
1.  Introduction
Clouds are the biggest source of uncertainty in estimates of climate sensitivity (Bony et  al.,  2015; Boucher 
et al., 2014; Dufresne & Bony, 2008; Vial et al., 2013; Zelinka et al., 2020). There has been some progress in 
constraining the equilibrium climate sensitivity (Sherwood et al., 2020) but different types of clouds contrib-
ute different feedbacks, often in competition with one another. Cloud feedbacks are contributed by changes 
in cloud amount, altitude, optical depth, and type of cloud (Thorsen et  al.,  2018; Yue et  al.,  2016; Zelinka 
et al., 2012, 2013, 2016; Zhou et al., 2013). Upward shifts in high clouds contribute a positive feedback (Hartmann 
& Larson, 2002; Zelinka & Hartmann, 2010) as does a reduction in low-level tropical cloud (Bretherton, 2015; 
Rieck et al., 2012). A negative shortwave feedback, however, is introduced when high latitude low-level clouds 
have an increase in optical depth (Ceppi et al., 2016; Gordon & Klein, 2014; McCoy et al., 2015). It is agreed 
that there is a net positive cloud feedback (Boucher et al., 2014; Ceppi & Nowack, 2021; Ceppi et al., 2017; 
Zelinka et al., 2016), but its magnitude remains uncertain. Tropical anvil clouds, in particular, are now recog-
nized to represent the largest uncertainty in climate feedback estimates as a whole (Sherwood et al., 2020). This 
is mainly because of the large uncertainty in how these clouds change with warming (Bony et al., 2006; Boucher 
et al., 2014; Kodama et al., 2021; Zelinka et al., 2020). While models with explicit convection have provided 
insights on cloud processes (Bretherton & Blossey, 2014; Bretherton et al., 2013; Rieck et al., 2012), estimates 
of cloud feedbacks have overwhelmingly been performed in models with parameterized convection, primarily 
CMIP-type models (Boucher et al., 2014; Eyring et al., 2016). With few exceptions, the proper calculation of 
cloud feedbacks has not been accomplished using models with explicit convection, which have typically only 

Abstract  Changes in tropical high clouds associated with deep convection with warming are one of the 
largest sources of uncertainty in climate feedbacks. Here, we leverage an ensemble of models of many types 
in an idealized configuration to investigate how and why high clouds change the way they do. We find that 
deep-convecting anvils, independent of how cloud fraction is defined, increase in height, increase slightly 
in temperature, and (generally) decrease in cloud fraction with warming sea surface temperature (SST). The 
controls on anvil height and temperature have well established physical reasoning, but the response of anvil 
cloud fraction to warming is more variable across studies and not as well understood. We test a previously 
published hypothesis for control of anvil coverage and find that, at least to first order, it is highly controlled 
by radiatively-driven divergence, in which, with warming, anvil clouds occur in a more stable environment 
requiring less divergence to balance radiative cooling and, therefore, decreasing cloud coverage. We also find 
mid-level clouds robustly decrease in coverage with warming SST and can be represented by a diagnostic 
scaling which attributes the robust decrease in mid-level clouds to the rapid increase in the overall convective 
heating of the clouds compared to the much slower increase in the integrated radiative cooling rate. The robust 
response of deep-convective clouds to warming and support for the underlying physical mechanisms across the 
spectrum of models, with both explicit and parameterized convection, increases confidence in their contribution 
to climate feedbacks.

Plain Language Summary  Tropical thunderstorm clouds are affected by a changing climate 
and can further modulate climate in different and contradictory ways. However, the exact impact on climate 
is highly uncertain due to their competing effects of cooling and warming the Earth's surface. In this study, 
we seek to improve our understanding of what determines how these tropical clouds respond to a warming 
surface by looking for consistent results across over 30 different types of models. We find that the high clouds 
increase in altitude, slightly increase in temperature, and decrease in coverage for most of the models. We also 
determine  that the high clouds change largely due to a circulation driven by the effects of clear sky regions.

STAUFFER AND WING

© 2022 The Authors. Journal of 
Advances in Modeling Earth Systems 
published by Wiley Periodicals LLC on 
behalf of American Geophysical Union.
This is an open access article under 
the terms of the Creative Commons 
Attribution License, which permits use, 
distribution and reproduction in any 
medium, provided the original work is 
properly cited.

Properties, Changes, and Controls of Deep-Convecting Clouds 
in Radiative-Convective Equilibrium
Catherine L. Stauffer1   and Allison A. Wing1 

1Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL, USA

Key Points:
•	 �Controls of high and mid-level clouds 

are independent of whether a model 
employs parameterized or explicit 
convection

•	 �The response of anvil cloud fraction 
to a warming surface and more stable 
troposphere is highly controlled by 
radiatively-driven divergence

•	 �Mid-level clouds robustly decrease 
with warming due to integrated 
cooling increasing slower than 
convective heat flux

Supporting Information:
Supporting Information may be found in 
the online version of this article.

Correspondence to:
C. L. Stauffer,
cls14b@fsu.edu

Citation:
Stauffer, C. L., & Wing, A. A. 
(2022). Properties, changes, and 
controls of deep-convecting clouds 
in radiative-convective equilibrium. 
Journal of Advances in Modeling Earth 
Systems, 14, e2021MS002917. https://doi.
org/10.1029/2021MS002917

Received 23 NOV 2021
Accepted 7 JUN 2022

10.1029/2021MS002917

Special Section:
Using radiative-convective equi-
librium to understand convec-
tive organization, clouds, and 
tropical climate

RESEARCH ARTICLE

1 of 23

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-9995-8504
https://orcid.org/0000-0003-2194-8709
https://doi.org/10.1029/2021MS002917
https://doi.org/10.1029/2021MS002917
https://doi.org/10.1029/2021MS002917
https://doi.org/10.1029/2021MS002917
https://doi.org/10.1029/2021MS002917
http://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)1942-2466.CONVORG1
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2021MS002917&domain=pdf&date_stamp=2022-06-16


Journal of Advances in Modeling Earth Systems

STAUFFER AND WING

10.1029/2021MS002917

2 of 23

examined changes in the cloud radiative effect. Even for the few studies that have studied the response of clouds 
to warming in greater detail, such as cloud optical properties (Ohno & Satoh, 2018; Ohno et al., 2019, 2021), 
using radiative kernel corrections (Cronin & Wing,  2017), or in some super-parameterized models (Blossey 
et al., 2009; Stan & Xu, 2014; Wyant et al., 2009) further decomposition is limited or absent, and certainly not 
as extensive as in the CMIP-type models. There is thus a continued and urgent need for further investigation into 
mechanisms for the changes in tropical deep-convective clouds with warming and the contribution of clouds to 
climate feedbacks, especially in models that simulate convection explicitly.

