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Abstract—Two main privacy models for sanitising datasets
are differential privacy (DP) and syntactic privacy. The former
restricts individual values’ impact on the output based on the
dataset while the latter restructures the dataset before publication
to link any record to multiple sensitive data values. Besides
both providing mechanisms to sanitise data, these models are
often applied independently of each other and very little is
known regarding how they relate. Knowing how privacy models
are related can help us develop a deeper understanding of
privacy and can inform how a single privacy mechanism can
fulfil multiple privacy models. In this paper, we introduce a
framework that determines if the privacy mechanisms of one
privacy model can also guarantee privacy for another privacy
model. We apply our framework to understand the relationship
between DP and a form of syntactic privacy called f-closeness.
We demonstrate, for the first time, how DP and 7-closeness can be
interpreted in terms of each other by introducing generalisations
and extensions of both models to explain the transition from
one model to the other. Finally, we show how applying one
mechanism to guarantee multiple privacy models increases data
utility compared to applying separate mechanisms for each
privacy model.

Index Terms— Privacy, differential privacy, t-closeness, syntac-
tic privacy.

I. INTRODUCTION

ATASETS containing sensitive information are often

modified before publishing to avoid breaching user pri-
vacy. These modifications, called sanifation, should allow a
viewer of the published data to learn general trends and
correlations in the data without being able to learn the
exact attribute values of any individual record. Depending
on how privacy is defined, one or more privacy mechanisms
must therefore be applied to the dataset to sanitise it before
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publishing. Publishing a sanitised dataset is referred to as
privacy-preserving data publishing [1] and is a non-interactive
privacy approach. Privacy-preserving data mining [1], on the
other hand, presents an interactive privacy approach to pub-
lishing a dataset, where users are only allowed to see parts of
the information available in the dataset. In this latter approach,
users can query the dataset but the response is sanitised before
being sent back to the user.

Two common but semantically very different privacy models
are differential privacy (DP) and f-closeness. DP [2] was
introduced as a privacy-preserving data mining approach to
prevent disclosure of individuals’ confidential data or their
presence in a dataset by limiting their impact on query
results. Alternatively, f-closeness [3] was designed for the
privacy-preserving data publishing approach and limits the
information revealed about individuals’ confidential attributes.
It achieves this by restricting how far the confidential attributes
bound to any individual can deviate in comparison to the
overall distribution of these attributes in the dataset.

Despite initially being developed for a specific privacy
model, a privacy mechanism may additionally protect a dataset
under a different privacy model. Only a very limited amount
of research has been conducted in this area, but initial findings
reveal that there are some links between the models DP
and syntactic privacy, a class of privacy models to which #-
closeness belongs [4], [5]. Developing a better understanding
of the link between these two privacy models can assist data
publishers in selecting an appropriate level of privacy. It may
also increase the utility (usefulness) of the sanitised data when
multiple privacy levels under different models is required,
by applying fewer privacy mechanisms.

This paper presents both previous and new findings on
the links between the privacy models DP and f-closeness.
We introduce a new framework to compare them through
privacy implications which indicate if mechanisms for one can
be used to guarantee the other. Using our privacy implication
map, we extend and generalise the links between DP and
t-closeness. Specifically, we

« propose a new privacy definition (k,t)-closeness,
an extension of r-closeness;
« formally define (k, €)-DP, an extension of e-DP.

Here, t and e are privacy levels, and k the number of records
grouped within the dataset. These extensions provide crucial
links between the models, and which collectively contribute to
a more complete mapping of privacy implications. We show
how our framework can be used to increase data utility and
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Fig. 1. Our privacy implication map showing how f-closeness and DP relate. The definitions (k, €)-DP, (k, t)-closeness, and multiplicative f-closeness with

k-anonymity are displayed for different values of the group size parameter k, where N is the number of records in a dataset. Dashed lines represent findings

by Domingo-Ferrer and Soria-Comas [5].

provide a numerical example with randomised response-based
mechanisms [6] for both DP and f-closeness.

