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A  C o d e a n d  R at e  E q ui v al e n c e  B et w e e n
S e c ur e  N et w or k a n d I n d e x  C o di n g

L a wr e n c e  O n g , S e ni or  M e m b er, I E E E ,  B a dri  N.  Vell a m bi , S e ni or  M e m b er, I E E E ,

J ör g  Kli e w er , S e ni or  M e m b er, I E E E , a n d P h e e  L e p  Ye o h , M e m b er, I E E E

A bstr a ct — Est a blis hi n g c o d e e q ui v al e n c es b et w e e n i n d e x c o d-
i n g a n d n et w o r k c o di n g p r o vi d es i m p o rt a nt i nsi g hts f o r c o d e
d esi g n.  P r e vi o us  w o r ks s h o w e d a n e q ui v al e n c e r el ati o n b et w e e n
a n y i n d e x- c o di n g i nst a n c e a n d a n et w o r k- c o di n g i nst a n c e, f o r
w hi c h a c o d e f o r o n e i nst a n c e c a n b e t r a nsl at e d t o a c o d e f o r t h e
ot h e r i nst a n c e  wit h t h e s a m e d e c o di n g- e r r o r p e rf o r m a n c e.  T h e
e q ui v al e n c e als o s h o w e d a s u r p risi n g r es ult t h at a n y n et w o r k-
c o di n g i nst a n c e c a n b e  m a p p e d t o a n i n d e x- c o di n g i nst a n c e  wit h
a p r o p e rl y d esi g n e d c o d e t r a nsl ati o n. I n t his a rti cl e,  w e e xt e n d t h e
e xisti n g e q ui v al e n c e (i nst a n c e  m a p a n d c o d e t r a nsl ati o n) t o o n e
b et w e e n s e c u r e i n d e x c o di n g a n d s e c u r e n et w o r k c o di n g,  w h e r e
e a v es d r o p p e rs a r e p r es e nt i n t h e n et w o r k. I n t h e s e c u r e s etti n g,
a n y c o d e c o nst r u cti o n n e e ds t o g u a r a nt e e s e c u rit y c o nst r ai nts
i n a d diti o n t o d e c o di n g- e r r o r p e rf o r m a n c e.  A r at e e q ui v al e n c e
b et w e e n t h es e t w o p r o bl e ms is als o est a blis h e d.

I n d e x  Ter ms — C o d e e q ui v al e n c e, I n d e x c o di n g, n et w o r k c o d-
i n g, s e c u r e c o m m u ni c ati o ns,  wi r et a p.

I. I N T R O D U C T I O N

E Q UI V A L E N C E r es ults i n i nf or m ati o n t h e or y a n d n et w or k
c o di n g ar e of si g ni fi c a nt i nt er est b e c a us e s u c h r es ults

u ni q u el y r e d u c e o n e c o m m u ni c ati o n pr o bl e m t o a n ot h er
e q ui v al e nt pr o bl e m t h at is p ot e nti all y e asi er t o st u d y. S o m e
e q ui v al e n c e r es ults alr e a d y est a blis h e d i n cl u d e t h os e b et w e e n
i nst a n c es of  m ulti pl e- u ni c ast n et w or k c o di n g a n d t h os e of (i)
m ulti pl e- m ulti c ast n et w or k c o di n g [ 1], (ii) s e c ur e n et w or k c o d-
i n g [ 2], [ 3], (iii) i n d e x c o di n g [ 4], [ 5], (i v) a n d  wit h r es p e ct t o
a c a p a cit y e q ui v al e n c e f or n et w or ks  wit h a d v ers ari al st at e [ 6].
T his arti cl e f o c us es o n t h e e q ui v al e n c e b et w e e n i n d e x c o di n g
a n d n et w or k c o di n g.

M a n us cri pt r e c ei v e d  A u g ust 1 5, 2 0 2 0; r e vis e d  D e c e m b er 4, 2 0 2 0; a c c e pt e d
J a n u ar y 1 4, 2 0 2 1.  D at e of p u bli c ati o n J a n u ar y 2 7, 2 0 2 1; d at e of c urr e nt v er-
si o n  M ar c h 1 6, 2 0 2 1.  T his  w or k  w as s u p p ort e d i n p art b y  A ustr ali a n  R es e ar c h
C o u n cil  Dis c o v er y S c h e m e u n d er  Gr a nt  D P 1 9 0 1 0 0 7 7 0, a n d i n p art b y t h e
U. S.  N ati o n al S ci e n c e F o u n d ati o n u n d er  Gr a nt  C C F- 1 9 0 8 7 5 6,  Gr a nt  C N S-
1 8 1 5 3 2 2, a n d  Gr a nt  C N S- 1 5 2 6 5 4 7. P art of t his p a p er  w as pr es e nt e d at I E E E
Gl o b e c o m i n 2 0 1 6 a n d at I E E E I nt er n ati o n al S y m p osi u m o n I nf or m ati o n
T h e or y i n 2 0 1 8 a n d 2 0 2 0. ( C orr es p o n di n g a ut h or: L a wr e n c e  O n g.)

L a wr e n c e  O n g is  wit h t h e S c h o ol of  El e ctri c al  E n gi n e eri n g a n d  C o m p uti n g,
T h e  U ni v ersit y of  N e w c astl e,  C all a g h a n,  N S W 2 3 0 8,  A ustr ali a ( e- m ail:
l a wr e n c e. o n g @ n e w c astl e. e d u. a u).

B a dri  N.  Vell a m bi is  wit h t h e  C oll e g e of  E n gi n e eri n g a n d  A p pli e d
S ci e n c e,  U ni v ersit y of  Ci n ci n n ati,  Ci n ci n n ati,  O H 4 5 2 2 1  U S A ( e- m ail:
b a dri. v ell a m bi @ u c. e d u).

J ör g  Kli e w er is  wit h t h e  D e p art m e nt of  El e ctri c al  &  C o m p ut er  E n gi n e eri n g,
N e w J ers e y I nstit ut e of  Te c h n ol o g y,  N e w ar k,  NJ 0 7 1 0 2  U S A ( e- m ail:
j kli e w er @ njit. e d u).

P h e e  L e p  Ye o h is  wit h t h e S c h o ol of  El e ctri c al a n d I nf or m ati o n
E n gi n e eri n g,  U ni v ersit y of S y d n e y, S y d n e y,  N S W 2 0 0 6,  A ustr ali a ( e- m ail:
p h e e. y e o h @s y d n e y. e d u. a u).

Di git al  O bj e ct I d e nti fi er 1 0. 1 1 0 9/J S AI T. 2 0 2 1. 3 0 5 4 8 4 7

Pri m a f a ci e, t h e t w o pr o bl e ms of i n d e x c o di n g a n d n et w or k
c o di n g a p p e ar diff er e nt. I n d e x c o di n g [ 7] c o nsi d ers a o n e- h o p
n et w or k  w h er e a s e n d er c o n v e ys  m ulti pl e  m ess a g es t o  m ulti pl e
r e c ei v ers t hr o u g h a n ois el ess br o a d c ast  m e di u m,  w h er e e a c h
r e c ei v er  w a nts s o m e  m ess a g es fr o m t h e s e n d er, b ut alr e a d y
k n o ws s o m e ot h er  m ess a g es.  O n t h e ot h er h a n d, n et w or k c o d-
i n g [ 8] c o nsi d ers a n et w or k of i nt er c o n n e ct e d li n ks  wit h fi x e d
c a p a citi es,  w h er e  m ulti pl e s e n d ers s e n d  m ulti pl e  m ess a g es t o
m ulti pl e r e c ei v ers t hr o u g h t h es e li n ks.

D es pit e t h e diff er e n c es, t h e f oll o wi n g e q ui v al e n c e b et w e e n
t h e m h as b e e n d e m o nstr at e d [ 4], [ 5]. F or a n y i n d e x- c o di n g
i nst a n c e I, a n i nst a n c e  m a p c o nstr u cts a n e q ui v al e nt n et w or k-
c o di n g i nst a n c e N .  T his i nst a n c e p air (I, N ) h as t h e f oll o wi n g
pr o p erti es:  A n y i n d e x c o d e f or I c a n b e tr a nsl at e d t o a n et w or k
c o d e f or N , a n d vi c e v ers a.  T his c o d e tr a nsl ati o n pr es er v es t h e
m ess a g e l e n gt h, c o d e l e n gt h, a n d pr o b a bilit y of d e c o di n g err or.
Si mil arl y, f or a n y n et w or k- c o di n g i nst a n c e N , a n i nst a n c e  m a p
c o nstr u cts a n e q ui v al e nt i n d e x- c o di n g i nst a n c e I , a n d a c o d e
tr a nsl ati o n c a n tr a nsl at e c o d es b et w e e n t h e p air (N , I ).

I n t his arti cl e,  w e i n v esti g at e t h e e q ui v al e n c e  w h e n  w e
i m p os e s e c urit y c o nstr ai nts i n a d diti o n t o d e c o d a bilit y c o n-
str ai nts (t h e pr o b a bilit y of d e c o di n g err or). S e p ar at el y, t h e
s e c ur e v ersi o n of i n d e x c o di n g [ 9] –[ 1 1] a n d t h at of n et w or k
c o di n g [ 1 2] –[ 1 5] h a v e b e e n st u di e d, i n  w hi c h t h er e ar e a d di-
ti o n al p assi v e e a v es dr o p p ers t h at att e m pt t o o bt ai n s o m e
i nf or m ati o n o n t h e c o m m u ni c at e d  m ess a g es.  C o d es f or t h e
s e c ur e v ersi o n of t h es e pr o bl e m  m ust pr e v e nt e a v es dr o p p ers
fr o m k n o wi n g t h e  m ess a g es t h e y att e m pt t o d e c o d e ( w h er e
k n o wi n g is q u a nti fi e d b y t h e i nf or m ati o n-t h e or eti c s e c urit y
m e as ur e 1 [ 1 8,  C h. 2 2]) i n a d diti o n t o g u ar a nt e ei n g t h at all
r e c ei v ers c a n o bt ai n t h eir r e q u est e d  m ess a g es ( b y b o u n di n g
t h e pr o b a bilit y of d e c o di n g err or).

T h e n o n-s e c ur e 2 i nst a n c e  m a ps a n d c o d e tr a nsl ati o ns [ 4], [ 5]
d o n ot tri vi all y a p pl y t o t h e s e c ur e v ersi o n of t h e pr o bl e ms.
I n p arti c ul ar,  w e p oi nt e d o ut [ 1 9] t h at  m a p pi n g a n e a v es-
dr o p p er i n s e c ur e n et w or k c o di n g t o s e c ur e i n d e x c o di n g is
n ot str ai g htf or w ar d, as t h e e a v es dr o p p ers i n t h e t w o pr o bl e ms
h a v e diff er e nt c h ar a ct eristi cs.  E a v es dr o p p ers i n n et w or k c o d-
i n g list e n t o tr a ns missi o n o n c ert ai n li n ks,  w hil e t h os e i n i n d e x

1 T his is a c o m m o n crit eri a t o pr ot e ct cl assi fi e d d at a.  Ot h er s e c urit y  m e a-
s ur es i n cl u d e pr e v e nti n g e a v es dr o p p ers fr o m k n o wi n g  w h at  m ess a g es t h e
r e c ei v ers r e q u est ( pri v at e i nf or m ati o n r etri e v al [ 1 6]) or pr e v e nti n g e a v es-
dr o p p ers fr o m d et e cti n g  w h et h er c o m m u ni c ati o ns o c c ur ( c o v ert c o m m u ni-
c ati o ns [ 1 7]).

2 I n t his arti cl e,  w e us e t h e t er m “ n o n-s e c ur e ” t o d e n ot e e xisti n g i nst a n c e
m a ps a n d c o d e tr a nsl ati o ns i n t h e a bs e n c e of s e c urit y c o nstr ai nts.

2 6 4 1- 8 7 7 0 c 2 0 2 1 I E E E. P ers o n al us e is p er mitt e d, b ut r e p u bli c ati o n/r e distri b uti o n r e q uir es I E E E p er missi o n.
S e e htt ps:// w w w.i e e e. or g/ p u bli c ati o ns/ri g hts/i n d e x. ht ml f or  m or e i nf or m ati o n.
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c o di n g list e n t o t h e c o m m o n br o a d c ast a n d h a v e a c c ess t o
s o m e s u bs et of  m ess a g es.

Als o, t h e n o n-s e c ur e c o d e tr a nsl ati o n  w as d esi g n e d f or
d et er mi nisti c c o d es.  B ut r a n d o mi z e d e n c o di n g is i n e vit a bl e
i n s o m e s e c ur e n et w or k- c o di n g i nst a n c es [ 1 5], a n d  w e h a v e
s h o w n t h at t h e n o n-s e c ur e c o d e tr a nsl ati o n br e a ks d o w n  w h e n
r a n d o mi z e d e n c o di n g is all o w e d [ 1 9].

I n t his arti cl e,  w e est a blis h a n e q ui v al e n c e b et w e e n s e c ur e
n et w or k c o di n g a n d s e c ur e i n d e x c o di n g. Si mil ar t o t h e
n o n-s e c ur e e q ui v al e n c e,  w e c o nstr u ct i nst a n c e  m a ps f or t w o
dir e cti o ns (fr o m s e c ur e i n d e x c o di n g t o s e c ur e n et w or k c o di n g,
a n d vi c e v ers a). F or e a c h i nst a n c e  m a p,  w e c o nstr u ct t w o c o d e
tr a nsl ati o ns (fr o m a n i n d e x c o d e t o a n et w or k c o d e, a n d b a c k).

T his e q ui v al e n c e c arri es t h e pr a cti c al si g ni fi c a n c e of c o m-
p ari n g s e c ur e c o m m u ni c ati o n a g ai nst e a v es dr o p pi n g i n  wir e d
n et w or ks  wit h t h at i n  wir el ess n et w or ks.  O ur e q ui v al e n c e
r es ults r e v e al t h at a p assi v e e a v es dr o p p er t h at list e ns t o t h e
c o m m o n  wir el ess br o a d c ast is n ot a d v a nt a g e o us —t h at is,  m or e
dif fi c ult t o d e al  wit h — c o m p ar e d t o a p assi v e e a v es dr o p p er
i n a  wir e d n et w or ks t h at t a ps o nl y c ert ai n  wir e d li n ks. I n
f a ct, o ur c o d e tr a nsl ati o n r es ults g u ar a nt e e t h at t h e s a m e
a p pr o a c h c a n b e i m pl e m e nt e d i n b ot h n et w or ks  wit h h el p of
si d e i nf or m ati o n (r e c ei v ers k n o wi n g s o m e ot h er  m ess a g es a
pri ori) i n t h e  wir el ess c as e.

A.  C o ntri b uti o ns a n d  A p pr o a c h es

O ur a p pr o a c h t o est a blis h a n e q ui v al e n c e is s u m m ari z e d as
f oll o ws:

• First,  w e c o nstr u ct t h e  m a ps f or tr a nsl ati n g pr o bl e m
i nst a n c es.  We b uil d o n t h e e xisti n g n o n-s e c ur e i nst a n c e
m a ps t h at  m a p l e giti m at e r e c ei v ers.  T his i n v ol v es  m a p-
pi n g t h e e a v es dr o p p ers i n a n y s e c ur e i n d e x- c o di n g
i nst a n c e ( h a vi n g c ert ai n  m ess a g es) t o t h os e i n t h e c or-
r es p o n di n g s e c ur e n et w or k- c o di n g i nst a n c e (list e ni n g t o
c ert ai n li n ks), a n d vi c e v ers a.

• S e c o n d,  w e c o nstr u ct c o d e tr a nsl ati o ns f or t h e pr o bl e m-
i nst a n c e p airs.  A g ai n,  w e b uil d o n t h e e xisti n g n o n-s e c ur e
c o d e tr a nsl ati o ns,  w hi c h h a v e b e e n s h o w n t o pr es er v e t h e
d e c o di n g crit eri a.  As  m e nti o n e d e arli er, t h e n o n-s e c ur e
c o d e tr a nsl ati o ns  w er e d esi g n e d f or d et er mi nisti c c o d es,
b ut r a n d o mi z e d n et w or k c o d es ar e n e c ess ar y f or s e c ur e
n et w or k c o di n g [ 1 5].  T o d e al  wit h t his iss u e,  w e (i) c o n-
str u ct a t w o-st e p c o d e tr a nsl ati o n t o c o n v ert r a n d o mi z e d
c o d es t o d et er mi nisti c c o d es, a n d (ii) r estri ct t h e r a n d o m-
i z e d e n c o di n g f u n cti o ns t o c ert ai n n o d es i n t h e  m a p p e d
pr o bl e m i nst a n c e.