Although the contribution of anvil clouds to the climate feedback may still be uncertain, several features of 
deep-convecting tropical clouds and their changes with warming sea surface temperature (SST) are well under-
stood, based on idealized modeling and observations. Radiative-convective equilibrium (RCE) is a simplified 
framework of the tropical atmosphere characterized by a statistical balance between radiative cooling and convec-
tive heating (Held et al., 1993) and is frequently used to study tropical convection and climate sensitivity. Using 
RCE, the temperature of deep-convecting anvil clouds has been found to remain approximately fixed as the 
surface temperature changes, arising from a simple thermodynamic constraint on the radiative cooling profile 
by the Clausius Clapeyron relationship (Hartmann & Larson, 2002), a feature referred to as the “Fixed Anvil 
Temperature” hypothesis, or FAT. An analytical theory for why FAT occurs at around 220 K showed that, in 
addition to Clausius Clapeyron, the distribution of H2O absorption coefficients are among the ingredients for 
FAT (Jeevanjee & Fueglistaler, 2020). Zelinka and Hartmann  (2010) revised the FAT hypothesis to consider 
a slight increase in anvil temperature due to an increase in static stability in the upper troposphere in warmer 
climates (“Proportionally Higher Anvil Temperature,” or PHAT). Although most studies find that anvil temper-
ature increases slightly or remains fixed with warming SST (e.g., Kuang & Hartmann, 2007), the assumptions 
underlying FAT have recently been questioned and control of anvil clouds remains a subject of ongoing work 
(Seeley, Jeevanjee, Langhans, & Romps, 2019; Seeley, Jeevanjee, & Romps, 2019).

While the (near-) isothermal rise of cloud tops has a sound hypothesis with robust physical reasoning, the change 
in anvil coverage with warming is less consistent. Some studies find that anvil coverage decreases with warm-
ing (e.g., Bony et al., 2016; Cronin & Wing, 2017; Kuang & Hartmann, 2007; Tompkins & Craig, 1999) while 
others find it increases (e.g., Chen et al., 2016; Noda et al., 2019; Ohno & Satoh, 2018; Ohno et al., 2019; Singh 
& O’Gorman, 2015; Tsushima et al., 2014). This begs the question of what mechanistically is controlling cloud 
fraction and can it explain the varied results? Bony et al. (2016) proposed that the mechanisms controlling anvil 
coverage are fundamentally the same thermodynamic constraints that control cloud top height and temperature. 
By mass continuity, the divergence of the upward deep-convective mass flux, and therefore anvil spreading (what 
we are interested in), is constrained by the vertical divergence of clear sky subsidence. In the clear-sky region 
there is a balance between radiative cooling and warming by subsidence, so the level of peak radiatively-driven 
divergence (RD) is where the radiative cooling rate drops off drastically following the Clausius-Clapeyron 
dependence of water vapor, the primary longwave emitter.

Bony et al. (2016) found that anvil cloud fraction and RD decrease together with warming temperature. This rela-
tionship was found in general circulation models (GCMs) in RCE, simulations with aggregated and un-aggregated 
convection, non-RCE states (Bony et  al.,  2016), in a cloud resolving model (CRM, Cronin & Wing,  2017), 
and observations (Zelinka & Hartmann, 2011), suggesting that it is a fundamental property. In particular, Bony 
et al. (2016) argued that an increase in static stability is required to necessarily decrease the pressure for a FAT 
scenario or increase the temperature necessary for a PHAT scenario which results in less subsidence (and thus, 
RD) needed to balance radiative cooling, and thus a decrease in anvil coverage. They referred to the decrease in 
anvil coverage, which allows for more longwave cooling to space, as a “stability iris.”

RCE offers a framework for studying tropical deep-convecting clouds, and their response to warming, in the 
absence of complication by heterogeneous boundary conditions or forcing and the resulting dynamical insta-
bilities. RCE is a powerful tool because it has connections to theory, analytic models, as well as representing 
elements of the real Earth system such as similarities to the tropical atmosphere at large spatial and temporal 
scales (Jakob et al., 2019; Miyakawa et al., 2022). The simplicity of RCE also allows for its configuration to be 
used by a variety of types of models and at a relatively low computation cost. The Radiative Convective Equi-
librium Model Intercomparison Project (RCEMIP, Wing et al., 2018, 2020) takes advantage of the simplicity 
of RCE by having representation from CRMs, GCMs, global cloud resolving models (GCRMs), and large eddy 
simulations (LES), all configured in a common framework.
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Wing et al. (2020) found that the RCEMIP models simulate a wide range of profiles of cloud fraction and other 
significant climate variables. Nearly all models exhibit self-aggregation of convection, which is a well docu-
mented instability of the RCE state, defined by Wing et al. (2017) as the spontaneous organization of convection 
despite homogeneous boundary conditions and forcing. RCEMIP models agree that self-aggregation reduces the 
extent of high clouds, dries the mean state, and allows for more efficient radiative cooling. This has implications 
for the spread in climate sensitivity across RCEMIP, which is explained in part by the response of aggregation to 
warming, for which there is no consensus across models (Becker & Wing, 2020). However, there is a consensus 
on how anvil clouds change with warming SST. In agreement with expectations from the prior work discussed 
above, Wing et al. (2020) found that anvil clouds increase in height and slightly increase in temperature with 
warming, as well as decrease in coverage in most of the models.

The RCEMIP models are configured in a consistent manner, with the same SST, solar insolation, trace gas 
profiles, and (within a type of model) domain size and resolution; yet, there is a wide range in how key climate 
variables are simulated (Wing et al., 2020). This is unsurprising when one considers the properties that make 
each model unique and are not a part of the controlled configuration of RCE (such as microphysics, convection 
schemes, and dynamical cores). However, the strength of RCEMIP lies in this very characteristic; that certain 
consistent properties arise from such a diverse suite of models provides an opportunity to understand what drives 
these robust behaviors. And, although idealized frameworks such as RCE highly simplify the physics of the 
climate system, many properties predicted by RCE are also found in more complex models or in observations 
of the tropical atmosphere (Hartmann et  al.,  2019). For example, Holloway et  al.  (2017) reviewed observa-
tional studies of convective aggregation that found similar relationships to those seen in RCE simulations of 
self-aggregation.

This work will expand upon the analysis of Wing et al. (2020) to examine how deep-convective clouds change 
with warming in more detail and test hypotheses from the literature for the control of these clouds. RCEMIP 
is a powerful tool because it is the first time such a large (30+) collection of models of many types have been 
consistently configured in RCE, thus providing a more comprehensive test of changes in deep-convective clouds 
and their mechanisms than previously possible. Section 2 will briefly overview the data set as well as the meth-
ods for calculating the various metrics used in this study, Section 3 will overview what the cloud profiles look 
like and how cloud fraction behaves for an alternative definition of cloud fraction, Section 4 tests a hypothesis 
for the control of anvil clouds, and Section 5 will describe the changes in mid-level clouds and test a method of 
analyzing their controls.

2.  Data Set and Methods
2.1.  Model Configuration

RCEMIP (Wing et al., 2018, 2020) consists of over 30 models including CRMs, GCMs, GCRMs, and LES. These 
models are all consistently configured as idealized simulations (e.g., aquaplanet, uniform insolation, uniform 
SST, no rotation) of RCE, which is a simplified view of the tropical atmosphere where, on average, radiative cool-
ing balances convective heating. The simulations are run at three different SSTs (295, 300, and 305 K) to simulate 
different climates and on a “large” domain (RCE_large) that allows self-aggregation of convection to occur as 
well as a “small” domain (RCE_small) that resists self-aggregation. RCE_small simulations are initialized 
everywhere with the same analytic sounding (Wing et al., 2018) and RCE_large simulations are initialized 
everywhere with an equilibrium sounding from the corresponding RCE_small simulation.