Our results are summarised in Figure 1 together with pre-
vious results by Domingo-Ferrer and Soria-Comas [5] which
fits into our framework.

Figure 1 expands all definitions for different group size
values k and shows privacy implications both between different
privacy definitions and within the same privacy definition.
Additional implications can be inferred by tracing a directed
path from a node to another through intermediate nodes.
A missing path between two privacy definitions entails that
no privacy implication exists or has yet to be found between
them.

We discuss related work in Section II and explain the
notation used in this paper, present our problem formulation
and introduce our new framework in Section III. Section IV
contains our new results on how and when the privacy guar-
antee translates between f-closeness and differential privacy
while proofs for these claims are included in Appendix .
Finally, the concept of utility and an example showing the
potential utility gains available when using our framework are
presented in Section V.

II. RELATED WORK

Syntactic privacy (where f-closeness belongs) and differen-
tial privacy were developed in the early 2000’s as two separate
approaches to achieving user privacy in large datasets.

A. Syntactic Privacy

Syntactic privacy concerns methods of structuring a dataset
to guarantee some form of user privacy. The dataset in general
contains attributes that can be classified as either confidential,
direct identifiers, or indirect identifiers. Indirect identifiers,
also called quasi-identifiers, are attributes that can be used
to identify a person when external information is available.
Direct identifiers, for example names, are often removed in
the first step when sanitising a dataset. Quasi-identifiers and

confidential attributes are subsequently modified to prevent
individuals from becoming distinguishable in the dataset and
to make the link between any individual and its associated
confidential attributes more uncertain.

k-anonymity [7] was the first syntactic privacy scheme
to be introduced and it achieves user privacy by linking
every individual record to at least k confidential attributes.
The link is established through partitioning the dataset into
groups referred to as equivalence classes where, within each
group, the quasi-identifiers are replaced by a single, gener-
alised version of the previously present quasi-identifiers in the
group. The problem of finding a partition and generalisation
of attributes that satisfy a certain level of utility does not
come with a straightforward solution and many different
k-anonymity algorithms exist, such as Datafly [8], Incog-
nito [9] and OLA [10]. One alternative solution that skips
the generalisation step involves microaggregation [11].

Before long it became evident that k-anonymity does
not put any restrictions on the diversity of the k or more
confidential attributes within each equivalence class, which
implies that a record’s confidential attributes can be revealed.
In response, [-diversity was introduced to address this weak-
ness by ensuring that there is a certain level of variation
I of the confidential attribute values in each equivalence
class [12].

However, increasing the diversity of values within equiva-
lence classes does not necessarily restrict confidential infor-
mation from being released. The /-diverse values could, for
example, have semantically similar meaning or represent
extreme values entailing that the individual is much more
likely to be linked to these types of values in comparison to
the average. This motivated the introduction of f-closeness [3],
which introduces further privacy guarantees restricting the dis-
tribution of sensitive attributes within each equivalence class
such that their distribution closely follows the attributes’ global
distribution within the dataset. The Earth Mover Distance
(EMD), was originally used to measure the distance f between
two distributions [3].
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Methods for achieving f-closeness include modifying mech-
anisms for k-anonymity such as Incognito and microaggrega-
tion with f-closeness restrictions [3], [13].

It should also be mentioned that the classification of
attributes as quasi-identifiers is often a difficult task. The task
requires knowledge of which information will be available to
a potential adversary. Consequently, confidential attributes are
often also included as quasi-identifiers [14], [15], especially if
the same dataset is sanitised and published multiple times [7].
However, increasing the number of quasi-identifiers increases
the number of dimensions over which the syntactic privacy
mechanism has to operate, and as a result the utility of the
published data decreases [15].

B. Differential Privacy

Differential privacy [16] was introduced as a privacy model
that limits the impact of individual records on published results
from statistical databases. More specifically, DP masks the
evidence of an entity’s presence in the dataset by restricting the
relative difference between the results from any query applied
to a dataset and the same query applied to a modified version
of the dataset where one record has been removed [16] or
changed [2]. The similarity in results in the privacy definition
€-DP is restricted by the privacy level ¢ where a smaller e
results in higher privacy.