• T hir d,  w e s h o w t h at alt h o u g h e a v es dr o p p ers i n t h e t w o
pr o bl e ms i nst a n c es o bs er v e diff er e nt t y p es of  m ess a g es,
t h e c o d e tr a nsl ati o ns o ut p ut c o d es  wit h c o m p ar a bl e  m es-
s a g e si z e, c o d e l e n gt h, pr o b a bilit y of d e c o di n g err or, a n d
i nf or m ati o n l e a k a g e t o t h e e a v es dr o p p ers.

• L astl y, usi n g t h e c o d e tr a nsl ati o ns,  w e s h o w a r at e e q ui v-
al e n c e b et w e e n t h e t w o pr o bl e ms, t h at is, if a r at e t u pl e is
a c hi e v a bl e 3 f or i n d e x c o di n g, a n a p pr o pri at el y s c al e d r at e
t u pl e is als o a c hi e v a bl e f or t h e  m a p p e d n et w or k c o di n g,
a n d vi c e v ers a.

3 A c hi e v a bilit y is d e fi n e d i n t h e S h a n n o n s e ns e, t h at is, b ot h pr o b a bilit y of
d e c o di n g err or a n d i nf or m ati o n l e a k a g e di mi nis h, as t h e c o d e l e n gt h i n cr e as es.

II.  P R O B L E M D E FI N I T I O N  A N D N O T A T I O N

L et X b e a s et  w h os e el e m e nts ar e i n d e x e d b y a stri ctl y
or d er e d s et S = { s 1 , s 2 , . . . s |S |},  wit h a t ot al or d er < , i. e., s 1 <
s 2 < · · · < s |S |, a n d l et f or a n y A ⊆ S , X A := (X s )s∈ A .  T h us, f or
i nst a n c e, X S = (X s 1 , X s 2 , . . . , X s |S | ).  C o nsi d er a dir e ct e d gr a p h
G = (V , E ) wit h a n o d e s et V a n d a n li n k s et E . F or a li n k e =
(u → v ) ∈ E ,  w h er e u , v ∈ V , its t ail is t a i l (e ) := u , a n d its
h e a d is h e a d (e ) := v . F or a n y n o d e v ∈ V , t h e s et of i n c o mi n g
li n ks is d e n ot e d b y i n (v ) := { e ∈ E : h e a d (e ) = v }, a n d t h e
s et of o ut g oi n g li n ks b y o u t (v ) := { e ∈ E : t a i l (e ) = v }.
F or a n y a ∈ Z + := { 1 , 2 , . . . }, d e n ot e [a ] := { 1 , 2 , . . . , a }.
R + := (0 , ∞ ) a n d R +

0 := [ 0, ∞ ).

A. S e c ur e  N et w or k  C o di n g

1)  Pr o bl e m I nst a n c e: D e n ot e a s e c ur e n et w or k- c o di n g
i nst a n c e [ 1 3] b y N = (G , C , P ),  w h er e

• G = (V , E ) is a n a c y cli c dir e ct e d gr a p h  wit h a n o d e
s et V a n d a li n k s et E .  E a c h li n k e ∈ E h as a c a p a cit y
c e ∈ R + ,  w h er e t a i l (e ) c a n s e n d a  m ess a g e X e ∈ [ 2 c e n ]
t o h e a d (e ) n ois el essl y o v er n ∈ Z + li n k us es.

• C = (S , O , D ) is t h e c o n n e cti o n r e q uir e m e nt. S c o n-
t ai ns t h e  m ess a g e i n di c es,  w h er e t h e  m ess a g es ar e
{X s : s ∈ S }. O (s) ∈ V is t h e ori gi n ati n g n o d e4 f or
m ess a g e X s . D (s) V is t h e s et of n o d es t h at r e q uir e
m ess a g e X s .

• P = ((A z , B z ) : z ∈ Z ) d e fi n es t h e e a v es dr o p p ers i n d e x e d
b y el e m e nts of Z .  E a c h e a v es dr o p p er z ∈ Z o bs er v es
m ess a g es X B z o n li n ks B z ⊆ E a n d tri es t o r e c o nstr u ct
m ess a g es X A z f or s o m e A z ⊆ S .

We ass u m e t h at v erti c es  wit h n o i n c o mi n g li n ks ar e ori g-
i n ati n g n o d es f or s o m e s o ur c e  m ess a g es, a n d v erti c es  wit h
n o o ut g oi n g li n ks ar e d esti n ati o ns f or s o m e s o ur c e  m es-
s a g es.  Ot h er wis e, t h e y c a n b e d el et e d  wit h o ut a n y c o ns e-
q u e n c e. Si mil arl y, e a c h  m ess a g e is r e q u est e d b y at l e ast o n e
n o d e.

2)  D et er mi nisti c  C o d es: C o nsi d er n us es of e a c h li n k.  L et
t h e  m ess a g es {X s : s ∈ S } b e  m ut u all y i n d e p e n d e nt, a n d
l et e a c h X s b e u nif or ml y distri b ut e d o v er [ M s ] f or s o m e
M s ∈ Z + .  A d et er mi nisti c (M S , n )- n et w or k c o d e c o nsists of
t h e f oll o wi n g:

• A d et er mi nisti c e n c o di n g f u n cti o n e e f or e a c h li n k e ∈ E
t h at t a k es i n e n c o d e d  m ess a g es t h at ar e c o n v e y e d o n
i n c o mi n g li n ks of t a i l (e ) a n d t h os e  m ess a g es ori gi n at-
i n g fr o m t a i l (e ), i. e., (X i n (t a i l (e )) , X O − 1 (t a i l (e )) ), a n d
o ut p uts  m ess a g e X e := e e (X i n (t a i l (e )) , X O − 1 (t a i l (e )) ) t o

b e c o n v e y e d o n li n k e t a ki n g v al u es i n [ 2 c e n ].  H er e,
O − 1 (v ) d e n ot es t h e i n di c es of t h e  m ess a g es ori gi n ati n g
fr o m n o d e v .

• A d e c o di n g f u n cti o n d v f or e a c h n o d e v ∈ V
t h at t a k es i n (X i n (v ) , X O − 1 (v ) ) a n d o ut p uts a n esti m at e

X (v ) = d v (X i n (v ) , X O − 1 (v ) ) of t h e  m ess a g es X D − 1 (v ) t h at

v r e q uir es.  H er e D − 1 (v ) is t h e s et of i n di c es of  m ess a g es
w h os e d esti n ati o ns i n cl u d e v .

4 Wit h o ut l oss of g e n er alit y, e a c h  m ess a g e is a v ail a bl e pr e cis el y at o n e n o d e.
Ot h er wis e, if  m ess a g e X is a v ail a bl e at n o d es a a n d b ,  w e c a n al w a ys c o nstr u ct
a n e q ui v al e nt i nst a n c e  wit h a n a d diti o n al n o d e c t h at is t h e s ol e ori gi n ati n g
n o d e f or  m ess a g e X a n d h as li n ks  wit h l ar g e c a p a citi es t o n o d es a a n d b .
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H er e, n is r ef err e d t o as t h e bl o c k l e n gt h of t h e c o d e. It is
t h e n u m b er of ti m es e a c h li n k is us e d.  We ass u m e t h at c e n ≥ 1
f or e v er y li n k e , s u c h t h at  w e c a n tr a ns mit at l e ast o n e bit.

3)  R a n d o miz e d  C o d es: I n t his arti cl e,  w e c o nsi d er r a n d o m-
i z e d n et w or k c o d es  wit h t h e us e of r a n d o m k e ys.  E a c h n o d e v
g e n er at es a n i n d e p e n d e nt r a n d o m k e y Y v t h at is u nif or ml y dis-
tri b ut e d o v er [K v ] f or s o m e K v ∈ Z + . T h e k e y Y v i s k n o w n
o nl y t o t h e g e n er ati n g n o d e v .

A r a n d o mi z e d n et w or k c o d e is si mil ar t o a d et er mi nisti c
o n e, e x c e pt t h at e a c h li n k e n c o di n g f u n cti o n e e d et er mi nisti-
c all y  m a ps (X i n (t a i l (e )) , X O − 1 (t a i l (e )) , Y t a i l (e ) ) t o X e .

Si n c e t h e gr a p h G is a c y cli c, a n y e n c o di n g f u n cti o n
e e (X i n (t a i l (e )) , X O − 1 (t a i l (e )) , Y t a i l (e ) )) c a n b e r e pl a c e d b y
a s uit a bl e gl o b al e n c o di n g f u n cti o n g e (X S , Y t a i l (e ) ) if all
u pstr e a m li n ks of e h a v e d et er mi nisti c e n c o di n g f u n cti o ns.

4)  D e c o d a bilit y: A n et w or k c o d e h as a pr o b a bilit y of
d e c o di n g err or of at  m ost ∈ R +

0 iff

P e = 1 − Pr X
(v )
D − 1 (v )

= X D − 1 (v ) f or all v ∈ V ≤ , ( 1)

w h er e X (v ) i s t h e s et of all d e c o d e d  m ess a g es  w h os e d esti n a-
ti o n is v (s e e S e cti o n II- A 2).  N ot e t h at  w h e n = 0, t h e c o d e
g u ar a nt e es p erf e ct d e c o di n g.

5) L e a k a g e: A n et w or k c o d e h as a l e a k a g e of at  m ost
η ∈ R +

0 iff

1

n
I X A z ; X B z ≤ η, f or all z ∈ Z . ( 2)

Wit h t h e n or m ali z ati o n f a ct or of 1
n , ( 2) is c o m m o nl y r ef err e d

t o as  w e a k s e c urit y i n t h e lit er at ur e.  W h e n η = 0,  w e s a y t h at
t h e c o d e is p erf e ctl y s e c ur e.

6)  Fe asi bilit y: A s e c ur e n et w or k- c o di n g i nst a n c e N is s ai d
t o b e (M S , n , , η )-f e asi bl e iff t h er e e xists a n (M S , n )- n et w or k
c o d e t h at h as a pr o b a bilit y of d e c o di n g err or of at  m ost a n d
a l e a k a g e of at  m ost η .

A  m ess a g e r at e t u pl e of a n (M S , n )- n et w or k c o d e is
R S := (

l o g2 M s

n : s ∈ S ).  A r at e t u pl e R S i s s ai d t o b e a c hi e v-
a bl e iff t h er e e xists a s e q u e n c e of ((2 n R s : s ∈ S ), n )- n et w or k
c o d es, f or n ∈ Z + f or s o m e ∈ Z + , s u c h t h at → 0
a n d η → 0 as n → ∞ .5 F or s u c h a s e q u e n c e of n et w or k

c o d es, R
k e y
V ar e c all e d t h e k e y r at es of t h e s e q u e n c e, if f or

e a c h c o d e ((2 n R s : s ∈ S ), n ) i n t h e s e q u e n c e, t h e al p h a b et

si z e of r a n d o m k e y Y v i s K v = 2 n R
k e y
v , f or all v ∈ V .

B. S e c ur e I n d e x  C o di n g

1)  Pr o bl e m I nst a n c e: D e n ot e a s e c ur e i n d e x- c o di n g
i nst a n c e [ 9] b y I = (S , T , {(W t, H t) : t ∈ T }, P ).

• S is t h e ( or d er e d)  m ess a g e i n d e x s et.
• T is t h e r e c ei v er i n d e x s et.
• W t ⊆ S c o nt ai ns t h e i n di c es of  m ess a g es r e q uir e d b y

r e c ei v er t ∈ T .
• H t S c o nt ai ns t h e i n di c es of  m ess a g es k n o w n a pri ori

( k n o w n as si d e i nf or m ati o n) t o r e c ei v er t ∈ T .

5 T h e c o n diti o n of n o n- c o ns e c uti v e c o d e l e n gt hs is i ntr o d u c e d t o  m at c h t h e
tr a nsl ati o n of n et w or k c o d es of l e n gt h n t o i n d e x c o d es of l e n gt h e ∈ E c e n .
W hil e it pr es er v es t h e s pirit of h a vi n g i n fi nit el y  m a n y c o d es  wit h s uf fi ci e ntl y
l ar g e n , it d o es n ot r e q uir e c o d es  wit h e v er y c o d e l e n gt h t o e xist or t o s atisf y
t h e crit eri a.

• P = ((A z , B z ) : z ∈ Z ) d e fi n es t h e e a v es dr o p p ers  wit h
i n di c es i n Z .  E a c h e a v es dr o p p er z ∈ Z h as a c c ess t o t h e
c o d e  w or d br o a d c ast b y t h e s e n d er a n d  m ess a g es i n d e x e d
b y B z S , a n d att e m pts t o r e c o nstr u ct  m ess a g es i n d e x e d
b y A z ⊆ S .  N ot e t h at A z ∩ B z = ∅ .

2)  D et er mi nisti c  C o d es: L et t h e  m ess a g es {X s : s ∈ S } b e
m ut u all y i n d e p e n d e nt, a n d e a c h X s b e u nif or ml y distri b ut e d
o v er [ M s ] f or s o m e M s ∈ Z + .  A d et er mi nisti c (M S , n )-i n d e x
c o d e c o nsists of t h e f oll o wi n g:

• A d et er mi nisti c e n c o di n g ( or br o a d c ast) f u n cti o n f or t h e
s e n d er: X b = e (X S ) ∈ [ 2n ], f or s o m e n ∈ Z + .

• A d e c o di n g f u n cti o n d t f or e a c h r e c ei v er t ∈ T t h at t a k es
i n (X b , X H t

), a n d o ut p uts a n esti m at e X (t) = d t(X b , X H t
)

of t h e  m ess a g es X W t
t h at r e c ei v er t r e q uir es.

H er e, t h e n u m b er of bi n ar y bits n tr a ns mitt e d b y t h e s e n d er
is r ef err e d t o as t h e bl o c k l e n gt h.

R e m ar k 1: T his i n d e x- c o d e d e fi niti o n is c o nsist e nt  wit h t h e
i n d e x- c o di n g lit er at ur e [ 2 0] –[ 2 3], b ut is diff er e nt fr o m t h at b y
Effr os et al. ,  w h er e t h e s e n d er tr a ns mits X b ∈ [ 2c b n ], a n d c b

i s t h e n c h os e n t o b e a f u n cti o n of t h e li n k c a p a citi es of t h e
e q ui v al e nt n et w or k- c o di n g i nst a n c e.  T h e diff er e n c e r es ults i n
a s c ali n g f a ct or i n o ur r at e e q ui v al e n c e.

3)  R a n d o mis e d  C o d es: A r a n d o mi z e d i n d e x c o d e is si mil ar
t o d et er mi nisti c i n d e x c o d es e x c e pt t h at t h e s e n d er’s e n c o d-
i n g f u n cti o n t a k es i n a n i n d e p e n d e nt r a n d o m k e y Y ∈ [K ] i n
a d diti o n t o X S , f or s o m e K ∈ Z + .

4)  D e c o d a bilit y: As  wit h n et w or k c o di n g, a n i n d e x c o d e
h as a pr o b a bilit y of d e c o di n g err or of at  m ost ∈ R +

0 iff

P e := 1 − Pr X (t) = X W t
f or all t ∈ T ≤ . ( 3)

5) L e a k a g e: A n i n d e x c o d e h as a l e a k a g e of at  m ost
η ∈ R +

0 iff

1

n
I X A z

; X b , X B z
≤ η, f or all z ∈ Z . ( 4)

6)  Fe asi bilit y: A s e c ur e i n d e x- c o di n g i nst a n c e I is s ai d t o
b e (M S , n , , η )-f e asi bl e iff t h er e e xists a n (M S , n )-i n d e x c o d e
t h at h as a pr o b a bilit y of d e c o di n g err or of at  m ost a n d a
l e a k a g e of at  m ost η .  A  m ess a g e r at e t u pl e of a n (M S , n )-

i n d e x c o d e is R S := (
l o g2 M s

n : s ∈ S ).  A  m ess a g e r at e t u pl e
R S i s s ai d t o b e a c hi e v a bl e iff t h er e e xists a s e q u e n c e of
((2 n R s : s ∈ S ), n )-i n d e x c o d es, f or n ∈ Z + f or s o m e ∈ Z + ,
s u c h t h at → 0 a n d η → 0 as n → ∞ .

