106 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 1, MARCH 2021

A Code and Rate Equivalence Between
Secure Network and Index Coding

Lawrence Ong ~, Senior Member, IEEE, Badri N. Vellambi

, Senior Member, IEEE,

Jorg Kliewer ™ , Senior Member, IEEE, and Phee Lep Yeoh™ , Member, IEEE

Abstract—Establishing code equivalences between index cod-
ing and network coding provides important insights for code
design. Previous works showed an equivalence relation between
any index-coding instance and a network-coding instance, for
which a code for one instance can be translated to a code for the
other instance with the same decoding-error performance. The
equivalence also showed a surprising result that any network-
coding instance can be mapped to an index-coding instance with
a properly designed code translation. In this article, we extend the
existing equivalence (instance map and code translation) to one
between secure index coding and secure network coding, where
eavesdroppers are present in the network. In the secure setting,
any code construction needs to guarantee security constraints
in addition to decoding-error performance. A rate equivalence
between these two problems is also established.

Index Terms—Code equivalence, Index coding, network cod-
ing, secure communications, wiretap.

I. INTRODUCTION

QUIVALENCE results in information theory and network

coding are of significant interest because such results
uniquely reduce one communication problem to another
equivalent problem that is potentially easier to study. Some
equivalence results already established include those between
instances of multiple-unicast network coding and those of (i)
multiple-multicast network coding [1], (ii) secure network cod-
ing [2], [3], (iii) index coding [4], [5], (iv) and with respect to
a capacity equivalence for networks with adversarial state [6].
This article focuses on the equivalence between index coding
and network coding.
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Prima facie, the two problems of index coding and network
coding appear different. Index coding [7] considers a one-hop
network where a sender conveys multiple messages to multiple
receivers through a noiseless broadcast medium, where each
receiver wants some messages from the sender, but already
knows some other messages. On the other hand, network cod-
ing [8] considers a network of interconnected links with fixed
capacities, where multiple senders send multiple messages to
multiple receivers through these links.

Despite the differences, the following equivalence between
them has been demonstrated [4], [5]. For any index-coding
instance I, an instance map constructs an equivalent network-
coding instance N. This instance pair (I, N) has the following
properties: Any index code for I can be translated to a network
code for N, and vice versa. This code translation preserves the
message length, code length, and probability of decoding error.
Similarly, for any network-coding instance ¥, an instance map
constructs an equivalent index-coding instance I', and a code
translation can translate codes between the pair (N, I').

In this article, we investigate the equivalence when we
impose security constraints in addition to decodability con-
straints (the probability of decoding error). Separately, the
secure version of index coding [9]-[11] and that of network
coding [12]-[15] have been studied, in which there are addi-
tional passive eavesdroppers that attempt to obtain some
information on the communicated messages. Codes for the
secure version of these problem must prevent eavesdroppers
from knowing the messages they attempt to decode (where
knowing is quantified by the information-theoretic security
measure! [18, Ch. 22]) in addition to guaranteeing that all
receivers can obtain their requested messages (by bounding
the probability of decoding error).

The non-secure? instance maps and code translations [4], [5]
do not trivially apply to the secure version of the problems.
In particular, we pointed out [19] that mapping an eaves-
dropper in secure network coding to secure index coding is
not straightforward, as the eavesdroppers in the two problems
have different characteristics. Eavesdroppers in network cod-
ing listen to transmission on certain links, while those in index

IThis is a common criteria to protect classified data. Other security mea-
sures include preventing eavesdroppers from knowing what messages the
receivers request (private information retrieval [16]) or preventing eaves-
droppers from detecting whether communications occur (covert communi-
cations [17]).

2In this article, we use the term “non-secure” to denote existing instance
maps and code translations in the absence of security constraints.
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coding listen to the common broadcast and have access to
some subset of messages.

Also, the non-secure code translation was designed for
deterministic codes. But randomized encoding is inevitable
in some secure network-coding instances [15], and we have
shown that the non-secure code translation breaks down when
randomized encoding is allowed [19].

In this article, we establish an equivalence between secure
network coding and secure index coding. Similar to the
non-secure equivalence, we construct instance maps for two
directions (from secure index coding to secure network coding,
and vice versa). For each instance map, we construct two code
translations (from an index code to a network code, and back).

This equivalence carries the practical significance of com-
paring secure communication against eavesdropping in wired
networks with that in wireless networks. Our equivalence
results reveal that a passive eavesdropper that listens to the
common wireless broadcast is not advantageous—that is, more
difficult to deal with—compared to a passive eavesdropper
in a wired networks that taps only certain wired links. In
fact, our code translation results guarantee that the same
approach can be implemented in both networks with help of
side information (receivers knowing some other messages a
priori) in the wireless case.

A. Contributions and Approaches

Our approach to establish an equivalence is summarized as

follows:

« First, we construct the maps for translating problem
instances. We build on the existing non-secure instance
maps that map legitimate receivers. This involves map-
ping the eavesdroppers in any secure index-coding
instance (having certain messages) to those in the cor-
responding secure network-coding instance (listening to
certain links), and vice versa.

« Second, we construct code translations for the problem-
instance pairs. Again, we build on the existing non-secure
code translations, which have been shown to preserve the
decoding criteria. As mentioned earlier, the non-secure
code translations were designed for deterministic codes,
but randomized network codes are necessary for secure
network coding [15]. To deal with this issue, we (i) con-
struct a two-step code translation to convert randomized
codes to deterministic codes, and (ii) restrict the random-
ized encoding functions to certain nodes in the mapped
problem instance.

« Third, we show that although eavesdroppers in the two
problems instances observe different types of messages,
the code translations output codes with comparable mes-
sage size, code length, probability of decoding error, and
information leakage to the eavesdroppers.

« Lastly, using the code translations, we show a rate equiv-
alence between the two problems, that is, if a rate tuple is
achievable? for index coding, an appropriately scaled rate
tuple is also achievable for the mapped network coding,
and vice versa.

3Achievability is defined in the Shannon sense, that is, both probability of
decoding error and information leakage diminish, as the code length increases.

II. PROBLEM DEFINITION AND NOTATION

Let X be a set whose elements are indexed by a strictly
ordered set S = {51, 52, ... 5|5}, with a total order <, i.e., 51 <
§2 < --- < 8|5, and let forany A € §, X = (X;)sea- Thus, for
instance, X5 = (X;,, X, .- ., XSlSl)‘ Consider a directed graph
G = (V, E) with a node set V and an link set E. For a link ¢ =
(u — v) € E, where u,v € V, its tail is tail(e) '= u, and its
head is head(e) = v. For any node v € V, the set of incoming
links is denoted by in(v) := {e € E : head(e) = v}, and the
set of outgoing links by out(v) := {e € E : tail(e) = v}.
For any a € Z+ = {1,2,...}, denote [a] = {1,2,...,a}.
R+ := (0, co) and Ry := [0, 00).

A. Secure Network Coding

1) Problem Instance: Denote a secure network-coding
instance [13] by N = (G, C, P), where

« G = (V,E) is an acyclic directed graph with a node
set V and a link set E. Each link ecE has a capacity
c.cR*, where tail(e) can send a message X, € [2leen]]
to head(e) noiselessly over n Z* link uses.

o« C = (5,0,D) is the connection requirement. S con-
tains the message indices, where the messages are
{X; : seS}. O(s) e V is the originating node* for
message X;. D(s)CV is the set of nodes that require
message X;.

o P=((A;, B;) : z € Z) defines the eavesdroppers indexed
by elements of Z. Each eavesdropper z € Z observes
messages Xp. on links B, € E and tries to reconstruct
messages X, for some A; C S.

We assume that vertices with no incoming links are orig-
inating nodes for some source messages, and vertices with
no outgoing links are destinations for some source mes-
sages. Otherwise, they can be deleted without any conse-
quence. Similarly, each message is requested by at least one
node.

2) Deterministic Codes: Consider n uses of each link. Let
the messages {X; : s € S} be mutually independent, and
let each X; be uniformly distributed over [M] for some
M; € Z+. A deterministic (Ms, n)-network code consists of
the following:

« A deterministic encoding function e, for each link e € E
that takes in encoded messages that are conveyed on
incoming links of tail(e) and those messages originat-
ing from tail(e), i.e., (Xin(tail(g)),Xo_u(taﬂ(e))), and
outputs message X, = ee(Xj_n(taj_]_(e}}.,XO—I(tail(e})) to
be conveyed on link e taking values in [2Ll<em]]. Here,
O0~'(v) denotes the indices of the messages originating
from node v.

