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Abstract—We study the information leakage to a guessing ad-
versary in zero-error source coding. The source coding problem
is defined by a confusion graph capturing the distinguishability
between source symbols. The information leakage is measured
by the ratio of the adversary’s successful guessing probability
after and before eavesdropping the codeword, maximized over
all possible source distributions. Such measurement under the
basic adversarial model where the adversary makes a single
guess and the guess is regarded successful if and only if the
estimator sequence equals to the true source sequence is known
as the maximum min-entropy leakage or the maximal leakage in
the literature. We develop a single-letter characterization of the
optimal normalized leakage under the basic adversarial model,
together with an optimum-achieving memoryless stochastic
mapping scheme. An interesting observation is that the optimal
normalized leakage is equal to the optimal compression rate
with fixed-length source codes, both of which can be simul-
taneously achieved by some deterministic coding schemes. We
then extend the leakage measurement to generalized adversarial
models where the adversary makes multiple guesses and allows
a certain level of distortion, for which we derive single-letter
lower and upper bounds.

I. INTRODUCTION

The classic problem of source coding introduced by Shan-
non [1] considers compression of an information source to
represent data with fewer number of bits on average, allowing
a vanishingly small average decoding error probability. In
contrast, zero-error source coding is a different and related
problem with its own significance in both a practical and the-
oretical sense. For an excellent survey, see [2]. In this work,
we study the fundamental limits of information leakage in
zero-error source coding from a graph-theoretic perspective.

Suppose we observe a source X and wish to transmit a
compressed version of the source to a legitimate receiver.
From the receiver’s perspective, some source symbols are
distinguishable (i.e., need to be distinguished) and some
are not. The distinguishability relationship among source
symbols is characterized by a confusion graph Γ for the
source. For decoding to be considered successful, any distin-
guishable source sequences must not be mapped to the same
codeword. This graph-theoretic model has various real-world
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the US National Science Foundation Grant CNS-1815322; and the ARC
Future Fellowship FT190100429.

applications. Consider the toy example in Fig. 1(a), where X
denotes the water level of a reservoir, and a supervisor only
needs to know whether the water level is relatively high or
low to determine if refilling is needed.

Source X :

H

LVL

VH

(a)

codeword

bl
ue

x = VH or H?

red

x = VL or L?

(b)

Figure 1. (a) From the perspective of the reservoir’s supervisor, symbols
VH (very high) and H (high) are indistinguishable (i.e., need not to be
distinguished), and so are symbols VL (very low) and L (low). We draw
an edge between any two distinguishable symbols, and then to satisfy the
supervisor, we can only map non-adjacent symbols to the same codeword.
(b) An adversary eavesdrops the codeword, based upon which it tries to
guess the exact water level.

The source coding model we consider was originally intro-
duced in a slightly different setup [3], where a vanishing error
probability is allowed and the resulting optimal compression
rate is defined as the graph entropy of the confusion graph.
More recently, the joint source-channel coding problem has
been analyzed [4] based on the same zero-error graph-
theoretic setting as our model for the source coding.

Suppose that the transmitted codeword is eavesdropped by
a guessing adversary, who knows the source distribution PX

and tries to guess the true source sequence via maximum
likelihood estimation within a certain number of trials. See
Fig. 1(b) for our toy example. Before observing the code-
word, the adversary will guess the most likely water level
among all four levels. After observing the codeword, say
“blue”, it will guess the more likely water level between
VH and H.1 In general, compared with guessing blindly
(i.e., based only on PX ), the average successful guessing
probability will increase as the adversary eavesdrops the
codeword. We measure the information leakage from the
codeword to the adversary by such a probability increase.
More specifically, the leakage is quantified as the ratio be-

1Like the receiver, in general the adversary may need not to distinguish all
the source symbols, which can be characterized by an “adversary’s confusion
graph”. Such case will be formally defined and studied in Section IV-B.
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tween the adversary’s probability of successful guessing after
and before observing the codeword. This way of measuring
information leakage was originally introduced in [5], leading
to the leakage metric known as the min-entropy leakage.

