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Abstract
Estimating the parameters of spatial models for large
spatial datasets can be computationally challenging, as
it involves repeated evaluation of sizable spatial covari-
ance matrices. In this paper, we aim to develop Krylov
subspace-based methods that are computationally effi-
cient for large spatial data. Specifically, we approximate
the inverse and the log-determinant of the spatial covari-
ance matrix in the log-likelihood function via conjugate
gradient and stochastic Lanczos on a Krylov subspace.
These methods reduce the computational complexity
from O(N3) to O(N2 logN) and O(N logN) for dense
and sparsematrices, respectively. Moreover, we quantify
the difference between the approximated log-likelihood
function and the original log-likelihood function and
establish the consistency of parameter estimates. Simu-
lation studies are conducted to examine the computa-
tional efficiency as well as the finite-sample properties.
For illustration, our methodology is applied to analyze
a large dataset comprising LiDAR estimates of forest
canopy height in western Alaska.
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1 INTRODUCTION

Technological advances in geographical data acquisition have led to a rapidly increasing
abundance of very large spatial datasets, for which geostatistical modeling and analysis could be
applied in principle (see, e.g., Cressie, 1993; Stein, 1999). For spatial linear models, maximum
likelihood estimation is often used, since the estimates are consistent and asymptotically normal
(Mardia & Marshall, 1984). However, evaluation of the likelihood function involves the inverse
and determinant of large spatial covariancematriceswhich usually requireO(N3) flops andO(N2)
memory, whereN is the number of observations (i.e., sample size). For a large sample sizeN, eval-
uation of the likelihood function becomes time-consuming, if not infeasible, which necessitates
the development of new statistical methods. The purpose of this paper is to develop computation-
ally efficient methods based on Krylov subspace for analyzing large spatial data and establish the
asymptotic properties of our proposed methods.

To address the computational challenges of large spatial data, various approaches have been
proposed (Bradley et al., 2016; Heaton et al., 2019; Sun et al., 2012). One way to reduce the com-
putational burden is to impose a low-rank structure. Low-rank models approximate Gaussian
processes on a lower dimensional subspace by, for example, predictive process models
(Banerjee et al., 2008; Finley et al., 2009), fixed-rank kriging (Cressie et al., 2010; Cressie &
Johannesson, 2008), or multiresolution approximations (Katzfuss, 2017; Nychka et al., 2015).
Mostly such methods have been shown to be linear time O(N); however, it remains unclear
whether the resulting parameter estimates are consistent.

Sparse methods, on the other hand, enforce sparsity on either the precision matrices or
the covariance matrices. Gaussian Markov random fields are also used to approximate spatial
Gaussian fields, which yields sparse precision matrices and thus is fast to compute
(Rue et al., 2009; Rue & Held, 2005). An explicit link between Gaussian fields and Gaussian
Markov random fields is established through the stochastic partial differential equations (SPDE).
That is, many covariance functions including theMatérn class are the solution of SPDE andGaus-
sian Markov random-field approximation represents an approximate stochastic weak solution
to the same differential equations (Lindgren et al., 2011). Recently, Bolin and Kirchner (2020)
proposed a rational SPDE approach for Gaussian random fields with both stationary and
nonstationary covariance functions. Moreover, the rational SPDE approach is able to estimate the
smoothness parameter of the Matérn class and does not require the sparsity of the covariance
matrices or the precision matrices (Bolin & Kirchner, 2020; Herrmann et al., 2020).

One popular way to achieve the sparsity of the covariance matrices is to approximate the
likelihood function by a product of lower dimensional conditional distributions based only on
the nearest neighbors (Stein et al., 2004; Vecchia, 1988). It is well-known that the performance
of the Vecchina’s approximation depends on the ordering of the observations. Taking a Bayesian
approach, Datta et al. (2016) generalized the Vecchina’s approach and proposed a scalable nearest
neighbor Gaussian processmodel. Furthermore, Guinness (2018) proposed random-ordering and
maximumminimum distance ordering, which can improve the approximation of the Vecchina’s
approximation. An alternative approach is covariance tapering that sets the covariance at two
sufficiently distant locations to be zero (Chu et al., 2011; Du et al., 2009; Furrer et al., 2006;
Kaufman et al., 2008). Thus, the resulting covariance matrix is sparse and faster to compute.
However, the evaluation of the exact tapered likelihood relies on sparse Cholesky
factorization, which generally needs to permute the rows and columns of the matrix, which can
still be computationally cumbersome.
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In general, for evaluating the log-likelihood function, the computational difficulties mainly
arise from frequent operations on large covariance matrices, including the inversion and the log
determinant. This computational challenge also exists in many other research fields, such as
the Gaussian process. Utilizing the hierarchical matrix technique, the likelihood approximation
achieves a log-linear computational cost and storage (Litvinenko et al., 2019;Minden et al., 2017).
Moreover, hierarchical matrix approximation is paralleled in HLIBCov package (Litvinenko
et al., 2020). Another popular method is to utilize the Krylov subspace and has received increas-
ing attention in the Gaussian process (Anitescu et al., 2012; Cunningham et al., 2008; Dong
et al., 2017; Gardner et al., 2018; Stein et al., 2013; Ubaru et al., 2017; Wang et al., 2019). How-
ever, it remains relatively unknown in the field of spatial statistics, and one major obstacle for its
application in spatial statistics is that the theoretical properties of the parameter estimates are not
well-established.

In this work, both the theoretical and computational aspects of the Krylov subspace meth-
ods are studied in the context of parameter estimation for large spatial datasets. In particular, we
approximate matrix inversion through the conjugate gradient, and the log determinant through
the Lanczos quadrature approximation for large spatial datasets. A key contribution of our work
is that the approximation error can be quantified and can be shown to tend to zero asymptoti-
cally, which enables us to establish the theoretical property of the parameter estimates. On the
computational aspects, the proposed methods work for both dense and sparse covariance matri-
ces. In particular, the computational complexity of our method is O(N logN) for sparse matrices,
and thus, it can further speed up the covariance tapering method, which has a computational
complexity O(N3∕2) (Bolin &Wallin, 2016; Lipton et al., 1979). Promisingly, simulation studies in
Section 3.5 show that this improved computational efficiency is achievedwith little efficiency loss
compared to the covariance tapering method, especially for the regression coefficient estimates.
Thirdly, the trade-off between the convergence rate of parameter estimates and the computational
complexity of the computational algorithms is also established, and a root-N convergence of the
parameter estimates is established under the increasing domain asymptotic framework.

The remainder of the paper is organized as follows. Section 2 develops our Krylov subspace
based methodology and gives theoretical justifications. We provide analysis of the computational
complexity and conduct simulation studies to investigate the computational efficiency and statis-
tical properties in Section 3. In Section 4, we illustrate the methodology by a dataset with over 5
million observations comprising light detection and ranging (LiDAR) estimates of forest canopy
height in western Alaska. The theoretical development is given in Appendix.

2 METHODOLOGY

Consider a spatial process {y(s) ∶ s ∈  ⊂ Rd}, where is a spatial domain of interest inRd. For
ease of exposition, we assume that the mean of the spatial process is zero and focus on the main
computational challenges that arise in estimating the spatial covariance structure. Denote the
spatial covariance between y(s) and y(s′) at two locations s, s′ ∈  by

𝛾

(
s, s′;𝜽

)
= Cov

{
y(s), y(s′)

}
,

which is assumed to be known up to a q-dimensional vector of parameters 𝜽 ∈ Rq. The inference
on 𝜽 is based on N observations y = (y(s1), … , y(sN))⊤ collected at N spatial sampling locations
s1, … , sN ∈ . The log-likelihood function can thus be written as
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𝓁(𝜽; y) = −(N∕2) log(2𝜋) − (1∕2) log |𝚪(𝜽)| − (1∕2)y⊤𝚪(𝜽)−1y, (1)

where 𝚪(𝜽) = [𝛾(sj, sj′ ,𝜽)]Nj,j′=1 is the spatial covariance matrix of y. Henceforth, we suppress 𝜽 in
𝚪(𝜽) for notational convenience except for Section 2.3.

Maximizing the log-likelihood function (1) yields themaximum likelihood estimates (MLE) of
𝜽, but can be challenging particularlywhen the sample sizeN is large.A computational bottleneck
is repeated computation of the inverse and the log-determinant of the spatial covariance matrix
𝚪 evaluated at different 𝜽 values. Most commonly used approaches for solving linear systems
involve Cholesky decompositions, which generally require O(N3) operations and O(N2)memory.
Here, to alleviate the computational burden, we consider Krylov subspace-basedmethods, known
for their effectiveness in solving large linear systems and finding the leading eigenpairs of large
matrices, especially when the linear systems or the matrices are sparse.

2.1 Matrix inversion via conjugate gradient

Since the log-likelihood function (1) does not require an explicit storage of 𝚪−1 but rather a
vector 𝚪−1y, iterative techniques based only on matrix-vector multiplications can be applied
(Shewchuk 1994). A class of such iterative methods relies on the Krylov subspace. For an invert-
ible matrix A ∈ RN×N and a nonzero vector v ∈ RN , the kth Krylov subspace generated by the
pair (A, v) is defined as

k(A, v) = span
{
v,Av, … ,Ak−1v

}
,

for k ≥ 1 and0(A, v) = {0}. Consider a linear system r0 = Az, where A ∈ RN×N and z, r0 ∈ RN .
Let p(⋅) be the minimal polynomial of A with degree L for L ≤ N. Thus, p(A) =

∑L
l=0𝜁lA

l = 0,
where 𝜁l is the coefficients of the minimal polynomial, and we have A−1r0 = −𝜁−10

∑L
l=1𝜁lA

l−1r0.
This suggests that the solution to the linear system, z = A−1r0, lies in the Lth Krylov subspace
L(A, r0). The Krylov subspace-based methods seek to find an approximate solution in the
growingKrylov subpacel(A, r0), l = 1, 2, … ,L, and inL steps, an exact solution canbe obtained.

One commonly usedKrylov subspace-basedmethod is the conjugate gradient (CG), built upon
a set of mutually conjugate search directions {d0,d1, …} such that d⊤l Adl′ = 0 for l ≠ l′. Among
Krylov subspace-basedmethods, CG is optimal in the sense that it minimizes the energy function
f (z) = (1∕2)z⊤Az − r⊤0 z at each iteration. The solution at the lth iteration can be formulated as

zl = arg min
z∈l(A,r0)

f (z), l ≥ 0.