The CRMs have approximately 74 vertical levels where RCE_small has horizontal dimensions of 
∼100 × 100 km 2 with 1 km grid spacing and RCE_large is ∼6000 × 400 km 2 with 3 km grid spacing. They 
are run for 100 days. The CRM-VERT simulations have the same horizontal configuration as RCE_small CRM 
simulations but have ∼146 vertical levels. The CRM-LES simulations are run for 50 days with the same vertical 
grid as the CRM-VERT simulations but a horizontal grid spacing of 200 m. The GCRM simulations have 74 
vertical levels and 3–4 km grid spacing, similar to the resolution of the CRM simulations. For computational 
efficiency, they are run with a reduced Earth radius for 100 days. The spherical GCM simulations are config-
ured using their CMIP6 (Eyring et al., 2016) vertical and horizontal settings and are run for ∼1,000 days. The 
WRF-GCM simulations have a horizontal resolution of 50 km with GCM physics but on the CRM Cartesian grid.

More information on the RCEMIP data set is provided by Wing et al. (2018); Wing et al. (2020).
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2.2.  Cloud Fraction

Originally, the RCEMIP protocol (Wing et al., 2018) called for diagnostic cloud fraction to be based on defining 
the presence of cloud using a threshold value of cw + ci > min(0.01qs,w, 10 −5gg −1) or the output of a cloud scheme 
for models employing such a scheme (cfv0), where cw is the cloud liquid water condensate, ci is the cloud 
ice condensate, and qs,w is the saturation mixing ratio over water. However, subsequent to Wing et al. (2020), it 
was determined that this definition was not consistently applied across the participating models. Consequently, 
this paper recalculates cloud fraction from available 3D data using 1: the RCEMIP protocol definition (Wing 
et al., 2018) applied consistently to the models with explicit convection (cfv1, see Appendix A and Text S1 
in Supporting Information S1) and 2: a less-generous definition which uses a cloud water condensate threshold 
value of 10 −5 gg −1 (cfv2, see Appendix A and Section 3), which is the definition used in the remainder of this 
paper. cfv1 and cfv2 are applied only to models with explicit convection due to the use of 3D output data and 
it not being appropriate to diagnose a GCM grid cell as completely cloudy or clear based on its output value of 
cloud condensate on a grid on order of 1°. Therefore, we continue to use the model-provided cloud fraction from 
the cloud scheme for models with parameterized convection. We analyze the equilibrium state by considering 
averages in time excluding the first 75 days of the simulation which are derived from six-hourly instantaneous 
snapshots. Appendix A goes into further detail on the calculation of cfv1 and cfv2 and demonstrates that the 
previously mentioned time sampling is sufficient to generate representative time- and domain-mean profiles while 
the consistently applied definition of cfv2 allows for a fairer comparison of cloud properties across models.

2.3.  Radiatively-Driven Divergence

One objective of this study is to test the extent to which radiatively-driven divergence controls anvil cloud fraction, 
as argued by Bony et al. (2016). Following Bony et al. (2016) (see also Cronin & Wing, 2017), radiatively-driven 
divergence (RD) is defined using the following:

𝑅𝑅𝐷𝐷 =

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� (1)

𝜔𝜔 = −

𝑄𝑄𝑟𝑟

𝑆𝑆
� (2)

𝑆𝑆 = −

𝑇𝑇

𝜃𝜃

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� (3)

where RD is the radiatively-driven divergence in day −1, ω is the clear-sky radiatively-driven vertical motion in 
units of Pa s −1, P is the pressure with units Pa, Qr is the clear-sky radiative cooling rate with units K s −1, S is static 
stability with units K Pa −1, T is the temperature in K, and θ is the potential temperature in K. Since the location 
of the anvil is expected to be tied to the location of the peak RD, the upper-level maximum in RD is compared to 
the anvil peak.

Three versions of RD are calculated using domain-mean equilibrium profiles of temperature, pressure, and 
clear-sky radiative cooling rate. RD is the “standard” version of the calculation using Equation  1. The other 
two versions are calculated to test the relative contributions of changes in clear-sky radiative cooling and static 
stability to changes in RD. This is accomplished by eliminating variability in Qr and S across SSTs by individu-
ally holding the properties constant at their 300 K value. In other words, what is the tendency of RD when static 
stability does not change with SST (RD300S) and, similarly, what is the tendency of RD when the clear-sky radiative 
cooling rate does not change with SST (RD300Q)?

2.4.  Mid-Level Cloud Fraction

2.4.1.  Mid-Level Metrics

In Section 5 we assess the response of mid-level clouds to warming and test the extent to which the profiles across 
simulations at different SSTs collapse when temperature is used as a vertical axis. In order to quantify this prop-
erty, we define four key metrics using the process below across all models:
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1.	 �Define the mid-level region (dashed horizontal lines in Figures  1a 
and 1c): the region between the mid-level minimum in cloud fraction 
(between the lower-level and upper-level peaks in cloud fraction) and the 
upper-level maximum in cloud fraction individually for each SST.

2.	 �Define the new height axis (black “x”s in Figure 1a): the region between 
the maximum height of the mid-level cloud fraction minimum across 
SSTs and the minimum height of the upper-level cloud fraction maxi-
mum across the SSTs (Zavg  =  max(Zmid(295), Zmid(300), Zmid(305)) : 
min(Ztop(295), Ztop(300), Ztop(305)))).

3.	 �Define the new temperature axis (black “x”s in Figure 1c): the region 
between the minimum temperature of the mid-level cloud fraction mini-
mum across SSTs and the maximum temperature of the upper-level cloud 
fraction maximum across the SSTs (Tavg  =  min(Tmid(295), Tmid(300), 
Tmid(305)) : max(Ttop(295), Ttop(300), Ttop(305)))).

4.	 �Interpolate cloud fraction profiles to Tavg and Zavg, common axes across 
all SSTs for a given model.

5.	 �Compute the following metrics where 〈A〉 is the average over the inter-
polated mid-level region, following Equation 4, where c1 and c2 are the 
mid-level bounds in a given vertical coordinate (Z or T):

⟨𝐴𝐴⟩ =
∫

𝑐𝑐2

𝑐𝑐1
𝐴𝐴𝐴𝐴𝐴𝐴

∫
𝑐𝑐2

𝑐𝑐1
𝑑𝑑𝑑𝑑

� (4)

•	 �〈CFavg〉; where CFavg = mean(CF(295), CF(300), CF(305)).
•	 �〈CFrange〉; where CFrange = max(CF(295), CF(300), CF(305)) − min 

(CF(295), CF(300), CF(305)).
•	 �〈CFΔ〉; where CFΔ = CF(305) − CF(295).

This example was for cloud fraction, other variables used in our analysis are 
similarly interpolated and averaged using the new temperature and height 
axes restricted by the mid-level cloud fraction region. We note that Abbott 
et al.  (2020) used a method similar in concept to 〈CFrange〉 to measure the 
collapse of a profile between two coordinates with a single metric.