Dwork [16] argued that e-DP also holds for groups of any
size x if the privacy level is adjusted to ¢/x. An additive
level § was added to form a new definition of DP, (g, d)-
DP, in order to ease the strict requirements of relative differ-
ence in cases where the actual difference in probabilities are
small [17]. e-DP can be achieved by adding noise (Laplace [2],
Gaussian [18], [19], or exponential [20]) of a carefully
selected magnitude to each element in the query’s result vector.

Additional reformulations of DP accounting for correlations
between database records [21]-[25] have also been presented
after DP was shown to lead to unintentional information
leakage when these types of correlations are present [26].

C. The Intersection of t-closeness and DP

Much attention has been focused on the strengths and
weaknesses of syntactic privacy vs DP [15], [27]-[29] in areas
where either one is applicable. However, in general one cannot
fully replace one of the privacy models with the other since
their areas of usage do not overlap fully [1].

Surprisingly little has been published on the intersection
between the two, including how the privacy level of one can
be expressed in terms of the other. Observing the lack of
randomness offered by k-anonymity, Li ef al. [4] added a ran-
dom sampling step to k-anonymity and showed that a certain
group of k-anonymity mechanisms (strongly-safe mechanisms)
satisfy (e, 6)-DP if preceded by random sampling.

Domingo-Ferrer and Soria-Comas [5] instead focused on
making slight modifications to the definitions of f-closeness
and e-DP to reveal underlying links between the privacy
models. The distance metric for f-closeness was changed to
be more similar to the one used in €-DP, while ¢-DP was
modified to only apply to pairwise comparisons of records.
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Using these modified definitions, they were able to show that
DP can satisfy f-closeness [5].

One major difference between the original definitions of
€-DP and f-closeness lies in the interpretations of their privacy
levels ¢t and €. The value of ¢ limits the amount of information
revealed about any individual record in the results, while e
instead limits the individual record’s effect on the results.
The latter may therefore not in general be directly related to
the former except in special cases such as limiting e-DP to
queries that only consider a single individual record [1]. This
fundamental difference between the two privacy definitions
make it challenging to link them. Our solution introduces a
form of group-wise DP in Definition 8 to bridge the gap.

III. SYSTEM MODEL
A. Notation

In this paper, privacy models (e.g. DP or f-closeness) denote
the main idea for how to achieve data privacy. A specific
implementation of a privacy model, called a privacy definition,
is defined by a mathematical expression limiting some form
of information leakage. This information leakage is often
bounded by a variable called the privacy level. The privacy
level determines how private the resulting sanitised dataset
will be according to the privacy definition.

Privacy levels can be compared in terms of their privacy
strength.

Definition 1 (Privacy Strength): Let A denofe a privacy
definition and o its associated privacy level.

« a is stronger than another privacy level a’ for A, denoted
a > o, if any sanitised dataset satisfying a also satisfies
a’ but there exists at least one sanitised dataset satisfying
a' that does not satisfy a.

« a is the optimal privacy level for a given sanitised dataset
iff it is the strongest level that the sanitised dataset
satisfies. That is, denoting the range of all privacy levels
Jor A that the sanitised dataset satisfies by S, we have
Joraes§

fa' e S:a > a.

o a' can be seen as a lower limit of a iff & > a'.
We further formally define privacy implication, or impli-

cation for short. We say that a privacy definition A implies
another privacy definition B if we can find a function f such
that any mechanism that fulfils A at level a always fulfils B
at level f(a). The function f may also depend on some other
non-record specific parameters Pj.