Ta bl e I s u m m ari es t h e n ot ati o n us e d i n n et w or k c o di n g a n d
i n d e x c o di n g.

C.  A  N ot e o n  A c hi e v a bl e  R at es

F or s e c ur e n et w or k c o di n g, if R S i s a c hi e v a bl e, t h e n R S ,
w h er e 0 ≤ R s ≤ R s f or all s ∈ S , is als o a c hi e v a bl e usi n g
r a n d o mi z e d c o d es.  T his c a n b e a c hi e v e d b y r e pl a ci n g e a c h
m ess a g e of n R s bits  wit h a n e w  m ess a g e of n R s bits a n d
a r a n d o m k e y of n R s − n R s bits.  D oi n g s o  will n ot aff e ct
s e c urit y, as b ot h t h e s h ort er n e w  m ess a g e a n d t h e r a n d o m k e y
ar e n o w s e c ur e.

T h e a b o v e o bs er v ati o n is n ot tr u e i n g e n er al f or s e c ur e i n d e x
c o di n g.  T his is b e c a us e t h e r e pl a c e m e nt st e p f or a p arti c ul ar
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m e s s a g e c a n n ot b e r e pli c at e d at t h e r e c ei v ers h a vi n g t h at p ar-
ti c ul ar  m ess a g e as si d e i nf or m ati o n.  T h e f oll o wi n g e x a m pl e
ill ustr at es t his p oi nt:

E x a m pl e 1: C o nsi d er a s e c ur e i n d e x c o di n g pr o bl e m  wit h
t w o r e c ei v ers { 1, 2 } a n d a n e a v es dr o p p er.  R e c ei v er 1  w a nts
X 1 a n d k n o ws X 2 ; r e c ei v er 2  w a nts X 2 a n d k n o ws X 1 ; t h e
e a v es dr o p p er  w a nts X 1 a n d k n o ws n ot hi n g.  T h e r at e (R , R ) f or
all 0 ≤ R ≤ 1 is a c hi e v a bl e b y s e n di n g X 1 + X 2 m o d 2 n R .
H o w e v er, t h e r at e (R , R − δ ) is n ot a c hi e v a bl e.  T o s e c ur e X 1 ,
t h e s e n d er n e e ds t o p a d X 2 wit h n R − n (R − δ ) r a n d o m
bits.  B ut b y d oi n g s o, r e c ei v er 1 c a n n ot d e c o d e X 1 a s it d o es
n ot k n o w t h es e r a n d o m bits.

III.  S U M M A R Y  O F R E S U L T S

A.  C o d e  Fe asi bilit y  E q ui v al e n c e

Gi v e n a n y s e c ur e i n d e x- c o di n g i nst a n c e I, S e cti o n I V
d e fi n es a  m a p t o o bt ai n a c orr es p o n di n g s e c ur e n et w or k- c o di n g
i nst a n c e N ,  wit h t h e f oll o wi n g c o d e f e asi bilit y e q ui v al e n c e:

T h e or e m 1 ( A bri ef v ersi o n): I is (M S , n , , η )-f e asi bl e iff
N is (M S , n , , η )-f e asi bl e.

We  will pr o v e t h e f or w ar d ass erti o n i n S e cti o n  V a n d t h e
b a c k w ar d ass erti o n i n S e cti o n  VI.

I n t h e ot h er dir e cti o n, gi v e n a n y s e c ur e n et w or k- c o di n g
i nst a n c e N , S e cti o n  VII d e fi n es a  m a p t o a c orr es p o n d-
i n g s e c ur e i n d e x- c o di n g i nst a n c e I,  wit h t h e f oll o wi n g c o d e
f e asi bilit y e q ui v al e n c e:

T h e or e m 2 ( A bri ef v ersi o n): L et n = e ∈ E c e n a n d
2 c E n := (2 c e n : e ∈ E ).

1) If N is (M S , n , , η )-f e asi bl e, t h e n I is
((M S , K V , 2 c E n ), n , , θ1 )-f e asi bl e,  w h er e

θ 1 :=
η

e ∈ E c e − |E |
n

.

N ot e t h at I h as |S | + |V | + |E | m ess a g es  wit h si z es
M S = (M S , K V , 2 c E n ).

2) If I is ((M S , K V , 2 c E n ), n , , η )-f e asi bl e, t h e n N is
(M S , n , (|Z | + 1 ) , θ2 )-f e asi bl e,  w h er e

θ 2 := (|Z | + 1 )
η

1 −
+

e ∈ E

c e

+
1

n

H b ( )

1 −
+ H b ( )

a n d H b (·) d e n ot es t h e bi n ar y e ntr o p y f u n cti o n.
We  will pr o v e P art 1 i n S e cti o n  VIII a n d P art 2 i n

S e cti o n I X.
R e m ar k 2:
1) F or p erf e ct d e c o di n g, t h at is, = 0,  w e

h a v e t h at θ 1 = η 1

( e ∈ E c e −
|E |
n )

≤ ψ 1 η a n d

θ 2 = η ( |Z | +1 ) e ∈ E c e = ψ 2 η , f or s o m e c o nst a nts
ψ 1 , ψ2 . T h e t er m e ∈ E c e i n t h e s c ali n g f a ct or is a
r es ult of t h e  w a y l e a k a g e is n or m ali z e d: 1

n f or n et w or k

c o di n g; 1
n = 1

e ∈ E c e n
f or i n d e x c o di n g.

2) F or p erf e ct d e c o di n g a n d z er o l e a k a g e ( = η = 0),  w e
h a v e θ 1 = θ 2 = 0, r e g ar dl ess of n .

3) If n → ∞ , → 0, a n d η → 0, t h e n (|Z | + 1 ) → 0,
θ 1 → 0, a n d θ 2 → 0.
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Fi g. 1.  T h e  m a p fr o m s e c ur e i n d e x c o di n g t o s e c ur e n et w or k c o di n g:  Cir c ul ar n o d es r e pr es e nt r e c ei v ers a n d s q u ar e n o d es r e pr es e nt e a v es dr o p p ers.

4)  A n et w or k- c o di n g i nst a n c e N wit h |S | s o ur c es is  m a p p e d
t o a n i n d e x- c o di n g i nst a n c e I wit h |S | +|V | +|E | s o ur c es.

5) F or  T h e or e m 2, d et er mi nisti c i n d e x c o d es s uf fi c e.

B.  R at e  E q ui v al e n c e

Fr o m t h e a b o v e c o d e tr a nsl ati o ns,  w e o bt ai n t h e f oll o wi n g
r at e- e q ui v al e n c e.  Gi v e n a n y s e c ur e i n d e x- c o di n g i nst a n c e I a n d
its c orr es p o n di n g s e c ur e n et w or k- c o di n g i nst a n c e N ( vi a t h e
i nst a n c e  m a p d e fi n e d i n S e cti o n I V),  w e h a v e t h e f oll o wi n g:

C or oll ar y 1 ( A  Bri ef  Versi o n): T h e r at e t u pl e R S i s a c hi e v-
a bl e f or I iff it is a c hi e v a bl e f or N .

F or t h e ot h er dir e cti o n,  w e c o nsi d er a n y s e c ur e n et w or k-
c o di n g i nst a n c e N ,  w h er e all li n k c a p a citi es c e ar e i nt e g ers,
a n d t h e c orr es p o n di n g s e c ur e i n d e x- c o di n g i nst a n c e I ( vi a t h e
i nst a n c e  m a p d e fi n e d i n S e cti o n  VII).

C or oll ar y 2 ( A  Bri ef  Versi o n): T h e r at e t u pl e R S i s a c hi e v-
a bl e f or N ( wit h i nt e g er li n k c a p a citi es), usi n g r a n d o m k e y

wit h r at es R
k e y
V , iff t h e r at e t u pl e 1

e ∈ E c e
(R S , R

k e y
V , c E ) is

a c hi e v a bl e f or I.
R e m ar k 3: C or oll ar y 2 c a n b e e xt e n d e d t o a n y s e c ur e

n et w or k- c o di n g i nst a n c e N wit h r ati o n al li n k c a p a citi es.  T o
t his e n d,  w e c o nsi d er λ ∈ Z + u s es of t h e li n ks as a gr o u p,
w h er e λ is t h e l e ast c o m m o n  m ulti pl e of t h e d e n o mi n at ors
of t h e li n k c a p a citi es.  E a c h gr o u p of λ us es of t h e li n ks is
e q ui v al e nt t o a n ot h er n et w or k c o di n g i nst a n c e N wit h li n k
c a p a citi es c e = λ c e ∈ Z + .  We a p pl y  C or oll ar y 2 t o N t o g et
a r at e e q ui v al e n c e b et w e e n R S = λ R S f or N ( w hi c h is R S f or

N ) a n d 1

e ∈ E c e
(R S , R

k e y
V , c E ) = 1

e ∈ E c e
(R S , R

k e y
V , c E ) f or I.

I V.  F R O M S E C U R E I N D E X  T O S E C U R E N E T W O R K C O D I N G

Gi v e n a s e c ur e i n d e x- c o di n g i nst a n c e
I= (S , T , {(W t, H t) : t ∈ T }, P ), l et S = [k ] a n d T = [ ] f or
s o m e p ositi v e i nt e g ers k a n d .  We  will first pr o p os e a  m a p
t o a s e c ur e n et w or k- c o di n g i nst a n c e N = (G , C , P ).

A. I n d e x-t o- N et w or k  C o di n g I nst a n c e  M a p

T h e s e c ur e v ersi o n of t h e i n d e x-t o- n et w or k c o di n g i nst a n c e
m a p c o nsists of t h e f oll o wi n g:

1)  A n  E xisti n g  N o n- S e c ur e  M a p [ 4,  Fi g. 1] f or  G = ( V , E)
a n d  C = ( S, O , D):

• T h e v ert e x s et V = { s 1 , s 2 , . . . , s k , t1 , t2 , . . . , t , 1 , 2 }.
• T h e li n k s et E c o nt ai ns t h e f oll o wi n g li n ks:

– (s i → 1 ) f or e a c h i ∈ [k ],  wit h s uf fi ci e ntl y l ar g e
c a p a citi es.

– (s i → tj) iff i ∈ H j,  wit h s uf fi ci e ntl y l ar g e c a p a citi es.
– (1 → 2 ) wit h li n k c a p a cit y 1.
– (2 → tj) f or e a c h j ∈ [ ],  wit h li n k c a p a cit y 1.

• T h e  m ess a g e i n di c es S = S = [k ].
• T h e ori gi n ati n g n o d e f or  m ess a g e X i, i ∈ S , is O (i) = s i.
• T h e d esti n ati o ns f or  m ess a g e X i i s D (i) = { tj : i ∈ W j}.
2)  O ur  Pr o p os e d  M a p f or  P = ((A z , B z ):z ∈ Z ):
• Z = Z
• F or e a c h z ∈ Z : A z = A z .
• F or e a c h z ∈ Z , B z c o m pris es of li n ks i n cl u d e d b y t h e

f oll o wi n g r ul es:
– (1 → 2 ) ∈ B z .
– F or a n y i ∈ B̂ z , all o ut g oi n g li n ks fr o m n o d e s i ar e

i n B z .
R e m ar k 4: T h e n u m b er of s o ur c e  m ess a g es i n b ot h

i nst a n c es is t h e s a m e. Si d e i nf or m ati o n i n I m a nif ests its elf
as li n ks (s i → tj) i n N . I n t h e c o nstr u ct e d N , s o ur c es n o d es
ar e {s i : i ∈ S }, a n d d esti n ati o n n o d es ar e {ti : i ∈ T }.

T h e i n d e x-t o- n et w or k c o di n g i nst a n c e  m a p is s u m m ari z e d
i n Fi g ur e 1.

B.  E q ui v al e n c e  R es ults

Wit h t h e a b o v e  m a p,  w e pr o v e a n e q ui v al e n c e b et w e e n t h es e
t w o i nst a n c es.

T h e or e m 1: L et I b e a s e c ur e i n d e x- c o di n g i nst a n c e, a n d N
b e t h e c orr es p o n di n g s e c ur e n et w or k- c o di n g i nst a n c e usi n g t h e
i n d e x-t o- n et w or k c o di n g  m a p. F or a n y , η ∈ R +

0 a n d n ∈ Z + ,
I is (M S , n , , η )-f e asi bl e iff N is (M S , n , , η )-f e asi bl e  wit h
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Fi g. 2.  A s e c ur e i n d e x- c o di n g i nst a n c e i n ( a) a n d its e q ui v al e nt s e c ur e n et w or k- c o di n g i nst a n c e i n ( b).

d et er mi nisti c e n c o di n g f u n cti o ns at v erti c es 2 a n d {s i : i ∈ S },
a n d a r a n d o mi z e d e n c o di n g f u n cti o n at n o d e 1.

Pr o of: S e e S e cti o n  V f or t h e f or w ar d dir e cti o n a n d
S e cti o n  VI f or t h e b a c k w ar d dir e cti o n.

T h e t h e or e m a b o v e pr es er v es t h e  m ess a g e si z e, as  w ell as
t h e d e c o d a bilit y a n d s e c urit y crit eri a.  T h e pr o of of t h e t h e or e m
utilis ers t h e n o n-s e c ur e c o d e tr a nsl ati o ns [ 4],  w hi c h c a n b e
e asil y s h o w n t o pr es er v e t h e d e c o di n g err or crit eri o n w h e n
t h e c o d es ar e d et er mi nisti c i n t h e a bs e n c e of e a v es dr o p p ers.
As a n e q ui v al e n c e f or t h e s e c ur e i nst a n c es is r e q uir e d h er e, o ur
m ai n c o ntri b uti o n i n t h e dir e cti o n of s e c ur e i n d e x-t o- n et w or k
c o di n g  m a p is t o s h o w t h at t h e c o d e tr a nsl ati o n

• w or ks  wit h t h e a d diti o n of e a v es dr o p p ers,
• w or ks f or all r a n d o mi z e d i n d e x c o d es,
• pr es er v es t h e s e c urit y crit eri o n η ,
• still pr es er v es t h e d e c o di n g crit eri o n .
Wit h  T h e or e m 1,  w e g et t h e f oll o wi n g r at e e q ui v al e n c e:
C or oll ar y 1: L et I b e a s e c ur e i n d e x- c o di n g i nst a n c e, a n d

N b e t h e c orr es p o n di n g s e c ur e n et w or k- c o di n g i nst a n c e usi n g
t h e i n d e x-t o- n et w or k c o di n g  m a p.  A r at e t u pl e R S i s a c hi e v a bl e
f or I iff it is als o a c hi e v a bl e f or N .

Pr o of: If a r at e t u pl e R S i s a c hi e v a bl e f or I, t h e n t h er e e xists

a s e q u e n c e of ((2 n R s : s ∈ S ), n )-i n d e x c o d es, n ∈ Z + ,  wit h
pr o b a bilit y of d e c o di n g err or → 0 a n d l e a k a g e η → 0
as n → ∞ . Fr o m  T h e or e m 1, it f oll o ws t h at t h er e e xists a
s e q u e n c e of n et w or k c o d es  wit h t h e s a m e pr o p erti es, a n d h e n c e
R S i s als o a c hi e v a bl e f or N .

T h e ot h er dir e cti o n fr o m N t o I f oll o ws e x a ctl y t h e s a m e
ar g u m e nt.