2.4.2.  Mid-Level Scaling

Following Cronin and Wing (2017), we test a diagnostic scaling for mid-level 
cloud fraction based on the approximation that mid-level cumulus convective 
enthalpy flux, 𝐴𝐴 (𝐹𝐹𝑐𝑐 = 𝜎𝜎𝑐𝑐𝑤𝑤𝑐𝑐 [𝐿𝐿𝑣𝑣𝜌𝜌

∗

𝑣𝑣(1 −𝑅𝑅𝑅𝑅) + 𝛿𝛿𝛿𝛿]) , is balanced by radiative 

cooling of the troposphere above 𝐴𝐴

(
𝑄𝑄 = ∫

𝑇𝑇

𝑇𝑇𝑇𝑇
𝐽𝐽 (𝑇𝑇

′

) 𝑑𝑑𝑑𝑑
′

)
 , where J(T) is the 

radiative cooling rate and is integrated from a level up to the tropopause, σc 
is the cloud fraction (using cfv2), wc is the in-cloud vertical velocity (the 

vertical velocity co-located with cloudy pixels following the threshold of cfv2), 𝐴𝐴 𝐴𝐴𝑣𝑣𝜌𝜌
∗

𝑣𝑣(1 −𝑅𝑅𝑅𝑅) is the latent heat 
excess per unit volume carried upward by clouds relative to the subsiding unsaturated environment, RH is relative 
humidity, 𝐴𝐴 𝐴𝐴

∗

𝑣𝑣 = 𝑒𝑒
∗

∕ (𝑅𝑅𝑣𝑣𝑇𝑇 ) is the saturation vapor density, and δs is the dry static energy excess per unit volume 
carried upward by clouds. δs = 1004∗(δscor − δsdown)∗ρ where δscor is wherever the virtual temperature is greater 
than the horizontal average of virtual temperature in a strong updraft (w > 2 ms −1) and δsdown is wherever the 
virtual temperature is less than the horizontal average of virtual temperature in a strong downdraft (w < −2 ms −1). 
We calculate each of these quantities from the instantaneous 3D data, for those models with explicit convection 
for which it is available. Solving for cloud fraction, σc, results in Equation 5 (see also Equation 5 of Cronin & 
Wing, 2017).

𝜎𝜎𝑐𝑐(𝑇𝑇 ) =

∫
𝑇𝑇

𝑇𝑇𝑇𝑇
𝐽𝐽 (𝑇𝑇

′

) 𝑑𝑑𝑑𝑑
′

𝑤𝑤𝑐𝑐 [𝐿𝐿𝑣𝑣𝜌𝜌
∗

𝑣𝑣(1 − 𝑅𝑅𝑅𝑅) + 𝛿𝛿𝛿𝛿]

� (5)

Figure 1.  Profiles of cloud fraction plotted on a (a and b) height axis and (c 
and d) temperature axis. The left column contains the unaltered profiles, the 
horizontal lines are the locations of the mid-level minimum and upper-level 
maximum for each profile, the black X shows the “absolute” mid-level region 
used in the analysis. The right column contains the profiles interpolated to the 
restricted z-axis defined by the Xs in the left column as solid lines, the average 
cloud fraction profile across the sea surface temperatures in black, and the 
original unaltered cloud fraction profile as dotted lines.
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3.  Changes in Anvil Properties With Warming SST
As previously mentioned, we re-calculated cloud fraction for two reasons; 1: to consistently apply a single defini-
tion across all of the models with explicit convection and 2: to test whether including saturation mixing ratio over 
water in the cloud condensate threshold was too generous of a threshold and needed to be corrected. The latter 
results in two notable and important differences in anvil cloud properties with the exclusion of qs,w.

First, cfv2 has less high cloud (Figure 2) than cfv0 (Figure 9 of Wing et al., 2020) or cfv1 (Figure S1 in 
Supporting Information S1). There is an average decrease in anvil cloud fraction from cfv1 to cfv2 of 0.527 
(which is quite large) in the RCE_large models with explicit convection (where the new definition applies) 
and an average decrease of 0.514 in all but five (of 22) of the RCE_small models with explicit convection, 
confirming the conjecture that including the 1% of the saturation mixing ratio over water threshold in the original 
RCEMIP protocol definition was, perhaps, too generously filling the domain with clouds. This is consistent with 
corresponding OLR images indicating that the domain does not fill with radiatively-active clouds, see Figures 
2–5 of (Wing et al., 2020).

Second, the average increase in anvil temperature across the 10 K SST range for all models and for both domains 
(discussed further below) is substantially smaller for cfv2 (2.7 K) than for cfv0 (4.4 K, Wing et al., 2020) 

Figure 2.  Horizontally- and temporally-averaged profiles of cfv2 for RCE_small (top row: a, b, c, and d) and RCE_large (bottom row: e, f, g, and h) simulations at 
300 K. The first column (a and e) represents the range of the profiles of all the models in blue shading, the orange lines are the interquartile range of the data, and the 
black line is the mean across the models. The remaining columns are the individual profiles for the models with parameterized convection (b and f), cloud resolving 
models (c and g), and large eddy simulations and global cloud resolving model simulations (d and h, respectively). This figure is modeled after Figure 9 in Wing 
et al. (2020) where panels (b and f) are identical to those in Wing et al. (2020) (and in Figure S1 in Supporting Information S1 of this paper).
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or cfv1 (4.5 K), indicating closer adherence to FAT/PHAT. This occurs because, when the saturation mixing 
ratio-component of the cloud condensate threshold is removed (cfv2, Figure 2), the profiles generally become 
smoother than those using cfv1 (Figure S1 in Supporting Information S1) and contain a clear and easily identi-
fied anvil peak using the upper-level peak in cloud fraction.

Wing et al. (2020) found that, with warming SST, anvil clouds rise robustly, slightly increase in temperature, and, 
for the majority of models, decrease in coverage. Anvil coverage is also reduced in simulations with aggregated 
convection (RCE_large) compared to those without aggregation (RCE_small). Although these results are 
unchanged when using a better calculation of cloud fraction applied consistently across all of the models (cfv1, 
see Text S1 in Supporting Information S1, cfv2, briefly reviewed below), cfv2 will be the definition we use 
and recommend since it is consistently applied across the models with explicit convection (unlike cfv0 of Wing 
et al., 2020) and because it is hypothesized to be a better representation indication of cloud fraction than cfv1.

With warming SST, the height of the anvil using cfv2 increases across all models for both RCE_small and 
RCE_large (Figures 3a and 3d). 79% of RCE_large simulations (Figure 3e) have an anvil that increases in 
temperature with warming SST (88% of models with explicit convection and 71% of models with parameterized 
convection, Figures S2b and S2e in Supporting Information S1). The average increase in anvil temperature (for 
those that increase) is larger from 300 to 305 K than 295–300 K. 82% of RCE_small simulations (Figure 3b) 
have an anvil that warms (86% of models with explicit convection and 73% of models with parameterized convec-
tion, Figures S1b and S1e in Supporting Information S1).

As for cloud fraction, two-thirds of RCE_large simulations have an anvil cloud fraction that decreases with 
warming SST where a larger percentage of the models with parameterized convection do so than those with 
explicit convection (70% and 63%, respectively, Figures S2c and S2f in Supporting Information S1). As in Wing 
et al.  (2020), the trend in anvil cloud fraction for RCE_small is less pronounced than that in RCE_large. 
Approximately 58% of RCE_small exhibit a decrease in anvil cloud fraction with SST. Three of the models 
with explicit convection have zero overall change due to cloud fraction being near equal at 295 and 305 K and 
only slightly changing at 300 K (less than 1% change, Figure S1c in Supporting Information S1). If these are 
included in the percentage of models that do not have an increase in anvil coverage, 67% of RCE_small have a 
decrease in anvil coverage.

Why does cloud fraction increase with warming in a minority of models? This response cannot be completely 
attributed to the use of parameterized or explicit convection, nor can it be completely attributed to domain size. 
We tested the idea that cloud fraction has an absolute minimum, such that once it reaches that minimum it cannot 
decrease further. Unfortunately, there is no evidence that this is occurring in RCEMIP. For RCE_large, there 
are models with an increase in cloud fraction that have both small and large values of cloud fraction. There is also 
an equal number of models that have a decrease in cloud fraction for small and large values of cloud fraction. 
The same occurs for RCE_small. We note that, in general, models with explicit convection favor lower anvil 
coverage while models with parameterized convection favor higher anvil coverage, though the output of a cloud 
scheme may not be directly comparable to the threshold-based metric used for models with explicit convection.