For a positive definite matrix A, the sequence of solutions {zl} converges to the unique solution
z∗ = A−1r0 in at most N iterations. Let 𝜓l be the relative error measured at the lth iteration. It is
well known that

𝜓l =
f (zl) − f (z∗)
f (z0) − f (z∗)

=
||zl − z∗||2A
||z∗||2A

≤ 2
{

𝜅(A)1∕2 − 1
𝜅(A)1∕2 + 1

}l

, (2)

where z0 = 0 is the starting vector, 𝜅(A) = 𝜆max∕𝜆min is the condition number of A, and ||z||A ≡

z⊤Az. The CG algorithm is monotonically improving, since 𝜓l decreases as l increases (Golub &
Van Loan, 2012).
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Tomaximize the log-likelihood function (1), let 𝜽̂MLE = arg max𝜽{𝓁(𝜽)} denote the MLE of 𝜽
and let 𝜽0 be the true value of 𝜽. With z = 𝚪−1y, we rewrite (1) as

𝓁(𝜽; y) = −(N∕2) log(2𝜋) − (1∕2) log |𝚪| − (1∕2)y⊤z.

To circumvent the computation of matrix inverse, we approximate z by the CG algorithm, which
is efficient computationally and in data storage.

The theoretical property of the maximum likelihood estimator is considered under the
increasing domain asymptotic framework (Mardia & Marshall, 1984). Following Lahiri (2003),
we denote0 ⊂ Rd as an open and connected subset of (−1∕2, 1∕2 ]d, and the prototype of sam-
pling region0 is a Borel set satisfying0 ⊂ 0 ⊂ cl(0), where cl(0) denotes the closure of0.
At stage n, the sampling region is denoted asn = 𝜏n0,where {𝜏n} is an increasing sequence of
positive numbers. Let Nn be the sample size at the nth stage of the asymptotics, which is at the
rate of 𝜏dn . Thus, the density at stage n is Nn𝜏

−d
n |0|−1 and bounded under the increasing domain

asymptotic framework.
Let zl be an approximation of z in the lth iteration of the CG algorithm and write the

approximate log-likelihood function at the lth iteration as

𝓁̃
(l)(𝜽; y) = −(N∕2) log(2𝜋) − (1∕2) log |𝚪| − (1∕2)y⊤zl. (3)

For ease of notation, we suppress the subscript n except for the theorems and the technical
details in the Appendix. Let 𝓁′(𝜽) = 𝜕𝓁(𝜽)∕𝜕𝜽 and 𝓁′′(𝜽,𝜽) = 𝜕

2𝓁(𝜽)∕𝜕𝜽𝜕𝜽⊤ denote the first-
and second-order derivatives of 𝓁(𝜽) with respect to 𝜽, respectively. For 𝜄, 𝜄

′ = 1, … , q, the
𝜄th element of 𝓁′(𝜽) is −(1∕2)tr(𝚪−1𝚪𝜄) − (1∕2)y⊤𝚪𝜄y, where 𝚪𝜄 = 𝜕𝚪∕𝜕𝜃𝜄 and 𝚪𝜄 = 𝜕𝚪−1∕𝜕𝜃𝜄 =
−𝚪−1𝚪𝜄𝚪−1. The (𝜄, 𝜄′)th entry of 𝓁′′ (𝜽,𝜽) is −(1∕2)tr(𝚪−1𝚪𝜄𝜄′ + 𝚪𝜄𝚪𝜄′ ) − (1∕2)y⊤𝚪𝜄𝜄

′
y, where 𝚪𝜄𝜄

′
=

𝜕
2𝚪−1∕𝜕𝜃𝜄𝜕𝜃𝜄′ = 𝚪−1(𝚪𝜄𝚪−1𝚪𝜄′ + 𝚪𝜄′𝚪−1𝚪𝜄 − 𝚪𝜄𝜄′ )𝚪−1. Moreover, let In(𝜽) = E(−𝓁′′(𝜽,𝜽)) denote the
information matrix of 𝜽, then the (𝜄, 𝜄′)th entry of the information matrix is nt𝜄𝜄′∕2, where nt𝜄𝜄′ =
tr(n𝚪−1n𝚪𝜄

n𝚪−1n𝚪𝜄′ ).
Let 𝜆1 ≤ … ≤ 𝜆N , |𝜆𝜄1| ≤ … ≤ |𝜆𝜄N | and |𝜆

𝜄𝜄
′

1 | ≤ … ≤ |𝜆𝜄𝜄′N |, 𝜄, 𝜄
′ = 1, … q denote the eigen-

values of 𝚪, 𝚪𝜄 and 𝚪𝜄𝜄
′
, respectively. Moreover, Xn = Op(an) if and only if Xn∕an is bounded in

probability. The following regularity conditions are assumed for Theorems 1–3.

(A1) Given d ≥ 0, the covariance function 𝛾(s, s′;𝜽) is twice continuously differentiable with
respect to 𝜽.

(A2) limsupn→∞𝜆Nn = c < ∞, limsupn→∞𝜆
𝜄

Nn
= c𝜄 < ∞, limsupn→∞𝜆

𝜄𝜄
′

Nn
= c𝜄𝜄′ < ∞ for some posi-

tive constants c, c𝜄 and c𝜄𝜄′ and all 𝜄, 𝜄′ = 1, … , q.
(A3) For all k, k′ = 1, … , q, na𝜄𝜄′ = limn→∞{nt𝜄𝜄′∕(nt𝜄𝜄nt𝜄′𝜄′ )1∕2} exists and nA = (na𝜄𝜄′ )q

𝜄,𝜄′=1 is a
nonsingular matrix.

(A4) limn→∞ N−1
n In(𝜽) → J(𝜽), where J(𝜽) is nonsingular.

(A5) sup
𝜽∈Ω 𝜅(𝜽) ≡ 𝜅0 = Op(1), where Ω is an open subset of Rq such that 𝜽0 ∈ Ω.

Assumption (A1) requires the covariance functions to be twice continuously differentiable,
which is satisfied by most popular covariance functions, such as the Matérn class and the Gaus-
sian covariance function (Mardia & Marshall, 1984). Assumption (A2) is related to the decay of
the covariance functions and their derivatives as well as the sampling design. A general condition
is given in theorem 3 of Chu (in press) for the increasing domain asymptotics. Assumption (A3)
ensures the information is nonsingular at the limit and therefore, the elements of 𝜽 are not
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asymptotically linear dependent (Mardia & Marshall, 1984). Assumption (A4) ensures the
convergence of information matrix and a similar assumption is made in Chu et al. (2011).
Assumption (A5) assumes that the condition number of the covariance matrix is uniformly
bounded in 𝜽 and a general condition is given in Lemma 7.

Theorem 1. Under (A1)–(A5), there exists, with probability tending to one, a local maximizer 𝜽̂
(l)

of 𝓁̃(l)(𝜽; y), such that

||𝜽̂
(l)
− 𝜽0|| = Op

⎛
⎜
⎜
⎜
⎝

max
⎧
⎪
⎨
⎪
⎩

(√
𝜅0 − 1

√
𝜅0 + 1

)l∕2

,N−1∕2
n

⎫
⎪
⎬
⎪
⎭

⎞
⎟
⎟
⎟
⎠

,

where 𝜅0 ≡ sup
𝜽∈Ω 𝜅(𝜽), 𝜅(𝜽) is the condition number of 𝚪(𝜽) and Ω is an open subset of Rq such

that 𝜽0 ∈ Ω. In particular, if l > (
√
𝜅0 + 1)∕2 logNn, we have ||𝜽̂

(l)
− 𝜽0|| = Op(N−1∕2

n ).
Theorem 1 establishes the existence of a local maximizer for 𝓁̃(l)(𝜽; y) given in (3). The con-

sistency of 𝜽̂
(l)
is determined by the sample size N, the condition number 𝜅0, and the number of

iterations l in the CG algorithm. For the increasing domain asymptotics considered here, 𝜅0 is
bounded as the sample size increases, as shown in lemma 7 of appendix A.4. Given the bounded
condition number, the estimate 𝜽̂

(l)
achieves root-N consistency in O(logN) iterations. The proof

of Theorem 1 is given in A.0.1. In practice, l is selected by some predetermined stopping criterion
for each iteration and hence may vary by 𝜽.

2.2 Log-determinant approximation via stochastic Lanczos

Next, we consider an approximation of the log-determinant of 𝚪. For a positive-definite matrix
A ∈ RN×N , its eigen decomposition can be written as A = Q𝚲Q⊤, where Q is the N × N matrix
whose ith column is the ith eigenvector of A and 𝚲 = diag{𝜆1, … , 𝜆N} is a diagonal matrix with
the eigenvalues of A in ascending order along the diagonal. It is well known that log det(A) =∑N

i=1 log(𝜆i) and the matrix log-determinant can be computed by the eigen decomposition, but it
can be computationally costly for large matrices.

An alternative approach is to use a stochastic trace estimator (Hutchinson, 1990). The
logarithm of A can be expressed as log(A) = Q log(𝚲)Q⊤, and the eigenvalues of log(A) are
log(𝜆1), … , log(𝜆N). Thus, we have

log det(A) = tr(log(A)) =
N∑

i=1
log(𝜆i). (4)

In addition, for any square matrix B ∈ RN×N , we have

tr(B) = E(u⊤Bu), (5)

where u = (u1, … ,uN)⊤ is a vector of independent samples from a random variable with mean 0
and variance 1. By (4) and (5), we have

log det(A) = E(u⊤ log(A)u). (6)
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Thus, aMonte Carlo estimator ofE(u⊤ log(A)u) can be used to approximate log det(A). Among all
zero mean unit variance random variables, the Rademacher random variable is shown to achieve
the minimum variance of u⊤ log(A)u (Hutchinson, 1990). This leads to the Hutchinson trace
estimator

log det(A) ≈ N−1
v

Nv∑

i=1
𝝌

⊤

i log(A)𝝌 i = N∕Nv

Nv∑

i=1
u⊤

i log(A)ui, (7)

where 𝝌1, … ,𝝌Nv
are i.i.d. Rademacher random variables, ui = 𝝌 i∕||𝝌 i||2, and Nv is the Monte

Carlo sample size.
Evaluation of (7) still requires an eigen decomposition of log(A) and thus, we further

approximate the quadratic form u⊤ log(A)u numerically. The analytic function log(⋅) can
be approximated using the orthonormal polynomial techniques, namely, Taylor’s expansions
(Zhang & Leithead, 2007), Chebyshev expansions (Han et al., 2015) and their variants
(Boutsidis et al., 2017). Here, we adopt a Gaussian quadrature rule, which outperforms the
aforementioned methods (Ubaru et al., 2017). Let 𝛼i denote the ith element of Q⊤u. We have
u⊤ log(A)u = u⊤Q log(𝚲)Q⊤u =

∑N
i=1 log(𝜆i)𝛼2i , which can be written as a Riemann–Stieltjes

integral with piecewise constant measure

N∑

i=1
log(𝜆i)𝛼2i = ∫

𝜆N

𝜆1

log(𝜆)d𝛼(𝜆), (8)

where 𝛼(t) = 0 if 𝜆i ≤ t < 𝜆1, 𝛼(t) =
∑i

k=1𝛼
2
k if 𝜆i ≤ t < 𝜆i+1 and 𝛼(t) =

∑N
k=1𝛼

2
k if t ≥ 𝜆N . We

approximate (8) via the Gaussian quadrature rule, with a general form given by

∫

𝜆N

𝜆1

log(𝜆)d𝛼(𝜆) ≈
m−1∑

i=0
𝜔i log(𝜙i), (9)

where {(𝜔i, 𝜙i), i = 0, 1, … ,m − 1} are theweight-node pairs of them-pointGaussian quadrature
rule for m << N and can be computed by the Lanczos algorithm (Golub & Welsch, 1969). In
Algorithms 1 and 2, we perform an orthonormalization of the Krylov subspace and approximate
the log-determinant by the Gaussian quadrature rule, respectively.