« A decoding function d, for each node v e V
that takes in (Xin(v).,XO—l(v)) and outputs an estimate
X® = dy(Xin(). Xp-1()) of the messages Xp-1, that
v requires. Here D—!(v) is the set of indices of messages
whose destinations include v.

4without loss of generality, each message is available precisely at one node.
Otherwise, if message X is available at nodes a and b, we can always construct
an equivalent instance with an additional node c¢ that is the sole originating
node for message X and has links with large capacities to nodes a and b.
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Here, n is referred to as the block length of the code. It is
the number of times each link is used. We assume that c.n > 1
for every link e, such that we can transmit at least one bit.

3) Randomized Codes: In this article, we consider random-
ized network codes with the use of random keys. Each node v
generates an independent random key Y, that is uniformly dis-
tributed over [K,] for some K, ¢ Z*. The key ¥, is known
only to the generating node v.

A randomized network code is similar to a deterministic
one, except that each link encoding function e, deterministi-
Cally maps I(Xin(t:.ail(e}}h XO_I(tai]_(e))? Ytail(e)) to X,.

Since the graph G is acyclic, any encoding function
€e(Xin(tail(e))> Xo-1(tail(e) Ytail(e))) can be replaced by
a suitable global encoding function g.(Xs, Yraii() if all
upstream links of e have deterministic encoding functions.

4) Decodability: A network code has a probability of
decoding error of at most € € Rg iff

P.=1 —Pr{X( ) =Xpg, forall v e V} <e, (1)

0

where X®) is the set of all decoded messages whose destina-
tion is v (see Section II-A2). Note that when € = 0, the code
guarantees perfect decoding.

5) Leakage: A network code has a leakage of at most
neRy iff

%I(XAZ;XBZ) <n, forall z e Z. )

With the normalization factor of é, (2) is commonly referred
to as weak security in the literature. When n = 0, we say that
the code is perfectly secure.

6) Feasibility: A secure network-coding instance N is said
to be (Mg, n, €, n)-feasible iff there exists an (Mg, n)-network
code that has a probability of decoding error of at most € and
a leakage of at most 7.

A message rate tuple of an (Mg, n)-network code is

_('°32M : § € §). A rate tuple Ry is said to be achiev-
able iff there exists a sequence of ((2 [nRs] - ¢ € S), n)-network
codes, for n € ¢Z%t for some £ ¢ Z%, such that ¢ — 0
and n — 0 as n — o0.5 For such a sequence of network
codes, R],:,ey are called the key rates of the sequence, if for
each code ((ZWM : 5§ € §),n) in the sequence, the alphabet

size of random key Y, is K, = Zr”Rf’EY], forallveV.

B. Secure Index Coding

1) Problem Instance: Denote a secure
instance [9] by I = @, T, {(W,,ﬁ,) ite T},ﬁ).

. § is the (ordered) message index set.

. T is the receiver index set.

.« W, c S contains the indices of messages required by
recewer teT.

. H C S contains the indices of messages known a priori
(known as side information) to receiver f T

index-coding

3The condition of non-consecutive code lengths is introduced to match the
translation of network codes of length n to index codes of length 3", _p|cen].
While it preserves the spirit of having infinitely many codes with sufficiently
large n, it does not require codes with every code length to exist or to satisfy
the criteria.

« P = ((Xz,ﬁz) = z defines the eavesdroppers with
indices in Z. Each eavesdropper Z € Z has access to the
code word broadcast by the sender and messages indexed
by Bz S and attempts to reconstruct messages indexed
by A, € S. Note that A, N B, = @.

2) Deterministic Codes: Let the messages {fs = E} be
mutually independent, and each X, be uniformly distributed
over [ﬁs] for some ﬁs € Z*. A deterministic (ﬁg,m-index
code consists of the following:

« A deterministic encoding (or broadcast) function for the

sender: Xb = e(XA) c [2”] for some 7 € Z+.

« A decoding function d, for each receiver f € T that takes
in (Xh,XH,)» andhoutputs an estimate X = df(Xb XH)
of the messages Xy, that receiver ¢ requires.

Here, the number of binary bits 7 transmitted by the sender

is referred to as the block length.

Remark 1: This index-code definition is consistent with the
index-coding literature [20]-[23], but is dlfferent from that by
Effros et al., where the sender transmits Xb c [2"’"] and Cp
is then chosen to be a function of the link capacities of the
equivalent network-coding instance. The difference results in
a scaling factor in our rate equivalence.

3) Randomised Codes: A randomized index code is similar
to deterministic index codes except that the sender’s encod-
ing function takes in an independent random key Y € [K] in
addition to X3, for some K € Z*.

4) Decodability: As with network coding, an index code
has a probability of decoding error of at most € € R{T iff

Po=1— Pr{X"(‘) =X, forall 1 € ’f} <e. 0

5) Leakage:

neRy iff

An index code has a leakage of at most

l foo = = ~
ﬁ—._I(XE,; % %p,) <n,  forallzeZ @

6) Feasibility: A secure index-coding instance [ is said to
be (Mz, 7, €, n)-feasible iff there exists an (Mg, 71)-index code
that has a probability of decoding error of at most € and a

leakage of at most . A message rate tuple of an (Mg,“)

1ndex code is RA = (]“—gﬁ sef). A message rate tuple
5 is said to be achievable iff there exists a sequence of
((2TRs1 : 5€8), 7)-index codes, for 7 € £Z+ for some £ € Z+,
such that € — 0 and n — 0 as 71 — o0.
Table I summaries the notation used in network coding and
index coding.

C. A Note on Achievable Rates

For secure network coding, if Rs is achievable, then R,
where 0 < R, < R, for all s € S, is also achievable using
randomized codes. This can be achieved by replacing each
message of [nR;] bits with a new message of [nR}] bits and
a random key of [nR;] — [nR}] bits. Doing so will not affect
security, as both the shorter new message and the random key
are Nnow Ssecure.

The above observation is not true in general for secure index
coding. This is because the replacement step for a particular
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TABLE 1
LIST OF SYMBOLS USED FOR SECURE NETWORK CODING AND SECURE INDEX CODING
Secure network coding Secure index coding
Nodes
The set of nodes v Sender and T'
Node j wants these messages Xp-1¢ 7 X,
J -
Node j has these messages Xo-1(j) Sender has Xz
Node j € T has EH,-
Node j listens to these transmissions Xin(j) )?b
Source messages
The set of messages Xg X§
Message X,-f% is known to these nodes o(i) Sender and {j : i € H it
Message X;/X; is wanted by these nodes D(i) {j:ieWj}
Links
The set of links E One broadcast link
Transmission on link e € E or broadcast link X, Xy
Capacity of link e € E or broadcast link Ce 1
Eavesdroppers
The index set of eavesdroppers VA VA
Eavesdropper z wants these messages Xa,,Az €S X+ ,A; €S8
— z _— -
Eavesdropper z has these messages 0 Xz .B; <SS
Eavesdropper z listens to these transmissions Xpg,,B; CE )?b
Codes
Encoding function on link e or broadcast link X, =€, (Xin(tail(e)), Xo-1(tail(e)): Ytail(e)) X, = &( A§, Y)
Decoding function at node j d;j(Xin(j) Xo-1(j)) d; (Xp, ﬁj}
message cannot be replicated at the receivers having that par- DIf N is (Mg, n, €, n)-feasible, then 1 s

ticular message as side information. The following example
illustrates this point:

Example 1: Consider a secure index coding problem with
two receivers {1,2} and an eavesdropper. Receiver 1 wants
X1 and knows X5; receiver 2 wants X» and knows Xi; the
eavesdropper wants X; and knows nothing. The rate (R, R) for
all 0 < R < 1 is achievable by sending X; + X, mod 2[R]
However, the rate (R, R — §) is not achievable. To secure X,
the sender needs to pad X, with [AR] — [A(R — §)] random
bits. But by doing so, receiver 1 cannot decode X; as it does
not know these random bits.

III. SUMMARY OF RESULTS
A. Code Feasibility Equivalence

Given any secure index-coding instance [, Section IV
defines a map to obtain a corresponding secure network-coding
instance N, with the following code feasibility equivalence:

Theorem 1 (A brief version): 1 is (ﬁg,ﬁ, €, nn)-feasible iff
N is (Mxz, 7, €, n)-feasible.

We will prove the forward assertion in Section V and the
backward assertion in Section VI.