Observational studies have found similar responses of anvil clouds to warming. For example, Igel et al. (2014) 
developed a cloud partitioning algorithm using CloudSat data and found that, with warming, cloud anvils 
rise and decrease in coverage (also found in Zelinka & Hartmann, 2011). Unlike our results, Igel et al. (2014) 
found cloud tops decreased in temperature with warming (a result also found using other methods, e.g., Singh 
& O’Gorman, 2012), however, as also argued by Holloway et al.  (2017), the methods for analyzing observa-
tions versus using idealized equilibrium scenarios introduce inherent biases. Some of the issues noted by Igel 
et al.  (2014) include the inability to completely isolate deep convecting clouds from other clouds in observa-
tional data set, limitations by resolution such as the integration of reanalysis data into their work, and limita-
tions in the ability to isolate clouds from the influence of large-scale vertical motion. Conversely, Zelinka and 
Hartmann  (2011), also using satellite data, found the temperature of high clouds to slightly warm (following 
PHAT more than FAT) with warming SST.

We also note that other factors besides SST play a role in driving changes in clouds (e.g., large-scale circulations; 
Lau et  al., 1994; Wu & Moncrieff, 1999), but the idealization of RCE is designed to isolate the response of 
clouds to SST-forced climate warming. Therefore, in the next section, we test the Bony et al. (2016) stability-iris 
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hypothesis for a thermodynamic control on anvil cloud amount across the RCEMIP models and assess whether 
any further insight can be obtained on why some models have increasing anvil coverage with warming SST.

4.  Controls on the Anvil Cloud Fraction
4.1.  Testing the Stability Iris Theory

All RCE_large models (which have data available to calculate RD and cfv2) have a RD that decreases with 
increasing SST (Figure 4c). RD decreases at an average rate of −0.022 days −1 K −1, although it ranges from −0.003 

Figure 3.  The horizontally- and temporally-averaged height (a and d) and temperature (b and e) at the location of the anvil as well as the anvil cloud fraction anomaly 
from 300 K (c and f) using the cfv2 definition. The top row (a, b, and c) is for the RCE_small simulations and the bottom row (d, e, and f) is for the RCE_large 
simulations. The linear regression line for a simulation is represented by the dashed lines. Note: in panel (f), the 305 K point for CAM6-GCM is off the chart.
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Figure 4.  The horizontally- and temporally-averaged upper-level maximum of radiatively-driven divergence (a and c) and 
the static stability (b and d) at the location of the peak in radiatively-driven divergence. The top row (a and b) is for the RCE_
small simulations and the bottom row (c and d) is for the RCE_large simulations. The linear regression line for a simulation is 
represented by the dashed lines.
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to −0.045 days −1 K −1. If RD controls anvil cloud fraction, we would anticipate the location of the peak RD to coin-
cide with the anvil peak and, therefore, the slope of the heights of the anvil versus the height of RD is equal to one. 
As seen in Figures 5a and 6a, this is approximately what occurs across all the models for both RCE_small and 
RCE_large, respectively. The height of the anvil tends to be lower than the height of peak RD by ∼1.0–1.5 km 
(not shown), but the heights vary together following close to a 1-to-1 ratio.

Figures 5b and 6b plot anvil cloud fraction against RD where the hypothesis discussed above predicts that the 
295 K simulations will be in the upper right quadrant (high values of both anvil cloud fraction and RD) and the 
305 K simulations will be in the lower left quadrant (low values of anvil cloud fraction and RD). For RCE_large, 
cloud fraction and RD decrease together for 80% of the models (note, this percentage is higher than the percent-
age of all models with a decrease in cloud fraction discussed in Section 3 because here we consider the smaller 
population of models for whom the data to calculate RD is available). When Qr is held constant at its 300 K 
value, RD300Q and anvil cloud fraction in RCE_large once again decrease together with warming (Figure 6c). 
However, when stability is held constant at its 300 K value, cloud fraction and R300S are negatively correlated in 
all but 25% of RCE_large models (Figure 6d). In the 25% with an apparent positive correlation, cloud fraction 
and RD300S increase together with warming SST in all but one of those models. Across the suite, RD300S increases 
with warming SST when stability is held constant, the opposite response as the full calculation (RD). This tells us 
that stability changes are responsible for RD decreasing with warming SST and, thus, anvil cloud fraction decreas-

Figure 5.  Horizontally- and temporally-averaged anvil properties (using cfv2) plotted against horizontally- and temporally-averaged upper-level maximum in 
radiatively-driven divergence (RD) properties for RCE_small. (a) Plots the heights of the anvil against the height of RD while the remaining panels (b) plot the anvil 
cloud fraction against RD for the “full” calculation of RD, (c) RD with the radiative cooling rate held fixed at 300 K, and (d) RD with static stability held fixed at 300 K. 
The solid lines depict the linear regression line. All values for all panels are normalized about their value at 300 K.
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ing with SST. This is because, when variability in stability is removed by holding it constant, the correlation 
between cloud fraction and RD changes, while it does not when removing variability in the radiative cooling rate.

The RCE_small simulations behave less consistently than the RCE_large simulations. 89% of the RCE_
small simulations exhibit a decrease in RD with SST (Figure 4a) but only 65% show cloud fraction and RD 
decreasing together (Figure 5b). Although the behavior is less robust for RCE_small, anvil cloud fraction and 
RD300Q (Qr is held constant at 300 K) still decrease together (in 60% of models, Figure 5c) and anvil cloud fraction 
and RD300S (stability is held constant at 300 K) are negatively correlated for all but 25% of the models (Figure 5d), 
like RCE_large.

4.2.  Explaining Inconsistencies in the Stability Iris Theory

The positive correlation between RD and cloud fraction holds for many, but not all the models and does not 
explain the inter-model spread in cloud fraction for a given SST. This inconsistency is not easily explained but 
it is a consequence of cloud fraction, alone, not always decreasing with warming across the models. For RCE_
large, four models (of those which have data for the cfv2 and RD calculations) have an anvil cloud fraction 
which increases with warming despite a decrease in RD: three with explicit convection schemes (including one 

Figure 6.  Horizontally- and temporally-averaged anvil properties (using cfv2) plotted against horizontally- and temporally-averaged upper-level maximum in 
radiatively-driven divergence (RD) properties for RCE_large. (a) Plots the heights of the anvil against the height of RD while the remaining panels (b) plot the anvil 
cloud fraction against RD for the “full” calculation of RD, (c) RD with the radiative cooling rate held fixed at 300 K, and (d) RD with static stability held fixed at 300 K. 
The solid lines depict the linear regression line. All values for all panels are normalized about their value at 300 K.
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GCRM) and one with parameterized convection, CAM6-GCM. The domain-filled cloud coverage at 305 K in 
CAM6-GCM is known to be spurious (Reed et al., 2021), so we discard its behavior.

For RCE_small, seven models have increasing cloud fraction with warming despite a decrease in RD. Five 
of these models have explicit convection which come from two families; CM1 and its VERT companion and 
ICON-LEM and its VERT and LES companions. The two models with parameterized convection that have this 
behavior represent 40% of the RCE_small models with parameterized convection which have the appropriate 
data for the RCE_small RD calculation.