Quite often in practice, the compression scheme is de-
signed by the sender when the exact source distribution is
unknown or subject to change. In such case, one can consider
the worst-case leakage, which is the information leakage
maximized over all possible source distributions PX over a
given source alphabet X . The worst-case variant of the min-
entropy leakage, namely the maximum min-entropy leakage,
has been developed in [6].

A similar idea was independently explored in a different
setup [7], [8] where the adversary is interested in guessing
some randomized function U of X rather than X itself.
The worst-case metric under such scenario is named as
the maximal leakage. Interestingly, despite their different
operational meanings, the maximal leakage and maximum
min-entropy leakage turn out to be equal. For more works
studying the maximal leakage or the maximum min-entropy
leakage and their variants from both the information-theoretic
and computer science perspectives, see [9]–[18]. In another
related work [19], leakage in compression systems has been
studied considering multiple leakage metrics, including the
maximal leakage, under the assumption that the source code
is deterministic and a random secret key is shared between
the sender and the receiver. See [20]–[24] for more works on
the general topic of information-theoretic secrecy and privacy.

Clearly we wish to keep the information leakage as small
as possible by smartly designing a (possibly stochastic)
source coding scheme. Therefore, our fundamental objective
is to characterize the minimum leakage (normalized to the
source sequence length) under the zero-error decoding re-
quirement and also the optimum-achieving mapping scheme.

Contributions and organization: In Section II, we detail
the problem of information leakage in source coding. In
particular, we start with the basic adversarial model where the
adversary makes a single guess and allows no distortion2, and
thus the resulting privacy metric is the normalized version of
the maximal leakage [8] or the normalized maximum min-
entropy leakage [6]. Our main contributions are as follows:

1) In Section III, we develop a single-letter characterization
for the optimal normalized maximal leakage for the basic
adversarial model. We also design a scalar stochastic mapping
scheme that achieves this optimum. An interesting observa-
tion is that the optimal leakage can also be achieved using
deterministic codes that simultaneously achieve the optimal
fixed-length zero-error compression rate.

2) In Section IV, we extend our adversarial model to allow
multiple guesses and distortion between an estimator (guess)
and the true sequence, resulting in more generalized leakage
metrics. Particularly, inspired by the notion of confusion
graphs, we characterize the relationship between a sequence
and its acceptable estimators for the adversary by another
graph defined on the source alphabet.

2When no distortion is allowed, the adversary must guess the actual source
sequence to be considered successful.

3) We then show that the optimal normalized leakage under
the generalized models is always upper-bounded by the result
in the original setup. Single-letter lower bounds (i.e., converse
results) are also established.

Notation: For any discrete random variable Z with proba-
bility distribution PZ , we denote its alphabet by Z with re-
alizations z ∈ Z . For any K ⊆ Z , PZ(K)

.
=
∑

z∈K PZ(z).
For the definitions for basic graph-theoretic notions, see [25].

II. SYSTEM MODEL AND PROBLEM FORMULATION

Source coding with confusion graph Γ: Consider a
discrete memoryless stationary information source X that
takes values in the alphabet X with full support. We
wish to stochastically compress a source sequence Xt .

=
(X1, X2, . . . , Xt) to some codeword Y that takes values in
the code alphabet Y and transmit it to a legitimate receiver via
a noiseless channel. The randomized mapping scheme from
X t to Y is denoted by the conditional distribution PY |Xt .

To the receiver, the distinguishability relationship among
source symbols is characterized by a confusion graph Γ,
where the vertex set is the source alphabet, i.e., V (Γ) =
X , and any two symbols x, x′ ∈ X are adjacent in Γ,
i.e., {x, x′} ∈ E(Γ), if and only if (iff) they are dis-
tinguishable with each other. Any two source sequences,
xt = (x1, . . . , xt) ∈ X t and vt = (v1, . . . , vt) ∈ X t,
are distinguishable iff at some j ∈ [t], xj and vj are dis-
tinguishable. Therefore, the distinguishability among source
sequences of length t is characterized by the confusion graph
Γt, which is defined as the t-th power of Γ with respect
to the OR (disjunctive) graph product [25, Section 3.4]:
Γt = Γ ∨ Γ ∨ · · · ∨ Γ = Γ∨t.