Algorithm 1. Lanczos algorithm for orthonormalization of the Krylov subspacem(A,u)

1 Initialization: q1 = u∕‖u‖2,Q1 = [q1], a1 = (q1)⊤Aq1, 𝝃1 = (A − a1I)q1.

2 for k = 2,… ,m do
3 bk = ‖𝝃k−1‖2
4 if bk = 0 then
5 return (Q; a1,… , ak; b1,… , bk−1)
6 qk = 𝝃k−1∕bk; Qk = [Qk−1,qk]
7 ak = (qk)⊤Aqk
8 𝝃k = (A − akI)qk − bkqk−1
9 end
output: (Qm; a1,… , am; b1,… , bm−1)
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Algorithm 1 is the standard Lanczos algorithm, which orthonormalizes the Krylov sub-
space m(A,u) and yields an n ×m matrix Qm whose columns are orthonormal bases of the
Krylov subspacem(A,u) and anm ×m tridiagonal matrix Tm with the diagonal elements being
(a1, … , am) and the sub-diagonal elements and super-diagonal elements being (b1, … , bm−1).
Let p(⋅) denote the polynomial of the smallest degree such that p(A)u = 0 and let M denote the
degree of p(⋅). Then AQM = QMTM and the eigenvalues of TM are also eigenvalues of A. Let
{(𝜙k,𝚽k), k = 0, 1, … ,m − 1} be the eigenpairs of Tm. We approximate u⊤ log(A)u by

u⊤ log(A)u ≈
m−1∑

k=0
𝜔k log(𝜙k) with 𝜔k = (e⊤1𝚽k)2, (10)

where e1 = (1, 0, … , 0)⊤ ∈ Rm.
The log-determinant of A can then be approximated as

log |A| ≈ N∕Nv

Nv∑

i=1

{m−1∑

k=0
𝜔
(i)
k log(𝜙(i)

k )

}

, (11)

where {(𝜙(i)
k , 𝜔

(i)
k ), k = 0, … ,m − 1} are the eigenvalues and the square of the first element of the

eigenvectors corresponding to the ith starting vector (Ubaru et al., 2017).

Algorithm 2. Log-determinant approximation by the Gaussian quadrature rule

Input :Apositive definitematrixA ∈ RN×N , degreem and number of starting vectorsNv.
Output: Ξm,Nv = N∕Nv

∑Nv
i=1

{∑m−1
k=0 𝜔

(i)
k log(𝜙(i)

k )
}
.

1 for i = 1,… ,Nv do
2 Draw a Rademacher random vector 𝝌 i as the ith starting vector
3 Calculate T(i)

m through Algorithm 1 with A = 𝚪 and v = 𝝌 i

4 Calculate eigenpairs (𝜙(i)
k ,𝚽

(i)
k ) of T

(i)
m and compute 𝜔(i)

k = (e⊤1𝚽
(i)
k )

2 for
k = 0, 1,… ,m − 1.

Combining with the CG algorithm, we further approximate the log-likelihood function with

𝓁̃
(l,m,Nv)(𝜽; y) = −(N∕2) log(2𝜋) − (1∕2)Ξm,Nv − (1∕2)y⊤zl, (12)

where Ξm,Nv is the approximation of log det(𝚪) by Algorithm 2, and zl is an approximate solution
to 𝚪−1y at the lth iteration of the CG algorithm. Maximizing 𝓁̃

(l,m,Nv)(𝜽; y) yields an approxi-
mate estimate of 𝜽. We establish the existence and consistency of such estimator in the following
Theorem 2.

Theorem 2. Under (A1)–(A5), there exists, with probability tending to one, a local maximizer
𝜽̂
(l,m,Nv) of 𝓁̃(l,m,Nv)(𝜽; y), such that

||𝜽̂
(l,m,Nv) − 𝜽0|| = Op

⎛
⎜
⎜
⎜
⎝

max
⎧
⎪
⎨
⎪
⎩

(√
𝜅0 − 1

√
𝜅0 + 1

)l∕2

,

(√
𝜅0 − 1

√
𝜅0 + 1

)m

,N−1∕2
n

⎫
⎪
⎬
⎪
⎭

⎞
⎟
⎟
⎟
⎠

.
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If l >
√
𝜅0+1
2

logNn and m >

√
𝜅0

4
log(NnC1), where C1 = 𝜆max

√
𝜅0 log(𝜆max + 𝜆min), we have

||𝜽̂
(l,m,Nv) − 𝜽0|| = Op(N−1∕2

n ).

The proof of Theorem 2 is given in A.0.2. By Theorem 2, the consistency of 𝜽̂
(l,m,Nv) is deter-

mined by the sample size N, the condition number 𝜅0, the number of iterations in the CG
algorithm l, and the order of the Gaussian quadrature rule m. Given a well-conditioned covari-
ance matrix, the estimate 𝜽̂

(l)
achieves root-N consistency in O(logN) iterations. In addition, the

convergence result does not depend on the Monte Carlo sample size Nv, which will be illustrated
by simulation in Section 3.3. Also will be seen in simulation is that Nv has negligible impact on
the accuracy of the log-likelihood evaluation.

2.3 Generalization to spatial linear regression

We now generalize the previous two subsections to the setting of spatial linear regression.
Consider a Gaussian process {y(s) ∶ s ∈  ⊂ Rd} such that

y(s) = x(s)⊤𝜷 + 𝜀(s), (13)

where x(s) = (x1(s), … , xp(s))⊤ is a p × 1 vector of covariates and 𝜷 = (𝛽1, … , 𝛽p)⊤ is a p × 1
vector of regression coefficients. The error process 𝜀(s) is assumed to have zero mean, and
the spatial covariance between 𝜀(s) and 𝜀(s′) is 𝛾(s, s′;𝜽) = Cov{𝜀(s), 𝜀(s′)}. For j = 1, … , p, we
write xj = (xj(s1), … , xj(sN))⊤, where s1, s2, … , sN ∈  are the spatial sampling locations. Let
X = [x1, … , xp] ∈ RN×p denote the design matrix.

The log-likelihood function can be written as

𝓁(𝜷,𝜽) = −(N∕2) log(2𝜋) − (1∕2) log |𝚪(𝜽)| − (1∕2)(y − X𝜷)⊤𝚪(𝜽)−1(y − X𝜷). (14)

For a given 𝜽, maximizing 𝓁(𝜷,𝜽) with respect to 𝜷 yields the profile likelihood estimate (PLE)
of 𝜷,

𝜷PLE(𝜽) = (X⊤𝚪(𝜽)−1X)−1X⊤𝚪(𝜽)−1y. (15)

The term 𝚪−1(𝜽)X in (15) requires solving linear systems with the same coefficient matrix but dif-
ferent right-hand sides,which can also be carried out iteratively using theCGalgorithm.However,
the CG algorithm is still computationally demanding, especially when the number of covariates
p is large. We consider a computationally more efficient approach with two steps. In the first
step, we obtain a consistent estimate of 𝜷. As shown in Appendix A.3, 𝜷OLS = (X⊤X)−1X⊤y is a
consistent estimate. In the second step, we estimate 𝜽 based on the vector of residuals using the
algorithms in Sections 2.1 and 2.2. For the spatial linear regressionmodel, the following regularity
condition for the design matrix X is needed.

(A6) The fixed design matrix X satisfies limn→∞ N−1
n (X⊤X)−1 → C, where C is some positive

definite matrix.

In Theorem 3, we show that the resulting estimate of 𝜽 is consistent and achieve the same
convergence rate as that in Theorem 2.
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Theorem 3. Under (A1)–(A6), for any given 𝜷 satisfying ||𝜷 − 𝜷0|| = Op(N−1∕2
n ), there exists, with

probability tending to one, a local maximizer 𝜽̂
(l,m,Nv) of 𝓁̃(l,m,Nv)(𝜽; y − X𝜷), such that the results in

Theorem 2 hold.
In practice, we propose to use the ordinary least squares (OLS) estimate 𝜷OLS, which is root-N

consistent; see Appendix A.3. Thus, our two-step approach above will result in a consistent
estimate of 𝜽. The proof of Theorem 3 is given in Appendix A.3.

3 COMPUTATIONAL ASPECTS

In Section 3.1, we evaluate the computational complexity of our methodology and in Section 3.2,
we provide a fast Krylov covariance tapering method. The trade-off between accuracy and
computational complexity, using different choices of m and Nv, is explored in Section 3.3.
We also demonstrate the finite-sample properties of our parameter estimation for compactly
supported covariances in Section 3.4. In Section 3.5, we compare our methods with com-
petitors including covariance tapering and the nearest neighbor Gaussian process models
(Datta et al., 2016).

3.1 Computational complexity

The computational complexity of evaluating the approximate log-likelihood function (12) is
dominated by the algorithms in Sections 2.1 and 2.2. The CG algorithm, involves only scalar
product of vectors, inner products of vectors, and matrix-vector multiplications of dimension
N in each iteration of the algorithm. Thus, the CG algorithm can be performed in O(lN2)
flops, where l is the number of iterations. Theorem 1 shows that O(

√
𝜅0+1
2

logN) number of iter-
ations ensures consistent estimation of the parameters. Algorithm 2 for the log-determinant
approximation involves N𝜈 Monte Carlo samples, and each sample involves a Krylov subspace
orthogonalization of dimension m via Algorithm 1 and the eigen decomposition of an m ×m
matrix. Similar to the CG algorithm, each iteration of the Lanczos algorithm requires only basic
linear algebra subroutines and hence, can be performed in O(mN2) steps. The eigen decompo-
sition can be achieved with a complexity lower than O(m3), which is dominated by the Lanczos
algorithm. Thus, the log-determinant approximation algorithm requires O(mN𝜈N2) flops. By
Theorem 2, consistency of the parameters is guaranteed by letting m increase with N at a
rate of O(logN). Thus, the computational complexity of the log-determinant approximation
is O(N𝜈N2 logN).