Definition 2 (Implication): Consider two privacy defini-
tions A and B with the privacy level a and B respectively,
shortened to A(a) and B(f), and let P, and P}, denote the
associated parameters. We say that

« A = B, A implies B iff there exists a function fp,(a)
such that, given any mechanism Z and any dataset D,
if Z satisfies A(a) for D then Z also satisfies B(fp,(a))
for D;

« A # B iff for any function fp,(a) there exists at least one
mechanism Z that when applied to a dataset D satisfies
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TABLE I
A SUMMARY OF SYMBOLS USED IN THIS PAPER

D Database with N records

[L: NJ | A set of all the record indexes in the dataset

5 Database record 4,1 € [1 : N]

D_; D with r; removed

Dy Database records with index in the index set K C [1: N]
Z Privacy mechanism

Q Query

Pr(.) Probability

E; An Equivalence class, E; C D

B A bucket, B; C range(Z)

A(a) with an optimal privacy level B* under privacy
definition B and where fp,(a) > B*.

Proving A = B therefore reduces to finding at least one
dataset that satisfies A(a) but where f* < fp,(a) for any
function fp,(.). However, even if A % B, the implication
conditions may still hold for a limited range of a or for some
mechanisms for A. Such partial implication is not considered
in this paper and we have decided to include non-implications
in our results to provide a word of caution - finding one
mechanism for A that satisfies B does not entail that there
exists an implication between A and B. A non-implication
can also reveal that the information the privacy definitions are
restricting can be independent of each other.

Implications can also be combined to provide further
insights into the relationship between two privacy definitions.

Definition 3 (Combined Implications): Let A and B be two
privacy definitions with privacy levels a and B respectively.
We say that

o A & B, there exist reciprocal implications between A
and B if A = B for a function f(a) and A < B for a
function g(p).

« A& B, A and B are equivalent if g(f(a)) = (a) and
F(&(B) = (B) for all a and B.

« A Z B, A is a generalisation of B if A = B
but A < B.

B. Preliminaries

Recall that an equivalence class, E, is a group of records
(rows in the dataset) with identical quasi-identifiers. For
t-closeness we want the distribution of the confidential
attributes belonging to every equivalence class to be similar
to that of the entire dataset. Also, a bucket defines a range
of confidential attributes that are indistinguishable as far as
privacy is concerned. Buckets were introduced to f-closeness
by Soria-Comas and Domingo-Ferrer [30] to also enable
datasets containing confidential attributes with rare values
to fulfil 7-closeness with ¢ < oo. Additional symbols and
concepts used in this paper are summarised in Table I.

An alternative definition of f-closeness called stochastic
t-closeness was introduced by Domingo-Ferrer and Soria-
Comas [5] to enable the use of stochastic f-closeness mecha-
nisms. They further focused on an alternative distance metric
to the traditional EMD metric. We refer to the incorporation of
this alternative distance metric into stochastic f-closeness as
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multiplicative #-closeness with k-anonymity, or multiplicative
t-closeness for short.

Definition 4 (Multiplicative t-closeness): Let D be a
dataset with N records. Let Ey, C [1 : N] for m € [1 : M],
be a set of M € [1 N] equivalence classes (in the
sense that E; N E; = @ for all i # j, min; |E| = k, and
Z; 1 Ei =[1: N]), Z a privacy mechanism, D the sanitised
dataset created by applying Z to all records in D, c; the vector
representation of record i’s confidential attributes in D, and
{B1, ... Bp} a set of buckets such that \J%_, B; = range(Z)
and Bj N B = @,Vj,l € [1 : p] : j # L. The sanitised
dataset D fulfils multiplicative t-closeness at a privacy level
t € [1, 00) iff for every equivalence class E,, m € [1 : M],
and all l € [1: p],

-1 . PI’b(Bg) -
= Prg,(B)
where
1
Prp(B) = 2. Pr(Z(c)) € B)
je[1:N]
and
Pre(B) = —— > Pr(Z(c;) € B)

|E|

are the averaged probability of the event Z(c;) € By of the
records in D and En, respectively.

Note that a random-worlds approach [31] is used to calcu-
late the averaged probabilities Prj(B;) and Prg, (B;) where
each confidential attribute in the equivalence class is consid-
ered equally likely of representing any of the records linked
to the equivalence class.