C.  A n  E x a m pl e

C o nsi d er t h e i n d e x- c o di n g i nst a n c e I d e pi ct e d i n
Fi g ur e 2( a), a n d its  m a p p e d n et w or k- c o di n g i nst a n c e N
i n Fi g ur e 2( b).  A n e x a m pl e of i n d e x c o d es  wit h = 0
a n d η = 0 is e (X [ 4], Y ) = (X 1 + X 2 , X 2 + X 3 , X 4 ). O n e

c a n v erif y t h at e a c h us er c a n d e c o d e t h eir i nt e n d e d  m es-
s a g es, a n d t h e e a v es dr o p p er z h as n o i nf or m ati o n a b o ut
X 2 . I n t h e tr a nsl at e d n et w or k c o d e, e a c h s o ur c e n o d e s i,
i ∈ [ 4], tr a ns mits X i o n e v er y o ut g oi n g li n k; n o d e 1 tr a ns mits
X 1 → 2 = g 1 → 2 (X [ 4], Y 1 ) = e (X [ 4], Y 1 ) = (X 1 + X 2 , X 2 + X 3 , X 4 );
n o d e 2 f or w ar ds X 1 → 2 o n e v er y o ut g oi n g li n k.  Cl e arl y, e a c h
d esti n ati o n n o d e i n N c a n d e c o d e its r e q uir e d  m ess a g es usi n g
t h e s a m e d e c o di n g f u n cti o n i n I, a n d t h e e a v es dr o p p er z g ai ns
n o i nf or m ati o n a b o ut X 2 .

I n t h e ot h er dir e cti o n of n et w or k-t o-i n d e x c o d e tr a ns-
l ati o n, c o nsi d er a n et w or k c o d e  wit h = 0 a n d η = 0
as f oll o ws: e a c h s o ur c e n o d e s i, i ∈ [ 4], tr a ns-
mits X i o n e v er y o ut g oi n g li n k; n o d e 1 tr a ns mits
X 1 → 2 = g 1 → 2 (X [ 4], Y 1 ) = (X 1 + X 3 , X 2 + X 3 , X 4 ); n o d e 2 f or-
w ar ds X 1 → 2 o n e v er y o ut g oi n g li n k.  T h e tr a nsl at e d i n d e x
c o d e is e (X [ 4], Y )= g 1 → 2 (X [ 4], Y ) = (X 1 + X 3 , X 2 + X 3 , X 4 ).
O n e c a n v erif y t h at f or b ot h i nst a n c es, all us ers c a n d e c o d e
t h eir r e q u est e d  m ess a g es, a n d t h e e a v es dr o p p er g ai ns n o
i nf or m ati o n of t h e  m ess a g es it att e m pts t o d e c o d e.  We h a v e
us e d diff er e nt c o d es f or t h e t w o dir e cti o ns t o hi g hli g ht t h at
s e c ur e n et w or k a n d i n d e x c o d es  m a y n ot b e u ni q u e.

V. P R O O F  O F T H E O R E M 1 – T H E F O R W A R D D I R E C T I O N

We n o w pr o v e  T h e or e m 1 f or t h e f or w ar d dir e cti o n: if I
is (M S , n , , η )-f e asi bl e, t h e n N is (M S , n , , η )-f e asi bl e.  T his
is a c hi e v e d b y s h o wi n g t h at a n y i n d e x c o d e t h at s atis fi es t h e
f e asi bilit y c o n diti o n f or I c a n b e tr a nsl at e d t o a n et w or k c o d e
t h at s atis fi es t h e f e asi bilit y c o n diti o n f or N .

A.  C o d e Tr a nsl ati o n

We st art  wit h a n y r a n d o mi z e d i n d e x c o d e t h at is (M S , n , , η )-
f e asi bl e.  We  will s h o w t h at t h e n et w or k c o d e o bt ai n e d b y t h e
e xisti n g n o n-s e c ur e c o d e tr a nsl ati o n s atis fi es b ot h t h e d e c o di n g
a n d s e c urit y crit eri a e v e n f or r a n d o mi z e d c o d es. I n t h e f ol-
l o wi n g,  w e  m o dif y t h e e xisti n g n o n-s e c ur e c o d e tr a nsl ati o n [ 4,
Fi g. 1] t o tr a nsl at e r a n d o mi z e d i n d e x c o d es.
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• F or all o ut g oi n g li n ks fr o m s i, i ∈ [k ]: S et a d et er mi nisti c
li n k f u n cti o n X e = e e (X O − 1 (s i) ) = e e (X i) = X i ∈ [M i],
f or e a c h e ∈ o u t (s i).  T his is p ossi bl e si n c e v ert e x s i i s
t h e ori gi n ati n g v ert e x f or t h e  m ess a g e X i, a n d t h e li n k
c a p a cit y is s uf fi ci e ntl y l ar g e.

• F or li n k (1 → 2 ): S et X 1 → 2 = e 1 → 2 (X i n (1 ) , Y 1 ) =
e (X [k ], Y 1 ) ∈ [ 2n ].  We s et t h e c ar di n alit y of Y 1 ( w hi c h
is t h e r a n d o m k e y us e d i n t h e e n c o di n g f u n cti o n of v er-
t e x 1 i n N ) t o b e t h e s a m e as t h at of t h e r a n d o m k e y Y
us e d i n t h e e n c o di n g f u n cti o n e (X S , Y ) of t h e s e n d er i n I.

• F or all o ut g oi n g li n ks fr o m 2: S et a d et er mi nisti c f u n cti o n
X e = e e (X 1 → 2 ) = X 1 → 2 ∈ [ 2n ], f or e a c h e ∈ o u t (2 ).
T his is p ossi bl e as e v er y o ut g oi n g li n k fr o m v ert e x 2 h as
c a p a cit y n .

• S et d ti (X i n (ti) ) = d i(X 2 → ti , X H i
) f or all i ∈ [ ], a n d d v = 0

f or all ot h er v erti c es v .

B.  D e c o di n g  Crit eri o n

S e e  A p p e n di x  A f or t h e pr o of of t h e d e c o di n g crit eri o n.

C. S e c urit y  Crit eri a

E a c h e a v es dr o p p er z ∈ Z i n N h as a c c ess t o li n ks B z c o n-
sisti n g of (i) li n k (1 → 2 ),  w hi c h c arri es X 1 → 2 = e (X S , Y 1 ),
a n d (ii) o ut g oi n g li n ks fr o m {s i : i ∈ B z },  w hi c h c arr y  m es-
s a g es X B z

, b e c a us e e a c h o ut g oi n g li n k fr o m n o d e s i c arri es X i

b y c o nstr u cti o n.
N o w,  w e b o u n d t h e l e a k a g e f or t h e n et w or k c o d e as f oll o ws:

1

n
I X A z ; X B z =

1

n
I X A z

; e (X S , Y 1 ), X B z
( 5 a)

( a)
=

1

n
I X A z

; e X S , Y , X B z

( b)
≤ η, ( 5 b)

w h er e ( a) f oll o ws fr o m a c h a n g e of r a n d o m v ari a bl es b y n oti n g
t h at (X S , Y ) h as t h e s a m e distri b uti o n as (X S , Y 1 ); ( b) f oll o ws
fr o m t h e pr e mis e t h at t h e l e a k a g e f or t h e i n d e x c o d e is at  m ost
η .  T his c o m pl et es t h e s e c urit y pr o of f or N .

VI.  P R O O F  O F T H E O R E M 1 – T H E B A C K W A R D D I R E C T I O N

We  will n o w pr o v e  T h e or e m 1 f or t h e b a c k w ar d dir e cti o n:
if N is (M S , n , , η )-f e asi bl e, t h e n I is (M S , n , , η )-f e asi bl e.

A.  C o d e  C o nstr u cti o n

We st art  wit h a n y n et w or k c o d e f or N t h at s atis fi es t h e f e asi-
bilit y c o n diti o ns.  R e c all t h e e n c o di n g f u n cti o ns at n o d e 2 a n d
n o d es {s i : i ∈ [k ]} ar e d et er mi nisti c, a n d t h at at n o d e 1 r a n-
d o mi z e d. I n t h e f oll o wi n g,  w e  m o dif y t h e e xisti n g n o n-s e c ur e
c o d e tr a nsl ati o n [ 4, Fi g 1] t o tr a nsl at e a n et w or k c o d e  wit h a
r a n d o m k e y Y 1 u s e d at n o d e 1.

• S et t h e s e n d er’s tr a ns mitt e d c o d e t o b e X b = e (X S , Y ) =
e 1 → 2 ((e s i→ 1 (X i) : i ∈ [k ]), Y ) ∈ [ 2n ],  w h er e Y h as
t h e s a m e distri b uti o n as Y 1 (t h e r a n d o m k e y us e d i n t h e
n et w or k c o d e).

• S et t h e d e c o di n g f u n cti o n of r e c ei v er i ∈ [ ] t o b e
d i(X b , X H i

) = d ti (e 2 → ti (X b ), (e s j→ ti (X j) : j ∈ H i)).

B.  R estri cti n g  N et w or k  C o d es

N e xt,  w e s h o w t h at  w e o nl y n e e d t o c o nsi d er a s p e-
ci fi c cl ass of n et w or k c o d es  wit h o ut l oss of g e n er alit y. 6

S p e ci fi c all y,  w e o nl y n e e d t o c o nsi d er n et w or k c o d es s u c h
t h at e 2 → ti (X 1 → 2 )= X 1 → 2 , f or all i ∈ [ ]. First, o bs er v e t h at

X W i
− X 1 → 2 , e s j→ ti (X j) : j ∈ H i

− e 2 → ti (X 1 → 2 ), e s j→ ti (X j) : j ∈ H i

f or ms a  M ar k o v c h ai n,  w h er e X 1 → 2 = e 1 → 2 ((e s i→ 1 (X i) :
i∈ [k ]), Y 1 ), a n d W i ∩ H i = ∅ .

R e c all t h at r e c ei v er ti, f or e a c h i ∈ [ ], att e m pts t o d e c o d e
X W i

fr o m (e 2 → ti (X 1 → 2 ), (e s j→ ti (X j) : j ∈ H i)).  B y t h e d at a-
pr o c essi n g i n e q u alit y, t h e pr o b a bilit y of d e c o di n g err or P e

c a n n ot i n cr e as e if  w e s et e 2 → ti (X 1 → 2 ) = X 1 → 2 i n e a c h
r e c ei v er ti’s o bs er v ati o ns.  Als o, b y d e fi niti o n, n o n e of t h e li n ks
{2 → ti : i ∈ [ ]} c a n b e a c c ess e d b y a n y e a v es dr o p p er. S o,
t his c h oi c e  will n ot aff e ct t h e l e a k a g e of t h e c o d e.

C o ns e q u e ntl y, f or a n y n et w or k c o d e f or N wit h a pr o b-
a bilit y of err or of at  m ost ∈ a n d a l e a k a g e of at  m ost η ,
w e c a n al w a ys o bt ai n a n ot h er n et w or k c o d e b y c h o osi n g t h e
e n c o di n g f u n cti o ns of all o ut g oi n g li n ks fr o m n o d e 2 t o b e
e 2 → ti (X 1 → 2 ) = X 1 → 2 , f or all i ∈ [ ].  T h e  m o di fi e d n et w or k
c o d e als o h as a n err or- d e c o di n g pr o b a bilit y of at  m ost a n d a
l e a k a g e of at  m ost η . F or t h e s u bs e q u e nt s u bs e cti o ns,  w e  will
o nl y c o nsi d er n et w or k c o d es of t his f or m.

C.  D e c o di n g  Crit eri o n

S e e  A p p e n di x  B f or t h e pr o of of t h e d e c o di n g crit eri o n.

D. S e c urit y  Crit eri a

Fr o m t h e s e c urit y crit eri a of N , w e h a v e 1
n I(X A z ; X B z ) < η

f or e a c h z.  E a v es dr o p p er z o bs er v es li n ks B z ,  w hi c h c o nsists
of all o ut g oi n g li n ks fr o m s o ur c e n o d es {s i : i ∈ B z } as  w ell
as li n k 1 → 2. It att e m pts t o d e c o d e  m ess a g es i n d e x e d b y
A z = A z .

S h o wi n g t h at t h e tr a nsl at e d i n d e x c o d e als o s atis fi es a si mi-
l ar s e c urit y c o n diti o n as t h e ori gi n al n et w or k c o d e is n ot tri vi al,
as t h e e a v es dr o p p ers i n I c a n a c c ess t h e  m ess a g es t h e ms el v es,
i nst e a d of j ust f u n cti o ns of t h e  m ess a g es as i n N .  T h es e f u n c-
ti o ns  m a y n ot n e c ess aril y all o w o n e t o r e c o v er t h e  m ess a g es,
as  w e all o w n o n- z er o d e c o di n g err or pr o b a bilit y. S o, it s e e ms
t h at t h e e a v es dr o p p ers i n I h a v e “ b ett er ” o bs er v ati o ns,  w hi c h
m a y l e a d t o a l ar g er l e a k a g e of t h e c o d e.

We  will s h o w t h at t his is n ot t h e c as e. First, n ot e t h e f ol-
l o wi n g: (i) {X S , Y 1 } ar e  m ut u all y i n d e p e n d e nt; (ii) X o u t (s i) ,
f or e a c h i ∈ S , ar e e a c h a d et er mi nisti c f u n cti o n of X i;
(iii) B z ∩ A z = ∅ .  Wit h t h es e,  w e h a v e t h e f oll o wi n g  M ar k o v
c h ai n f or e v er y z ∈ Z :

X B z
− X {o u t (s i):i∈ B z }

− Y 1 , X A z , X S \ (A z ∪ B z )
, ( 6)

w hi c h is e q ui v al e nt t o

0 = I X B z
; Y 1 , X A z , X S \ (A z ∪ B z ) |X {o u t (s i):i∈ B z }

( 7 a)

= I X B z
; Y 1 , X A z , X S \ (A z ∪ B z ) , X {o u t (s i):i∈ B z }

|X {o u t (s i):i∈ B z }

( 7 b)

6 T his  w as n ot s h o w n i n e xisti n g  w or ks o n n o n-s e c ur e e q ui v al e n c e.
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= I X B z
; Y 1 , X S \ B z

, X {o u t (s i):i∈ B z }
, X {s i→ 1: i∈ S } |X {o u t (s i):i∈ B z }

( 7 c)

= I X B z
; Y 1 , X S \ B z

, X {o u t (s i):i∈ B z }
, X {s i→ 1: i∈ S } , X 1 → 2 |

X {o u t (s i):i∈ B z }
( 7 d)

≥ I X B z
; X A z , X 1 → 2 |X {o u t (s i):i∈ B z }

( 7 e)

≥ I X B z
; X A z |X {o u t (s i):i∈ B z }

, X 1 → 2 ( 7f)

= I X B z
; X A z |X B z ≥ 0 . ( 7 g)

H er e, ( 7 b) f oll o ws fr o m I(A |B ) = I(A , B |B ); ( 7 c) is d u e t o (i)
A z ∪ (S \ (A z ∪ B z )) = S \ B z ( b e c a us e B z ∩ A z = ∅ , B z S ,
A z ⊆ S ), (ii) X {s i→ 1: i∈ S } ⊆ X {o u t (s i):i∈ B z }

∪ X {o u t (s i):i∈ S \ B z }
, a n d

(iii) X {o u t (s i):i∈ S \ B z }
ar e d et er mi nisti c f u n cti o ns of X S \ B z

; ( 7 d) is
o bt ai n e d as X 1 → 2 i s a d et er mi nisti c f u n cti o n of X {s i→ 1: i∈ S } a n d
Y 1 ; ( 7 e) f oll o ws fr o m I(A ; B , C |D ) ≥ I(A ; B |D ); ( 7f) f oll o ws
fr o m I(A ; B , C |D ) ≥ I(A ; B |C , D ); t h e e q u alit y i n ( 7 g) f oll o ws
fr o m t h e d e fi niti o n of B z .

T his  m e a ns t h at e a v es dr o p p er z, h a vi n g o bs er v e d t h e
li n ks X B z , d o es n ot g ai n a n y  m or e i nf or m ati o n a b o ut X A z

e v e n
if it c a n als o o bs er v e t h e s o ur c e  m ess a g es X B z

. N o w, w e s h o w
t h at t h e e a v es dr o p p er c a n n ot d o b ett er if  w e r e pl a c e its o bs er-
v ati o n of t h e o ut g oi n g li n ks fr o m t h e s o ur c es  wit h t h e s o ur c e
m ess a g es:

1

n
I X B z

, X 1 → 2 ; X A z =
1

n
I X B z

, X 1 → 2 , X {o u t (s i):i∈ B z }
; X A z

=
1

n
I X B z

, X B z ; X A z

=
1

n
I X B z ; X A z + I X B z

; X A z |X B z

=
1

n
I X B z ; X A z ≤ η, ( 8)

w h er e i n t h e l ast li n e t h e e q u alit y f oll o ws fr o m ( 7 g), a n d t h e
i n e q u alit y fr o m t h e pr e mis e of t h e n et w or k c o d e.