For dense spatial covariance matrices, our method with the computational complexity
O(N2 logN) provides a substantial improvement over the traditional Cholesky decomposition
with O(N3). For sparse covariance matrices, the covariance tapering has a computational com-
plexity of O(N3∕2) (Bolin & Wallin, 2016; Lipton et al., 1979). For the proposed method, we
can achieve quasi-linear complexity by exploiting sparsity. Indeed, sparse matrix-vector mul-
tiplications involves only O(||𝚪||0) operations and thus, our algorithm can be implemented in
O((mN𝜈 + l)||𝚪||0) flops, where ||𝚪||0 is the number of nonzero entries of 𝚪. The implementation
of Algorithms 1–3 is carried out through ViennaCL.

In practice, the number of iteration of CG algorithm is closely related to the conditional num-
ber, and can be improved by various preconditioning methods (Chen, 2013; Chow & Saad, 2014;



LIU et al. 1125

Cutajar et al., 2016; Gardner et al., 2018; Stein et al., 2012). The computational efficiency of
the proposed method can be further improved by the block CG method, which takes advan-
tage of the same covariance matrix in the algorithm (Chen, 2011). We will leave these for future
research.

3.2 Krylov covariance tapering

We develop an additional Krylov subspace-based method, which achieves similar accuracy to
Cholesky decomposition-based methods but is faster to compute. As noted in Sections 3.1, our
Krylov subspace-based methodology can achieve quasi-linear complexity by exploiting sparsity.
We now introduce sparsity into computation by covariance tapering (Furrer et al., 2006; Kaufman
et al., 2008).

The tapered covariance function, constructed by multiplying the covariance function with a
compactly supported covariance function, is a valid covariance function butwith compact support
(Furrer et al., 2006). The covariance-tapered log-likelihood function is given by

𝓁(𝜽; y) = −(N∕2) log(2𝜋) − (1∕2) log |𝚪tap| − (1∕2)y⊤𝚪−1
tapy, (16)

where 𝚪tap is the tapered covariance matrix. The covariance-tapered log-likelihood function can
then be approximated by

𝓁̃
(l,m,Nv)
tap (𝜽; y) = −(N∕2) log(2𝜋) − (1∕2)Ξtap,m,Nv − (1∕2)y⊤z(l)tap, (17)

where Ξtap,m,Nv is the stochastic Lanczos estimator of log det(𝚪tap), and z(l)tap is the approxima-
tion of 𝚪−1

tapy at the lth iteration. Maximizing (17) yields an approximate MLE of the covariance
parameters. For spatial linear regression, a procedure similar to Section 2.3 can be applied.

3.3 Computational efficiency

To evaluate the computational efficiency of our Krylov subspace base methodology, we simu-
late datasets from a Gaussian process as follows. First, the spatial locations are sampled from a
two-dimensional spatial domain [0,

√
N∕2]2, whereN is the sample size, to guarantee a fixed sam-

pling density of 4. Then each simulated dataset is generated from a zero-mean Gaussian process
with an exponential covariance function

𝛾exp(s, s′;𝜽) = 𝜎
2(1 − c) exp(−||s − s′||∕r), (18)

where r = 2 is the range parameter, c = 0.2 is the nugget proportion such that c𝜎2 is the nugget
effect, 𝜎2 = 9 is the variance, and 𝜽 = (r, c, 𝜎2)⊤. We simulate datasets with sample sizes rang-
ing roughly from 5000 to 250,000. We also construct the tapered covariance using the Wendland
tapering kernel

𝛾𝛿(s, s′) =
(
1 − ||s − s′||∕𝛿

)4
+

(
1 + 4||s − s′||∕𝛿

)
, (19)

where 𝛿 is a tapering threshold parameter that controls the sparsity of the covariance matrix
(Wendland, 1995).
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F IGURE 1 (a) Approximation error (i.e., the absolute difference between the approximated and the true
negative log-likelihood) by the order of the Gaussian quadrature rulem, under different Monte Carlo sample
sizes Nv. (b) Approximation error by the Monte Carlo sample size Nv, under differentm. (c) Log run time by log
number of spatial sampling locations for a single simulation at different levels of sparsity

The accuracy of ourKrylov subspace-basedmethodology depends on the order of theGaussian
quadrature rulem and theMonte Carlo sample sizeNv. The effect ofm is shown in Figure 1a with
the sample size N fixed at 4900 and the tapering threshold parameter 𝛿 at 6. The approximation
error (i.e., the absolute difference between the approximated and the true negative log-likelihood)
is plotted against m with Nv = 1, 2, 5, and 10. For small m, the accuracy of likelihood evaluation
is relatively low. Increasing m to 10 effectively reduces the approximation error. We can further
see that, form ≥ 30, reduction in approximation error is very moderate. This finding is very inter-
esting since, as demonstrated in Theorem 2,m is of the order (logN) to achieve the estimation
consistency. From our own experience, m = 30 seems to be sufficient. The effect of Nv is shown
in Figure 1b with the approximation error plotted against Nv for m fixed at 5, 10, 30, and 80.
There is negligible influence of Nv on the quality of the likelihood approximation, even when
Nv = 1. Based on these findings, we let m = 30 and Nv = 1 for the remainder of the numerical
examples.

Figure 1c shows the run time (averaged over 10 replicates) for a single iteration of likelihood
evaluation with sample size N. The solid line represents the time needed for evaluating the exact
likelihood, and the run time is reported for N under 10,000. For Krylov covariance tapering, 𝛿 =
2, 4, and 6 are considered for the tapering threshold parameter. As 𝛿 increases, the sparsity of
covariance matrix decreases and the run time increases. In addition, the run time of the Krylov
covariance taperingmethod increases at a slower rate than the exact likelihood as the sample size
increases. For 𝛿 = 2, 4, and 6, the run time increases approximately linearly, which supports the
computational complexity analysis in Section 3.1.

3.4 Finite-sample properties

As demonstrated in Sections 3.1–3.3, our Krylov subspace-based methodology can achieve
quasi-linear complexity by introducing sparsity into computation using correlation functions
with compact support. It is not uncommon in practical applications that the spatial correlations
among observations are negligible beyond a certain distance, in which cases compactly supported
covariances are applicable (Gneiting, 2002). For the spatial linear model (13), we generate two
covariates from a Gaussian distribution with unit variance and cross-covariate correlation of 0.5.
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The covariates are then standardized to have mean 0 and variance 1. The regression coefficients
are set to 𝜷 = (2, 1)⊤. The compactly supported covariance function considered is the product of
the exponential covariance function (18) and the Wendland kernel function (19)

𝛾csc(s, s′) = 𝛾exp(s, s′) ⋅ 𝛾𝛿(s, s′). (20)

Therefore, the underlying covariance matrix of simulated datasets is sparse.
Here we benchmark our method against the exact method, whose parameter estimates are

obtained through directly maximizing (14) using the spam package in R (Furrer & Gerber, 2008).
In addition, we evaluate the effectiveness of our methodology in Section 2.3, referred to as
Krylov-OLS, and compare it with an alternative method by letting the consistent estimate of 𝜷 in
the first step be the approximated PLE 𝜷PLE(𝜽) using the CG algorithm, referred to as Krylov-GLS.

We generate 100 simulated datasets of sample sizeN = 4900. The tapering threshold parame-
ter 𝛿 is set to be 6, 10, 12, corresponding to different levels of sparsity. Figure 2 shows boxplots of
both the run time and the parameter estimates. At the sparsity level 𝛿 = 6, the run time is reduced
by a factor of approximately 20 and 33 for Krylov-GLS and Krylov-OLS, respectively. The simula-
tion results show that our Krylov approximation can greatly improve computational efficiency for
sparse matrices. For regression coefficients, both the point estimates and variability of the regres-
sion coefficients based on Krylov-GLS are nearly identical to the MLE, for each level of sparsity
considered. As expected, the Krylov-OLS method has slightly larger bias and variance compared
with the other two methods, indicating a loss of statistical efficiency when spatial correlation is
unaccounted for. For covariance parameters, the performance of Krylov-OLS is nearly as good
as Krylov-GLS, showing that the estimation of the mean trend has little association with covari-
ance estimation. Furthermore, simulation study shows that parameter estimates using Krylov
subspace-based methods is unbiased, supporting the conclusions in Theorem 3. However, both
Krylov subspace-based methods have larger variances than the exact method, showing reduced
efficiency of our method due to the approximation error.

3.5 Further comparisons

We now compare Krylov-GLS and Krylov-OLS in Section 3.4 with the standard covariance taper-
ing (Tapering) and the nearest-neighbor Gaussian process (NNGP) in the literature, while the
exact MLE serves again as the benchmark. These approaches are implemented in R, using the
spam package for covariance tapering, spNNGP for NNGP, and our spKrylov for the Krylov
subspace-based methods.

Consider two simulated examples of sample sizes 5390 and 11,000 both from a Gaussian pro-
cesswith a linearmean function as described in Section 3.4 andwith aMatérn covariance function
defined as

𝛾mat(s, s′;𝜽) = 𝜎
2(1 − c)2

1−𝜈

Γ(𝜈)

(√
2𝜈
||s − s′||

r

)
𝜈

K𝜈

(√
2𝜈
||s − s′||

r

)
. (21)

Here, 𝜎2 = 9 is the variance, c = 0.2 is the nugget proportion such that c𝜎2 is the nugget effect,
r = 2 is the scale parameter, and 𝜈 is the smooth parameter. We set 𝜈 = 0.5 for the first simulated
example and 𝜈 = 2.5 for the second one. In each simulated example, 90% of the observations
are used for model fitting, and the rest are used for evaluating the predictive performance. For
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F IGURE 2 Boxplots for run time, estimates of regression coefficients (𝛽1, 𝛽2), and covariance parameters
(𝜎2, c, r), under 𝛿 = 6, 10, 12 by maximum likelihood estimation (exact) and two Krylov subspace-based methods
Krylov-GLS and Krylov-ordinary least squares

observations in the hold-out set, denoted as yi,new and predicted to be ŷi,new, i = 1, … ,Nnew, we
use the mean squared prediction error (MSPE) to evaluate the prediction accuracy

MSPE = N−1
new

Nnew∑

i=1
(yi,new − ŷi,new)2.

For NNGP, the numbers of nearest neighbors are fixed at 10, 20, and 30. For covariance tapering,
we taper the Matérn covariance function by

𝛾tap(s, s′) = 𝛾mat(s, s′) ⋅ 𝛾𝛿(s, s′). (22)

Three different levels of sparsity are considered with the tapering threshold parameter 𝛿 set to be
6, 10, or 12. The first simulated example is moderately large to accommodate both the exact and
the tapered likelihood calculations, whereas the second simulated example has a larger sample
size and highlights that theKrylovmethods can outperformNNGP. Both simulations are repeated
100 times and the results are summarized in Figures 3 and 4 for the first and second simulated
examples, respectively.