To ensure zero-error decoding, any two source sequences
that can be potentially mapped to the same codeword must
not be distinguishable. More formally, given some PY |Xt , let

X t
PY |Xt

(y)
.
= {xt ∈ X t : PY |Xt(y |xt) > 0} (1)

denote the set of all xt mapped to y with nonzero probability.
When there is no ambiguity, we simply denote X t

PY |Xt
(y) by

X t(y). Therefore, a mapping scheme PY |Xt is valid iff

X t(y) ∈ I(Γt), ∀y ∈ Y, (2)

where I(·) denotes the set of independent sets of a graph.
Whenever we say a source coding problem Γ, we mean a

zero-error source coding problem with confusion graph Γ.
Leakage to a guessing adversary: As a starting point,

we assume that the adversary makes a single guess after
observing each codeword and the guess is regarded successful
iff the estimator sequence equals the true source sequence.

Consider any source coding problem Γ. The maximal
leakage3 for a given sequence length t and a given valid
mapping PY |Xt has been defined in [6] as:4

Lt(PY |Xt)
.
= log max

PX

EY

[
max
xt∈X t

PXt|Y (xt|Y )

]
max
xt∈X t

PXt(xt)
(3)

3For the rest of the paper, we adopt the name of maximal leakage [8].
4For notation brevity, we drop the reference to Γ noting that all leakage

measures defined in this paper are dependent on Γ.
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= log
∑
y∈Y

max
xt∈X t

PY |Xt(y |xt), (4)

where (4) is a re-statement of [6, Proposition 5.1]. The
optimal maximal leakage for a given t is then defined as

Lt .= inf
PY |Xt :

X t(y)∈I(Γt),∀y∈Y

Lt(PY |Xt). (5)

Then we define the (optimal) maximal leakage rate as

L .
= lim

t→∞
t−1Lt. (6)

III. MAXIMAL LEAKAGE RATE: CHARACTERIZATION

In the following we present a single-letter characterization
of the maximal leakage rate L.

Theorem 1: For any source coding problem Γ,

L = logχf (Γ), (7)

where χf (Γ) is the fractional chromatic number of Γ.
To prove Theorem 1, we introduce several useful lemmas.
We first prove that given any valid mapping, “merging”

any two codewords does not increase the leakage (as long as
the obtained mapping is still valid).

More precisely, consider any sequence length t and any
valid mapping PY |Xt such that there exists some mergeable
codewords y1, y2 ∈ Y , y1 6= y2, satisfying X t(y1)∪X t(y2) ⊆
T for some T ∈ Imax(Γt), where Imax(·) denotes the set of
maximal independent sets of a graph. Construct Y1,2 from Y
by simply merging y1 and y2 to a new codeword y1,2 /∈ Y .
Thus, Y1,2 = (Y \ {y1, y2}) ∪ {y1,2}, and for any xt ∈ X t,

PY1,2|Xt(y |xt)

=

{
PY |Xt(y1|xt) + PY |Xt(y2|xt), if y = y1,2,

PY |Xt(y|xt), otherwise.
(8)

As Y1,2 is a deterministic function of Y , the Markov chain
Xt − Y − Y1,2 holds, and thus by [8, Lemma 1]], the result
below holds.

Lemma 1: Lt(PY1,2|Xt) ≤ Lt(PY |Xt).
As specified in (2), for a valid mapping scheme, every

codeword y should correspond to an independent set of
the confusion graph Γ. As a consequence of Lemma 1,
to characterize the optimal leakage, it suffices to consider
only those mapping schemes for which all codewords y
correspond to distinct maximal independent sets of Γ.