In the other direction, given any secure network-coding
instance N, Section VII defines a map to a correspond-
ing secure index-coding instance I, with the following code
feasibility equivalence:

Theorem 2 (A brief version): Let # = Y ,.glc.n] and
aleenl = (2leenl : e € E).

((Ms, Ky, 2\En)) i, €, 6))-feasible, where
n

(ZeeE Ce — lnﬂ) '

Note that I has |S| + |V| + |E| messages with sizes
Mg=(Mg, Ky, 2Len).

2) If T is ((Ms, Ky, 2'e"), 71, €, p)-feasible, then N is
(Mg, n, (|Z] + 1)e, 61)-feasible, where

6 = (|Z|+1)[(£+e)2ce

ecE
1 / Hy(e
+_( b(€)
n

+ Hb(é))]
1—¢

and Hp(-) denotes the binary entropy function.
We will prove Part 1 in Section VIII and Part 2 in
Section IX.

91 =

Remark 2:
1) For perfect decoding, that is, ¢ = 0, we
have that GIZU(Z—CE < Yn and
ecEYe™
6r=n(|Z|+1))_,.pce=yY2n, for some constants

Y1, ¥2. The term ZeeECﬂ in the scaling factor is a
result of the way leakage is normalized: % for network

e 1 - ]
coding; = = )=o) for index coding.
2) For perfect decoding and zero leakage (¢ = n = 0), we
have 8; = 6, = 0, regardless of n.
3) If n - 0o, e - 0, and n — 0, then (|Z] + 1)e — 0,

9] — 0., and 92 — 0.
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—

Index Coding
Xi,...

an

Fig. 1.

4) A network-coding instance N with |S| sources is mapped
to an index-coding instance I with |S|+|V|+|E| sources.
5) For Theorem 2, deterministic index codes suffice.

B. Rate Equivalence

From the above code translations, we obtain the following
rate-equivalence. Given any secure index-coding instance I and
its corresponding secure network-coding instance N (via the
instance map defined in Section IV), we have the following:

Corollary 1 (A Brief Version): The rate tuple ﬁg is achiev-
able for I iff it is achievable for N.

For the other direction, we consider any secure network-
coding instance N, where all link capacities c, are integers,
and the corresponding secure index-coding instance I (via the
instance map defined in Section VII).

Corollary 2 (A Brief Version): The rate tuple Rg is achiev-
able for N (w1th integer link capac1t1es) using random key
with rates Rv , iff the rate tuple
achievable for I.

Remark 3: Corollary 2 can be extended to any secure
network-coding instance N with rational link capacities. To
this end, we consider A € Z* uses of the links as a group,
where A is the least common multiple of the denominators
of the link capacities. Each group of A uses of the links is
equivalent to another network coding instance N’ with link
capacities ¢, = Ac, € Z*. We apply Corollary 2 to N’ to get
a rate equivalence between R = JLRS for (which is Rg for
N) and L (R, Ry™, ) = y—(Rs, Ry, cp) for L.

ke
R cg) is
ZEEE Ce ( S; V ] E)

IV. FROM SECURE INDEX TO SECURE NETWORK CODING

Given a secure index-coding instance
=S, T, {(W,H) : t € T}, P), let S = [k] and T = [£] for
some positive integers k and £. We will first propose a map
to a secure network-coding instance N = (G, C, P).

The map from secure index coding to secure network coding: Circular nodes represent receivers and square nodes represent eavesdroppers.

A. Index-to-Network Coding Instance Map

The secure version of the index-to-network coding instance
map consists of the following:

1) An Existing Non-Secure Map [4, Fig. 1] for G=(V,E)
and C = (§,0,D):

« The vertex set V = {51,852, ..., 8k f1,02, ...,

« The link set E contains the following links:

- (si — 1) for each i € [k], with sufficiently large
capacities.

- (si—>t)iffie ?Ij, with sufficiently large capacities.

— (1 — 2) with link capacity 1.

- (2 — ;) for each j ELE], with link capacity 1.

« The message indices S = S = [k].

« The originating node for message X;,i € S, is O(i) = s;.

« The destinations for message X; is D(i) ={t; 1 i € W}

2) Our Proposed Map for P = ((A;, B;):z € Z):

«Z=27

o ForeachzeZ : A; :Ez.

« For each z € Z, B, comprises of links included by the

following rules:
- (1—=2)eB,.
— For any i € IA?Z, all outgoing links from node s; are
in B;.

Remark 4: The number of source messages in both
instances is the same. Side information in I manifests itself
as links (s; — #;) in N. In the constructed N, sources nodes
are {s; : i € S} and destination nodes are {f; : i € T}

The index-to-network coding instance map is summarized
in Figure 1.

te, 1,2}.

B. Egquivalence Results

With the above map, we prove an equivalence between these
two instances.

Theorem 1: Let I be a secure index-coding instance, and N
be the corresponding secure network-coding instance using the
1ndex -to-network coding map. For any ¢, ne R{T and7 € Zt,

Iis ( , 1, €, n)-feasible iff N is (M5 , 1, €, n)-feasible with
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)?1122 4?3:}?4

}
| Sender |

U
XQ‘@ X34'<? XlsX4
X

R
22!i:4 —5‘-‘;3 )?2

(a) A secure index-coding instance I, where an eavesdropper z
has access to the broadcast message Xy, side information Xy,
and tries to reconstruct X3.

Fig. 2.

deterministic encoding functions at vertices 2 and {s; : i € §},
and a randomized encoding function at node 1.

Proof: See Section V for the forward direction and
Section VI for the backward direction. |

The theorem above preserves the message size, as well as
the decodability and security criteria. The proof of the theorem
utilisers the non-secure code translations [4], which can be
easily shown to preserve the decoding error criterion € when
the codes are deterministic in the absence of eavesdroppers.
As an equivalence for the secure instances is required here, our
main contribution in the direction of secure index-to-network
coding map is to show that the code translation

« works with the addition of eavesdroppers,

« works for all randomized index codes,

« preserves the security criterion n,

« still preserves the decoding criterion €.

With Theorem 1, we get the following rate equivalence:

Corollary 1: Let I be a secure index-coding instance, and
N be the corresponding secure network-coding instance using
the index-to-network coding map. A rate tuple ﬁg is achievable
for I iff it is also achievable for N.

Proof: If a rate tuple ﬁg is achievable for I, then there exists
a sequence of ((2MR:] : 5 € S), 7)-index codes, 7 € £Z+, with
probability of decoding error ¢ — 0 and leakage n — 0
as 1 — oo. From Theorem 1, it follows that there exists a
sequence of network codes with the same properties, and hence
Rs is also achievable for N.

The other direction from N to I follows exactly the same
argument. |

C. An Example

Consider the index-coding instance [ depicted in
Figure 2(a), and its mapped network-coding instance N
in Figure 2(b). An example of index codes with ¢ = 0
and n = 0 is 6(?[4],?) = (fl +XQ,XQ —|—fg,f4). One

X1

X2, X4 X3

(b) A secure network-coding instance N, where an eavesdrop-
per z has access to link (1 — 2), all outgoing links from node
54, and tries to reconstruct X,. The capacity of all four links
given by bold arrows is 1 bit per channel use.

A secure index-coding instance in (a) and its equivalent secure network-coding instance in (b).

can verify that each user can decode their intended mes-
sages, and the eavesdropper z has no information about
Xg. In the translated network code, each source node s;,
i € [4], transmits X; on every outgoing link; node 1 transmits
Xio2=01-2(X4), Y1) = €Xp4p, Y1) = X1 +X2, X2+ X3, X4);
node 2 forwards X;_,» on every outgoing link. Clearly, each
destination node in N can decode its required messages using
the same decoding function in I, and the eavesdropper z gains
no information about X».

In the other direction of network-to-index code trans-

lation, consider a network code with €=0 and #=0
as follows: each source node s;, i < [4], trans-
mits X; on every outgoing link; node 1 (transmits

X12=01-2(X[41. Y1) = (X1+X3, X2+X3, X4); node 2 for-
wards X,‘L’? on every outgoing link. The translated index
code is e(Xp4), V)=01-2Xp4, Y) = (X1 + X3, X5 + X3, X4).
One can verify that for both instances, all users can decode
their requested messages, and the eavesdropper gains no
information of the messages it attempts to decode. We have
used different codes for the two directions to highlight that
secure network and index codes may not be unique.

V. PROOF OF THEOREM 1 — THE FORWARD DIRECTION

We now prove Theorem 1 for the forward direction: if I
is (Mg, 7, €, n)-feasible, then N is (Ms, 7, €, n)-feasible. This
is achieved by showing that any index code that satisfies the
feasibility condition for I can be translated to a network code
that satisfies the feasibility condition for N.