In DP we want to restrict any individual’s contribution to
query replies, where the query can be any function Q that
extracts information from a dataset. e-DP is commonly defined
as follows:

Definition 5: (e-DP) Let Q be a query, D a dataset with
N records, D_; = D\ {r;} a neighbouring dataset to D with
record i removed,l and {By, ... B,} a set of buckets such that

le B; =range(Z)and BiNB; =@,Vj,le[l:pl:j#L

A privacy mechanism Z is said to fulfil e-DP at a privacy
level e € [0,00) iff Vi, j:i €[1:N],j e[l: pl

e Piz@EO)eB) _ .
~ Pr(Z(Q(D-i)) € Bj)

For sequential application of DP on a dataset, the composi-
tion theorem [32] states that the resulting privacy level is the
sum of the applied privacy levels. Note that € is an exponential
parameter and a multiplicative change in € can have a huge
impact on the privacy leakage. For example, selecting € =5
and applying the mechanism for two different releases reduces
the privacy level by a factor of 148. Special care must therefore
be taken when selecting € to avoid excessive privacy loss.

Domingo-Ferrer and Soria-Comas [5] used a modified defi-
nition of e-DP, which we identify as local e-DP (e-LDP) [33],
defined as follows:

Jj€En

1 A common alternative definition of e-DP changes the definition of D_; to
have one record changed instead of one record removed.
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Definition 6: (e-LDP) Let D be a dataset with N records,
c; the vector representation of record i’s confidential attributes
in D, and {By, ... Bp} a set of buckets such that Uf=l B =
range(Z) and B; N By =@,¥j,l €[1: p]l: j#Il A privacy
mechanism Z fulfils e-LDP at a privacy level € € [0, c0) iff
Vi,jell:Nland ¥Vl €[1: p],

Pr(Z(ci) € Br) _ o
Pr(Z(cj) € B)) —

Note that the definition of e-LDP does not require the removal
or change of a record in the dataset.

With our notation, we can now state an existing privacy
implication:

Lemma 1 ( [5]): e-LDP = multiplicative t-closeness

In addition, with a few privacy definitions of DP and
t-closeness now formally defined, we can now give more
specific details of our notation presented in Section III-A.
For f-closeness, the privacy strength requirement according
to Definition 1 translates as follows: for two privacy levels
fo, 1 € (1,00), if 1y < f1, then fp > f1. Similarly, for two
privacy levels €p, €1 € (0,00) for €-DP, if g < €1, then
€p > €1. We now explain the privacy parameters introduced
in the privacy definitions (see Definition 2). The privacy
parameters of e-DP and e-LDP that affect the privacy level are
the buckets By, and query @ (which returns some function
of the dataset, e.g., the average). For f-closeness the privacy
parameters are the equivalence classes E[j.,) and the buckets
Bi1.p)- The information we focus on from the equivalence
classes are the group size parameter k and the number of
records N.

C. Problem Formulation

Not much has been published on how the privacy guarantees
of DP and syntactic privacy, f-closeness in particular, are
linked. Neither has much been published to demonstrate that
no link exists. This entails that the mapping of privacy implica-
tions between the models is far from complete. Furthermore,
to compare syntactic privacy with DP we need to focus on
the privacy definitions that have theoretical privacy guarantees
such as f-closeness. As discussed in Section II-A, k-anonymity
alone does not have theoretical privacy guarantees.

Translating e-DP into 7-closeness and vice versa is of inter-
est since they are well known for having different desirable
characteristics. DP is known for guaranteeing privacy for
individuals, even when an adversary has extensive amounts of
prior knowledge about the data, while f-closeness is appre-
ciated for letting the users’ work with a sanitised version
of the dataset itself, not restricting the queries that can be
applied to the dataset, and that the data can be generalised
instead of being modified with additional noise [1]. Establish-
ing a relationship between the two models can reveal how
these desirable characteristics can be transferred between the
two.