OurKrylov covariance tapering involves two stages of approximation. At the first stage, covari-
ance tapering is applied, which assumes a misspecified covariance with distant location pairs
forced to be independent. At the second stage, numerical approximations to the tapered likelihood
function are obtained within the Krylov subspace. To illustrate the approximation capabilities
of the first stage, we compare covariance tapering to the exact MLE. In terms of prediction
accuracy and regression coefficient estimates, covariance tapering has nearly indistinguishable
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F I GURE 3 Simulated example 1: Boxplots for mean squared prediction error (MSPE), regression
coefficients (𝛽1, 𝛽2) and covariance parameters (𝜎2, c, r) for 𝛿 ∈ {6, 10, 12} under maximum likelihood method
(Exact), Krylov covariance tapering methods (Krylov-GLS and Krylov-OLS), NNGP method, covariance tapering
method (Taper). For nearest-neighbor Gaussian process, the numbers of the nearest neighbors are 10, 20, and 30.
For Krylov-GLS and Krylov-OLS, 𝛿 = 6, 10, 12

performance from the exact MLE. However, the tapered covariance parameter estimates have
larger biases than the exact MLE especially when 𝛿 is small. As expected, these biases decrease
as we increase the value of 𝛿 thereby decrease the sparsity. For the second stage, Krylov-OLS
and Krylov-GLS exhibit almost identical estimation and prediction performance to covariance
tapering, for all three sparsity levels (𝛿 = 6, 10, 12), with the exception that Krylov-OLS has larger
variances of regression coefficient estimates.

For regression coefficient estimates, NNGP has similar accuracy but superior efficiency com-
pared with all other approaches including the exact MLE. However, NNGP is outperformed by
tapering-based methods for both covariance estimation and prediction. As shown in Table 1,
among all the methods considered, the point estimates of 𝜷 are accurate and the empirical
confidence intervals contain the true value. Krylov-GLS has slightly wider confidence intervals
than others, which might be due to the approximation error in finding 𝚪−1X. Both covari-
ance tapering and Krylov subspace-based methods give similar accuracy and precision in the
estimation of covariance parameters. In contrast, for NNGP, the covariance parameter esti-
mates are quite unstable and inaccurate, as shown in Figure 3. Additionally, the MSPE of
NNGP ranges from 3.36 to 3.38, which is slightly higher than that of our methodology, ranging
from 3.31 to 3.32.

To further illustrate the efficiency and accuracy of the NNGP method and Krylov subspace
based methods, we fit a model for the second simulated example using NNGP with 10, 20, 30
and 50 nearest neighbors and Krylov subspace-basedmethods with tapering threshold parameter
𝛿 = 4, 6 and 10. We record the run time and the MSPE for both methods in Figure 4. As expected,
increasing the number of nearest neighbors inNNGPdecreasesMSPE at the loss of computational



1130 LIU et al.

T
A
B
L
E

1
Pe
rc
en
til
es
of
th
e
es
tim

at
es
of
re
gr
es
si
on

co
ef
fic
ie
nt
sa
nd

co
va
ria
nc
e
pa
ra
m
et
er
su
nd
er
m
ax
im
um

lik
el
ih
oo
d
m
et
ho
d
(E
xa
ct
),
K
ry
lo
v
co
va
ria
nc
e
ta
pe
rin

g
m
et
ho
ds
(K
ry
lo
v-
G
LS

an
d
K
ry
lo
v-
O
LS
),
ne
ar
es
t-n
ei
gh
bo
rG

au
ss
ia
n
pr
oc
es
s(
N
N
G
P)
m
od
el
,a
nd

co
va
ria
nc
e
ta
pe
rin

g
m
et
ho
d
(T
ap
er
).
Fo
rN

N
G
P,
th
e
nu
m
be
rs
of
ne
ar
es
t

ne
ig
hb
or
sa
re
10
,2
0,
an
d
30
.F
or
K
ry
lo
v-
G
LS

an
d
K
ry
lo
v-
O
LS
,𝛿

=
6,
10
,
12

𝜹
=
6

𝜹
=
10

𝜹
=
12

M
et
ho
d

%
Ex
ac
t

N
N
G
P

(1
0)

N
N
G
P

(2
0)

N
N
G
P

(3
0)

Ta
pe
r

K
ry
lo
v

G
LS

K
ry
lo
v

O
LS

Ta
pe
r

K
ry
lo
v

G
LS

K
ry
lo
v

O
LS

Ta
pe
r

K
ry
lo
v

G
LS

K
ry
lo
v

O
LS

𝛽
1
=
2

50
1.
99

1.
99

1.
99

1.
99

1.
99

1.
99

1.
99

1.
99

1.
99

1.
99

1.
99

1.
99

1.
99

2.
5

1.
95

1.
95

1.
95

1.
95

1.
95

1.
90

1.
95

1.
95

1.
90

1.
95

1.
95

1.
90

1.
95

97
.5

2.
06

2.
04

2.
03

2.
03

2.
06

2.
08

2.
06

2.
06

2.
08

2.
06

2.
06

2.
08

2.
06

𝛽
2
=
1

50
1.
01

1.
01

1.
01

1.
01

1.
01

1.
02

1.
01

1.
01

1.
02

1.
01

1.
01

1.
02

1.
01

2.
5

0.
95

0.
96

0.
96

0.
96

0.
94

0.
90

0.
95

0.
95

0.
90

0.
95

0.
95

0.
90

0.
95

97
.5

1.
06

1.
05

1.
05

1.
05

1.
06

1.
10

1.
06

1.
06

1.
10

1.
06

1.
06

1.
10

1.
06

𝜎
2
=
9

50
8.
91

9.
12

9.
75

9.
44

8.
22

8.
53

8.
52

8.
61

9.
01

9.
01

8.
70

9.
08

9.
08

2.
5

7.
97

6.
90

6.
67

6.
62

7.
46

7.
70

7.
70

7.
76

8.
09

8.
08

7.
82

8.
13

8.
15

97
.5

10
.1
8

25
5.
76

44
.5
8

87
.9
2

9.
06

9.
44

9.
44

9.
61

10
.1
3

10
.1
3

9.
75

10
.2
6

10
.2
6

c
=
0.
2

50
0.
20

0.
19

0.
18

0.
19

0.
25

0.
25

0.
25

0.
22

0.
22

0.
22

0.
22

0.
21

0.
21

2.
5

0.
17

0.
01

0.
04

0.
02

0.
22

0.
22

0.
22

0.
19

0.
19

0.
19

0.
19

0.
18

0.
18

97
.5

0.
23

0.
26

0.
27

0.
27

0.
28

0.
28

0.
28

0.
25

0.
24

0.
24

0.
24

0.
24

0.
24

r
=
2

50
1.
95

2.
06

2.
15

2.
09

2.
73

3.
11

3.
11

2.
21

2.
46

2.
46

2.
13

2.
34

2.
34

2.
5

1.
66

1.
27

1.
23

1.
26

2.
20

2.
48

2.
48

1.
84

2.
03

2.
03

1.
79

1.
96

1.
96

97
.5

2.
43

74
.1
6

12
.2
8

25
.1
6

3.
59

4.
15

4.
16

2.
76

3.
08

3.
08

2.
64

2.
91

2.
91

M
SP
E

—
3.
31

3.
38

3.
36

3.
36

3.
32

3.
32

3.
32

3.
31

3.
32

3.
31

3.
31

3.
32

3.
31

A
bb
re
vi
at
io
ns
:M

SP
E,
m
ea
n
sq
ua
re
d
pr
ed
ic
tio
n
er
ro
r;
O
LS
,o
rd
in
ar
y
le
as
ts
qu
ar
es
.



LIU et al. 1131

F I GURE 4 Simulated example 2: Boxplots for run time of parameter estimation (in seconds) and mean
squared prediction error (MSPE) under Krylov covariance tapering methods (Krylov-GLS and Krylov-OLS) and
NNGP model. For nearest-neighbor Gaussian process, the numbers of nearest neighbors are 10, 20, 30, and 50.
For Krylov-GLS and Krylov-OLS, 𝛿 = 4, 6, 10

efficiency. Similarly for Krylov subspace-based methods, a significant drop in MSPE is obtained
by increasing 𝛿 from 4 to 6, followed by a plateau, showing that 𝛿 = 6 provides an approximation
sufficiently close to the exact method. On the contrary, the NNGPmethod with 50 nearest neigh-
bors has slightly inferior performance and the computation becomes extremely time consuming.
Additionally, Krylov-OLS achieves notable computational savings over Krylov-GLS with almost
identical predictive performance, for all levels of sparsity considered.

4 LIDAR DATA EXAMPLE

In this section, we employ our Krylov subspace-based method methodology to analyze a dataset
with N = 5,025, 000 LiDAR estimates of forest canopy height in western Alaska during a 2014
Tanana Inventory Unit campaign (Cook et al., 2013; Finley et al., 2019). The two covariates
of interest are tree cover at a spatial resolution of 30 m and occurrence of forest fire (Hansen
et al., 2013). The tree cover is measured in percentage for peak growing season in 2010, and the
fire occurrence is encoded as 1 if the fire ever occurred within the past 20 years and 0 otherwise.
See Figure 5.

To characterize the relationship between the forest canopy height and the two covariates
(tree cover and forest fire), we fit a spatial linear regression model with an exponential covari-
ance function (18) parameterized by 𝜎

2, c, and r. As discussed in Section 3.2, we consider a
tapered approximation of the likelihood function using the Wendland covariance function (19)
with a tapering threshold 𝛿 = 0.6. Further, we encode the dataset to 200 blocks, with 25,000
observations within each block, using a mean-distance-ordered blocking structure motivated
by an efficient mean-distance-ordered search algorithm for image vector quantization (Ra &
Kim, 1993). The idea is based on the inequality between arithmetic mean and quadratic mean
(a + b)2 ≤ 2(a2 + b2). For two locations s = (s1, s2)⊤ and s′ = (s′1, s

′
2)

⊤, we define w = (s1 + s2)∕
√
2

and w′ = (s′1 + s′2)∕
√
2. Then,

||s − s′|| =
√

(s1 − s′1)2 + (s2 − s′2)2 ≥ (|s1 + s2 − s′1 − s′2|)∕
√
2 = |w − w′|.
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F IGURE 5 Maps for forest canopy height, tree cover and forest fire in west Alaska

F IGURE 6 Residuals maps by the Krylov method (left) and the nearest-neighbor Gaussian process method
(right)

That is, the Euclidean distance between two locations is bounded from below by amultiple of the
absolute difference of the mean of the coordinate vectors. The mean-distance-ordered blocking
scheme is outlined as follows: (1) letw = (w1, … ,wN)⊤ be the code vector of (s′1, … , s′N), where
si = (si1, si2)⊤ and wi = (si1 + si2)∕

√
2; (2) order the dataset according to the w ordering; (3) col-

lapse adjacent observations to subsets of an approximately equal size. The purpose of the blocking
is to divide the whole dataset into several blocks, which reduces the computational burden.