A. Code Translation

We start with any randomized index code that is (ﬁg, m, €, 1n)-
feasible. We will show that the network code obtained by the
existing non-secure code translation satisfies both the decoding
and security criteria even for randomized codes. In the fol-
lowing, we modify the existing non-secure code translation [4,
Fig. 1] to translate randomized index codes.
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« For all outgoing links from s;, i € [k]: Set a deterministic
link function X, = ee(XO—l(si.)) =e.X) =X, [If,-],
for each e € out(s;). This is possible since vertex s; is
the originating vertex for the message X;, and the link
capacity is sufficiently large.

e For link (1 — 2): Set X1_,» = ej»2Xinm), Y1) =
E(X[;c], Y1) € [23]. We set the cardinality of ¥; (which
is the random key used in the encoding function of ver-
tex 1 in N) to be the same as that of the random key Y
used in the encoding function E(fg, J)"‘) of the sender in L.

« For all outgoing links from 2: Set a deterministic function
X, =e. (X152 = X152 € [23], for each ¢ € out(2).
This is possible as every outgoing link from vertex 2 has
capacity 7.

o Setd;(Xing)) = d; iX2_y, Xg,) for all i e [£], and d,=0
for all other vertices v.

B. Decoding Criterion
See Appendix A for the proof of the decoding criterion.

C. Security Criteria

Each eavesdropper z € Z in N has access to links B; con-
sisting of (i) link (1 — 2), which carries X;_,, = €(Xs, ¥;),
and (ii) outgoing links from {s; : i € §Z}, which carry mes-
sages X5 , because each outgoing link from node s; carries X;
by construction.

Now, we bound the leakage for the network code as follows:

1 Lo
=1(Xa.: Xp,) = =1(X3,: 80X, 1), X3,

I = = \ b
2 1(%,:8(%.).%,) =0 D)
(%,

where (a) follows from a change of random variables by noting
that (X5, Y) has the same distribution as (Xg, Y;); (b) follows
from the premise that the leakage for the index code is at most
n. This completes the security proof for N.

(5a)

VI. PROOF OF THEOREM 1 — THE BACKWARD DIRECTION

We will now prove Theorem 1 for the backward direction:
if N is (Mg, 7, €, n)-feasible, then I is (M3, 7, €, n)-feasible.

A. Code Construction

We start with any network code for N that satisfies the feasi-
bility conditions. Recall the encoding functions at node 2 and
nodes {s; : i € [k]} are deterministic, and that at node 1 ran-
domized. In the following, we modify the existing non-secure
code translation [4, Fig 1] to translate a network code with a
random key ¥; used at node 1.

« Set the sender s transmitted code to be Xb = e(XS, Y) =
el_,g((esl_,l(X) i e [kD, Y) c [2"] where Y has
the same distribution as ¥; (the random key used in the
network code).

. Set the decoding function of recelver i€ [E] to be
diXo, Xg,) = dy(e2,Xp), (5, X)) : j € Hi)).

B. Restricting Network Codes

Next, we show that we only need to consider a spe-
cific class of network codes without loss of generality.®
Specifically, we only need to consider network codes such
that e2_,,(X1_,2)=X1_,2, for all i e [£]. First, observe that

Xw, — (X152, (85-4(X)) : j € Hi))
- (EZ—H;(XI—»Z), (e.!‘j—)fj (Xj) ] € j:‘j’x))
forms a Markov chain, where X;_ ;=€ 3((€5_1(X})
ie[k]), Y1), and W; N H; = 0.

Recall that receiver #;, for each i € [£], attempts to decode
Xy, from (€2-.;(X1-2), (&5-(X)) : j € Hj)). By the data-
processing inequality, the probability of decoding error P,
cannot increase if we set ex_,;(Xi_2) = Xj_» in each
receiver f;’s observations. Also, by definition, none of the links
{2 — 1; : i € [£]} can be accessed by any eavesdropper. So,
this choice will not affect the leakage of the code.

Consequently, for any network code for N with a prob-
ability of error of at most € and a leakage of at most 7,
we can always obtain another network code by choosing the
encoding functions of all outgoing links from node 2 to be
€24 (X1-52) = X1, for all i € [£]. The modified network
code also has an error-decoding probability of at most € and a
leakage of at most r. For the subsequent subsections, we will
only consider network codes of this form.

C. Decoding Criterion
See Appendix B for the proof of the decoding criterion.

D. Security Criteria

From the security criteria of N, we have %I{X,qz; Xp,) <n
for each z. Eavesdropper z observes links B, which consists
of all outgoing links from source nodes {s; : i € Ez} as well
as link 1 — 2. It attempts to decode messages indexed by
A=A,

Showing that the translated index code also satisfies a simi-
lar security condition as the original network code is not trivial,
as the eavesdroppers in I can access the messages themselves,
instead of just functions of the messages as in N. These func-
tions may not necessarily allow one to recover the messages,
as we allow non-zero decoding error probability. So, it seems
that the eavesdroppers in I have “better” observations, which
may lead to a larger leakage of the code.

We will show that this is not the case. First, note the fol-
lowing: (i) {Xs, Y1} are mutually independent; (ii) Xoue(s;).
for each i € S, are each a deterministic function of X;;
(iii) ﬁz NA; = (. With these, we have the following Markov
chain for every z € Z:

XEZ _X{out(s;}:iéﬁz} - (Yl,XAyXS\(AZUE))* (6)

which is equivalent to
0= I(ng; Y1, Xa.. X5\ (4,UB;) |X{out(s,-}:iE§Z])

=1 (XEJ Y1, Xa,, XS\(AZUE)’ X{out (s):icB.) |X{out(s,‘):i€§3})
(7b)

(7a)

6This was not shown in existing works on non-secure equivalence.
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=1 (ng; Y1, X5\B,» X{out(s;):ieB,)» Xlsi—1:iS) |X{out(s,-}:iE§Z])

(7¢)

= I(ng; Y1, X58.> X{out (s):ieBz)» Xlsi— 1ieS})> X152]
X{out(s,-);feﬁz]) (7d)
>1 (Xﬁzi XAUX1—>2|X{out(s,'):1'€§z}) (7e)
> 1(Xp, Xa, X ous(opichy X1-2) (79
=1 (XEZ; Xa, |XBZ) >0. (7g)

Here, (7b) follows from I{A|B) =1I(A, B|B) (7c) is due to (i)
A;U(S\ (A, UB,)) = S\ B, (because B,NA, =%, B, C S,
A c 5), (i) X[SI—*I-*ES] < X{out(s;}:rEBz} UX{out(sg}:rES\Bzi’ and
(i) X{oe (57):ies\B,) are deterministic functions of Xg, 5 ; (7d) is
obtained as Xj_, is a deterministic function of X5, . 1.;c5) and
Y1; (7e) follows from I(A; B, C|D) = I(A; B|D); (7f) follows
from I(A; B, C|D) = I(A; B|C, D); the equality in (7g) follows
from the definition of B;.

This means that eavesdropper z, having observed the
links Xp, does not gain any more information about X3 even
if it can also observe the source messages Xz . Now, we show
that the eavesdropper cannot do better if we replace its obser-
vation of the outgoing links from the sources with the source
messages:

1
=1(X5,, X152 X, ) = =1 (Xp, X122, Xiouecsyichyi Xa. )

1(X,, Xp.: Xa,)

1(Xa,; Xa,) +1(Xp,: Xa,1Xa,)

2 = =) = =) ==Y -

= I(XB,XA)S?L ®

where in the last line the equality follows from (7g), and the
inequality from the premise of the network code.

Since (X[;c], Y Xb) and O,(ﬂ‘]’ Y1, Xi1_.2) have the same
distribution, we have zf(XB , Xb: X},l ) < n for L. [ |

VII. FROM SECURE NETWORK TO SECURE INDEX CODING

In the other direction, consider a secure network-coding
instance N = (G, C, P). For simplicity, let the source indices
be § = [k] and the vertex indices be V = [£]. Recall that each
message is requested by at least one destination.

We will construct the following map to obtain an index-
coding instance I:

1) Construct an augmented secure network-coding
instance NN’ from any (possibly randomized) secure
network-coding instance N. This converts any possibly
randomized secure network code to a deterministic
network code.