Although the majority of models for which the divergence hypothesis does not hold due to a negative correlation 
between RD and cloud fraction are those with explicit convection schemes (across both RCE_small and RCE_
large), the breakdown cannot be completely attributed to models using explicit convection, as it also occurs 
in some of the models with parameterized convection. Inconsistencies within the models with parameterized 
convection occur only in their RCE_small SCM simulations (with the exception of the spurious RCE_large 
CAM6-GCM). This may suggest that this is less an issue occurring within models with parameterized convection 
and rather issues with using single-column models, rather than using a population of columns, to represent the 
RCE state. Similarly, it is notable that the models with explicit convection that have the negative RD-cloud frac-
tion correlation happen to also be models with VERT and LES counterparts, but this doesn't necessarily mean 
VERT and LES simulations stand out as having increases in cloud fraction because the whole sample of VERT 
and LES simulations are not represented by this response and the response does not completely exclude standard 
CRM simulations.

There is one additional model in RCE_small that behaves differently. The CAM5-GCM single column model 
has a positive correlation between RD and cloud fraction, but that is because the two properties increase as 
opposed to decrease together with warming SST. Thus, the radiatively-driven divergence still explains the cloud 
behavior, just not in the manner expected. Otherwise, increases in cloud fraction with warming are not explained 
by the RD theory. Of the 12 models that have an increase in cloud fraction with warming SST (across domains), 
only this single model is accompanied by an increase in RD.

Similar to RD, removing variability in static stability and the radiative cooling rate (separately) does not explain 
the increasing anvil cloud fraction occurring in some models. When variability in the radiative cooling rate is 
removed, all models have RD decreasing with warming SST and, similarly, when variability in static stability is 
removed, all models have RD increasing with warming SST (except for SAM-CRM RCE_large, where RD and 
cloud fraction both decrease with warming SST).

An additional factor that may modulate the RD-cloud fraction relationship is changes in aggregation with 
warming. Aggregation is known to decrease high cloud fraction compared to un-aggregated simulations (Wing 
et al., 2020). Many models, but not all, have an increase in aggregation with warming and a decrease in cloud 
fraction, or, a decrease in aggregation with warming and an increase in cloud fraction (top left and bottom right 
quadrants of Figure 7, respectively). Changes in aggregation could therefore potentially explain failures of the RD 
theory (anvil peak cloud fraction increasing despite RD decreasing). Many cases of aggregation decreasing with 
warming are associated with such a failure (the cluster of red markers in the bottom right quadrant of Figure 7). 
Decreases in aggregation with warming may thus be what pushes the cloud fraction of the anvil to increase 
despite the decrease in RD. However, this does not hold true for all cases; there are plenty of cases where the 
RD theory holds despite decreases in aggregation (green markers in the bottom left quadrant of Figure 7). The 
reduction in anvil cloud fraction with aggregation has been explained in terms of the decrease in RD that results 
from a warmer atmosphere with aggregation (Bony et al., 2016), so it is also unclear how changes in RD could 
control the anvil cloud fraction response to changes in aggregation but not the response of anvil cloud fraction to 
changes in SST in the same manner.

This leads us to propose that RD is not the sole control of cloud fraction, that perhaps other processes play 
important roles in addition to radiative cooling. For example, recent work has addressed the topic by studying the 
lifetime of an anvil cloud (which is affected by microphysics and the timescales of ice vs. liquid water), studying 
effects of evaporative cooling in addition to radiative cooling, and studying sensitivities to the vertical resolution 
of models (Beydoun et al., 2021; Jeevanjee & Zhou, 2022; Ohno & Satoh, 2018; Ohno et al., 2019, 2020, 2021; 
Seeley, Jeevanjee, Langhans, & Romps, 2019; Seeley, Jeevanjee, & Romps, 2019). Additionally, RD has to be 
interpreted carefully as it represents net detrainment (which can be negative) rather than gross detrainment (which 
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is nonnegative) resulting in the ability of the metric to change signs between 
the upper and lower atmosphere unlike cloud fraction which is only positive 
(Jeevanjee & Zhou,  2022; Seeley, Jeevanjee, & Romps,  2019). That said, 
the simulations in RCEMIP provide strong support for RD as a leading order 
control of changes in anvil cloud fraction with warming.

5.  Controls on the Mid-Level Cloud Fraction
Mid-level clouds robustly decrease with warming SST across the models 
(Figures 8 and 9a solid markers), consistent with Cronin and Wing (2017). 
The simulations at different SST also robustly collapse to a single profile 
when plotted against temperature, compare the solid (temperature-space) 
lines to the dashed (height-space) lines in Figure 8. This can also be seen in 
Figure 9d where the range, calculated using Equation 4, of mid-level cloud 
fraction is smaller in temperature space (solid triangles) than in height space 
(solid circles). The models with parameterized convection have a much 
greater decrease in mid-level clouds with warming SST than models with 
explicit convection (compare the solid circles on the right to those on the left 
in Figure 9d) but still collapse to a comparable range in temperature space 
(solid triangles in Figure 9d). The average difference between 〈CFrange〉 in 
height space and 〈CFrange〉 in temperature space is 0.06 across the model 
suite, where the models with parameterized convection have a larger differ-
ence at 0.08 than the models with explicit convection at 0.03. In fact, the 
average difference between 〈CFrange〉 in temperature space and 〈CFrange〉 in 
height space is 82% of their 〈CFavg〉 value (88% for models with parame-
terized convection and 74% for models with explicit convection), which 
tells us the range in temperature space is smaller than the magnitude of the 
cloud fraction value itself and therefore the mid-level cloud fraction roughly 
collapses to one profile when plotted in temperature space across the models.

Because the behavior of mid-level clouds is similar for both models with 
explicit convection and models with parameterized convection (despite the 

noted lack of mid-level clouds in GCMs, Boucher et al., 2014; Randall et al., 2007; Zhang, 2005), the style of 
convection cannot completely explain differences in mid-level cloud behavior. Further analysis of the mid-level 
clouds, at least in the manner we use for the models with explicit convection, cannot be completed with the GCMs 
due to the inability to compute statistics conditionally averaged over convecting/cloudy areas from offline, coarse 
GCM output. Thus, the rest of this section focuses on the models with explicit convection.

The mid-level scaling diagnostic of Cronin and Wing (2017) (Section 2.4.2; Equation 5) applied to the models 
with explicit convection (open markers of Figures 9a and 9d) captures the decrease in mid-level clouds and their 
collapse in temperature space. This is shown by the negative values of 〈ΔCF〉 as predicted by the diagnostic scal-
ing in Figure 9a (open markers) as well as the cloud fraction range as predicted by the diagnostic scaling being 
larger in height space than temperature space (open circles are above open triangles in Figure 9d). The difference 
in cloud fraction as predicted by the scaling diagnostic compared to the difference in mid-level cloud fraction 
of cfv2 lie approximately on a 1-to-1 line with reasonably high correlations (Figure 9b) for both height space 
(circles) and temperature space (triangles). The commonality in the behavior of the cfv2 cloud fraction profiles 
and the cloud fraction profile predicted by the mid-level scaling diagnostic allows us to take advantage of the 
diagnostic scaling (Equation 5) to analyze how its components change with respect to each other with warming 
and determine a control on the mid-level clouds with reasonable physical backing.