To formalize this observation, for any sequence length t,
define the distortion function dt : X t × Imax(Γt) → {0, 1}
such that for any xt ∈ X t, T ∈ Imax(Γt),

d(xt, T ) =

{
0, xt ∈ T,
1, xt /∈ T.

(9)

Then the lemma below holds, where the proof can be found
in the full version of this paper [26].

Lemma 2: To characterize Lt defined in (5), it suffices to
assume the mapping PY |Xt to satisfy that Y = Imax(Γt) and
d(Xt, Y ) = 0 almost surely. Thus by (4), we have

Lt = inf
PY |Xt :

Y=Imax(Γt),

d(Xt,Y )=0

log
∑
y∈Y

max
xt∈X t

PY |Xt(y |xt). (10)

The solution (i.e., the optimal objective value) to the
optimization problem on the right hand side of (10) in Lemma
2 is characterized by [27, Corollary 1], based upon which we
have the following result.

Lemma 3: Lt = − log ηt, where ηt is the solution to the
following maxmin problem:

maximize min
xt∈X t

∑
T∈Imax(Γt):xt∈T

κT , (11a)

subject to
∑

T∈Imax(Γt)

κT = 1, (11b)

κT ∈ [0, 1], ∀T ∈ Imax(Γt). (11c)

On the other hand, for any t, χf (Γt) is the solution to the
following linear program [28, Section 2.2]:

minimize
∑

T∈Imax(Γt)

λT , (12a)

subject to
∑

T∈Imax(Γt):xt∈T

λT ≥ 1, ∀xt ∈ X t, (12b)

λT ∈ [0, 1], ∀T ∈ Imax(Γt). (12c)

We can show that the solutions to the optimization prob-
lems (11) and (12) are reciprocal to each other. That is,

ηt = 1/χf (Γt), (13)

where the proof is presented in Appendix A. The remaining
proof of Theorem 1 follows easily from the above results.

Proof of Theorem 1: We have

L (a)
= lim

t→∞

1

t
(− log ηt)

(b)
= lim

t→∞

1

t
logχf (Γt)

(c)
= logχf (Γ).

where (a) follows from (6) and Lemma 3, (b) follows (13),
and (c) follows from the fact that χf (Γt) = χf (Γ∨t) =
χf (Γ)t (cf. [25, Corollary 3.4.2]).

Having characterized the optimal maximal leakage rate L
in Theorem 1, in the following we design an optimal mapping
scheme PY |Xt for some t that achieves L, which is based on
the optimal fractional coloring of the confusion graph Γ.

Fix t = 1. For Γ1 = Γ, there always exists some b-
fold coloring P = {T1, T2, . . . , Tm} for some finite positive
integer b such that χf (Γ) = m/b (cf. [25, Section 3.1]).

Set Y = P (and thus every codeword y ∈ Y is actually an
independent set of Γ). Set

PY |X(y |x) =

{
1/b, if x ∈ y,
0, otherwise.

(14)

As every x ∈ X is in exactly b sets within P , we have∑
y∈Y

PY |X(y |x) =
∑

y∈Y:x∈y

1

b
+

∑
y∈Y:x/∈y

0 = 1, ∀x ∈ X ,

and thus PY |X is a valid mapping scheme. We have

L1(PY |X) = log
∑
y∈Y

max
x∈X

PY |X(y |x)

= log
∑
y∈P

1

b
= log

m

b
= logχf (Γ), (15)
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and thus we know that the maximal leakage rate in Theorem 1
is indeed achievable by the mapping described in (14).