We use both the Krylov and the NNGP methods for parameter estimation and prediction.
The regression coefficients include an intercept and two slopes, denoted as 𝛽0, 𝛽tree cover, and 𝛽fire.
Table 2 shows that both the Krylov method and the NNGP method yield comparable parameter
estimates and prediction, which is also reflected in Figure 6. The residual maps for the hold-out
dataset using the Krylov and the NNGP method are very similar. Indeed, the root mean squared
prediction error (RMSPE) of the 25,000 hold-out observations for the Krylov method is only
slightly smaller than the RMSPE for the NNGP method.



LIU et al. 1133

TABLE 2 Point estimates of regression coefficients and covariance parameters and root mean
squared prediction error (RMSPE) for the Krylov and nearest-neighbor Gaussian process (NNGP) methods

Method 𝜷0 𝜷tree cover 𝜷fire 𝝈
2 c r RMSPE

Krylov 2.398 0.022 0.747 18.012 0.067 0.201 1.707

NNGP 2.429 0.022 0.54 19.455 0.053 0.183 1.709

5 CONCLUSION

In this paper, we have studied both the theoretical and computational aspects of the Krylov
subspace methods in the context of parameter estimation for large spatial datasets. The approxi-
mation error is shown to tend to zero under the increasing domain asymptotic framework and the
consistency of the parameter estimators is established. The computational complexity of the pro-
posed method is O(N logN) for sparse covariance matrices and O(N2 logN) for dense covariance
matrices.

Besides Krylov subspace methods, a Chebyshev polynomial approximation can also be used
for approximating the likelihood function for large spatial dataset (Han et al., 2015). Moreover,
a direct link can be established between Gaussian Markov random field approximation and the
Chebyshev polynomial approximation. In terms of computational efficiency, the current form of
our code is implemented in R, deploying the proposed method in Matlab, Python, or C++ could
be considered in the future (Gardner et al., 2018; Wang et al., 2019). In terms of memory, an
(mN + lN) space is required to guarantee the consistency of parameters, where m = (logN)
and l = (logN). The practical choice ofm is an open question. Ideally, if we can obtain the level
of approximation error for some m at a sequence of preselected parameter values of 𝜽, we can
choosem in a data-driven manner. However, this approach may not be computationally feasible
since the calculation of the original log-likelihood function is time-consuming for large sample
sizes.
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APPENDIX . TECHNICAL DETAILS

A.1 Proof of Theorem 1

Proof. Note that

𝓁(𝜽; y) − 𝓁̃
(l)(𝜽; y) = −(1∕2)y⊤(z − zl) = −(1∕2)z⊤𝚪(z − zl)

= −(1∕2)(z − zl)⊤𝚪(z − zl) − (1∕2)z⊤l 𝚪(z − zl)
= −(1∕2)(z − zl)⊤𝚪(z − zl) ≡ −(1∕2)||z − zl||2𝚪. (A1)

The second term in (A1) vanishes since zl ∈ l(𝚪, y) and 𝚪(z − zl) = y − 𝚪zl = rl is orthogonal to
l(𝚪, y). Thus, we have

|𝓁(𝜽; y) − 𝓁̃
(l)(𝜽; y)| ≤

(√
𝜅 − 1

√
𝜅 + 1

)l

||z||2𝚪 ≤

(√
𝜅0 − 1

√
𝜅0 + 1

)l

||z||2𝚪 ≡ g(l)(𝜽),

where ||z||2𝚪 = y⊤𝚪−1y.
For ease of notation, we omit y in the log-likelihood functions. Let 𝛿n = N𝛼

n , where 𝛼 ∈
[−1∕2, 0]. First, we show that, for a given constant 𝜖 > 0, there is a constant C such that, for a
sufficiently large n,

P
{

sup
||u||=C

𝓁̃
(l)(𝜽0 + 𝛿nu) < 𝓁̃

(l)(𝜽0)
}

≥ 1 − 𝜖,

where u ∈ Rq. We have

𝓁̃
(l)(𝜽0 + 𝛿nu) − 𝓁̃

(l)(𝜽0) = {𝓁(𝜽0 + 𝛿nu) − 𝓁(𝜽0)} +
{
𝓁(𝜽0) − 𝓁̃

(l)(𝜽0)
}

−
{
𝓁(𝜽0 + 𝛿nu) − 𝓁̃

(l)(𝜽0 + 𝛿nu)
}

≤ {𝓁(𝜽0 + 𝛿nu) − 𝓁(𝜽0)} + g(l)(𝜽0) + g(l)(𝜽0 + 𝛿nu).

By Taylor’s expansion, we obtain

𝓁(𝜽0 + 𝛿nu) − 𝓁(𝜽0) = 𝛿n𝓁′(𝜽0)⊤u − (1∕2)Nn𝛿
2
nu⊤J(𝜽0)u{1 + op(1)}. (A2)

https://doi.org/10.1111/sjos.12555


LIU et al. 1137

Under (A1)–(A5), using lemma 1 in Chu et al. (2011), we have 𝓁′(𝜽0) = Op(N1∕2
n ). Thus, the first

term of (A2) is Op(N1∕2
n 𝛿nu) and the second term of (A2) is Op(Nn𝛿

2
nu⊤u). For 𝛼 = −1∕2 and a

sufficiently large C, the second term dominates the first term in (A2) for all n. If 𝛼 > −1∕2, the
second term dominates the first term in (A2) for sufficiently large n.

Since
√
𝜅0−1√
𝜅0+1

< 1, there exists an l such that 𝛿n ≥
(√

𝜅0−1
√
𝜅0+1

)l∕2

. As ||z||2𝚪 ≤ ||𝚪||2y⊤y = Op(Nn) by

(A2), we have

g(l)(𝜽) =

(√
𝜅0 − 1

√
𝜅0 + 1

)l

||z||2𝚪 = Op

⎛
⎜
⎜
⎝

(√
𝜅0 − 1

√
𝜅0 + 1

)l

Nn

⎞
⎟
⎟
⎠
= Op(Nn𝛿

2
n),

which is dominated by the second term of (A2), for a sufficiently large C.

In the special case when l >
√
𝜅0+1
2

logNn, we have
(√

𝜅0−1
√
𝜅0+1

)l

= O(N−1
n ). Thus,

g(l)(𝜽) =

(√
𝜅0 − 1

√
𝜅0 + 1

)l

||z||2𝚪 = Op(1).

For 𝛿n = N−1∕2
n , we have ||𝜽̂

(l)
− 𝜽0|| = Op(N−1∕2

n ). ▪

A.2 Proof of Theorem 2
In the following Lemmas 1–6, we provide some technical results for establishing the convergence
results of the algorithms, which will be used in the proofs of Theorems 2 and 3.

Lemma 1. Under Assumption (A1), we have

tr
(
𝜕 log𝚪
𝜕𝜃𝜄

)
= tr(𝚲−1𝚲𝜄) = tr(𝚪−1𝚪𝜄),

and

tr
(
𝜕
2 log𝚪
𝜕𝜃𝜄𝜕𝜃𝜄′

)
= tr(−𝚲−1𝚲𝜄𝚲−1𝚲𝜄′ + 𝚲−1𝚲𝜄𝜄′ ) = tr(𝚪−1𝚪𝜄𝚪−1𝚪𝜄′ − 𝚪−1𝚪𝜄𝜄′ ),

where 𝚲 is the diagonal matrix whose diagonal elements are the eigenvalues of 𝚪 and 𝚲𝜄 = 𝜕𝚲∕𝜕𝜃𝜄
and 𝚲𝜄𝜄′ = 𝜕

2𝚲∕𝜕𝜃𝜄𝜕𝜃𝜄′ .

Proof. Consider the eigen decomposition 𝚪 = Q𝚲Q⊤, we have

tr
(
𝜕 log𝚪
𝜕𝜃𝜄

)
= tr

(
𝜕Q
𝜕𝜃𝜄

log𝚲Q⊤ +Q
𝜕 log𝚲
𝜕𝜃𝜄

Q⊤ +Q log𝚲𝜕Q⊤

𝜕𝜃𝜄

)

= tr
((

Q⊤
𝜕Q
𝜕𝜃𝜄

+ 𝜕Q⊤

𝜕𝜃𝜄

Q
)
log𝚲 +Q

𝜕 log𝚲
𝜕𝜃𝜄

Q⊤

)

= tr
(
Q
𝜕 log𝚲
𝜕𝜃𝜄

Q⊤

)
= tr

(
𝜕 log𝚲
𝜕𝜃𝜄

)
= tr(𝚲−1𝚲𝜄),
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tr
(
𝜕
2 log𝚪
𝜕𝜃𝜄𝜕𝜃𝜄′

)
= tr

(
𝜕

𝜕𝜃𝜄′

(
𝜕Q
𝜕𝜃𝜄

log𝚲Q⊤ +Q
𝜕 log𝚲
𝜕𝜃𝜄

Q⊤ +Q log𝚲𝜕Q⊤

𝜕𝜃𝜄

))

= tr
(

𝜕
2Q

𝜕𝜃𝜄𝜕𝜃𝜄′
log𝚲Q⊤ + 𝜕Q

𝜕𝜃𝜄

𝜕 log𝚲
𝜕𝜃𝜄′

Q⊤ + 𝜕Q
𝜕𝜃𝜄

log𝚲𝜕Q⊤

𝜕𝜃𝜄′

)

+ tr
(
𝜕Q
𝜕𝜃𝜄′

𝜕 log𝚲
𝜕𝜃𝜄

Q⊤ +Q
𝜕
2 log𝚲
𝜕𝜃𝜄𝜕𝜃𝜄′

Q⊤ +Q
𝜕 log𝚲
𝜕𝜃𝜄

𝜕Q⊤

𝜕𝜃𝜄′

)

+ tr
(
𝜕Q
𝜕𝜃𝜄′

log𝚲𝜕Q⊤

𝜕𝜃𝜄

+Q
𝜕 log𝚲
𝜕𝜃𝜄′

𝜕Q⊤

𝜕𝜃𝜄

+Q log𝚲 𝜕
2Q⊤

𝜕𝜃𝜄𝜕𝜃𝜄′

)
+

= tr
(
−𝚲−1𝚲𝜄𝚲−1𝚲𝜄′ + 𝚲−1𝚲𝜄𝜄′

)
.