All the terms of Equation 5 also collapse in temperature space for most models. For example, Figures 10 
and 11 display profiles of integrated radiative cooling and environmental relative humidity, respectively, 
plotted in both height-space (dotted lines) and temperature-space (solid lines). The invariance in these 
variables was also found by Cronin and Wing  (2017), but here we verify the robustness of these invari-
ances across a wide range of models. While there are not sound physical explanations for the collapse of 

Figure 7.  Changes in aggregation with warming using three metrics 
(subsidence fraction, index of organization, and the variance in column relative 
humidity, represented by the different marker shapes) versus changes in anvil 
cloud fraction with warming using cfv2 for the RCE_large simulations. The 
models with explicit convection are the solid markers while the models with 
parameterized convection are the open markers. Aggregation data is from 
Wing et al. (2020). Note: CAM6-GCM is off the chart due to its large increase 
in cloud fraction. All combinations of changes in RD versus changes in cloud 
fraction are captured by the green and red markers, which represents whether 
the stability iris theory succeeds (green) or fails (red).
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some of the terms, the invariance of relative humidity and radiative cooling to changing temperatures have 
an established physical basis and significant implications for other aspects of climate (Figures 9e and 9f; 
Ingram, 2010; Jeevanjee & Romps, 2018; Po-Chedley et al., 2019; Romps, 2014). Romps (2014) used basic 

Figure 8.  Horizontally- and temporally-averaged profiles of mid-level (as defined in Section 2.4.1) cloud fraction of the RCE_large cloud resolving models using cfv2, 
plotted against height space (dotted lines, left axis) and temperature (solid lines, right axis) for 295, 300, and 305 K (purple, green, and yellow lines, respectively). Note: 
the ranges of the vertical axes vary since the mid-level range are model-dependent.
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and well-understood physics to derive an equation governing the invariant nature of the “RH-T curve” with 
conclusions similar to FAT: the profile shifts upward (also seen in Po-Chedley et  al.,  2019) in order to 
maintain the same temperature. This stemmed from Romps (2014) noting the consistent shape and range of 
relative humidity profiles in all manners of data (observations, GCMs, and CRMs). Po-Chedley et al. (2019) 
found that the intermodel spread in CMIP models in response to CO2-forced warming can be explained by 
the upward shift in cloud fraction and relative humidity fields to maintain a constant temperature-space 
profile. Similarly, Jeevanjee and Romps (2018) discuss the invariance of radiative cooling, which is found 
in RCE as well as comprehensive GCMs, which has implications for constraints on precipitation in a warm-

Figure 9.  Scatter plots of the mid-level clouds using the mid-level scaling metrics defined in Section 2.4.1. (a) Plots the difference between 305 and 295 K cloud 
fraction profiles (closed markers; CFP) and for the mid-level diagnostic defined in Section 2.4.2 (open markers; MLS). (b) Depicts the correlation of the change in 
MLS and CFP plotted in temperature space (triangles) and height space (circles). The correlations out of the parentheses are representative of all of the models while 
the correlations in parentheses exclude the outlier, NICAM (yellow points). (c) Plots the change in MLS (Equation 5) with sea surface temperature if the numerator and 
denominator are individually held constant at their 300 K value against 〈ΔMLS〉. (d) Plots the range of CFP (closed markers) and MLS (open markers) in both height 
space (circles) and temperature space (triangles). (e and f) Plot the range of the tropospheric radiative cooling rate and the range in environmental relative humidity 
(respectively) in both height space (circles) and temperature space (triangles) against their average value in temperature space. Notes: (a) The x-axes in panels (a and 
d) mean nothing, models with parameterized convection are on the right side of the vertical gray line and models with explicit convection are on the left side of the 
vertical gray line. (b) (b, c, e, and f) show only the models with explicit convection. (c) (d, e, and f) have lines that connect the metric in height space to the metric in 
temperature space for visual aid.
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ing climate. We do note that for relative humidity (Figures 9f and 11) there is generally greater scatter and 
less consistency as three models have the opposite behavior: the metric in temperature space has a greater 
range than the metric in height space. Finally, the radiative cooling in general collapses better in temperature 

Figure 10.  Horizontally- and temporally-averaged profiles of mid-level (as defined in Section 2.4.1) troposphere-integrated radiative cooling rate of the RCE_large 
cloud resolving models using cfv2, plotted against height space (dotted lines, left axis) and temperature (solid lines, right axis) for 295, 300, and 305 K (purple, green, 
and yellow lines, respectively). Note: the ranges of the vertical axes vary since the mid-level range are model-dependent.
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Figure 11.  Horizontally- and temporally-averaged profiles of mid-level (as defined in Section 2.4.1) environmental relative humidity of the RCE_large CRMs using 
cfv2, plotted against height space (dotted lines, left axis) and temperature (solid lines, right axis) for 295, 300, and 305 K (purple, green, and yellow lines, respectively). 
Note: the ranges of the vertical axes vary since the mid-level range are model-dependent.
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space than relative humidity does, considering the range in temperature space relative to the average values. 
This seems obvious when looking at the profiles in Figure 10 or 11 or the distance between the circle and 
triangle  scatters in Figures 9e and 9f, but, to account for the difference in order of magnitude between the 
two terms, the conclusion was verified by comparing the term-relative ratio of the ranges in height and 
temperature space to their corresponding average in temperature space (i.e., the y-axis divided by the x-axis 
of Figure 9, not shown).

Cronin and Wing (2017) discussed that the mid-level cloud fraction decreases because the denominator of Equa-
tion 5, the product of cloud updraft speed and cloud vapor density excess, increases with warming much faster 
than the numerator of Equation 5, the tropospheric radiative cooling rate. This holds true across the RCEMIP 
ensemble where Figure 9c shows that, when the numerator is held constant at its 300 K value (circles of Figure 9c), 
the mid-level cloud fraction (as predicted by the diagnostic scaling) decreases (〈ΔMLS〉 is negative) as expected 
but, when the denominator is held constant at its 300 K value (squares of Figure 9c), the mid-level cloud fraction 
(as predicted by the diagnostic scaling) increases (〈ΔMLS〉 is positive). If it were up to the numerator, mid-level 
clouds would increase. That they decrease instead indicates that the increase in the denominator overwhelms the 
increase in the numerator.

In summary, the diagnostic scaling for mid-level clouds captures (a) a decrease in mid-level cloud fraction with 
warming, (b) a collapse of cloud fraction to one profile in temperature space, and (c) the value of mid-level cloud 
fraction.

We note that the profiles of cloud fraction on a temperature axis look very similar to shifting the profile upwards 
in height with warming SST, to align the anvil peaks (not shown). The collapse of the profiles when shifted 
upward is consistent with the collapse in temperature space (and thus, explanation by the mid-level scaling) 
because the location of the anvil peak is constrained by temperature. That is, the profiles move upward in order 
to remain at the same temperature.

6.  Conclusion and Discussion
The wide range of models within the RCEMIP data set provides a unique opportunity to investigate the funda-
mental properties of deep convection and determine which behaviors emerge as robust across models despite 
their different representations of numerics, physics, etc. In particular, we are able to compare the controls on 
deep convecting clouds in models that represent such clouds explicitly versus those that parameterize them. 
Future work should explore whether these properties and controls manifest themselves robustly in observations 
of the tropical atmosphere. Using this diverse set of models, this paper verified and solidified hypotheses from 
prior literature and presented an analysis of anvil cloud properties in a similar manner to Wing et al. (2020) using 
a consistently applied definition of cloud fraction. Our results agree that the height of anvil clouds increases 
robustly, the temperature of the anvils increase slightly for the majority of the models following the PHAT 
hypothesis (Zelinka & Hartmann, 2010), and the anvil cloud amount decreases for two-thirds of the models with 
warming SST.