Furthermore, it is often difficult to choose an appropriate
level of € [29] for real-world applications, and it is not always
clear how to interpret € in terms of how much information it
allows to be revealed about an individual record. The closeness

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

level ¢ has a more obvious interpretation in that it reveals
how far from the overall distribution any individual record’s
confidential attributes (the confidential attributes within its
equivalence class) are allowed to deviate. Knowing how ¢ and
€ are related can therefore help us to both better interpret and
compare privacy levels.

Before going into detail of the relationship between
t-closeness and DP, we will introduce some assumptions to
simplify our analysis. In this paper, we only focus on the query
that returns a record’s confidential attributes.> We assume that
the privacy models use the same set of buckets. Using different
partitions for each privacy definition complicates the analyses
and takes the focus off comparing the privacy definitions.
With this in mind we purposefully shorten the notation for
implications to omit the specific set of buckets Byj.,) and query
Q used.

D. The Significance of Implications and Our Implication
Mapping

An implication between two privacy definitions A and B
requires that A and B base their computations of their privacy
levels (a and S respectively) on similar parts of the data. It also
requires that the privacy level £ can be estimated based on a
without using any other specific characteristics of the data.
An advantage of this is that a mechanism designed to fulfil A
will also fulfil B without any modifications to the mechanism.
In particular, we would not have to apply a mechanism for A
in addition to another mechanism for B to the same data in
order to satisfy both A and B. On the other hand, the lack of
an implication does not reveal if implications exist for certain
values of the privacy levels. For example, it might be possible
to estimate £ only for strict values of a, which our results do
not reveal.

The implication paths of Figure 1 reveal that all nodes for
t-closeness can be reached by a DP node but not vice versa.
This result does not imply that f-closeness is a redundant
model. Bear in mind that we are only considering application
areas where f-closeness and DP are both applicable and that
there are areas where f-closeness is more appropriate to use
than DP [1].

IV. PRIVACY IMPLICATION MAPPING

This section presents and compares different privacy def-
initions of f-closeness and DP in order to make a broader
comparison between the two models of privacy. A summary
of these definitions is given in Table II and our implication
mapping is depicted in Figure 2. Note that in this paper, the
terminology f-closeness and DP refers to the privacy models,
not specific privacy definitions.

The proofs of our results (lemmas and theorems) are pre-
sented in Appendix . Starting from Domingo-Ferrer and Soria-
Comas’ finding that e-LDP = multiplicative f-closeness [5],
we first extend their results by showing that there is no

2The results in this paper could be extended for other query functions by first
bounding the range of the query function in terms of that of the confidential
attributes.
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Fig. 2. Privacy implications between different definitions of the f-closeness and DP models. Dashed arrows denote implications found by [5] and crossed-out
arrows between two nodes signify that no implication exist between these privacy definitions. The numbered expressions indicate when the implications are
valid. Refer to Figure 1 for more details of implications between the definitions for different values of the group size parameter.

TABLE II

DESCRIPTIONS OF DIFFERENT PRIVACY DEFINITIONS
FOR DP AND SYNTACTIC PRIVACY

Name Description
_ . Merges records into groups of at least k records
k-anonymity (7] with identical non-confidential attributes.
Restricts the difference in distribution of confiden-
P tial attributes between the overall distribution in
Elllu:tlphcau[\; = the dataset and the distribution within groups of
oseness records with identical, non-confidential attributes,
see Definition 4.
Multiplicative ¢-closeness for every possible sub-
(k, t)-closeness set of k records in a dataset irrespective of their

non-confidential attributes, see Definition 7.

Conceals the contribution of individual records
to datasets, see Definition 5.

Applies the e-DP constraints to pairwise compar-
isons of records, see Definition 6.

Like the original e-DP but conceals the contribu-
tion from groups of k records, see Definition 8.

Original e-DP [2]

e-LDP [5]

(k, ¢)-DP

reciprocal implication between multiplicative f-closeness with
k-anonymity and e-LDP.