Since log det𝚪 = log det𝚲, by taking first- and second-order derivatives with respect to 𝜃 on both
sides, we have tr(𝚪−1𝚪𝜄) = tr(𝚲−1𝚲𝜄) and tr(𝚪−1𝚪𝜄𝚪−1𝚪𝜄′ − 𝚪−1𝚪𝜄𝜄′ ) = tr(𝚲−1𝚲𝜄𝚲−1𝚲𝜄′ − 𝚲−1𝚲𝜄𝜄′ ). ▪

For ease of notation, we define an intermediate approximation to the log-likelihood function

𝓁̃
(Nv)(𝜽) = −(N∕2) log(2𝜋) − 1

2Nv

Nv∑

i=1
𝝌

⊤

i log(𝚪)𝝌 i − (1∕2)y⊤𝚪−1y, (A3)

where 𝝌1, … ,𝝌Nv
are i.i.d. Rademacher random variables.

Lemma 2. Under Assumption (A1), we have

Ĩ
(Nv)
n (𝜽) = In(𝜽), for Nv = 1, 2, … , (A4)

where Ĩ
(Nv)
n (𝜽) = E{−(𝓁̃(Nv))′′ (𝜽,𝜽)}.

Proof. We have

E

(

−𝜕
2𝓁̃

(Nv)(𝜽)
𝜕𝜃𝜄𝜕𝜃𝜄′

)

= 1
2Nv

Nv∑

i=1
tr
(
𝜕
2 log𝚪
𝜕𝜃𝜄𝜕𝜃𝜄′

)
+ 1
2
tr(𝚪𝜄𝜄

′𝚪)

= 1
2
tr(𝚲−1𝚲𝜄𝚲−1𝚲𝜄′ − 𝚲−1𝚲𝜄𝜄′ ) −

1
2
tr(𝚪𝜄𝜄

′𝚪) = 1
2
tr(𝚪−1𝚪𝜄𝚪−1𝚪𝜄′ )

where 𝚪𝜄𝜄
′
= 𝚪−1(𝚪𝜄𝚪−1𝚪𝜄′ + 𝚪𝜄′𝚪−1𝚪𝜄 − 𝚪𝜄𝜄′ )𝚪−1. ▪

Lemma 3. Under Assumption (A1), we have

Var(𝓁̃(Nv)′ (𝜽)) ≼
(
1 + 1

Nv

)
In(𝜽). (A5)

Here, we write A ≼ B if B − A is positive semi-definite.

Proof. First, we have Var(𝓁̃(Nv)′ (𝜽)) = In(𝜽) + 1
4Nv

D(𝜽), where the (𝜄, 𝜄′)th element of D(𝜽)

D𝜄𝜄′ (𝜽) = Cov
(
𝝌

⊤

1
𝜕 log𝚪
𝜕𝜃𝜄

𝝌1,𝝌
⊤

1
𝜕 log𝚪
𝜕𝜃𝜄′

𝝌1

)

=
Nn∑

i=1

Nn∑

j=1

Nn∑

l=1

Nn∑

m=1
Cov

(

𝜒1,i𝜒1,j

(
𝜕 log𝚪
𝜕𝜃𝜄

)

i,j
, 𝜒1,l𝜒1,m

(
𝜕 log𝚪
𝜕𝜃𝜄′

)

l,m

)
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=
∑

i≠j
Cov

(

𝜒1,i𝜒1,j

(
𝜕 log𝚪
𝜕𝜃𝜄

)

i,j
, 𝜒1,i𝜒1,j

(
𝜕 log𝚪
𝜕𝜃𝜄′

)

i,j

)

+
∑

i≠j
Cov

(

𝜒1,i𝜒1,j

(
𝜕 log𝚪
𝜕𝜃𝜄

)

i,j
, 𝜒1,i𝜒1,j

(
𝜕 log𝚪
𝜕𝜃𝜄′

)

j,i

)

= tr
(
𝜕 log𝚪
𝜕𝜃𝜄

𝜕 log𝚪
𝜕𝜃𝜄′

)
+ tr

(
𝜕 log𝚪
𝜕𝜃𝜄

𝜕 log𝚪
𝜕𝜃𝜄′

⊤
)
− 2

Nn∑

i=1

(
𝜕 log𝚪
𝜕𝜃𝜄

)

i,i

(
𝜕 log𝚪
𝜕𝜃𝜄′

)

i,i
,

where 𝜒1,i is the ith element of 𝝌 i and
(
𝜕 log𝚪
𝜕𝜃𝜄

)

i,j
is the (i, j)th element of

(
𝜕 log𝚪
𝜕𝜃𝜄

)
. Further,

we note that

tr
((

𝜕 log𝚪
𝜕𝜃𝜄

)(
𝜕 log𝚪
𝜕𝜃𝜄′

))

= tr
{(

Q
𝜄
log𝚲Q⊤ +Q

𝜕 log𝚲
𝜕𝜃𝜄

Q⊤ +Q log𝚲Q⊤

𝜄

)
⋅

(
Q

𝜄′ log𝚲Q⊤ +Q
𝜕 log𝚲
𝜕𝜃𝜄′

Q⊤ +Q log𝚲Q⊤

𝜄′

)}

= tr(𝚲−1𝚲𝜄𝚲−1𝚲𝜄′ +Q
𝜄
log𝚲Q⊤Q

𝜄′ log𝚲Q⊤ + log𝚲 log𝚲Q⊤

𝜄′Q𝜄

+ log𝚲 log𝚲Q⊤

𝜄
Q

𝜄′ +Q log𝚲Q⊤

𝜄
Q log𝚲Q⊤

𝜄′ )

= tr(𝚲−1𝚲𝜄𝚲−1𝚲𝜄′ ) −
Nn∑

m=1

Nn∑

l=1
(log(𝜆m) + log(𝜆l))2(Q⊤

𝜄
Q)(m,l)(Q⊤

𝜄′Q)(m,l).

Since

tr(𝚪−1𝚪𝜄𝚪−1𝚪𝜄′ ) = tr(𝚲−1𝚲𝜄𝚲−1𝚲𝜄′ ) +
Nn∑

m=1

Nn∑

l=1

(√
𝜆m

𝜆l
−
√

𝜆l

𝜆m

)2

(Q⊤

𝜄
Q)(m,l)(Q⊤

𝜄′Q)(m,l),

we have

tr
((

𝜕 log𝚪
𝜕𝜃𝜄

)(
𝜕 log𝚪
𝜕𝜃𝜄′

))
= tr(𝚪−1𝚪𝜄𝚪−1𝚪𝜄′ ) −

Nn∑

m=1

Nn∑

l=1
am,l(Q⊤

𝜄
Q)(m,l)(Q⊤

𝜄′Q)(m,l)

where am,l =
(√

𝜆m
𝜆l

−
√

𝜆l
𝜆m

)2
+ (log(𝜆m) + log(𝜆l))2 ≥ 0 and am,l = al,m.

For any real numbers u1, … ,uq,

q∑

k=1

q∑

k′=1

Nn∑

m=1

Nn∑

l=1
am,lukuk′ (Q⊤

kQ)(m,l)(Q⊤

k′Q)(m,l) =
Nn∑

m=1

Nn∑

l=1
am,l

{ q∑

k=1
uk(Q⊤

kQ)(m,l)

}2

≥ 0

q∑

k=1

q∑

k′=1
ukuk′

Nn∑

i=1

(
𝜕 log𝚪
𝜕𝜃𝜄

)

i,i

(
𝜕 log𝚪
𝜕𝜃𝜄′

)

i,i
=

Nn∑

i=1

{ q∑

k=1
uk
(
𝜕 log𝚪
𝜕𝜃𝜄

)

i,i

}2

≥ 0

▪

Lemma 4. Under Assumption (A1) and (A4), we have

N−1∕2
n 𝓁̃

(Nv)′ (𝜽) = Op(1). (A6)
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Proof. By Lemma 1, we have

E

(
𝜕𝓁̃

(Nv)(𝜽)
𝜕𝜃𝜄

)

= −1
2
tr
(
𝜕 log𝚪
𝜕𝜃𝜄

)
+ 1
2
tr(𝚪−1𝚪𝜄) = 0.

Further, by (A4), N−1
n In(𝜽) → J(𝜃). By Lemma 3,

Var(𝓁̃(Nv)′ (𝜽)) ≼
(
1 + 1

Nv

)
In(𝜽),

so Var(𝓁̃(Nv)′ (𝜽)) = O(Nn), ▪

Let 𝜽̃
(Nv) = arg max𝜽{𝓁̃

(Nv)(𝜽)} denote the maximizer of the approximate likelihood function
(A3). The following lemma establishes the consistency of the estimator 𝜽̃

(Nv).

Lemma 5. Under Assumptions (A1)–(A5), there exists, with probability tending to one, a local
maximizer 𝜽̂

(Nv) of 𝓁̃(Nv)(𝜽; y), such that ||𝜽̂
(Nv) − 𝜽0|| = Op(N−1∕2

n ).

Proof. Let 𝛿n = N𝛼

n , where 𝛼 ∈ [−1∕2, 0]. To establish ||𝜽̃
(Nv) − 𝜽0|| = Op(N−1∕2

n ), it suffices to show
that, for a given constant 𝜖 > 0, there is a constant C such that, for a sufficiently large n, we have

P
{

sup
||u||=C

𝓁̃
(Nv)(𝜽0 + 𝛿nu) < 𝓁̃

(Nv)(𝜽0)
}

≥ 1 − 𝜖,

where u ∈ Rq.
Write h(𝜽) = − 1

2
log |𝚪| + 1

2Nv

∑Nv
i=1𝝌

⊤

i log(𝚪)𝝌 i. Then

𝜕h(𝜽)
𝜕𝜃𝜄

= −1
2
tr(𝚪−1𝚪𝜄) +

1
2Nv

Nv∑

i=1
𝝌

⊤

i
𝜕 log𝚪
𝜕𝜃𝜄

𝝌 i.