Remark 1: Consider any source coding problem Γ. We
know that the optimal zero-error compression rate (with
fixed-length deterministic source codes) is

R = lim
t→∞

1

t
logχ(Γ∨t) = lim

t→∞

1

t
logχf (Γ∨t) = logχf (Γ),

where the second equality follows from [25, Corollary 3.4.3].
The above result holds even when we allow stochastic coding.
Thus the maximal leakage rate L always equals to the optimal
compression rate R. Moreover, it can be verified that any R-
achieving deterministic code can simultaneously achieve L.
In other words, when considering fixed-length source coding,
there is no trade-off between the compression rate and the
leakage rate. Furthermore, we observe the following:

1) Our characterization of L holds generally and does not
rely on the assumption of fixed-length coding;

2) While in general, the optimal zero-error compression
rate R and the maximal leakage rate L can be simul-
taneously and asymptotically attained at the limit of
increasing t, we showed in (15) that L, on the other
hand, can be achieved exactly even with t = 1 (using
the symbol-by-symbol encoding scheme specified in
(14) based on the factional coloring of Γ), but possibly
at the expense of the compression rate.

3) For variable-length source coding, whether there is a
compression-leakage trade-off remains unclear.

IV. EXTENSIONS ON THE MAXIMAL LEAKAGE RATE:
MULTIPLE AND APPROXIMATE GUESSES

In general, the adversary may be able to make multiple
guesses. For example, the adversary may possess a testing
mechanism to verify whether its guess is correct or not, and
thus can perform a trial and error attack until it is stopped by
the system. Also, for each true source sequence, there may
be multiple estimators other than the true sequence itself that
are “close enough” and thus can be regarded successful.

We generalize our definition of information leakage to
cater to the above scenarios. Consider any source coding
problem Γ, sequence length t, and valid mapping PY |Xt .
Suppose the adversary generates a set of guesses K ⊆ X t.
For each set K, define a “covering” set K+, where K ⊆
K+ ⊆ X t, such that if the true sequence is in K+, then the
adversary’s guess list K is considered successful. Let

S .
= {K+ : K is a guess list the adversary can choose}

be the collection of all possible K+. Then for the blind guess-
ing, the successful probability is maxS∈S

∑
xt∈S PXt(xt),

and for guessing after observing Y , the average success-
ful probability is EY

[
maxS∈S

∑
xt∈S PXt|Y (xt|Y )

]
. In the

same spirit of maximal leakage, we can define

ρt(PY |Xt ,S)
.
= log max

PX

EY

[
max
S∈S

∑
xt∈S

PXt|Y (xt|Y )

]
max
S∈S

∑
xt∈S

PXt(xt)

as the ratio between the a posteriori and a priori successful
guessing probability. If we set Ssingleton = {{xt} : xt ∈ X t},
that is, the adversary is allowed one guess and it must guess
the correct source sequence precisely, the maximal leakage
defined in (3) can be equivalently written as

Lt(PY |Xt) = ρt(PY |Xt ,Ssingleton).

In the next two subsections, we study different scenarios
where the adversary makes multiple guesses allowing no dis-
tortion and one guess allowing certain distortion, respectively.
For the investigation of the leakage under the generic ad-
versarial model where the adversary makes multiple guesses
allowing distortion, see the full version of this paper [26].

A. Leakage for the Case of Multiple Guesses

We first consider the case where the adversary makes
multiple guesses, yet does not allow distortion.

We characterize the number of guesses the adversary
can make by a guessing capability function g(t), where
t ∈ Z+ is the sequence length. We assume g(t) to be
positive, integer-valued, non-decreasing, and upper-bounded5

by α(Γt) = α(Γ∨t) = α(Γ)t, where α(·) denotes the
independence number of a graph.

Consider any source coding problem Γ and any guessing-
capability function g. For a given sequence length t and a
given valid mapping PY |Xt , the maximal leakage naturally
extends to the multi-guess maximal leakage, defined as

Lt
g(PY |Xt)

.
= ρt(PY |Xt ,Sg), (16)

where Sg = {K ⊆ X t : |K| = g(t)}. Then we can define
the (optimal) multi-guess maximal leakage rate as

Lg
.
= lim

t→∞

1

t
inf

PY |Xt :

X t(y)∈I(Γt),∀y∈Y

Lt
g(PY |Xt). (17)

We first show that the multi-guess maximal leakage rate
is always not larger than the maximal leakage rate.