Theorem 1: Mulfiplicative t-closeness +# e-LDP

The previously shown implication from e-LDP to mul-
tiplicative r-closeness [5] can be understood by observing
that e-LDP limits the differences between individual records’
confidential values, which in the extreme results in all records’
confidential attributes being identical. This will in turn guar-
antee that any partition of the dataset will fulfil multiplicative
t-closeness.

The lack of a reverse implication on the other hand follows
from the fact that multiplicative f-closeness computes the aver-
age probability that a record in an equivalence class takes on
certain confidential values. Relying on the average probability
means that an individual record’s probabilities are free to
vary within each equivalence class and can even approach
zero without making ¢ approach co. Since the presence of a
zero probability for a confidential value would make € = oo,
Theorem 1 therefore must hold.

Note that an exception to Theorem 1 occurs if k =
1 and |E;] < 1 for all equivalence classes E; in the
dataset. In this special case multiplicative f-closeness implies
Int2-LDP which will become more evident in Theorem 3.
However, setting k = 1 does not necessarily restrict the

sizes of all equivalence classes in general which is why
multiplicative #-closeness # e-LDP.

The relationship between LDP and multiplicative
t-closeness does not necessarily help us to intuitively
understand the relationship between e-DP and multiplicative
t-closeness since LDP is a conceptually very different privacy
definition from e-DP. In order to extend the mapping between
DP and f-closeness, we proceed by extending f-closeness
and e-DP and use them as a bridge to better understand the
relationship between e-DP and multiplicative 7-closeness.

A. Extending t-closeness

The foundation on which Theorem 1 is built on can be
understood by considering that multiplicative f-closeness does
not necessarily force all records’ confidential attributes to
converge onto similar values, which would have been nec-
essary to have an implication to e-LDP. With this result
in mind, we aim to bypass Theorem 1 by introducing a
new extension of multiplicative f-closeness referred to as
(k, t)-closeness. (k, t)-closeness applies restrictions similar to
multiplicative f-closeness on all subsets of a given size of
the dataset, not just the equivalence classes of one given
partition.

Definition 7 ((k, t)-closeness: Multiplicative t-closeness for
all Fixed Size Subsets): Consider a mechanism Z and a dataset
D. Let D be the sanitised dataset resulting from applying Z
to D. Let k € [1, N —1] be a fixed parameter and {By, . .. Bp}
be a set of buckets such that Uj?:l B; = range(Z) and B; N
B =9,¥j,lel[l:pl:j#L f)fulﬁfs (k, t)-closeness iff
Jor every possible subset K of size k drawn from D and all
lell:p]

1 < Prf)(Bt') <t
Prg (B))
where
1
Pry(B) = D Pr(Z(c) € By
ie[1:N]
and

Pr(B) = ¢ > Pr(Z(c) < By)
iek
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(k, r)-closeness extends multiplicative 7-closeness by redefin-
ing the underlying equivalence classes. Where multiplicative
t-closeness relies on the partition created by k-anonymity
(recall from Definition 4 that k is the size of the smallest
equivalence class), (k,f)-closeness considers every possible
partition of the data into groups of k records and allows the
‘equivalence’ classes to overlap. Some additional properties
of (k,t)-closeness and its relationship with 7-closeness are
presented in Lemma 2.
Lemma 2 (Properties of (k, t)-closeness): (k,t)-closeness

has the following properties:

1) (ko, t)-closeness = (k1,t)-closeness if k1 = ko.

2) (ko, t)-closeness # (k1,t)-closeness if k1 < ko.

3) (k,t)-closeness ‘@? Multiplicative t-closeness

4) (k, to)-closeness = (k,t1)-closeness if ty < f1.

The missing implications from higher to lower k for (k, t)-
closeness follow on from the inability to ensure that a group
of size smaller than k has a probability of zero for a bucket
value when a (k, t)-Close dataset is given for kK < co. Point 3
in Lemma 2 is a consequence of both point (1) in Lemma 2 and
the fact that (k, 1)-closeness always computes an equivalent or
stricter ¢ than multiplicative f-closeness.