By Lemma 1, we have E

(
𝜕h(𝜽)
𝜕𝜃

𝜄

)
= 0. In addition,

Var
(
𝜕h(𝜽)
𝜕𝜃𝜄

)
≤

1
2Nv

tr
((

𝜕 log𝚪
𝜕𝜃𝜄

)(
𝜕 log𝚪
𝜕𝜃𝜄

))

= 1
2Nv

(

tr(𝚪−1𝚪𝜄𝚪−1𝚪𝜄′ ) −
Nn∑

m=1

Nn∑

l=1
am,l(Q⊤

kQ)(m,l)(Q⊤

kQ)(m,l)

)

= O(NnN−1
v )

where am,l ≥ 0 is defined in Lemma 3. Hence h′(𝜽) = Op(N1∕2
n N−1∕2

v ).
By Taylor’s expansion, we obtain

𝓁̃
(Nv)(𝜽0 + 𝛿nu) − 𝓁̃

(Nv)(𝜽0) = 𝓁(𝜽0 + 𝛿nu) − 𝓁(𝜽0) + h(𝜽0) − h(𝜽0 + 𝛿nu)

= 𝛿n𝓁′(𝜽0)⊤u − 1
2
Nn𝛿

2
nu⊤J(𝜽0)u{1 + op(1)} − 𝛿nh′(𝜽∗)⊤u, (A7)

where In(𝜽) = E{−𝓁′′(𝜽,𝜽)}, N−1
n In(𝜽) → J(𝜽) and 𝜽

∗ is between 𝜽0 and 𝜽0 + 𝛿nu. Since 𝓁′(𝜽0) =
Op(N1∕2

n ) and h′(𝜽∗) = Op(N1∕2
n N−1∕2

v ), if we further assume 𝛿n = N−1∕2
n , the first and third terms of
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(A7) are of order Op(u). The second term of (A7) is at the rate of Op(u⊤u). Thus, for a sufficiently
large C, the second term dominates other terms in (A7). ▪

Using Algorithm 2, we have the following approximation of the log-likelihood function

𝓁̃
(m,Nv)(𝜽; y) = −(N∕2) log(2𝜋) − (1∕2)Ξm,Nv − (1∕2)y⊤𝚪−1y, (A8)

where Ξm,Nv is the approximate log-determinant of the covariance matrix.

Lemma 6. Under Assumptions (A1)-(A5), there exists, with probability tending to one, a local

maximizer 𝜽̂
(m,Nv) of 𝓁̃(m,Nv)(𝜽; y), such that ||𝜽̂

(m,Nv) − 𝜽0|| = Op

(
max

{(√
𝜅0−1

√
𝜅0+1

)m

,N−1∕2
n

})
. In

particular, if m >

√
𝜅0

4
log(NnC1), where C1 = 𝜆max

√
𝜅0 log(𝜆max + 𝜆min), we have ||𝜽̂

(m,Nv) − 𝜽0|| =
Op(N−1∕2

n ).

Proof. Continue to define 𝛿n as in Lemma 5. By lemma 4.4 in Ubaru et al. (2017), we
have | 1

Nv

∑Nv
i=1𝝌

⊤

i log(𝚪)𝝌 i − Ξm,Nv | ≤
NnC
𝜌2m

, where 𝜌 =
√
𝜅0+1

√
𝜅0−1

, C = (𝜆max−𝜆min)(
√
𝜅0−1)2 log(𝜆max+𝜆min)
2
√
𝜅0

. By

Assumption (A5), there exists an 𝛼 such that 𝛿n >
√
C

𝜌m
. Thus,

𝓁̃
(m,Nv)(𝜽0 + 𝛿nu) − 𝓁̃

(m,Nv)(𝜽0)

= 𝓁̃
(Nv)(𝜽0 + 𝛿nu) − 𝓁̃

(Nv)(𝜽0) + (𝓁̃(Nv)(𝜽0) − 𝓁̃
(m,Nv)(𝜽0))

− (𝓁̃(Nv)(𝜽0 + 𝛿nu) − 𝓁̃
(m,Nv)(𝜽0 + 𝛿nu))

≤ 𝓁̃
(Nv)(𝜽0 + 𝛿nu) − 𝓁̃

(Nv)(𝜽0) +
|||𝓁̃

(Nv)(𝜽0) − 𝓁̃
(m,Nv)(𝜽0)

|||
+ |||𝓁̃

(Nv)(𝜽0 + 𝛿nu) − 𝓁̃
(m,Nv)(𝜽0 + 𝛿nu)

|||
≤ 𝓁̃

(Nv)(𝜽0 + 𝛿nu) − 𝓁̃
(Nv)(𝜽0) + Op(Nn𝛿

2
n)

≤ 𝛿n𝓁′(𝜽0)⊤u − 1
2
Nn𝛿

2
nu⊤J(𝜽0)u{1 + op(1)} − Op(N1∕2

n N−1∕2
v 𝛿nu) + Op(Nn𝛿

2
n). (A9)

For a sufficiently large C, the second term in (A9) dominates the other terms. In particular,
if m >

√
𝜅0

4
log(NnC1), | 1Nv

∑Nv
i=1𝝌

⊤

i f (A)𝝌 i − Ξm,Nv | ≤
Nn𝜆max

√
𝜅0 log(𝜆max+𝜆min)
2𝜌2m

≤ 1. Let 𝛿n = N−1∕2
n , we

have ||𝜽̂
(m,Nv) − 𝜽0|| = Op(N−1∕2

n ). ▪

Now, we prove Theorem 2.

Proof of Theorem 2.

𝓁̃
(l,m,Nv)(𝜽0 + 𝛿nu) − 𝓁̃

(l,m,Nv)(𝜽0)

= 𝓁̃
(m,Nv)(𝜽0 + 𝛿nu) − 𝓁̃

(m,Nv)(𝜽0) + (𝓁̃(m,Nv)(𝜽0) − 𝓁̃
(l,m,Nv)(𝜽0))

− (𝓁̃(m,Nv)(𝜽0 + 𝛿nu) − 𝓁̃
(l,m,Nv)(𝜽0 + 𝛿nu))

≤ 𝓁̃
(m,Nv)(𝜽0 + 𝛿nu) − 𝓁̃

(m,Nv)(𝜽0) + g(l)(𝜽0) + g(l)(𝜽0 + 𝛿nu)

≤ 𝛿n𝓁′(𝜽0)⊤u − 1
2
Nn𝛿

2
nu⊤J(𝜽0)u{1 + op(1)} − Op(N1∕2

n N−1∕2
v 𝛿nu) + Op(Nn𝛿

2
n).
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For a sufficiently large C, the second term in (A9) dominates the other terms. Hence we complete
the proof. ▪

A.3 Proof of Theorem 3
Remark. We first show that under (A.2), (A.5), and (A.6), the least squares estimator 𝜷OLS =
(X⊤X)−1X⊤y satisfies ||𝜷OLS − 𝜷0|| = Op(N−1∕2

n ). In fact, E(𝜷OLS) = 𝜷 and

Var(𝜷OLS) = (X⊤X)−1(X⊤𝚪−1X)(X⊤X)−1 ≤ ||𝚪−1||2(X⊤X)−1.

By Assumption (A.2), (A.5), and (A.6), we have Var(𝜷OLS) = Op(N−1
n ) and ||𝜷OLS − 𝜷0|| =

Op(N−1∕2
n ) (Wang & Zhu, 2009). Next, we prove Theorem 3.

Proof of Theorem 3. For any given 𝜷 satisfying ||𝜷 − 𝜷0|| = Op(N−1∕2
n ), we minimize the criterion

𝓁̃
(l,m,Nv)(𝜽; ỹ), where ỹ = y − X𝜷. Let R1(𝜽) = 𝓁̃

(l,m,Nv)(𝜽; ỹ) − 𝓁̃
(l,m,Nv)(𝜽; y0), where y0 = y − X𝜷0,

then

𝓁̃
(l,m,Nv)(𝜽0 + 𝛿nu; ỹ) − 𝓁̃

(l,m,Nv)(𝜽0; ỹ) = 𝓁̃
(l,m,Nv)(𝜽0 + 𝛿nu; y0) − 𝓁̃

(l,m,Nv)(𝜽0; y0)
+ R1(𝜽0 + 𝛿nu) − R1(𝜽0).

Notice that

R1(𝜽) = 𝓁̃
(l,m,Nv)(𝜽; ỹ) − 𝓁̃

(l,m,Nv)(𝜽; y0) = 𝓁̃
(l)(𝜽; ỹ) − 𝓁̃

(l)(𝜽; y0)

= (𝓁̃(l)(𝜽; ỹ) − 𝓁(𝜽; ỹ)) + (𝓁(𝜽; y0) − 𝓁̃
(l)(𝜽; y0)) + (𝓁(𝜽; y0) − 𝓁(𝜽; ỹ))

= (I1) + (I2) + (I3).

For (I1), let z̃ = 𝚪−1(𝜽)ỹ and z̃l be the solution from CG algorithm at the lth iteration.

𝓁̃
(l)(𝜽; ỹ) − 𝓁(𝜽; ỹ) = −1

2
||̃z − z̃l||2𝚪 ≤

(√
𝜅 − 1

√
𝜅 + 1

)l

||̃z||2𝚪 ≤

(√
𝜅0 − 1

√
𝜅0 + 1

)l

||̃z||2𝚪.

Note that,

||̃z||2𝚪 = (y − X𝜷)⊤𝚪−1(y − X𝜷)

= (y − X𝜷0)𝚪−1(y − X𝜷0) + 2(y − X𝜷0)⊤𝚪−1(X𝜷0 + X𝜷)

− (X𝜷0 − X𝜷)⊤𝚪−1(X𝜷0 − X𝜷)
= Op(Nn) + Op(1) + O(1) = Op(Nn).

From the proof of Theorem 1, both (I1) and (I2) are Op

((√
𝜅0−1

√
𝜅0+1

)l

Nn

)

. For (I3), we have

𝓁(𝜽; y0) − 𝓁(𝜽; ỹ) = (y − X𝜷0)⊤𝚪−1(𝜽)(X𝜷0 − X𝜷) + 1
2
(X𝜷0 − X𝜷)⊤𝚪−1(𝜽)(X𝜷0 − X𝜷)

= Op(1).
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Thus, R1(𝜽) is of order Op

((√
𝜅0−1

√
𝜅0+1

)l

Nn

)

. By (32), we have the desired result. ▪

A.4 Proof on the bounded conditional number
1. There exists 𝛼 > d, such that |𝛾(u;𝜽)| = (u−𝛼), as d → ∞.
2. There exist constants umin > 0, such that for all sampling location si, it satisfies minj∶j≠i ||si −

sj|| ≥ umin, for sufficient large n.

Lemma 7. Under (C1)and (C2), the condition number 𝜅0 is bounded.

The condition (C1) is imposed on the covariance function. The Matérn covariance function
satisfies (C1), since it decreases exponentially as the distance u increases. The condition (C2) is
used to avoid the scenarios that too many sampling locations are added to the same small region
as sample size Nn increases.

Proof. Let uii′ = ||si − si′ ||2, and Bm = {i′ ∶ mc1 < uii′ ≤ (m + 1)c1}, where c1 is independent of n.
By Assumption (C2), there exists a constant 𝜌, such that the number of elements in Bm is bounded
by 𝜌md−1cd1. Under Assumption (C1) and (C2), we have

||𝚺||∞ = max
1≤i≤Nn

Nn∑

i′=1

||𝛾(uii′ ,𝜽)|| = max
1≤i≤Nn

∞∑

m=0

∑

i′∈Bm

||𝛾(uii′ ,𝜽)||

≤ max
1≤i≤Nn

∞∑

m=0

{
𝜌md−1cd1 max

mc1<u≤(m+1)c1
|𝛾(u,𝜽)|

}
= (1).

That is, the condition number is bounded. ▪
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