Si n c e (X [k ], Y , X b ) a n d (X [k ], Y 1 , X 1 → 2 ) h a v e t h e s a m e
distri b uti o n,  w e h a v e 1

n I(X B z
, X b ; X A z

) ≤ η f or I.

VII.  F R O M S E C U R E N E T W O R K  T O S E C U R E I N D E X C O D I N G

I n t h e ot h er dir e cti o n, c o nsi d er a s e c ur e n et w or k- c o di n g
i nst a n c e N = (G , C , P ). F or si m pli cit y, l et t h e s o ur c e i n di c es
b e S = [k ] a n d t h e v ert e x i n di c es b e V = [ ].  R e c all t h at e a c h
m ess a g e is r e q u est e d b y at l e ast o n e d esti n ati o n.

We  will c o nstr u ct t h e f oll o wi n g  m a p t o o bt ai n a n i n d e x-
c o di n g i nst a n c e I:

1)  C o nstr u ct a n a u g m e nt e d s e c ur e n et w or k- c o di n g
i nst a n c e N fr o m a n y ( p ossi bl y r a n d o mi z e d) s e c ur e
n et w or k- c o di n g i nst a n c e N .  T his c o n v erts a n y p ossi bl y
r a n d o mi z e d s e c ur e n et w or k c o d e t o a d et er mi nisti c
n et w or k c o d e.

2)  M a p N t o I:
a) F or l e giti m at e r e c ei v ers:  We us e t h e e xisti n g n o n-

s e c ur e i nst a n c e  m a p [ 4, S e c. III] ( w hi c h o nl y  w or ks
f or d et er mi nisti c c o d es), e x c e pt t h at  w e o mit o n e
r e c ei v er i n T .  We  will s h o w t h at o mitti n g t his
r e c ei v er  will n ot aff e ct t h e r es ult.

b) F or e a v es dr o p p ers:  We c o nstr u ct a  m a p fr o m t h e
e a v es dr o p p ers i n N t o t h os e i n I.

F or I, w e s et

n =
e ∈ E

c e n . ( 9)

T his  m e a ns t h e n u m b er of bits t h at t h e s e n d er c a n tr a ns mit i n
I e q u als t h e t ot al n u m b er of bits t h at c a n b e tr a ns mitt e d o n all
t h e li n ks i n N .

A.  N et w or k-t o-I n d e x  C o di n g  M a p

N o w,  w e d es cri b e t h e i nst a n c e  m a p i n d et ail:
1)  A u g m e nt e d S e c ur e  N et w or k  C o di n g: We c o nstr u ct a n

a u g m e nt e d s e c ur e n et w or k- c o di n g i nst a n c e N = (G , C , P )
as f oll o ws:

• G = (V , E ) = G ,  w h er e e a c h li n k e i n G h as t h e s a m e
c a p a cit y c e a s t h at i n G .

• C = (S , O , D ):  H er e,  w e i ntr o d u c e a n a d diti o n al
i n d e p e n d e nt s o ur c e X k + i ∈ [K i] ori gi n ati n g at e a c h
v ert e x i∈ [ ] t h at t a k es t h e r ol e of a n d h as t h e s a m e dis-
tri b uti o n as t h e r a n d o m k e y Y i u s e d i n t h e r a n d o mi z e d
e n c o di n g at v ert e x i i n N .

– S = [k + ],  w h er e t h e  m ess a g e al p h a b et si z es ar e
M i = M i f or e a c h i ∈ [k ], a n d M k + i = K i f or e a c h
i ∈ [ ].

– O (i) = O (i) f or e a c h i ∈ [k ], a n d O (k + i) = i f or
e a c h i ∈ [ ]

– D (i) = D (i) f or e a c h i ∈ [k ], a n d D (k + i) = ∅ f or
e a c h i ∈ [ ].

• P = ((A z , B z ) : z ∈ Z ) = P .
N ot e t h at b y c o nstr u cti o n, X [k + ] a n d (X [k ], Y [ ]) h a v e t h e

s a m e distri b uti o n. S o, t h er e is a bij e cti v e  m a p fr o m a d et er-
mi nisti c or r a n d o mi z e d s e c ur e n et w or k c o d e f or N t o a
d et er mi nisti c s e c ur e n et w or k c o d e f or N .  N ot e t h at i n N ,
t h e a d diti o n al s o ur c es {X k + i : i ∈ [ ]} ar e n ot r e q uir e d t o b e
d e c o d e d b y a n y n o d e.  Als o, t h e y ar e n eit h er k n o w n t o a n y
e a v es dr o p p er n or r e q uir e d t o b e pr ot e ct e d.

D e n ot e t h e s et of v erti c es i n N t h at ar e t h e d esti n ati o ns f or
s o m e s o ur c e  m ess a g es b y U = { j ∈ [ ] : j ∈ D (i) f or s o m e
i∈ [k ]}.

2)  N et w or k-t o-I n d e x  C o di n g  M a p: N o w,  w e  m a p N t o a
s e c ur e i n d e x- c o di n g i nst a n c e I.

• S = [k + ] ∪ E . It c o nsists of o n e  m ess a g e X i∈ [M i]= [M i]
f or e a c h i ∈ [k + ] a n d o n e  m ess a g e X e ∈ [M e ] = [ 2 c e n ]
f or e a c h e ∈ E i n N .

• T = { ti}i∈ U ∪ { te }e ∈ E .  T his  m e a ns I h as |U | + |E |
r e c ei v ers: t h e first s et c orr es p o n ds t o e a c h d esti n ati o n
n o d e i n N , a n d t h e s e c o n d s et c orr es p o n ds t o e a c h li n k
i n N .

• F or e a c h te ∈ T w h er e e ∈ E , w e s et
H te = i n (t a i l (e ))∪ O − 1 (t a i l (e )), a n d W te = { e }.

• F or e a c h ti ∈ T w h er e i ∈ U , w e s et H ti = i n (i) ∪ O − 1 (i),
a n d W ti = { j ∈ [k + ] : i ∈ D (j)} := D − 1 (i).

• T h e e a v es dr o p p er s etti n g P : Z = Z . F or e a c h z ∈ Z ,
B z = B z , a n d A z = A z .

T h e t w o st e ps i n t h e  m a p fr o m a n et w or k c o di n g i nst a n c e
t o t h e c orr es p o n di n g i n d e x- c o di n g i nst a n c e ar e s u m m ari z e d i n
Fi g ur es 3 a n d 4, r es p e cti v el y.
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Fi g. 3. Fr o m s e c ur e n et w or k c o di n g t o a u g m e nt e d s e c ur e n et w or k c o di n g.

R e m ar k 5: T h e  m a p pi n g t o t h e r e c ei v ers i n I fr o m N is
sli g htl y diff er e nt fr o m t h at i n t h e n o n-s e c ur e i nst a n c e  m a p [ 4,
S e c. III],  w hi c h i n cl u d es a n a d diti o n al r e c ei v er tall i n I. T h e
r e c ei v er  w as i n cl u d e d t o g u ar a nt e e a us ef ul pr o p ert y,  w hi c h,
as  w e  will s e e i n Pr o p ositi o n 1, r e m ai ns tr u e e v e n  wit h o ut
r e c ei v er tall .

B.  E q ui v al e n c e  R es ults

Wit h t h e a b o v e c o n v ersi o n,  w e st at e a n e q ui v al e n c e b et w e e n
N a n d I t hr o u g h N .  R e c all t h at n = e ∈ E c e n a n d
2 c E n := (2 c e n : e ∈ E ). Si mil arl y, l et 2 R S n := (2 R s n : s ∈ S ).

T h e or e m 2: L et N b e a s e c ur e n et w or k- c o di n g i nst a n c e a n d
I b e t h e c orr es p o n di n g s e c ur e i n d e x- c o di n g i nst a n c e. F or a n y

∈ [ 0, 0 .5], η ∈ R +
0 , a n d n ∈ Z + ,  w e h a v e t h e f oll o wi n g:

1) If N is (M S , n , , η )-f e asi bl e, t h e n I is
((M S , K V , 2 c E n ), n , , θ1 )-f e asi bl e  wit h a d et er mi nisti c
i n d e x c o d e f or s o m e K V ∈ (Z + ) ,  w h er e
θ 1 := η

( e ∈ E c e −
|E |
n )

.

2) If I is ((M S , K V , 2 c E n ), n , , η )-f e asi bl e  wit h a d et er-
mi nisti c i n d e x c o d e, t h e n N is (M S , n , (|Z | + 1 ) , θ2 )-
f e asi bl e,  w h er e θ 2 := (|Z | + 1 )[( η

1 − + ) e ∈ E c e +
1
n ( H b ( )

1 − + H b ( ))].
Pr o of: S e e S e cti o n  VIII f or t h e pr o of of P art 1 a n d

S e cti o n I X f or P art 2.
U nli k e t h e i n d e x-t o- n et w or k  m a p, h er e X E a n d X E h a v e dif-

f er e nt distri b uti o ns. I n I, X E ar e t h e s o ur c e  m ess a g es,  w hi c h
ar e  m ut u all y i n d e p e n d e nt; i n N , X E ar e t h e li n k  m ess a g es,
w hi c h ar e f u n cti o ns of t h e s o ur c e  m ess a g es X [k + ] a n d  m a y
b e c orr el at e d.

T h e or e m 2 l e a ds t o t h e f oll o wi n g r at e e q ui v al e n c e.
C or oll ar y 2: L et N b e a s e c ur e n et w or k- c o di n g i nst a n c e

wit h c e ∈ Z + , a n d I b e t h e c orr es p o n di n g s e c ur e i n d e x-
c o di n g i nst a n c e o bt ai n e d usi n g t h e n et w or k-t o-i n d e x c o di n g
m a p.  A r at e t u pl e R S i s a c hi e v a bl e f or N ( wit h c o d e l e n gt hs

i n Z + ) usi n g r a n d o m k e y r at es R
k e y
V iff t h e r at e t u pl e

1

e ∈ E c e
(R S , R

k e y
V , c E ) is a c hi e v a bl e f or I ( wit h c o d e l e n gt hs i n

( e ∈ E c e )Z
+ ).

Pr o of: S u p p os e t h at a r at e t u pl e R S ∈ (R +
0 )|S | i s a c hi e v-

a bl e f or N .  T h e n t h er e e xists a s e q u e n c e of n et w or k c o d es
(2 n R S , n ), n ∈ Z + ,  w h er e e a c h c o d e h as  m ess a g es si z es

2 n R s , f or s ∈ S ,  wit h pr o b a bilit y of d e c o di n g err or → 0
a n d l e a k a g e η → 0 as n → ∞ .

Fr o m  T h e or e m 2, it f oll o ws t h at t h er e e xists a s e q u e n c e

of i n d e x c o d es ([(2 n n
n R s , s ∈ S ), (2 n n

n R
k e y
v , v ∈ V ), (2 n n c e

n ,
e ∈ E )], n ), n = e ∈ E c e n = n e ∈ E c e ∈ ( e ∈ E c e )Z

+ ,
wit h pr o b a bilit y of d e c o di n g err or → 0 a n d l e a k a g e θ 1 ,n → 0

as η → 0 a n d n → ∞ .  H e n c e, t h e r at e 1

e ∈ E c e
(R S , R

k e y
V , c E ) is

a c hi e v a bl e f or I.
T h e ot h er dir e cti o n fr o m I t o N f oll o ws a si mil ar ar g u m e nt.

S u p p os e t h at 1

e ∈ E c e
(R S , R

k e y
V , c E ) is a c hi e v a bl e f or I.  T h e n,

t h er e e xists a s e q u e n c e of i n d e x c o d es ([(2
n ( R s

e ∈ E c e
)

, s ∈ S ),

(2
n (

R
k e y
v

e ∈ E c e
)

, v ∈ V ), (2
n (

c i
e ∈ E c e

)
, i ∈ E )], n ),

n ∈ ( e ∈ E c e )Z
+ ,  wit h pr o b a bilit y of d e c o di n g err or

→ 0 a n d l e a k a g e η → 0 as n → ∞ .
Fr o m  T h e or e m 2, it f oll o ws t h at t h er e e xists a s e q u e n c e of

n et w or k c o d es (2 n R s , n ), n = n

e ∈ E c e
∈ Z + ,  wit h pr o b a bilit y

of d e c o di n g err or (|Z | + 1 ) → 0 a n d l e a k a g e θ 2 → 0, η → 0
a n d n → ∞ .  H e n c e, t h e r at e t u pl e R S i s a c hi e v a bl e f or N .

C.  A n  E x a m pl e

C o nsi d er t h e n et w or k- c o di n g i nst a n c e N d e pi ct e d i n
Fi g ur e 5( a), its a u g m e nt e d v ersi o n N i n Fi g ur e 5( b), a n d t h e
m a p p e d i n d e x- c o di n g i nst a n c e I i n Fi g ur e 5( c).

O n e r a n d o mi z e d z er o- err or z er o-l e a k a g e n et w or k c o d e f or
N is X e 1 = e e 1 (X 1 , Y 1 ) = Y 1 a n d X e 2 = e e 2 (X 1 , Y 1 ) = X 1 + Y 1 ,
w h er e Y 1 ∈ [M 1 ] (t h at is, K 1 = M 1 ).  Wit h o ut usi n g t h e r a n d o m
k e y Y 1 , it is n ot p ossi bl e t o pr ot e ct X 1 fr o m t h e e a v es dr o p p ers.

T his n et w or k c o d e is t h e n tr a nsl at e d t o a d et er mi nis-
ti c n et w or k c o d e f or N wit h t hr e e  m ess a g es {X 1 , X 2 , X 3 },
wit h X 3 = α s et t o b e a c o nst a nt, as f oll o ws:
X e 1

= g e 1
(X 1 , X 2 , X 3 ) = X 2 a n d X e 2

= g e 2
(X 1 , X 2 , X 3 ) =

X 1 + X 2 .  T h e a u g m e nt ati o n fr o m N t o N c h a n g es n eit h er t h e
d e c o d a bilit y of t h e us ers n or t h e l e a k a g e t o t h e e a v es dr o p p ers.

I n t h e i n d e x- c o di n g i nst a n c e I, t w o r e c ei v ers {te 1 , te 2 } c or-
r es p o n d t o t h e li n ks i n N a n d o n e r e c ei v er t2 c orr es p o n ds t o
t h e d esti n ati o n n o d e i n N .  T h e tr a nsl at e d i n d e x c o d e is

X b = e X [ 3]∪ E = X b ,e 1 , X b ,e 2

= X e 1 + g e 1
X [ 3] , X e 2 + g e 2

X [ 3]

= X e 1 + X 2 , X e 2 + X 1 + X 2 .

All r e c ei v ers c a n d e c o d e t h eir r e q uir e d  m ess a g es, a n d e a c h
e a v es dr o p p er g ai ns n o i nf or m ati o n a b o ut X 1 .

I n t h e ot h er dir e cti o n of s e c ur e i n d e x-t o- n et w or k c o d e
tr a nsl ati o n, c o nsi d er t h e f oll o wi n g s e c ur e i n d e x c o d e ( w h er e
X 3 = α is a c o nst a nt):

X b = e X [ 3]∪ E = e 1 X [ 3]∪ E , e 2 X [ 3]∪ E

= X e 1 + β 1 X 1 + β 2 X 2 , X e 2 + γ 1 X 1 + γ 2 X 2 := X b ,1 , X b ,2 ,

f or s o m e n o n- z er o β 2 , γ2 s u c h t h at β 1 / β 2 = γ 1 / γ 2 . T h e
d e c o di n g f u n cti o n of n o d es te 1 , te 2 , t2 ar e r es p e cti v el y

d te 1
(X b , X H te 1

) = d te 1
(X b , X 1 , X 2 ) = X b ,1 − β 1 X 1 − β 2 X 2 ,

d te 2
(X b , X H te 2

) = d te 2
(X b , X 1 , X 2 ) = X b ,2 − γ 1 X 1 − γ 2 X 2 ,

d t2 (X b , X H t2
) = d t2 (X b , X e 1 , X e 2 )
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Fi g. 4. Fr o m a u g m e nt e d s e c ur e n et w or k c o di n g t o s e c ur e i n d e x c o di n g:  N o d e i, e d g e e , a n d e a v es dr o p p er z i n N ar e  m a p p e d t o n o d e ti, n o d e te , a n d
e a v es dr o p p er z r es p e cti v el y i n I.