2) Map N' to I:

a) For legitimate receivers: We use the existing non-
secure instance map [4, Sec. III] (which only works
for deterministic codes), except that we omit one
receiver in 7. We will show that omitting this
receiver will not affect the result.

b) For eavesdroppers: We construct a map from the
eavesdroppers in N’ to those in L.
For I, we set

n=)_|cen]. )
ecE
This means the number of bits that the sender can transmit in
I equals the total number of bits that can be transmitted on all
the links in M.

A. Network-to-Index Coding Map

Now, we describe the instance map in detail:

1) Augmented Secure Network Coding: We construct an
augmented secure network-coding instance N' = (G', C', P)
as follows:

e G' = (V,E) = G, where each link e in G’ has the same

capacity c,. as that in G.

« C' = (§,0,D): Here, we introduce an additional
independent source X; . € [K;] originating at each
vertex ic[£] that takes the role of and has the same dis-
tribution as the random key ¥; used in the randomized
encoding at vertex i in N.

- § = [k + £], where the message alphabet sizes are
M; = M; for each i € [k], and M}’CH = K; for each

icll].

— O'(i) = O(i) for each i € [k], and O'(k + i) = i for
each i € [£]

— D'(i) = D(i) for each i € [k], and D' (k + i) = @ for
each i € [£].

« PP=((A;,B;):z€Z)=P.

Note that by construction, ka v and (X, Yjep) have the
same distribution. So, there is a bijective map from a deter-
ministic or randomized secure network code for N to a
deterministic secure network code for IN'. Note that in I/,
the additional sources {X,’C e i € [£]} are not required to be
decoded by any node. Also, they are neither known to any
eavesdropper nor required to be protected.

Denote the set of vertices in IV’ that are the destinations for
some source messages by U = {j ¢ [£] : j € D'(i) for some
ic[kl}.

2) Network-to-Index Coding Map: Now, we map N’ to a
secure mdex -coding instance L.

= [k+ £]UE. It consists of one message X E[M] [M
for each i € [k+£] and one message X c [M 1= [2l':fmj ]
for each ¢ € E in .

e T = {fi}icv U {T.}ecr. This means I has |U| + |E|
receivers: the first set corresponds to each destination
node in ', and the second set corresponds to each link
in V.

« For each 7. ¢ T where e ¢ E, we set
H;e_ln(tall(e))UO’ L(tail(e)), and W* {e}.

« For each T c T where i € U, we set H~ 11'1{1) uo'— (1)
and W~ felk+€]:ic D’Q)} = D’ ().

« The eavesdrogper setting P : Z = Z. For each 7 € Z
B, = =B;, and A; = A;.

The two steps in the map from a network coding instance

to the corresponding index-coding instance are summarized in
Figures 3 and 4, respectively.
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Network Coding sesp Augmented Network Coding

Replace random keys with additional sources
that are not required at any destination

= [k+1
S =k ey [ O s €l
o L}]] O'(s") = { Py otherwise
: D(s") s €[k
D'(s") = { otherwise
P =P

Random coding — Deterministic Coding

20781 for s € S, with probability of decoding error € — 0
and leakage n — 0 as n — oo.

From Theorem 2, it follows that there exists a sequence
of index codes ([(ZF”R’] s, (ZP”R 1 ,vev), (2”“95‘L
€€ E)],‘\), n= ZeEEl-CenJ - nZeeEce € f'(Z:e\EE CE)Z ’
with probability of decoding error ¢ — 0 and leakage 61,,—0
as n—0 and n — oo. Hence, the rate E—(R_g, Rv‘ ,CE) is
achievable for [.

The other dlrectlon from ]I to N follows a similar argument.
Suppose that Z (R_g, V ,CE) is achlevable for I. Then,

Randomness used (===
in encoding » Extra sources (one at each node) there exists a sequence of index codes ([(2 Z"EEQ , S €S),
U OO et oL S R )
Fig. 3. From secure network coding to augmented secure network coding. 7 € E(Zee EC e)Z"', with probability of decoding error

Remark 5: The mapping to the receivers in I from N is
slightly different from that in the non-secure instance map [4,
Sec. III], which includes an additional receiver T,y in I. The
receiver was included to guarantee a useful property, which,
as we will see in Proposition 1, remains true even without
receiver Ty.

B. Egquivalence Results

With the above conversion, we state an equivalence between
N and T through N'. Recall that 7 = Lcent] and
pleenl.—(2leenl : ¢ € E). Similarly, let 2/Rs"1 := (21E is
Theorem 2: Let N be a secure network-coding instance and
I be the corresponding secure index-coding instance. For any
€e€[0,05],ne Rg, and n € Z*, we have the following:
HDIf N is (Mg,n, e n)-feasible, then 1 s
((Mg, Ky, 2l<Enl) 71, €, 6,)-feasible with a deterministic
index code for some Ky € (Z1)¢, where
9] o (ZEEE Ce— )
2) If Tis ((Ms, Ky, 21y 7
ministic index code, then N
feasible, where &, =

n, €, n)-feasible with a deter-
is (Ms, n, (IZ] + e, 62)-
(1Z] + DIt + €)Y ,epCe +

(B9t Hy ().
Proof: See Section VIII for the proof of Part 1 and
Section IX for Part 2. |

Unlike the index-to-network map, here Xg and Xy have dif-
ferent distributions. In I, Xg are the source messages, which
are mutually independent; in N', X} are the link messages,
which are functions of the source messages X[k +] and may
be correlated.

Theorem 2 leads to the following rate equivalence.

Corollary 2: Let N be a secure network-coding instance
with ¢, € Z*, and I be the corresponding secure index-
coding instance obtained using the network-to-index coding
map. A rate tuple Rg is achievable for N (with code lengths
in ¢Z%) usmg random key rates Rv‘ iff the rate tuple
E_(RS’ Rv‘ , cg) is achievable for I (with code lengths in
€Y pep CLY).

Proof: Suppose that a rate tuple Rg € (RH)ISI is achiev-
able for N. Then there exists a sequence of network codes
(2/"Bs1 n), n € €Z*, where each code has messages sizes

€ — 0 and leakage n — 0 as T — oo.

From Theorem 2, it follows that there exists a sequence of
network codes (2["Rs1 n), n = € ¢Z7*, with probability
of decoding error (|Z|+1)e — and leakage 6, — 0,7 — 0
and n — co. Hence, the rate tuple Rys is achievable for N. W

C. An Example

Consider the network-coding instance N depicted in
Figure 5(a), its augmented version I in Figure 5(b), and the
mapped index-coding instance I in Figure 5(c).

One randomized zero-error zero-leakage network code for
Nis Xe1 = €, (X1, Y1) =" andXeg = eeg(le ) =Xi+",
where Y; € [M/] (that is, K; = M;). Without using the random
key Y1, it is not possible to protect X; from the eavesdroppers.

This network code is then translated to a determinis-
tic network code for N' with three messages {X],X;, X3},
with Xé = « set to be a constant, as follows:
X::I = gfel (X!’XE’X’.;») = Xé and Xzz = QLZ(X”XE’XE) =
X| +X;. The augmentation from N to N’ changes neither the
decodablllty of the users nor the leakage to the eavesdroppers

In the index-coding instance I, two receivers (T, , 7,,} cor-
respond to the links in N’ and one receiver 7, corresponds to
the destination node in N'. The translated index code is

iI:i = E(X[S]UE) (Xh e| fb eg)
= (Ae| + Qel (A[a] e T geg (A[s]
= (X, + X2, X, + X1 +X2).

All receivers can decode their required messages, and each
eavesdropper gains no information about X.

In the other direction of secure index-to-network code
translation, consider the following secure index code (where
Xg = « is a constant):

Xo —E(A[a]us (A] (A[aluE 32([3]u£
= (X, + BiX1 + B2X2, Xe, + 11X1 + 12X2) = (Xb,1. Xb.2).

for some non-zero B;,y» such that Bi/B> # y1/y2- The
decoding function of nodes 7, , 7, f> are respectively

aﬁ,, (Xh,fﬁ?el )= :e, X, X1.X2) = Xo,1 — Bi X1 — BoXa,
Arﬂz (Xh,fﬁ?ez) = digz Kb, X1, X2) = Xp 2 — 1 X1 — 12Xa,

&, Ko, Xp, ) = o Kb Xy, Xoy)
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Index Coding

Augmented Network Coding #

k : # of sources

£: 4 of edges
O'~(i): Messages originating from Node
DY) Messages decoded at Node i

Xl: s :Xk—i—f

I .
: Receivers : : Eavesdroppers |
1 ¥ | : 1
AN R
I
I ~ | 1 z |
| Xin(i) o o
| Vo T T XA !
[ O .
+ Xpig) T IR O !
)

Edge Receivers }
XO!— 1 (T.)

