fit-F. Here,
XLearner achieves the lowest 7-risk among base learners and per-
forms close to our proposed methods.

In the Cannabis dataset, the post-treatment features are tweets
after the first cannabis-related tweet. The features that should be
included are only tweets related to the stance towards Juul and
the tweet related to the first cannabis tweet. Figure 4 shows the
inclusion error for the Cannabis dataset in the rightmost set of bars.
In most cases, our feature selection methods reduce the number of
wrong variables included, except Structure-Fit with PC-Simple.
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7 CONCLUSION

In this work, we addressed the problem of improving data-driven
heterogeneous treatment effect (HTE) estimation when the under-
lying structural causal model (SCM) is unknown. We developed
HTE-FS for causal feature selection for HTE estimation which con-
sists of two components: HTE-Fit and Structure-Fit. We show that
HTE-FS reduces HTE estimation error of existing data-driven meth-
ods under a variety of causal model assumptions when compared to
using their vanilla versions with all available features. Our research
suggests several interesting avenues of future research, including
the development of causal feature selection algorithms in the pres-
ence of latent variables and the consideration of the full do-calculus,
not just backdoor adjustment.
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9 APPENDIX

Here we provide additional information for Heterogeneous Treat-
ment Effect Feature Selection (HTE-FS) and the synthetic data gen-
eration.

9.1 HTE-Fit

Here we present pseudocode for the two HTE-Fit algorithms. The
HTE-Fit — Forward algorithm is shown in Algorithm 1. Lines 1-8
first find the one feature that returns the largest score (computed
by R) and adds it to X9 Then, for each remaining feature X ), we
compute the score when combining X () to X(9, and concatenate
the feature that returns the best score. This repeats until the score
does not change, or there are no more features to add.

HTE-Fit — Backward works similarly to HTE-Fit-F and the pseu-
docode is shown in Algorithm 2. We start by computing the score
using all features in Line 1. In Lines 9-15, we iteratively add features
to K, which are features that when removed improve the score. The
final set returned is the whole feature set without K.

Algorithm 1 HTE-Fit — Forward

Require: A heuristic evaluation metric R and features X
Ensure: An adjustment set X(9).
1: bestScore = oo
2: bestFeature = None
3. for each X) € X do
4 Compute tempScore = R(X))
5 if tempScore < bestScore then
6: bestFeature = X (/)
7 bestScore = tempScore
8: X9 = (bestFeature)
9: while bestScore changes do
for each X)) € X\ X do

10:

11: Compute tempScore = R(X9) @ X (1))
12: if tempScore < bestScore then

13: bestFeature = X (/)

14: bestScore = tempScore

15: X = X9 g (bestFeature)

16: return X9

Algorithm 2 HTE-Fit — Backward

Require: A heuristic evaluation metric R and features X
Ensure: An adjustment set X(9).
1: bestScore = R(X)
K = () // Features to remove
while bestScore changes do
for each X) € X do
Compute tempScore = R(X \ K\ (xy)
if tempScore < bestScore then
K=K (X))
bestScore = tempScore
9. X9 =X\ K
o: return X9

[
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9.2 Structure-Fit

Algorithm 3 details Structure-Fit. In lines 1-2, we initialize two
variables: dn, which are discovered nodes, Z, a queue of nodes to
traverse. The discovered nodes are initialized to ch(Y), so we do
not traverse past Y. In lines 3-5, we initialize a graph G which will
be the local structure from T to Y, and Z is initialized to be the
children of T. Lines 6-10 show the iterative process in which we
consider the nodes in Z. For every node Z € Z, find pa(Z) and
ch(Z). Z is added to the discovered nodes, is removed from Z, and
the children of Z are added to Z. Then we connect Z to its children.
In the end, a graph, G with causal paths from T to Y is constructed,
and we can construct the valid set.

Algorithm 3 Structure-Fit

Require: Parent and children sets of T and Y: pa(T), ch(T),
pa(Y),ch(Y)

. Initialize dn = ch(Y)

: Initialize Z = ch(T)

: V={T}Uch(T)

:E={(T,2) | Z € ch(T)}

. G=(V,E)

: forZ e Zdo

Find pa(Z), ch(Z)

dn=dnU{Z}

Z=(ZUch(Z))\dn

V=Vvu{z}

E=EU{(Z Z | Z € ch(Z)}

. forb(T,Y,G) = de(T)

: return V\ forb(T,Y, G)

N R I L SR R

e e
W N = O

9.3 Complexity of HTE-FS

The complexity of HTE-FS depends on the complexity of training
and prediction of the HTE estimator and the local structure learning
algorithm. Given an HTE estimator with complexity O(H) training
and O(P) prediction, HTE-Fit takes O(d? - (H + P)). If HTE-Fit
outputs s variables and we use CMB for Structure-Fit, then the
worse case scenario happens when we find local structures for all s
variables: O(s - 2|Pc||U|2|PC|) [12].

9.4 Synthetic data generation

Here, we describe how we generate synthetic datasets used in the
experiments. We first generate an adjacency matrix, A over the
d variables. Assuming that the variables {1,...,d} are causally
ordered. For each pair of nodes i, j, where i < j in the causal order,
we sample from Bernoulli(pe) to determine if there is an edge from
i to j. With the adjacency matrix, we sample the corresponding
coefficients, C, from Unif(-1, 1). Noise terms ¢; are generated by
sampling from a d-dimensional zero-mean Gaussian distribution
with covariance matrix %, where %;; = 1 and %; j = 0. We use p to
tune the magnitude of the noise.

Next, we choose the treatment and outcome nodes based on two
parameters, y and m. y controls whether there is confounding in the
generated dataset and m controls the length of the mediating chain
(0 means no mediator). First, we select all pairs of nodes which
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have a directed m hop path. Then, if y is True, we filter all pairs that
do not contain a backdoor path. Otherwise we filter out pairs that
contain a backdoor path. Finally, we sample a pair of nodes from
the filtered set to obtain the treatment and outcome nodes. If no
pairs of nodes satisfy the criteria for the given parameter setting,
we resample the graph up to 100 times until a graph is found, or
we discard the parameter setting.

A source node i (node with no parents) takes the value of the
sampled noise terms, €;. For a non-source node, i, we consider sev-
eral additive factors. First is the base term from the coefficient ma-
trix: Cpa(i),iXpa(i)» Where Cpq(;),; are the coefficients from pa(i)
to i and Xp,(;) are the values generated for pa(i). Next, are the
interaction terms, which are determined by the mediating chain
length m, number of HTE inducing parents pj, and whether there
is HTE from parents of mediators m,. For mediators, we have:
L (1) Lm, Xpay, (i) Xpay, (i)» Where 1p, is an indicator for if i is a
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mediator, 1,, p, is an indicator for if there is HTE induced from
mediator parents, and pa,, and pa, represent mediating and non-
mediating parents. For outcomes, the interaction is defined sim-
ilarly: 1y()Xpa,,(i)Xpa,(i)» Where 1y(i) indicates whether the
node is the outcome node. The number of HTE parents determines
how many non-mediating parents (pay,) the interaction occurs with.
A value of zero means there is no heterogeneity. So the final data
generating equation is:

Xi = Cpa(i),iXpa(i)
+ Ly (D) Iy, Xpa,, (i) Xpan (i)

+1y(DXpay, (i) Xpan (i) + €i )

9.5 Code

Code for HTE-FS and the synthetic data generation is available at
https://github.com/edgeslab/causal_feature_selection.
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