Lemma 4: We have Lg ≤ L.
Proof: It suffices to show Lt

g(PY |Xt) ≤ Lt(PY |Xt) for
any t and PY |Xt . For any PX , we have∑
y∈Y

max
K⊆X t:|K|=g(t)

∑
xt∈K

PXt,Y (xt, y)

max
K⊆X t:|K|=g(t)

∑
xt∈K PXt(xt)

≤

∑
y∈Y

(
max

K⊆X t:|K|=g(t)

∑
xt∈K

PXt(xt)
)(

max
x̃t∈X t

PY |Xt(y|x̃t)
)

max
K⊆X t:|K|=g(t)

∑
xt∈K PXt(xt)

=
∑
y∈Y

max
xt∈X t

PY |Xt(y |xt),

which implies that Lt
g(PY |Xt) ≤ Lt(PY |Xt).

The following single-letter lower and upper bounds hold.
Theorem 2: We have

log |V (Γ)| − logα(Γ) ≤ Lg ≤ logχf (Γ). (18)
5Suppose for some t we have g(t) ≥ α(Γt). Then upon observing any

codeword y, the adversary can always determine the true source value by
exhaustively guessing all possible xt ∈ X t(y) as |X t(y)| ≤ α(Γt).
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The proof of the above theorem can be found in the full
version of this paper [26].

When the adversary guesses some randomized function U
of X rather than X itself, the maximal leakage is equal to
its multi-guess extension [8]. It remains to be investigated
whether a similar equivalence holds generally in our setup.
In the following, we confirm one special case where indeed
Lg = L and consequently, by Theorem 1, Lg = logχf (Γ).

Proposition 1: Consider any source coding problem Γ. If
limt→∞

1
t log g(t) = 0, then Lg = L = logχf (Γ).

The proof of the above result is presented in [26]. In-
tuitively, Proposition 1 suggests that when the number of
guesses the adversary can make does not grow “fast enough”
with respect to t, it makes no difference whether the adver-
sary is making one guess or multiple guesses (in terms of
the leakage defined in (6) and (17)).

As a direct corollary of Theorem 2, the result below shows
that Lg = L = logχf (Γ) holds for another specific scenario.

Corollary 1: If Γ is vertex-transitive6 [25, Section 1.3],
then Lg = L = logχf (Γ) for any function g.

Proof: Since Γ is vertex-transitive, by [25, Proposition
3.1.1], we have χf (Γ) = |V (Γ)|/α(Γ), which indicates that
lower and upper bounds in Theorem 2 match with each other,
thus establishing Lg = logχf (Γ) = L.

B. Leakage for the Case of One Approximate Guess
Suppose that the adversary makes only one guess, yet

allows a certain level of distortion between its estimator and
the true source value. That is, the guess is regarded successful
as long as the estimator is an acceptable approximation to
the true value. Inspired by the notion of confusion graph
Γ that characterizes the distinguishability within the source
symbols, we introduce another graph to characterize the
approximation relationship among source symbols (from the
adversary’s perspective). We call this graph the adversary’s
approximation graph, or simply the approximation graph,
denoted by Θ. The vertex set of Θ is just the source alphabet,
i.e., V (Θ) = X , and any two source symbols x 6= x′ ∈ X are
acceptable approximations to each other iff they are adjacent
in Θ, i.e., {x, x′} ∈ E(Θ).

Given a sequence length t, any two sequences xt =
(x1, . . . , xt) and vt = (v1, . . . , vt) are acceptable approxima-
tions to each other iff for every j ∈ [t], xj = vj or {xj , vj} ∈
E(Θ). Hence the approximation graph Θt for sequence length
t is the t-th power of Θ with respect to the AND graph
product [29, Section 5.2]: Θt = Θ � Θ � · · ·� Θ = Θ�t.