1

1

~ 1

te '(_Xin{i) :
:

)

L

Fig. 4. From augmented secure network coding to secure index coding: Node i, edge e, and eavesdropper z in N’ are mapped to node #;, node fe, and
eavesdropper z respectively in I.

1, X5

€1 €2 P P
Xer2vX31XelsXE2

. X5 { — "
fl!)‘zz Xﬁl:jﬁ{? )?611)?62 @ )?Bl_’
] - -~ -~

X1 b.¢f

i
!
oefi

(a) W with randomised (b) W’ with deterministic
encoding encoding (c) I with deterministic encoding
Fig. 5. A secure network-coding instance N, its augmented version N’ (with additional messages Xé and Xg), and the corresponding secure index-coding

instance I.

VIII. PROOF OF THEOREM 2 — PART 1
(THE FORWARD DIRECTION)

_(Xbl—X| Xb2 — X, )(ﬁ]_ﬂ)_l
B2 ¥2 B2 n»n)

The translated deterministic network code for ' is

f - -
Xe1 = eel (Xin(tail(en))= XO’_I(tail(e|)))
(0, X7, X3) = —B1X] — BaX5,

We will now prove Theorem 2 for the forward direction: if N
is (Ms, n, €, n)-feasible, then I is ((Ms, Ky, 2L")), 7, €, 61)-
feasible with a deterministic index code.
fe.
A. Code Construction

Recall that S = [k] and V = [£]. Also recall that each Xe,
e € E, is chosen to be independently and uniformly distributed
over [M,] = [2l¢n]].

Note that N is (Ms,n,e€, n)-feasible iff N is

, ’
Xeg =€ 2(Xln(tall(eﬁ)’XO'_I(tail(eQ)))

— &, (0.1, X3) = —nXj — X,

In V', the destination (node 2) can recover X| by choosing

dg(X’in(z),X -1 (2)) = d5 (0, X;I,X;,z). Also, each eavesdrop-

per gains no information about X} as B, and y are non-zero.
Lastly, by replacing X, with ¥;, we obtain a zero-error
zero-leakage network code for N'.

((Ms, Ky), n, €, n)—feasible, where the random key ¥; at
each node i € V in the network code for N is realized using
an additional independent source X} ; at the same node I'.
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From a network code for N, we will use the non-secure
code translation [4, Direction 1] to construct an index code for

I, where the sender broadcasts fb = (fb‘e : e € E), comprising
Xy =X + 9, (Xikynr) mod 2L, (10)

Note that each _ X, g,e[2l%")],
Xhe[neeEchenJ] = [2Zeeeleen]] — [27].

and therefore

B. Decoding Criterion

See Appendix C for the proof of the decoding crite-
rion, which is similar to that of the non-secure equiva-
lence [4, Sec. V].

C. Security Criteria

Given —I{XA Xp,) =< n for N, we need to show
—I{XA ,Xb,XB ) <n for L.
We now consider the security constraints. For each z Z,

H(f;{z ﬁb,fgz) :H(ng|{fh‘e recE}, X, :e’eﬁz})
=H XEZ”ib‘e :eeﬁz}, {X} :e’eﬁz]) (11a)

:H(XEJ{X],‘,;,XS, g;(f[k_Hg]) Tec Ez})
(11b)

=H(%3,I{X., o Rivar) s e €B}) 110y

:H(X}J{gg(imgl ‘ecB ]) (11d)
=H(Xa, {9, (Xikra1) s e €Bs})  (lle)
=H(X) |, (Xre) s e € B}) 11Dy
=H(X},IXp,) = H(Xa,IXa,). (11g)

Here, (lla) follows from the Markov chain X3 i~ ({ng :
e e B <} {Xe; ¢ €B ) — ({Xbe e ¢ BZ}) where {Xb(e)
eé¢ B .} are independent of (XA {Xb e.€E B 2} {Xe: ¢'<B. s
because the former has been randomized by independently
and uniformly distributed {X e é ﬁz} (which are indepen-
dent of( XB ,X[,'H_g]) see (10)). (11b) follows from (10).
(l]c) is derwed because Xbe is a deterministic function
of (Xg,ge(X[Hg])) (lld) follows from the Markov chain
XA — {ge(X[Hg]) :e € B ) — {X e e B} which can
be derived from noting that (X, : e € E} are independent
of (XA ,X[}H_g]) (11f) follows from a change of variables
(from hatted to dashed) as (X[k+g] XA) and (X[k +£],X’ )
have the same distribution. (11g) is obtained from noting that
(9L(X]y ) : € € B:} = Xp.

Now, for N, if I1(Xa; XB) < n, then
l - -~ ]. -~ P
,;J(XEZ; % %p,) = ,}[H(XEZ) ~H(% % %)| (20
1. /o
- ,}[H(ng) — H(Xa,1X,) | (12b)
1
= J;*[H(XAZ.) - H(XAz |XBZ)] (12¢)
1 1(Xa,; Xg,) (12d)
= . . Azs AB;
ZeeE LCSHJ

< 1
(ﬂ ZeeE Ce —
n

" (e - B)

where (12b) follows from (11g), and (12c) follows from Xk
and X[;c] having the same distribution. Recall that c.n > 1,
which ensures that none of the links is degenerated (that is,
cannot carry any information).

Combining the decodability and the security results, the
index code is (Mg, Ky, 2\En)) 7, €, 6,)-feasible.

I(Xa:Xp)  (12¢)

|El)

=6, (121)

IX. PROOF OF THEOREM 2 — PART 2 (THE BACKWARD
DIRECTION)

We will now prove Theorem 2 for the backward direction:
if T is ((Ms, Kv, 21E")), 7, €, n)-feasible with a deterministic
index code, then N is (Mg, n, (|Z] 4+ 1)¢, 6;)-feasible.

We only need to show the result from deterministic index
codes for [ to deterministic network codes for N'. The code
translation from N’ to N is straightforward. By substituting
each XEk+x] e [K;], i € [£], with a random key Y; e [K;],
we conclude that if N’ is (M, Kig)), n, €, n)-feasible using
a deterministic code, then N is (M, n, €, n)-feasible using a
randomized code. This is possible as Ek 4] originates at node i
and is not required by any node or any eavesdropper.

A. Code Construction

We will start with the non-secure code translation [4,
Direction 2], which translates any index code for I to a network
code for N’ using a parameter o. The translated network code
consists of the following:

e An encodlr}g function for each link ¢ € E such that

e.(xg,) = & (0, xp, ) € [M,] = [21"]],
« A decodmg functlon for each destination i € U such that
d (xln(l)UO I(l)) = d’}“(O‘ xln(!)UO I(l)) € [M] Recall that
U is the set of destination nodes in N'.
The block length of the network code is n.

In I, o is the broadcast message Xp = E(f[k+glug), which

depends on all messages X[k+¢JUE-

B. A Summary of Our Approach for the Choice of o

This direction (the backward code translation for the secure
network-to-index coding instance map) of the equivalence is
the most challenging amongst the four. The difficulty here is
to select a suitable o < [23] for the network code for IV
that satisfies both decodability and secrecy. Since o is used
in all encoding and decoding functions, and yet each node
may know a different subset of messages, o cannot be made
to depend on the messages in the same way as the broadcast
message does in the index code. A solution could be to either
(i) choose a fixed o for the network code, or (ii) randomly
choose one o according to some distribution—independent of
the messages—but all nodes must agree on this random choice.
Option (ii) is possible if all the nodes in the network observe
some common randomness (for example, using the same ran-
dom number generator), which need not be secure from the
eavesdroppers.
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Without security, a good candidate o exists. Using this fixed
o (which is independent of the message realization), the trans-
lated network code has a probability of decoding error of at
most €. This particular choice was found [4, Claim 2] by con-
sidering network codes with the parameter o randomly and
uniformly over [25].

With security, for the special case of perfect decoding and
no leakage, we established [24] that the same o found using
the above method can be used to translate an index code with
€ =n =0 to a network code with € = 5 = 0. This approach
relies on an observation that if for message realizations that
can be decoded correctly in I, not only is decoding correct in
IV, but the leakage is also preserved.

For the above two scenarios, option (i) of fixing o suffices.
In general, when decoding is incorrect in I, the leakage in IV
may not match that in I.” Consequently, for any fixed o, even
if the probability of decoding error in N’ is small, when error
occurs, the leakage can be large.