Fi g. 5.  A s e c ur e n et w or k- c o di n g i nst a n c e N , its a u g m e nt e d v ersi o n N ( wit h a d diti o n al  m ess a g es X 2 a n d X 3 ), a n d t h e c orr es p o n di n g s e c ur e i n d e x- c o di n g
i nst a n c e I.

=
X b ,1 − X e 1

β 2
−

X b ,2 − X e 2

γ 2

β 1

β 2
−

γ 1

γ 2

− 1

.

T h e tr a nsl at e d d et er mi nisti c n et w or k c o d e f or N is

X e 1
= e e 1 X i n (t a i l (e 1 )) , X

O − 1 (t a i l (e 1 ))

= d te 1
0 , X 1 , X 2 = − β 1 X 1 − β 2 X 2 ,

X e 2
= e e 2 X i n (t a i l (e 2 )) , X

O − 1 (t a i l (e 2 ))

= d te 2
0 , X 1 , X 2 = − γ 1 X 1 − γ 2 X 2 .

I n N , t h e d esti n ati o n ( n o d e 2) c a n r e c o v er X 1 b y c h o osi n g
d 2 (X i n (2 ) , X

O − 1 (2 )
) = d t2 (0 , X e 1

, X e 2
).  Als o, e a c h e a v es dr o p-

p er g ai ns n o i nf or m ati o n a b o ut X 1 a s β 2 a n d γ 2 ar e n o n- z er o.
L astl y, b y r e pl a ci n g X 2 wit h Y 1 ,  w e o bt ai n a z er o- err or
z er o-l e a k a g e n et w or k c o d e f or N .

VIII.  P R O O F  O F T H E O R E M 2 – P A R T 1
( T H E F O R W A R D D I R E C T I O N)

We  will n o w pr o v e  T h e or e m 2 f or t h e f or w ar d dir e cti o n: if N
is (M S , n , , η )-f e asi bl e, t h e n I is ((M S , K V , 2 c E n ), n , , θ1 )-
f e asi bl e  wit h a d et er mi nisti c i n d e x c o d e.

A.  C o d e  C o nstr u cti o n

R e c all t h at S = [k ] a n d V = [ ].  Als o r e c all t h at e a c h X e ,
e ∈ E , is c h os e n t o b e i n d e p e n d e ntl y a n d u nif or ml y distri b ut e d
o v er [ M e ] = [ 2 c e n ].

N ot e t h at N is (M S , n , , η )-f e asi bl e iff N is
((M S , K V ), n , , η )–f e asi bl e,  w h er e t h e r a n d o m k e y Y i at
e a c h n o d e i ∈ V i n t h e n et w or k c o d e f or N is r e ali z e d usi n g
a n a d diti o n al i n d e p e n d e nt s o ur c e X k + i at t h e s a m e n o d e N .

A ut h ori z e d li c e n s e d u s e li mit e d t o: N e w J er s e y I n stit ut e of T e c h n ol o g y. D o w nl o a d e d o n A u g u st 2 6, 2 0 2 2 at 2 2: 1 0: 3 2 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y.  
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Fr o m a n et w or k c o d e f or N ,  w e  will us e t h e n o n-s e c ur e
c o d e tr a nsl ati o n [ 4,  Dir e cti o n 1] t o c o nstr u ct a n i n d e x c o d e f or
I,  w h er e t h e s e n d er br o a d c asts X b = (X b ,e : e ∈ E ), c o m prisi n g

X b ,e = X e + g e X [k + ] m o d 2 c e n . ( 1 0)

N ot e t h at e a c h X e , g e ∈ [ 2 c e n ], a n d t h er ef or e
X b ∈ [ e ∈ E 2 c e n ] = [ 2 e ∈ E c e n ] = [ 2n ].

B.  D e c o di n g  Crit eri o n

S e e  A p p e n di x  C f or t h e pr o of of t h e d e c o di n g crit e-
ri o n,  w hi c h is si mil ar t o t h at of t h e n o n-s e c ur e e q ui v a-
l e n c e [ 4, S e c.  V].

C. S e c urit y  Crit eri a

Gi v e n 1
n I(X A z ; X B z ) ≤ η f or N ,  w e n e e d t o s h o w

1
n I(X A z

; X b , X B z
) ≤ η f or I.

We n o w c o nsi d er t h e s e c urit y c o nstr ai nts. F or e a c h z ∈ Z ,

H X A z
|X b , X B z

= H X A z
| X b ,e : e ∈ E , X e : e ∈ B z

= H X A z
| X b ,e : e ∈ B z , X e : e ∈ B z ( 1 1 a)

= H X A z
| X b ,e , X e , g e X [k + ] : e ∈ B z

( 1 1 b)

= H X A z
| X e , g e X [k + ] : e ∈ B z ( 1 1 c)

= H X A z
| g e X [k + ] : e ∈ B z ( 1 1 d)

= H X A z | g e X [k + ] : e ∈ B z ( 1 1 e)

= H X A z
| g e X [k + ] : e ∈ B z ( 1 1f)

= H X A z
|X B z

= H X A z |X B z . ( 1 1 g)

H er e, ( 1 1 a) f oll o ws fr o m t h e  M ar k o v c h ai n X A z
− ({X b ,e :

e ∈ B z }, {X e : e ∈ B z }) − ({X b ,e : e /∈ B z }),  w h er e {X b (e ) :
e /∈ B z } ar e i n d e p e n d e nt of (X A z

, {X b ,e : e ∈ B z }, {X e : e ∈ B z }),
b e c a us e t h e f or m er h as b e e n r a n d o mi z e d b y i n d e p e n d e ntl y
a n d u nif or ml y distri b ut e d {X e : e /∈ B z } ( w hi c h ar e i n d e p e n-
d e nt of (X A z

, X B z
, X [k + ]), s e e ( 1 0)). ( 1 1 b) f oll o ws fr o m ( 1 0).

( 1 1 c) is d eri v e d b e c a us e X b ,e i s a d et er mi nisti c f u n cti o n
of (X e , g e (X [k + ])). ( 1 1 d) f oll o ws fr o m t h e  M ar k o v c h ai n
X A z

− { g e (X [k + ]) : e ∈ B z } − {X e : e ∈ B z }, w hi c h c a n

b e d eri v e d fr o m n oti n g t h at {X e : e ∈ E } ar e i n d e p e n d e nt
of (X A z

, X [k + ]). ( 1 1f) f oll o ws fr o m a c h a n g e of v ari a bl es

(fr o m h att e d t o d as h e d) as (X [k + ], X A z ) a n d (X [k + ], X A z
)

h a v e t h e s a m e distri b uti o n. ( 1 1 g) is o bt ai n e d fr o m n oti n g t h at
{g e (X [k + ]) : e ∈ B z } = X B z

.
N o w, f or N , if I(X A z ; X B z ) ≤ η , t h e n

1

n
I X A z

; X b , X B z
=

1

n
H X A z

− H X A z
|X b , X B z

( 1 2 a)

=
1

n
H X A z

− H X A z |X B z ( 1 2 b)

=
1

n
H X A z − H X A z |X B z ( 1 2 c)

=
1

e ∈ E c e n
I X A z ; X B z ( 1 2 d)

≤
1

n e ∈ E c e − | E |
I X A z ; X B z ( 1 2 e)

<
η

e ∈ E c e − |E |
n

= θ 1 , ( 1 2f)

w h er e ( 1 2 b) f oll o ws fr o m ( 1 1 g), a n d ( 1 2 c) f oll o ws fr o m X [k ]

a n d X [k ] h a vi n g t h e s a m e distri b uti o n.  R e c all t h at c e n ≥ 1,
w hi c h e ns ur es t h at n o n e of t h e li n ks is d e g e n er at e d (t h at is,
c a n n ot c arr y a n y i nf or m ati o n).

C o m bi ni n g t h e d e c o d a bilit y a n d t h e s e c urit y r es ults, t h e
i n d e x c o d e is ((M S , K V , 2 c E n ), n , , θ1 )-f e asi bl e.

I X.  P R O O F  O F T H E O R E M 2 – P A R T 2 ( T H E B A C K W A R D

D I R E C T I O N)

We  will n o w pr o v e  T h e or e m 2 f or t h e b a c k w ar d dir e cti o n:
if I is ((M S , K V , 2 c E n ), n , , η )-f e asi bl e  wit h a d et er mi nisti c
i n d e x c o d e, t h e n N is (M S , n , (|Z | + 1 ) , θ2 )-f e asi bl e.

We o nl y n e e d t o s h o w t h e r es ult fr o m d et er mi nisti c i n d e x
c o d es f or I t o d et er mi nisti c n et w or k c o d es f or N .  T h e c o d e
tr a nsl ati o n fr o m N t o N is str ai g htf or w ar d.  B y s u bstit uti n g
e a c h X [k + i] ∈ [K i], i ∈ [ ],  wit h a r a n d o m k e y Y i ∈ [K i],
w e c o n cl u d e t h at if N is ((M [k ], K [ ]), n , , η )-f e asi bl e usi n g
a d et er mi nisti c c o d e, t h e n N is (M [k ], n , , η )-f e asi bl e usi n g a
r a n d o mi z e d c o d e.  T his is p ossi bl e as X [k + i] ori gi n at es at n o d e i
a n d is n ot r e q uir e d b y a n y n o d e or a n y e a v es dr o p p er.

A.  C o d e  C o nstr u cti o n

We  will st art  wit h t h e n o n-s e c ur e c o d e tr a nsl ati o n [ 4,
Dir e cti o n 2],  w hi c h tr a nsl at es a n y i n d e x c o d e f or I t o a n et w or k
c o d e f or N usi n g a p ar a m et er σ .  T h e tr a nsl at e d n et w or k c o d e
c o nsists of t h e f oll o wi n g:

• A n e n c o di n g f u n cti o n f or e a c h li n k e ∈ E s u c h t h at
e e (x H te

) = d te ( σ, x H te
) ∈ [M e ] = [ 2 c e n ],

• A d e c o di n g f u n cti o n f or e a c h d esti n ati o n i ∈ U s u c h t h at
d i(x i n (i)∪ O − 1 (i) ) = d ti ( σ, x i n (i)∪ O − 1 (i) ) ∈ [M i].  R e c all t h at
U is t h e s et of d esti n ati o n n o d es i n N .

T h e bl o c k l e n gt h of t h e n et w or k c o d e is n .
I n I, σ is t h e br o a d c ast  m ess a g e x b = e (x [k + ]∪ E ),  w hi c h

d e p e n ds o n all m ess a g es x [k + ]∪ E .

B.  A S u m m ar y of  O ur  A p pr o a c h f or t h e  C h oi c e of σ

T his dir e cti o n (t h e b a c k w ar d c o d e tr a nsl ati o n f or t h e s e c ur e
n et w or k-t o-i n d e x c o di n g i nst a n c e  m a p) of t h e e q ui v al e n c e is
t h e  m ost c h all e n gi n g a m o n gst t h e f o ur.  T h e dif fi c ult y h er e is
t o s el e ct a s uit a bl e σ ∈ [ 2n ] f or t h e n et w or k c o d e f or N
t h at s atis fi es b ot h d e c o d a bilit y a n d s e cr e c y. Si n c e σ is us e d
i n all e n c o di n g a n d d e c o di n g f u n cti o ns, a n d y et e a c h n o d e
m a y k n o w a diff er e nt s u bs et of  m ess a g es, σ c a n n ot b e  m a d e
t o d e p e n d o n t h e  m ess a g es i n t h e s a m e  w a y as t h e br o a d c ast
m ess a g e d o es i n t h e i n d e x c o d e.  A s ol uti o n c o ul d b e t o eit h er
(i) c h o os e a fi x e d σ f or t h e n et w or k c o d e, or (ii) r a n d o ml y
c h o os e o n e σ a c c or di n g t o s o m e distri b uti o n —i n d e p e n d e nt of
t h e  m ess a g es — b ut all n o d es  m ust a gr e e o n t his r a n d o m c h oi c e.
O pti o n (ii) is p ossi bl e if all t h e n o d es i n t h e n et w or k o bs er v e
s o m e c o m m o n r a n d o m n ess (f or e x a m pl e, usi n g t h e s a m e r a n-
d o m n u m b er g e n er at or),  w hi c h n e e d n ot b e s e c ur e fr o m t h e
e a v es dr o p p ers.

A ut h ori z e d li c e n s e d u s e li mit e d t o: N e w J er s e y I n stit ut e of T e c h n ol o g y. D o w nl o a d e d o n A u g u st 2 6, 2 0 2 2 at 2 2: 1 0: 3 2 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y.  
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Wit h o ut s e c urit y, a g o o d c a n di d at e σ e xists.  Usi n g t his fi x e d
σ ( w hi c h is i n d e p e n d e nt of t h e  m ess a g e r e ali z ati o n), t h e tr a ns-
l at e d n et w or k c o d e h as a pr o b a bilit y of d e c o di n g err or of at
m ost .  T his p arti c ul ar c h oi c e  w as f o u n d [ 4,  Cl ai m 2] b y c o n-
si d eri n g n et w or k c o d es  wit h t h e p ar a m et er σ r a n d o ml y a n d
u nif or ml y o v er [ 2 n ].

Wit h s e c urit y, f or t h e s p e ci al c as e of p erf e ct d e c o di n g a n d
n o l e a k a g e,  w e est a blis h e d [ 2 4] t h at t h e s a m e σ f o u n d usi n g
t h e a b o v e  m et h o d c a n b e us e d t o tr a nsl at e a n i n d e x c o d e  wit h

= η = 0 t o a n et w or k c o d e  wit h = η = 0.  T his a p pr o a c h
r eli es o n a n o bs er v ati o n t h at if f or  m ess a g e r e ali z ati o ns t h at
c a n b e d e c o d e d c orr e ctl y i n I, n ot o nl y is d e c o di n g c orr e ct i n
N , b ut t h e l e a k a g e is als o pr es er v e d.

F or t h e a b o v e t w o s c e n ari os, o pti o n (i) of fi xi n g σ s uf fi c es.
I n g e n er al,  w h e n d e c o di n g is i n c orr e ct i n I, t h e l e a k a g e i n N
m a y n ot  m at c h t h at i n I.7 C o ns e q u e ntl y, f or a n y fi x e d σ , e v e n
if t h e pr o b a bilit y of d e c o di n g err or i n N is s m all,  w h e n err or
o c c urs, t h e l e a k a g e c a n b e l ar g e.

T o a v oi d t his pr o bl e m,  w e first o bs er v e t h at  w h e n t h e br o a d-
c ast  m ess a g e σ c h a n g es ( as a f u n cti o n of t h e  m ess a g es) f or t h e
i n d e x c o d e, t h e pr o b a bilit y of d e c o di n g err or is b o u n d e d b y
, a n d t h e l e a k a g e, b y η . Si n c e t h e i n d e x c o d e a n d t h e tr a ns-

l at e d n et w or k c o d e b e h a v e si mil arl y  w h e n d e c o di n g is c orr e ct,
w e c o nsi d er i nst a n c es of c orr e ct d e c o di n g i n I a n d l o o k
at t h e pr o b a bilit y distri b uti o n p of t h e br o a d c ast  m ess a g e
c o n diti o n e d o n c orr e ct d e c o di n g.