We then tested the stability iris theory (Bony et al., 2016; Zelinka & Hartmann, 2010) on the control of high cloud 
fraction. The theory holds for those models which have a decrease in cloud fraction with warming SST. However, 
there are some models that have an increase in anvil cloud fraction despite a decrease in RD. Although we consid-
ered several possible explanations, we are left speculating that perhaps radiatively-driven divergence cannot 
completely explain how anvil cloud fraction changes with warming. Nevertheless, the high correlation between 
changes in RD and cloud fraction leads us to conclude that RD plays a leading role in the control of anvil coverage. 
This is consistent with the conclusions of Beydoun et al. (2021), which argues that the need to account for detrain-
ment and lifetime of ice in definition of an anvil doesn't mean that radiatively-driven divergence cannot explain 
cloud fraction responses to warming temperature (as argued in Seeley, Jeevanjee, Langhans, & Romps, 2019; 
Seeley, Jeevanjee, & Romps, 2019), rather, that radiatively-driven divergence is simply a determining factor of 
anvil cloud fraction.

We also found that the mid-level clouds decrease with SST across all the models and also tend to collapse to a 
common profile when plotted in temperature space. These results are captured by a scaling diagnostic for the 
mid-level clouds developed by Cronin and Wing (2017). All terms of the diagnostic equation collapse to one 
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profile when considered as a function of temperature, although some terms do so more strongly than others. 
Our results confirm the temperature invariance of relative humidity and radiative cooling profiles, which 
has important implications for other aspects of climate (Jeevanjee & Romps, 2018; Po-Chedley et al., 2019; 
Romps,  2014). We also find that the overall convective heating of clouds increases at a much faster rate 
than the integrated radiative cooling rate, causing the cloud fraction to decrease according to this diagnostic 
scaling.

Although there are many benefits presented by such a diverse group of models in the RCEMIP data set, there 
are difficulties in trying to compare results across the entire suite. First, the cloud fraction variable is itself an 
artificial construct. Clouds are not a binary object but rather a continuous transition from clear sky to opti-
cally  and physically thick condensate. Consequently, a host of assumptions are made when defining a cloud in 
a subgrid-scale scheme or by considering a threshold value of cloud condensate. Both methods are individually 
flawed and imperfect in different ways, but it is also unclear whether the two approaches (used in models with 
parameterized convection and explicit convection, respectively) are directly and quantitatively comparable to 
each other. Furthermore, the limitations of the coarse grid and parameterization in GCMs prevents us from apply-
ing some of our analysis to those models, such as the ability to rigorously test different definitions for variables 
or compute statistics over cloud areas.

Despite these limitations, the RCEMIP data set provides a valuable opportunity to understand how clouds 
respond to a warming surface temperature. While the cloud fraction values may not be directly comparable 
between models with parameterized convection and explicit convection, the behavior of the clouds with warming 
is generally similar. To first order, the hypotheses controlling high and mid-level clouds hold in both the models 
with explicit and parameterized convection, which strengthens our conclusions.

We have used the RCEMIP simulations to describe what the deep-convective cloud response to warming is 
and why the clouds change the way that they do. Future work will take the next step by investigating how 
these cloud changes contribute to climate feedbacks. The tropical anvil cloud feedback is the largest source 
of uncertainty in climate sensitivity (Sherwood et al., 2020). The common framework of the RCEMIP data 
set may aid in determining what the tropical cloud feedback is, its decompositions into contributions from the 
longwave and shortwave, as well as the contributions from different types of clouds as defined by, for example, 
altitude and optical thickness. One of the few areas in which the RCEMIP models with explicit convection 
have closer agreement than the models with parameterized convection is in the change in cloud radiative effect 
with warming (Wing et  al.,  2020). This lends optimism that a proper calculation of cloud feedbacks (i.e., 
with radiative kernels or partial radiative perturbations) and their decomposition in the RCEMIP models with 
explicit convection (a task usually limited to models with parameterized convection) will help constrain the 
tropical anvil cloud feedback.

Appendix A:  Using 3D Data to Calculate Cloud Fraction
The equilibrium state used in our analysis consists of time-averaged profiles, excluding the first 75 days of the 
simulation. Since cfv1 and cfv2 are domain-wide metrics computed from the 3D data, the time-average is 
derived from six-hourly instantaneous snapshots. cfv0, on the other hand, is derived from the domain- and 
hourly-averaged 1D profiles, which themselves are based on sampling at a much higher frequency (i.e., in 
SAM-CRM, every 8 minutes). The reduced sampling in cfv1 and cfv2 from using 3D data may introduce a 
bias. We test the validity of using the 3D data to recalculate time-averaged cloud fraction through its usage in 
SAM-CRM (Khairoutdinov & Randall, 2003). This model was run in-house and therefore the processes used to 
diagnose variables as well as sampling are completely known. This is especially important in comparing cfv0 
and cfv1 where, for SAM-CRM, the definitions are identical and therefore differ only in the temporal sampling. 
We found that the temporally-averaged profiles of cfv0 and cfv1 agree with one another, including anvil height 
and amount, the crux of the analysis in this paper (Figure A1).
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Figure A1.  Horizontally- and temporally-averaged profiles of cloud fraction plotted against (a) height and (b) temperature 
for SAM-CRM RCE_large. The colored profiles, purple, green, and yellow, are the simulations at sea surface temperatures 
of 295, 300, and 305 K, respectively and the solid, dashed, and dotted lines represent the three definitions of cloud fraction, 
cfv0, cfv1, and cfv2, respectively.

Some models have a substantial difference between cfv0 and the 3D derived cloud fraction profiles (cfv1), 
even if the correct threshold was used for cfv0 (Figures S4 and S5 in Supporting Information S1). We speculate 
that any number of factors may be responsible for this discrepancy. Saturation mixing ratio, an integral part of the 
cfv0 and cfv1 definition, may have been calculated based on saturation over ice for cfv0 instead of water, a 
known non-negligible subtlety. The equation used could also differ across models. For all models, the calculation 
of the saturation vapor pressure for cfv1 applied the definition used in SAM-CRM which uses the eighth order 
polynomial fit to the Wexler (1976) expression for saturation vapor pressure developed by Flatau et al. (1992). 
Nevertheless, the remarkable consistency between profiles of cloud fraction for the cfv0 and cfv1 definitions 
in SAM-CRM (Figure A1) leads us to be confident in the use of the more limited sampling of the 3D model 
output to generate the time- and domain-mean profiles.

The consistently applied definition in cfv1 and cfv2 then allows for a fairer comparison of cloud properties 
across models. In Text S1 in Supporting Information S1, we repeat the analysis of Wing et al. (2020) (which used 
cfv0) using cfv1, to compare to the analysis of cfv2 presented in Section 3.

Data Availability Statement
We thank the German Climate Computing Center (DKRZ) for hosting the standardized Radiative Convective 
Equilibrium Model Intercomparison Project (RCEMIP) data, including the new versions of cloud fraction 
diagnosed here, which is publicly available at http://hdl.handle.net/21.14101/d4beee8e-6996-453e-bbd1-ff-
53b6874c0e. Data derived from the RCEMIP data set are archived at https://doi.org/10.5281/zenodo.6323552 
(Stauffer & Wing, 2022).
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