To avoid this problem, we first observe that when the broad-
cast message o changes (as a function of the messages) for the
index code, the probability of decoding error is bounded by
€, and the leakage, by 5. Since the index code and the trans-
lated network code behave similarly when decoding is correct,
we consider instances of correct decoding in I and look
at the probability distribution py of the broadcast message
conditioned on correct decoding.

Our approach is to design a collection of network codes,
where o for the network codes is randomly chosen based
on this probability py. We show that, averaged over py,
N will have the desired probability of decoding error and
leakage. As mentioned above, this implementation of solu-
tion option (ii) requires additional shared randomness among
the nodes. Building on this solution, we will further show the
existence of a good candidate for o, thereby lifting the require-
ment of additional shared randomness and obtaining a solution
based on option (i).

C. An Important Property of the Broadcast Message in |

Central to the proof of the code translation from I to N is
the following property of the broadcast message in I:

Proposition 1: Fix any broadcast message X, < [2"] and
any realization Xjxy¢). If all receivers T can decode their
requested messages correctly, then there can be at most one
realization Xg for which €X[k+¢], XE) = Xp-

Proposition 1 was proven for a slightly different network-to-
index coding map [4], which includes an additional receiver Iy
in I, where ﬁ;ﬂl = [k + €] and %“ = E. We will show that
the proposition remains true even without 7y, by taking into
account the fact that graph G (which was defined for N from
which I has been mapped) is acyclic.

TTake Figure 5 for example. If the decoding in I is correct, 1101:]9,?:.;2 outputs
the same message as the side information of eavesdropper Z3. This matches
N’ where eavesdropper zfz observes link e>. However, when decoding in [ is
wrong at?}z, the output |Jf"f;,2 and the side information of ‘5:“2 are different. So,
even if the leakage in I is small in for this message realization, the leakage
in I¥' may be large, because the observation of z; in N does not match the
side information of 75 in L

Realisations of f[;ﬁ.g]

1 2 3 - m
1 |o
iy
{EZ o
=]
g3 o
c
=
4
=
&
d |o o

Fig. 6. A table showing the value of 6@[k+f]u£) S [Eﬁ] for each message
realization (¥ ¢), ¥g). Shaded cells indicate message realizations that result
in correct decoding for all receivers in L

Proof: Fix any Xji¢) and %. The decoding function of
each receiver 7., e € E, is o, (Xb, Xin(cail(e)uo— (tail(e)):
where in(tail(e)) € E are in the upstream of e, and
0 (tail(e)) C [k+£].

Since the decoding for all receivers are correct, for each
e € E, T, recovers X, by using the fgnction d;.. As G is acyclic,
by considering decoding functions d, starting from root nodes,
that is, links e where in(tail(e)) = @, and traversing the
links in the directions of the links, all link messages Xg are
completely determined by Xji+¢) and Xp. [ |

Suppose in I that a message realization Xjxt¢ur results
in correct decoding. From the proof of Proposition 1, we
know that given X[i, ¢) and € x4 jur). a sequence of receiver
decoding functions can collectively recover Xg. So, using
the above network-code translation, we have the following
observation:

Observation 1: Suppose that ’x“[k+glug results in correct
decoding in 1. We use the translated network code in N'. For
the message realization Xjk4¢] = X[k4¢) in N, if a:@()E[k+g]UE)
had been chosen for the network code, then each link ¢ € E
will send x, =X, (since its encoding function is derived from
the decoding function in I), and the decoding of all receivers
in N’ will be correct (since decoding in I is all correct).

D. Choosing a Distribution for o

Recall that each network code is specified by the choice of
o. We first randomly select o, independent of the messages,
according to some probability mass function py.

Remark 6: This approach requires all nodes V to know the
selected o. This can be implemented by a random public key,
which the eavesdroppers may also access. However, the use of
a randomized o is only an intermediate step for us to prove the
existence of a good candidate. The final result will be based
on a particular pre-chosen o.

To simplify notation, let

o m = ]_[‘ihLE M; denote the total number of message

realizations of X, k+£]-

e d=2"= ZZeeELf"J denote the total number of message

realizations of fg.

Recall that E(x[k+g]ug) c [23]. The table in Figure 6 shows
the broadcast message E(x[k+g]ug) for each message realiza-
tion (Xk+e).Xg). The table is constructed as follows. Each
message realization in I is split into two parts: Xjx1¢ deter-
mines the column, and Xg, the row. Each message realization
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(X[k+¢1. Xp) then points to the cell in a specific column and a
specific row. The value of E(x[k+g]ug) is placed into that cell.
After that, each cell that corresponds to a message realiza-
tion (Xjx4¢}, Xg) that results in correct decoding in I is shaded.
Note that, due to Proposition 1, the values of E(x[k+glug) in
all shaded cells in any column must be distinct.

Let N, be the number of realizations 3&“[;c+g]ug that results
in correct decoding for all receivers and 6()C[k+g]u£’) =o.In
Figure 6, N, is the total number of shaded cells labeled as o.
Define € as the fraction of unshaded cells. As the messages
are uniformly distributed, € is also the probability of decoding
error P, in I It is easy to see the following:

Y Ny =(1-&md, (13)
oeld]
1N,
E_U —1—¢. (14)
aeld] m

Define a new random variable Ce {0, 1} in I, where C=1
if decoding is correct, and C = 0 otherwise. Now, consider a
translated network code, where o is the realization of a random
variable ¥ whose distribution is given by
Ny R
m = be|c(5|l), (15)
where the second equality is obtained by observing that the
messages in [ are uniformly distributed.

pr(o) =

E. Decodability Criterion Using Randomly Chosen o

Let P_, be the probability of decoding error in N' when
o is chosen for the network code. From Observation 1, if
o is chosen, for any message realization X[i4¢) such that the
column Xjk4¢ = X[k+¢) in Figure 6 contains o in a shaded
cell, decoding in IV is correct. From Proposition 1, each o
can appear at most once over the shaded cells in each column.
So, the probability of correct decoding in N’ is

N,
1-P,>—. (16)
Averaged over o, the probability of correct decoding in N is
1-P, =) px)(1—-P.,) (17a)
oeld]
2
N, N, 1 1 (N,
> =T 2 al(or) O
oe[d]( —€) m —eoe[d] m
2
@ 1 I N, ©
S — Y- ©i-eZi-e am
1—¢€ dm
o€ld]

where (a) is obtained using Jeans’s inequality; (b) follows
from (14); (c) follows from the fact that the probability of
decoding error in I is JP“e =€ <e.

Thus, the randomized translated network code has a proba-
bility of decoding error P, < €.

F. Security Criteria Using Randomly Chosen o
From the identity I(P; Q|X) + I(P; R|Q, X) = I(P; R|X) +
I(P; Q|R, X), we get

I(P; QIX) = I(P; QIR, X) + I(P; RIX) — I(B; RIQ, X) (18)

> I(P; QIR, X) —I(P; RIQ, X) = I(P; Q|R, X) —H(R).(19)

Similarly,
I(P; QIR, X) = I(P; Q|X) — H(R). (20)
Consider eavesdropper z € Z. Let B = ﬁz = B; and

A = A; = A;, where we drop the subscripts to ease nota-
tion. Starting with an index code that has a leakage of at
most 7,

nn > I(Xet; X, Xa) > I(??A; iBljfh)
> 1(Xa; Xg|Xp, C) — H(C) > I(Xa; Xp|Xs, C) — Hy(€)

=Y py, 200 DIXn: XplXy = 0,C = 1)
a

+)P3, 20, 01(Xa; Xp|Xp = 0, C = 0) — Hy(e).
a

2D

To map the above to ', we define C € {0, 1} as a random
variable for N as follows. For a specific chosen o and mes-
sage realization xx4¢), C = 1 iff o appears in a shaded cell
in the column Xjk¢) = Xk+¢) in Figure 6. C = 1 implies that
the decoding in IV is correct (but the converse is not always
true). Noting that N, /m is the fraction of message realiza-
tions whose column contains o in a shaded cell in Figure 6,
we have

pc(l) =) ps(@Ng/m>1—é=pp(l) = 1—¢, (22)

where (22) follows from (17a)—(17c). This means

=(1
lI;'-"“—()zlzpc(l) =
€

pe() = (A —e)pc(D).  (23)