O ur a p pr o a c h is t o d esi g n a c oll e cti o n of n et w or k c o d es,
w h er e σ f or t h e n et w or k c o d es is r a n d o ml y c h os e n b as e d
o n t his pr o b a bilit y p .  We s h o w t h at, a v er a g e d o v er p ,
N will h a v e t h e d esir e d pr o b a bilit y of d e c o di n g err or a n d
l e a k a g e.  As  m e nti o n e d a b o v e, t his i m pl e m e nt ati o n of s ol u-
ti o n o pti o n (ii) r e q uir es a d diti o n al s h ar e d r a n d o m n ess a m o n g
t h e n o d es.  B uil di n g o n t his s ol uti o n,  w e  will f urt h er s h o w t h e
e xist e n c e of a g o o d c a n di d at e f or σ , t h er e b y lifti n g t h e r e q uir e-
m e nt of a d diti o n al s h ar e d r a n d o m n ess a n d o bt ai ni n g a s ol uti o n
b as e d o n o pti o n (i).

C.  A n I m p ort a nt  Pr o p ert y of t h e  Br o a d c ast  M ess a g e i n I

C e ntr al t o t h e pr o of of t h e c o d e tr a nsl ati o n fr o m I t o N is
t h e f oll o wi n g pr o p ert y of t h e br o a d c ast  m ess a g e i n I:

Pr o p ositi o n 1: Fi x a n y br o a d c ast  m ess a g e x b ∈ [ 2n ] a n d
a n y r e ali z ati o n x [k + ]. If all r e c ei v ers T c a n d e c o d e t h eir
r e q u est e d  m ess a g es c orr e ctl y, t h e n t h er e c a n b e at  m ost o n e
r e ali z ati o n x E f or  w hi c h e (x [k + ], x E ) = x b .

Pr o p ositi o n 1  w as pr o v e n f or a sli g htl y diff er e nt n et w or k-t o-
i n d e x c o di n g  m a p [ 4],  w hi c h i n cl u d es a n a d diti o n al r e c ei v er tall
i n I,  w h er e H tall = [k + ] a n d W tall = E .  We  will s h o w t h at
t h e pr o p ositi o n r e m ai ns tr u e e v e n  wit h o ut tall , b y t a ki n g i nt o
a c c o u nt t h e f a ct t h at gr a p h G ( w hi c h  w as d e fi n e d f or N fr o m
w hi c h I h as b e e n  m a p p e d) is a c y cli c.

7 Ta k e Fi g ur e 5 f or e x a m pl e. If t h e d e c o di n g i n I is c orr e ct, n o d e te 2 o ut p uts
t h e s a m e  m ess a g e as t h e si d e i nf or m ati o n of e a v es dr o p p er z 2 .  T his  m at c h es
N w h er e e a v es dr o p p er z 2 o bs er v es li n k e 2 .  H o w e v er,  w h e n d e c o di n g i n I is
wr o n g at te 2 , t h e o ut p ut of te 2 a n d t h e si d e i nf or m ati o n of z 2 ar e diff er e nt. S o,
e v e n if t h e l e a k a g e i n I is s m all i n f or t his  m ess a g e r e ali z ati o n, t h e l e a k a g e
i n N m a y b e l ar g e, b e c a us e t h e o bs er v ati o n of z 2 i n N d o es n ot  m at c h t h e
si d e i nf or m ati o n of z 2 i n I.

Fi g. 6.  A t a bl e s h o wi n g t h e v al u e of e (x [k + ]∪ E ) ∈ [ 2n ] f or e a c h  m ess a g e
r e ali z ati o n (x [k + ] , x E ). S h a d e d c ells i n di c at e  m ess a g e r e ali z ati o ns t h at r es ult
i n c orr e ct d e c o di n g f or all r e c ei v ers i n I.

P r o of: Fi x a n y x [k + ] a n d x b .  T h e d e c o di n g f u n cti o n of
e a c h r e c ei v er te , e ∈ E , is d te (x b , x i n (t a i l (e ))∪ O − 1 (t a i l (e )) ),
w h er e i n (t a i l (e )) E ar e i n t h e u pstr e a m of e , a n d
O − 1 (t a i l (e )) ⊆ [k + ].

Si n c e t h e d e c o di n g f or all r e c ei v ers ar e c orr e ct, f or e a c h
e ∈ E , te r e c o v ers x e b y usi n g t h e f u n cti o n d te . A s G is a c y cli c,
b y c o nsi d eri n g d e c o di n g f u n cti o ns d te st arti n g fr o m r o ot n o d es,
t h at is, li n ks e w h er e i n (t a i l (e )) = ∅ , a n d tr a v ersi n g t h e
li n ks i n t h e dir e cti o ns of t h e li n ks, all li n k  m ess a g es x E ar e
c o m pl et el y d et er mi n e d b y x [k + ] a n d x b .

S u p p os e i n I t h at a  m ess a g e r e ali z ati o n x [k + ]∪ E r e s ults
i n c orr e ct d e c o di n g. Fr o m t h e pr o of of Pr o p ositi o n 1,  w e
k n o w t h at gi v e n x [k + ] a n d e (x [k + ]∪ E ), a s e q u e n c e of r e c ei v er
d e c o di n g f u n cti o ns c a n c oll e cti v el y r e c o v er x E . S o, usi n g
t h e a b o v e n et w or k- c o d e tr a nsl ati o n,  w e h a v e t h e f oll o wi n g
o bs er v ati o n:

O bs er v ati o n 1: S u p p os e t h at x [k + ]∪ E r e s ults i n c orr e ct
d e c o di n g i n I.  We us e t h e tr a nsl at e d n et w or k c o d e i n N . F or
t h e  m ess a g e r e ali z ati o n x [k + ] = x [k + ] i n N , if σ = e (x [k + ]∪ E )
h a d b e e n c h os e n f or t h e n et w or k c o d e, t h e n e a c h li n k e ∈ E
will s e n d x e = x e ( si n c e its e n c o di n g f u n cti o n is d eri v e d fr o m
t h e d e c o di n g f u n cti o n i n I), a n d t h e d e c o di n g of all r e c ei v ers
i n N will b e c orr e ct (si n c e d e c o di n g i n I is all c orr e ct).

D.  C h o osi n g a  Distri b uti o n f or σ

R e c all t h at e a c h n et w or k c o d e is s p e ci fi e d b y t h e c h oi c e of
σ .  We first r a n d o ml y s el e ct σ , i n d e p e n d e nt of t h e  m ess a g es,
a c c or di n g t o s o m e pr o b a bilit y  m ass f u n cti o n p .

R e m ar k 6: T his a p pr o a c h r e q uir es all n o d es V t o k n o w t h e
s el e ct e d σ .  T his c a n b e i m pl e m e nt e d b y a r a n d o m p u bli c k e y,
w hi c h t h e e a v es dr o p p ers  m a y als o a c c ess.  H o w e v er, t h e us e of
a r a n d o mi z e d σ is o nl y a n i nt er m e di at e st e p f or us t o pr o v e t h e
e xist e n c e of a g o o d c a n di d at e.  T h e fi n al r es ult  will b e b as e d
o n a p arti c ul ar pr e- c h os e n σ .

T o si m plif y n ot ati o n, l et
• m := k +

1 M i d e n ot e t h e t ot al n u m b er of  m ess a g e
r e ali z ati o ns of X [k + ].

• d := 2 n = 2 e ∈ E c e n d e n ot e t h e t ot al n u m b er of  m ess a g e
r e ali z ati o ns of X E .

R e c all t h at e (x [k + ]∪ E ) ∈ [ 2n ].  T h e t a bl e i n Fi g ur e 6 s h o ws
t h e br o a d c ast  m ess a g e e (x [k + ]∪ E ) f or e a c h  m ess a g e r e ali z a-
ti o n (x [k + ], x E ).  T h e t a bl e is c o nstr u ct e d as f oll o ws.  E a c h
m ess a g e r e ali z ati o n i n I is s plit i nt o t w o p arts: x [k + ] d et er-
mi n es t h e c ol u m n, a n d x E , t h e r o w.  E a c h  m ess a g e r e ali z ati o n

A ut h ori z e d li c e n s e d u s e li mit e d t o: N e w J er s e y I n stit ut e of T e c h n ol o g y. D o w nl o a d e d o n A u g u st 2 6, 2 0 2 2 at 2 2: 1 0: 3 2 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y.  
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(x [k + ], x E ) t h e n p oi nts t o t h e c ell i n a s p e ci fi c c ol u m n a n d a
s p e ci fi c r o w.  T h e v al u e of e (x [k + ]∪ E ) i s pl a c e d i nt o t h at c ell.
Aft er t h at, e a c h c ell t h at c orr es p o n ds t o a  m ess a g e r e ali z a-
ti o n (x [k + ], x E ) t h at r es ults i n c orr e ct d e c o di n g i n I is s h a d e d.
N ot e t h at, d u e t o Pr o p ositi o n 1, t h e v al u es of e (x [k + ]∪ E ) i n
all s h a d e d c ells i n a n y c ol u m n  m ust b e disti n ct.

L et N σ b e t h e n u m b er of r e ali z ati o ns x [k + ]∪ E t h at r es ults
i n c orr e ct d e c o di n g f or all r e c ei v ers a n d e (x [k + ]∪ E ) = σ . I n
Fi g ur e 6, N σ i s t h e t ot al n u m b er of s h a d e d c ells l a b el e d as σ .
D e fi n e ¯ as t h e fr a cti o n of u ns h a d e d c ells.  As t h e  m ess a g es
ar e u nif or ml y distri b ut e d, ¯ is als o t h e pr o b a bilit y of d e c o di n g
err or P e i n I. It is e as y t o s e e t h e f oll o wi n g:

σ ∈ [d ]

N σ = (1 − ¯ )m d , ( 1 3)

σ ∈ [d ]

1

d

N σ

m
= 1 − ¯ . ( 1 4)

D e fi n e a n e w r a n d o m v ari a bl e C ∈ { 0 , 1 } i n I,  w h er e C = 1
if d e c o di n g is c orr e ct, a n d C = 0 ot h er wis e.  N o w, c o nsi d er a
tr a nsl at e d n et w or k c o d e,  w h er e σ is t h e r e ali z ati o n of a r a n d o m
v ari a bl e w h os e distri b uti o n is gi v e n b y

p (σ ) =
N σ

(1 − ¯ )m d
= p X b |C (σ |1 ), ( 1 5)

w h er e t h e s e c o n d e q u alit y is o bt ai n e d b y o bs er vi n g t h at t h e
m ess a g es i n I ar e u nif or ml y distri b ut e d.

E.  D e c o d a bilit y  Crit eri o n  Usi n g  R a n d o ml y  C h os e n σ

L et P e , σ b e t h e pr o b a bilit y of d e c o di n g err or i n N w h e n
σ is c h os e n f or t h e n et w or k c o d e. Fr o m  O bs er v ati o n 1, if
σ is c h os e n, f or a n y  m ess a g e r e ali z ati o n x [k + ] s u c h t h at t h e
c ol u m n x [k + ] = x [k + ] i n Fi g ur e 6 c o nt ai ns σ i n a s h a d e d
c ell, d e c o di n g i n N is c orr e ct. Fr o m Pr o p ositi o n 1, e a c h σ
c a n a p p e ar at  m ost o n c e o v er t h e s h a d e d c ells i n e a c h c ol u m n.
S o, t h e pr o b a bilit y of c orr e ct d e c o di n g i n N is

1 − P e , σ ≥
N σ

m
. ( 1 6)

A v er a g e d o v er σ , t h e pr o b a bilit y of c orr e ct d e c o di n g i n N is

1 − P e =
σ ∈ [d ]

p (σ ) 1 − P e , σ ( 1 7 a)

≥
σ ∈ [d ]

N σ

(1 − ¯ )m d

N σ

m
=

1

1 − ¯
σ ∈ [d ]

1

d

N σ

m

2

( 1 7 b)

( a)
≥

1

1 − ¯

⎛

⎝

σ ∈ [d ]

1

d

N σ

m

⎞

⎠

2

( b)
= 1 − ¯

( c)
≥ 1 − , ( 1 7 c)

w h er e ( a) is o bt ai n e d usi n g J e a ns’s i n e q u alit y; ( b) f oll o ws
fr o m ( 1 4); ( c) f oll o ws fr o m t h e f a ct t h at t h e pr o b a bilit y of
d e c o di n g err or i n I is P e = ¯ ≤ .

T h us, t h e r a n d o mi z e d tr a nsl at e d n et w or k c o d e h as a pr o b a-
bilit y of d e c o di n g err or P e ≤ .

F. S e c urit y  Crit eri a  Usi n g  R a n d o ml y  C h os e n σ

Fr o m t h e i d e ntit y I(P ; Q |X ) + I(P ; R |Q , X ) = I(P ; R |X ) +
I(P ; Q |R , X ),  w e g et

I(P ; Q |X ) = I(P ; Q |R , X ) + I(P ; R |X ) − I(P ; R |Q , X ) ( 1 8)

≥ I(P ; Q |R , X ) − I(P ; R |Q , X ) ≥ I(P ; Q |R , X ) − H (R ).( 1 9)

Si mil arl y,

I(P ; Q |R , X ) ≥ I(P ; Q |X ) − H (R ). ( 2 0)

C o nsi d er e a v es dr o p p er z ∈ Z . L et B := B z = B z a n d
A := A z = A z ,  w h er e  w e dr o p t h e s u bs cri pts t o e as e n ot a-
ti o n. St arti n g  wit h a n i n d e x c o d e t h at h as a l e a k a g e of at
m ost η ,

n η ≥ I X A ; X b , X B ≥ I X A ; X B |X b

≥ I X A ; X B |X b , C − H C ≥ I X A ; X B |X b , C − H b ( )

=
σ

p X b ,C (σ, 1 )I X A ; X B |X b = σ, C = 1

+
σ

p X b ,C (σ, 0 )I X A ; X B |X b = σ, C = 0 − H b ( ).

( 2 1)

T o  m a p t h e a b o v e t o N ,  w e d e fi n e C ∈ { 0 , 1 } as a r a n d o m
v ari a bl e f or N as f oll o ws. F or a s p e ci fi c c h os e n σ a n d  m es-
s a g e r e ali z ati o n x [k + ], C = 1 iff σ a p p e ars i n a s h a d e d c ell
i n t h e c ol u m n x [k + ] = x [k + ] i n Fi g ur e 6. C = 1 i m pli es t h at
t h e d e c o di n g i n N is c orr e ct ( b ut t h e c o n v ers e is n ot al w a ys
tr u e).  N oti n g t h at N σ / m is t h e fr a cti o n of  m ess a g e r e ali z a-
ti o ns  w h os e c ol u m n c o nt ai ns σ i n a s h a d e d c ell i n Fi g ur e 6,
w e h a v e

p C (1 ) =
σ

p (σ )N σ / m ≥ 1 − ¯ = p C (1 ) ≥ 1 − , ( 2 2)

w h er e ( 2 2) f oll o ws fr o m ( 1 7 a) –( 1 7 c).  T his  m e a ns

p C (1 )

1 −
≥ 1 ≥ P C (1 ) ⇒ p C (1 ) ≥ (1 − )p C (1 ). ( 2 3)

Fr o m Pr o p ositi o n 1, if a  m ess a g e r e ali z ati o n (x [k + ], x E )
r es ults i n c orr e ct d e c o di n g i n I (t h at is, it  m a ps t o a
s h a d e d c ell i n Fi g ur e 6), t h e n x E = φ σ (x [k + ]) f or s o m e
d et er mi nisti c f u n cti o n φ σ ,  w h er e σ = e (x [k + ], x E ). N o w,
s u p p os e t h at σ = e (x [k + ], x E ) is c h os e n f or t h e n et w or k
c o d e. Fr o m  O bs er v ati o n 1, if x [k + ] = x [k + ] i s tr a ns mit-
t e d, t h e n x E = φ σ (x [k + ]).  T h e n, f or a n y (a , σ ) s u c h t h at
p X [k + ] ,X b ,C (a , σ, 1 ) > 0, a n d a n y b , w e h a v e

p X E |X [k + ] , ,C (b |a , σ, 1 ) = p X E |X [k + ] ,X b ,C (b |a , σ, 1 ). ( 2 4)

As t h e  m ess a g es X [k + ] i n I a n d X [k + ] i n N ar e u nif or ml y
distri b ut e d,  w e s e e fr o m Fi g ur e 6 t h at f or a n y σ wit h N σ > 0,

p X [k + ] | ,C (a |σ, 1 ) = p X [k + ] |X b ,C (a |σ, 1 )

=
1 / N σ , if a s h a d e d c ell i n c ol u m n a c o nt ai ns σ ,
0 , ot h er wis e .