For any vertex xt ∈ X t, let N(Θt, x
t) denote the neigh-

borhood of xt within Θt, including the vertex xt itself. That
is, N(Θt, x

t) = {vt ∈ X t : vt = xt or {vt, xt} ∈ E(Θt)}.
Consider any source coding problem Γ and any approxi-

mation graph Θ. For a given sequence length t and a given
valid mapping PY |Xt , the maximal leakage naturally extends
to the approximate-guess maximal leakage, defined as

Lt
Θ(PY |Xt)

.
= ρt(PY |Xt ,SΘ), (19)

6While the definition in [25, Section 1.3] is for a hypergraph, it can be
readily specialized to a graph since any graph is a special hypergraph, whose
every hyperedge is a 2-element set.

where SΘ = {N(Θt, x
t) : xt ∈ X t}. Then we can define

the (optimal) approximate-guess maximal leakage rate as

LΘ
.
= lim

t→∞

1

t
inf

PY |Xt :

X t(y)∈I(Γt),∀y∈Y

Lt
Θ(PY |Xt). (20)

Similar to Lemma 4, we can show the following result.
Lemma 5: We have LΘ ≤ L.
Before presenting single-letter bounds on LΘ, we introduce

the following graph-theoretic notion.
Consider any sequence length t. For any maximal indepen-

dent set T ∈ Imax(Γt), we define its associated hypergraph
(see [25, Chapter 1] for basic definitions about hypergraphs).

Definition 1 (Associated Hypergraph): Consider any se-
quence length t. For any T ∈ Imax(Γt), its associated hyper-
graph7 Ht(T ) is defined as V (Ht(T )) = T and E(Ht(T )) =
{E ⊆ T : E 6= ∅, E = T ∩N(Θt, x

t) for some xt ∈ X t}.
The following single-letter lower and upper bounds on LΘ

hold, whose proof can be found in [26].
Theorem 3: We have

log
pf (Θ)

max
T∈Imax(Γ)

kf (H1(T ))
≤ LΘ ≤ logχf (Γ), (21)

where pf (·) denotes the fractional closed neighborhood pack-
ing number [25, Section 7.4] of a graph and kf (·) denotes the
fractional covering number [25, Section 1.2] of a hypergraph.

APPENDIX A
PROOF OF (13)

We first prove ηt ≤ 1/χf (Γt). As ηt is the solution to
(11), there exists some 0 ≤ κT ≤ 1, T ∈ Imax(Γt) so that

min
xt∈X t

∑
T∈Imax(Γt):xt∈T

κT = ηt, (22)

∑
T∈Imax(Γt)

κT = 1. (23)

Construct λT = κT /ηt for every T ∈ Imax(Γt). It can be
verified by contradiction that (λT : T ∈ Imax(Γt)) satisfies
the constraint in (12c). For more details, see the full version
of this paper [26]. For any xt ∈ X t, by (22), we have∑

T∈Imax(Γt):

xt∈T

λT ≥
1

ηt
min
vt∈X t

∑
T∈Imax(Γt):

vt∈T

κT = 1,

and thus we know that (λT : T ∈ Imax(Γt)) satisfies the
constraints in (12b). Therefore, (λT : T ∈ Imax(Γt)) is a
valid assignment satisfying the constraints in the optimization
problem (12), with which the objective in (12a) becomes∑

T∈Imax(Γt)

λT =
1

ηt

∑
T∈Imax(Γt)

κT =
1

ηt
,

where the second equality follows from (23). Since χf (Γt)
is the solution to the optimization problem (12), we conclude
that χf (Γt) ≤ 1/ηt, which is equivalent to ηt ≤ 1/χf (Γt).

The opposite direction ηt ≥ 1/χf (Γt) can be proved
similarly. Combining the two inequalities yields (13).

7Note that, for brevity, the dependence of the associate hypergraph on the
underlying approximation graph Θ is not shown in the notation Ht(T ).
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