From Proposition 1, if a message realization (X ¢}, Xg)
results in correct decoding in I (that is, it maps to a
shaded cell in Figure 6), then X = ¢ Q[k+¢)) for some
deterministic function ¢y, where o = €(Xjkt¢], X£). Now,
suppose that o = €([kte), X5) is chosen for the network
code. From Observation 1, if xpryg = 3:"[k+g] is transmit-
ted, then xg = ¢ (X[kre7). Then, for any (a, o) such that
Pf[uf]ﬁhf(a’ o,1) > 0, and any b, we have

pXElX[k-ff],E,C(blaa J! 1) = piElf[k_'_ﬂ‘ih‘E(bkls 0’7 ]-) (24)

As the messages Xk4¢) in [ and Xjx,¢) in N’ are uniformly

distributed, we see from Figure 6 that for any o with N; > 0,
PXyqiz.cl@lo, 1) = pg, .z, elalo, 1)

__ ) 1/N,, if a shaded cell in column a contains o,
10, otherwise.

Thus, for any o with N, > 0, a, and b, we get the following:

PXyrnXelz.Cc(@ blo, 1) =pg, %%, 0@ Dlo, 1), (25)
which then necessitates that
I(Xp; Xp|Xy = 0,C=1) = IXg; Xp|Z = 0,C=1). (26)

Substituting (26) into (21), we get
i + Hy(€) = ) py, o(0, DIXa; Xp|E =0, C=1)
=pe() ) Pre@|DIXs; XpIE =0, C=1)

=pe(DI(X4; Xp|X,C=1) (27a)
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> (1 —e)pc(DI(Xa; Xp| X, C = 1), (27b)

where (27a) is obtained noting (15); (27b) follows from (23).
We are now ready to bound the leakage in N', where X is
known to all nodes. First, we have

I(X4; Xp, X) = I(Xy; Xp|X) (28a)
= I(Xx; X|%, C) + H(C) (28b)
=pc(DIXp; Xp|X, C=1) + pc(0)I(Xy; Xp| X, C=0)

+ H(C) (28¢)
<pc(DI(Xa; Xp|E,C=1) +en Zfe-I—Hb(G) (28d)
ecE
7in + H
< % +en)y " ce+ Hy(e), (28e)

ecE
where (28a) follows since X is chosen independent of
the messages; (28b) follows from (20); (28d) follows from
pc(0) = €, IXa;Xg|2,C = 0) < HXp) < HXp) =
> ecplogaM, <nd, gce, and H(C) < Hp(€); (28e) follows
from (27b).
Thus, the randomized translated network code has a leakage
of
—I(XA Xp|T) < H(M

— Hb(e)) +e) ce(29)

ecE
< (— + e) et (H"( 9 | Hye )) =6, (29b)

where 71 = ZeeEchnJ <n) ,.pCeandn>1.

G. Existence of a Candidate o for Decodability and Security

Averaged over all realizations of X,
and (29b) give

> PP, <
oeld]
1
> P(@)—I(Xa: X5 |8 = 0) <
oeld]

Invoking Markov’s inequality gives the following for some
A >0

inequalities (17c)

#, foreachzeZ.

P{P. = (Z|+1+Mef < ——,
o = (ZI+1+2) S R
=Vo(»)
Pl S1(Xp,: X | T = 0) = (1Z)+ 1420 | < ——
p A SBIS = E) = iz
=Vz()
for each z € Z.
Using the union bound, we get
Zl+1
el | v} < (30)
zeZU{0} ZI+ 1+
or equivalently,
|Z] + 1
Pr Vi (A l - —m— 31
N viw| = RSy &3]

z€ZU0}

The alphabet of X is [d], which is finite. And for each
A > 0, there exists o such that [,z Vz(1)° holds.
Consequently, there must exist o for which hzeZU[O} V,(0)¢
holds, that is, there exists a network code (using one particular
o) for which

Pe < (IZ| + De, (32)
1
~1(Xa,; Xp,) < (1ZI+ )6 = 6, (33)
for all z € Z. This proves Part 2 of Theorem 2. |

X. CONCLUSION

We have established an equivalence between secure network
coding and secure index coding. The equivalence includes
mapping nodes from one instance to the other, as well as
translating codes of the same rate between these instances.

While the equivalence has been established for networks
with error-free links, whether a similar equivalence holds for
networks with noisy channels is yet to be determined—even
for the non-secure setting.

Also, only a specific notion of security has been investigated
in this article, where each eavesdropper must not gain any
information about a set of messages. Possible future research
in this direction includes other security measures like covert
communications and data privacy.

APPENDIX A
PROOF OF THE DECODING CRITERION FOR THE FORWARD
DIRECTION OF THEOREM 1

Note that in the network-coding instance N, only receivers
{t: : i e [£]} need to decode messages, and each f;
receives Xin(;) = (Xg,, X2_,4) over its incoming links, where
Xy =X12 = ©(Xs, Y1). These are the same functions that
each receiver i € T receives in the index-coding instance L.
Using the same decoding functions for receivers {f; : i € T}
in N, if ;65 < € for I, we also must have P, < ¢ for N.

APPENDIX B
PROOF OF THE DECODING CRITERION FOR THE
BACKWARD DIRECTION OF THEOREM 1

In N, receiver t;, for each i € [£], tries to decode XW usmg
the decoding function dy; (Xin()) = dy; (X2—4, Xsjst; - JweH ),
where

o X2 =Xis2 =e152((@g1(X)) 1 j € kD, Y1),

* Asisti = es;'—)tg(Xj) f{}l'j € H;.

The premise states that P, < € for N.

In I, according to the code translation, receiver 7, for each
ic [E] tries to decode Xj‘; using d (Xb, XH) where

. Xb = e12((eg-1(X)) 1 j € [KD), V),

. Xp, = (X)) 1 j € Hy)

Since the decoding functions in I exactly match those in N,
and since (f[k]j:}h"), and (X[, Y1) have the same distribution,
we must have P, < ¢ for L.
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APPENDIX C
PROOF OF THE DECODING CRITERION FOR THE FORWARD
DIRECTION OF THEOREM 2

In N, by definition, with probability of at least (1 — €)
(over the message realizations xg), every vertex v € U can
decode all messages that it requires from the message on all
incoming links and messages originating at v. Recall that only
messages ka] of all messages X[;, ,; in N’ need to be decoded.
Suppose that, every node v € U can decode its required
messages correctly with probability of at least (1 —e¢,), that is,

X}'

0;—1( ))] = 1 — €y,

Pr{X’ iy = d’( (34)

in(v)*

or equivalently,
Pr [

For I, we first consider receivers 1; € T where i € U. While
source messages X/, o in N’ and X1, in T have the

same distribution, lmk messages Xm( ) in ¥ and Xin(v) in

'(v))} = 1 — €y

(35)

X;D"—l v = d:’([g; (XEk-l-f])]eEin(v)" X;.)’—

I ‘may not So, although node 7; € T in I has side information
(Xm@, -1 )) using (34) in I will not work, as the pmf of

Xy guE is different from that of X[Hg]ug.

To deal with this issue, we use (35), which requires
[gz(ff[k—l—f])]eein(i) instead. This will work because
(ka+£]* [g::(XEHE])]eEE) has the same distribution as
(X[k+£] [ge(X[k+£])]eeE)

In I, H 11'1{1) U O'~1(i). Receiver #; knows Xo' 1G) and
calculates [gg(X[k+£])]eE1n(r) from the broadcast message Xb
and side information Xm(,) using (10). So, using (35) with a
change of variables (from non-hatted to hatted), we have

A AT (2 N
PriXW?j - d"([g“ (X[“E])] ecin(i)’ XO'_'(")) ]
= PI'IXDf—l(‘-} = d;([g; (X[}H_g]):l eein(i)}j Xor—l(;}) ]

>1—¢.

This means each receiver #; € T, i € U, can correctly decode
its required messages with probablllty of at least (1 — ¢;).
Now we consider receivers f, ¢ T where e € | E. Recall
that H = in(tail(e)) U O'_I(tall(e)) and W = {e}.
Receiver [ performs the following steps:
1) Knowing {Xd :d e in(tail(e))},
{g;(ﬁ’[Hq) : d € in(tail(e))} from (10).
2) Knowing J;’O,:u(tail(e)) as side R information, it
calculates g, (Xpee) =  €([9;(Xk+ep) = d €
in(tail(f))],Xor—l(tai]_(e))).
3) With g;(f([;&g]) and the broadcast message ﬁ’b,e, it
obtains the requlred X, using (10).
So, every receiver i, € T, e € E, must be able to correctly
decode the required X, without error.

it obtains

Combining these two classes of receivers, we have shown
that all receivers in I can correctly decode their required
messages with probability of at least (1 —€).
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