T h us, f or a n y σ wit h N σ > 0, a , a n d b ,  w e g et t h e f oll o wi n g:

p X [k + ] ,X E | ,C (a , b |σ, 1 ) = p X [k + ] ,X E |X b ,C (a , b |σ, 1 ), ( 2 5)

w hi c h t h e n n e c essit at es t h at

I X A ; X B |X b = σ, C = 1 = I(X A ; X B | = σ, C = 1 ). ( 2 6)

S u bstit uti n g ( 2 6) i nt o ( 2 1),  w e g et

n η + H b ( ) ≥
σ

p X b ,C (σ, 1 )I(X A ; X B | = σ, C = 1 )

= p C (1 )
σ

p X b |C ( σ |1 )I(X A ; X B | = σ, C = 1 )

= p C (1 )I(X A ; X B | , C = 1 ) ( 2 7 a)

A ut h ori z e d li c e n s e d u s e li mit e d t o: N e w J er s e y I n stit ut e of T e c h n ol o g y. D o w nl o a d e d o n A u g u st 2 6, 2 0 2 2 at 2 2: 1 0: 3 2 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y.  
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≥ (1 − )p C (1 )I(X A ; X B | , C = 1 ), ( 2 7 b)

w h er e ( 2 7 a) is o bt ai n e d n oti n g ( 1 5); ( 2 7 b) f oll o ws fr o m ( 2 3).
We ar e n o w r e a d y t o b o u n d t h e l e a k a g e i n N ,  w h er e is

k n o w n t o all n o d es. First,  w e h a v e

I(X A ; X B , ) = I(X A ; X B | ) ( 2 8 a)

≤ I(X A ; X B | , C ) + H (C ) ( 2 8 b)

= p C (1 )I(X A ; X B | , C = 1 ) + p C (0 )I(X A ; X B | , C = 0 )

+ H (C ) ( 2 8 c)

≤ p C (1 )I(X A ; X B | , C = 1 ) + n
e ∈ E

c e + H b ( ) ( 2 8 d)

≤
n η + H b ( )

1 −
+ n

e ∈ E

c e + H b ( ), ( 2 8 e)

w h er e ( 2 8 a) f oll o ws si n c e is c h os e n i n d e p e n d e nt of
t h e  m ess a g es; ( 2 8 b) f oll o ws fr o m ( 2 0); ( 2 8 d) f oll o ws fr o m
p C (0 ) ≤ , I(X A ; X B | , C = 0 ) ≤ H (X B ) ≤ H (X E ) =

e ∈ E l o g2 M e ≤ n e ∈ E c e , a n d H (C ) ≤ H b ( ); ( 2 8 e) f oll o ws
fr o m ( 2 7 b).

T h us, t h e r a n d o mi z e d tr a nsl at e d n et w or k c o d e h as a l e a k a g e
of

1

n
I(X A ; X B | ) <

1

n

n η + H b ( )

1 −
+ H b ( ) +

e ∈ E

c e ( 2 9 a)

≤
η

1 −
+

e ∈ E

c e +
1

n

H b ( )

1 −
+ H b ( ) := θ , ( 2 9 b)

w h er e n = e ∈ E c e n ≤ n e ∈ E c e , a n d n ≥ 1.

G.  E xist e n c e of a  C a n di d at e σ f or  D e c o d a bilit y a n d S e c urit y

A v er a g e d o v er all r e ali z ati o ns of , i n e q u aliti es ( 1 7 c)
a n d ( 2 9 b) gi v e

σ ∈ [d ]

p (σ )P e , σ ≤ ,

σ ∈ [d ]

p (σ )
1

n
I X A z ; X B z | = σ ≤ θ , f or e a c h z ∈ Z .

I n v o ki n g  M ar k o v’s i n e q u alit y gi v es t h e f oll o wi n g f or s o m e
λ > 0:

Pr

⎧
⎪⎨

⎪⎩
P e , σ ≥ (|Z | + 1 + λ )

:= V 0 (λ )

⎫
⎪⎬

⎪⎭
≤

1

|Z | + 1 + λ
,

Pr

⎧
⎪⎪⎨

⎪⎪⎩

1

n
I X A z ; X B z | = σ ≥ (|Z | + 1 + λ )θ

:= V z (λ )

⎫
⎪⎪⎬

⎪⎪⎭

≤
1

|Z | + 1 + λ
,

f or e a c h z ∈ Z .
Usi n g t h e u ni o n b o u n d,  w e g et

Pr

⎧
⎨

⎩
z∈ Z ∪ {0 }

V z (λ )

⎫
⎬

⎭
≤

|Z | + 1

|Z | + 1 + λ
, ( 3 0)

or e q ui v al e ntl y,

Pr

⎡

⎣

z∈ Z ∪ {0 }

V c
z (λ )

⎤

⎦ ≥ 1 −
|Z | + 1

|Z | + 1 + λ
> 0 . ( 3 1)

T h e al p h a b et of is [d ],  w hi c h is fi nit e.  A n d f or e a c h
λ > 0, t h er e e xists σ s u c h t h at z∈ Z ∪{ 0 } V z ( λ)c h ol ds.
C o ns e q u e ntl y, t h er e  m ust e xist σ f or  w hi c h z∈ Z ∪{ 0 } V z (0 )c

h ol ds, t h at is, t h er e e xists a n et w or k c o d e ( usi n g o n e p arti c ul ar
σ ) f or w hi c h

P e < (|Z | + 1 ) , ( 3 2)

1

n
I X A z ; X B z < (|Z | + 1 )θ = θ 2 , ( 3 3)

f or all z ∈ Z .  T his pr o v es P art 2 of  T h e or e m 2.

X.  C O N C L U S I O N

We h a v e est a blis h e d a n e q ui v al e n c e b et w e e n s e c ur e n et w or k
c o di n g a n d s e c ur e i n d e x c o di n g.  T h e e q ui v al e n c e i n cl u d es
m a p pi n g n o d es fr o m o n e i nst a n c e t o t h e ot h er, as  w ell as
tr a nsl ati n g c o d es of t h e s a m e r at e b et w e e n t h es e i nst a n c es.

W hil e t h e e q ui v al e n c e h as b e e n est a blis h e d f or n et w or ks
wit h err or-fr e e li n ks,  w h et h er a si mil ar e q ui v al e n c e h ol ds f or
n et w or ks  wit h n ois y c h a n n els is y et t o b e d et er mi n e d — e v e n
f or t h e n o n-s e c ur e s etti n g.

Als o, o nl y a s p e ci fi c n oti o n of s e c urit y h as b e e n i n v esti g at e d
i n t his arti cl e,  w h er e e a c h e a v es dr o p p er  m ust n ot g ai n a n y
i nf or m ati o n a b o ut a s et of  m ess a g es. P ossi bl e f ut ur e r es e ar c h
i n t his dir e cti o n i n cl u d es ot h er s e c urit y  m e as ur es li k e c o v ert
c o m m u ni c ati o ns a n d d at a pri v a c y.

A P P E N D I X A
P R O O F  O F  T H E D E C O D I N G C R I T E R I O N  F O R  T H E F O R W A R D

D I R E C T I O N  O F T H E O R E M 1

N ot e t h at i n t h e n et w or k- c o di n g i nst a n c e N , o nl y r e c ei v ers
{ti : i ∈ [ ]} n e e d t o d e c o d e  m ess a g es, a n d e a c h ti
r e c ei v es X i n (ti) = (X H i

, X 2 → ti ) o v er its i n c o mi n g li n ks,  w h er e
X 2 → ti = X 1 → 2 = e (X S , Y 1 ).  T h es e ar e t h e s a m e f u n cti o ns t h at
e a c h r e c ei v er i ∈ T r e c ei v es i n t h e i n d e x- c o di n g i nst a n c e I.
Usi n g t h e s a m e d e c o di n g f u n cti o ns f or r e c ei v ers {ti : i ∈ T }
i n N , if P e ≤ f or I, w e als o m ust h a v e P e ≤ f or N .

A P P E N D I X B
P R O O F  O F  T H E D E C O D I N G C R I T E R I O N  F O R  T H E

B A C K W A R D D I R E C T I O N  O F T H E O R E M 1

I n N , r e c ei v er ti, f or e a c h i ∈ [ ], tri es t o d e c o d e X W i
u si n g

t h e d e c o di n g f u n cti o n d ti (X i n (ti) ) = d ti (X 2 → ti , (X s j→ ti : j∈ H i)),
w h er e

• X 2 → ti = X 1 → 2 = e 1 → 2 ((e s j→ 1 (X j) : j ∈ [k ]), Y 1 ),
• X s j→ ti = e s j→ ti (X j) f or j ∈ H i.

T h e pr e mis e st at es t h at P e ≤ f or N .
I n I, a c c or di n g t o t h e c o d e tr a nsl ati o n, r e c ei v er i, f or e a c h

i ∈ [ ], tri es t o d e c o d e X W i
u si n g d i(X b , X H i

),  w h er e
• X b = e 1 → 2 ((e s j→ 1 (X j) : j ∈ [k ]), Y ),
• X H i

= (e s j→ ti (X j) : j ∈ H i)
Si n c e t h e d e c o di n g f u n cti o ns i n I e x a ctl y  m at c h t h os e i n N ,
a n d si n c e (X [k ], Y ), a n d (X [k ], Y 1 ) h a v e t h e s a m e distri b uti o n,
w e  m ust h a v e P e ≤ f or I.

A ut h ori z e d li c e n s e d u s e li mit e d t o: N e w J er s e y I n stit ut e of T e c h n ol o g y. D o w nl o a d e d o n A u g u st 2 6, 2 0 2 2 at 2 2: 1 0: 3 2 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y.  
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A P P E N D I X C
P R O O F  O F  T H E D E C O D I N G C R I T E R I O N  F O R  T H E F O R W A R D

D I R E C T I O N  O F T H E O R E M 2

I n N , b y d e fi niti o n,  wit h pr o b a bilit y of at l e ast (1 − )
( o v er t h e  m ess a g e r e ali z ati o ns x S ), e v er y v ert e x v ∈ U c a n
d e c o d e all  m ess a g es t h at it r e q uir es fr o m t h e  m ess a g e o n all
i n c o mi n g li n ks a n d  m ess a g es ori gi n ati n g at v .  R e c all t h at o nl y
m ess a g es X [k ] of all  m ess a g es X [k + ] i n N n e e d t o b e d e c o d e d.
S u p p os e t h at, e v er y n o d e v ∈ U c a n d e c o d e its r e q uir e d
m ess a g es c orr e ctl y  wit h pr o b a bilit y of at l e ast (1 − v ), t h at is,

Pr X
D − 1 (v )

= d v X i n (v ) , X
O − 1 (v )

≥ 1 − v , ( 3 4)

or e q ui v al e ntl y,

Pr X
D − 1 (v )

= d v g e X [k + ] e ∈ i n (v )
, X

O − 1 (v )
≥ 1 − v .

( 3 5)

F or I,  w e first c o nsi d er r e c ei v ers t̂i ∈ T w h er e i ∈ U .  W hil e
s o ur c e  m ess a g es X

O − 1 (v )
i n N a n d X̂ O − 1 (v ) i n I h a v e t h e

s a m e distri b uti o n, li n k  m ess a g es X i n (v ) i n N a n d X̂ i n (v ) i n

I m a y n ot. S o, alt h o u g h n o d e t̂i ∈ T̂ i n I h as si d e i nf or m ati o n
( X̂ i n (i) , X̂

O − 1 (i)
), usi n g ( 3 4) i n I will n ot  w or k, as t h e p mf of

X [k + ]∪ E i s diff er e nt fr o m t h at of X̂ [k + ]∪ E .
T o d e al  wit h t his iss u e,  w e us e ( 3 5),  w hi c h r e q uir es

[g e ( X̂ [k + ])]e ∈ i n (i) i n st e a d.  T his  will  w or k b e c a us e
(X [k + ], [g e (X [k + ])]e ∈ E ) h as t h e s a m e distri b uti o n as

( X̂ [k + ], [g e ( X̂ [k + ])]e ∈ E ).
I n I, H t̂i = i n (i) ∪ O − 1 (i).  R e c ei v er t̂i k n o ws X̂ O − 1 (i) a n d

c al c ul at es [ g e ( X̂ [k + ])]e ∈ i n (i) fr o m t h e br o a d c ast  m ess a g e X̂ b

a n d si d e i nf or m ati o n X̂ i n (i) u si n g ( 1 0). S o, usi n g ( 3 5)  wit h a
c h a n g e of v ari a bl es (fr o m n o n- h att e d t o h att e d),  w e h a v e

Pr X̂ W t̂i
= d i g e X̂ [k + ]

e ∈ i n (i))
, X̂ O − 1 (i)

= Pr X̂ D − 1 (i) = d i g e X̂ [k + ]
e ∈ i n (i))

, X̂ O − 1 (i)

≥ 1 − i.

T his  m e a ns e a c h r e c ei v er t̂i ∈ T , i ∈ U , c a n c orr e ctl y d e c o d e
its r e q uir e d  m ess a g es  wit h pr o b a bilit y of at l e ast (1 − i).

N o w,  w e c o nsi d er r e c ei v ers t̂e ∈ T w h er e e ∈ E .  R e c all
t h at H t̂e = i n (t a i l (e )) ∪ O − 1 (t a i l (e )), a n d W t̂e = { e }.
R e c ei v er t̂e p erf or ms t h e f oll o wi n g st e ps:

1)  K n o wi n g { X̂ d : d ∈ i n (t a i l (e ))}, it o bt ai ns
{g d ( X̂ [k + ]) : d ∈ i n (t a i l (e ))} fr o m ( 1 0).

2)  K n o wi n g X̂ O − 1 (t a i l (e )) a s si d e i nf or m ati o n, it

c al c ul at es g e ( X̂ [k + ]) = e e ([g d ( X̂ [k + ]) : d ∈

i n (t a i l (e ))], X̂ O − 1 (t a i l (e )) ).

3)  Wit h g e ( X̂ [k + ]) a n d t h e br o a d c ast  m ess a g e X̂ b ,e , it
o bt ai ns t h e r e q uir e d X̂ e u si n g ( 1 0).

S o, e v er y r e c ei v er t̂e ∈ T , e ∈ E ,  m ust b e a bl e t o c orr e ctl y
d e c o d e t h e r e q uir e d X̂ e wit h o ut err or.

C o m bi ni n g t h es e t w o cl ass es of r e c ei v ers,  w e h a v e s h o w n
t h at all r e c ei v ers i n I c a n c orr e ctl y d e c o d e t h eir r e q uir e d
m ess a g es  wit h pr o b a bilit y of at l e ast (1 − ).
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“ O n t h e c a p a cit y r e gi o n f or i n d e x c o di n g,” i n Pr o c. I E E E I nt. S y m p. I nf.
T h e or y (I SI T) , Ist a n b ul,  T ur k e y, J ul. 2 0 1 3, p p. 9 6 2 – 9 6 6.

[ 2 3]  K. S h a n m u g a m,  A.  G.  Di m a kis, a n d  M.  L a n g b er g, “ L o c al gr a p h c ol ori n g
a n d i n d e x c o di n g,” i n Pr o c. I E E E I nt. S y m p. I nf. T h e or y (I SI T) , Ist a n b ul,
T ur k e y, J ul. 2 0 1 3, p p. 1 1 5 2 – 1 1 5 6.

[ 2 4]  L.  O n g,  B.  N.  Vell a m bi, J.  Kli e w er, a n d P.  L.  Ye o h, “ A n e q ui v al e n c e
b et w e e n s e c ur e n et w or k a n d i n d e x c o di n g,” i n Pr o c. I E E E  Gl o b e c o m
N et C o d ,  Was hi n gt o n,  D C,  U S A,  D e c. 2 0 1 6, p p. 1 – 6.

A ut h ori z e d li c e n s e d u s e li mit e d t o: N e w J er s e y I n stit ut e of T e c h n ol o g y. D o w nl o a d e d o n A u g u st 2 6, 2 0 2 2 at 2 2: 1 0: 3 2 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y.  