In fact, e-LDP is closely related to (1,f)-closeness,
as shown in the following theorem:

Theorem 2:

e (1,1)-closeness = e-LDP with e¢ = t%, and

e €-LDP = (1, t)-closeness with t = L-(e(N — 1) + 1).
Combining the above theorem and Letima 2, we recover

Lemma 1. In addition, we show the following:
Theorem 3: For k > 1,
e €-LDP = (k,t)-closeness where t = %(1 + N_f_] e%),
but
e (k,t)-closeness = e€-LDP.

B. Generalising Differential Privacy

Having shown that privacy implications exist between multi-
plicative f-closeness and e-LDP, we now also want to include
the original e-DP in the privacy mapping. First we present
a generalisation of DP inspired by Dwork [16], which takes
group privacy into consideration. We also draw inspiration
from Liu et al. [22] which takes groups into consideration in
€-DP due to record correlations. We refer to this generalisation
of €-DP as (k, €)-differential privacy, which extends e-DP by
allowing the impact of the information about a group of size k
to be restricted instead of only restricting the impact from any
individual. Intuitively, as f-closeness depends on the behaviour
of a group of k records, the e-DP counterpart should also
exhibit this behaviour.

Definition 8 ((k, €) Differential Privacy): Consider  any
dataset D. Let D_yx denote a subset of D with a group
K C [1 N1 of k records removed and {By,...Bp}
a set of buckets such that U,?:l B; = range(Z) and
B;NB =@Vjl e[l:p]l:j+#l A privacy mechanism
Z fulfils (k,e)-DP for D if for all selections of k record
removals and all | € [1 : p]

e PrzeD)eB) _ .
= Pr(Z(Q(Dx) €B) -
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This generalisation of DP allows the data publisher to
restrict the effect of small groups on the result in order to
prevent them from being identified. Some other properties
of (k,€)-DP and how it relates to e-DP are presented in
Lemma 3.

Lemma 3 (Properties of (k,€)-DP): (k,€)-DP has the fol-
lowing properties:

1) (ko, €)-DP = (k1,€)-DP if ko > ki.

2) (ko, €)-DP # (k1,€)-DP if ko < ki.

3) (1,€)-DP & €-DP.

4) (k,€)-DP = €-DP when k > 1.

5) (k, e0)-DP = (k, €1)-DP if ep < €1.

C. New Implication Results

All privacy implications presented so far have been based on
the ability to restrict individual records’ confidential attributes.
With the introduction of (k, €)-DP we now shift focus and look
at restricting the confidential attributes of groups. Comparing
the definitions of (k, r)-closeness and (k, €)-DP suggests that
there exists a connection between f-closeness and DP. In fact
Theorem 4 states that (k, €)-DP & (N — k, e®)-closeness.

Theorem 4:

1) For kpp =

(kpp, Int)-DP.

2) For kpp > N — kiclo, (kiclo, t)-closeness = (kpp, €)-

DP.
3) For kpp < N — kicio, (kClo, t)-closeness & (kpp, €)-
DP.

Theorem 4 establishes a strong reciprocal relationship
between DP and syntactic privacy. It follows from point (1) in
Theorem 4 that a dataset fulfilling the traditional e-DP (i.e.
(k,e)-DP with k = 1) also satisfies (N — 1, €)-closeness.
Considering that DP tries to hide individual values by making
results similar for datasets differing in only one value, it makes
sense that the same effect can be accomplished by ensuring
that every subset of size N —1 is similar to the overall dataset.

Before comparing multiplicative #-closeness and (k, €)-DP,
a decision has to be made regarding which records in a dataset,
that satisfies multiplicative 7-closeness, should be considered
when calculating the corresponding privacy level for (k, €)-
DP. Since a dataset that fulfils multiplicative 7-closeness has
a structure that maps any record to at least k other records
we propose to calculate the (k,e)-DP privacy level within
every equivalence class and not globally in the whole dataset.
Based on this decision we can now show that multiplicative
t-closeness = (k, €)-DP.

Theorem 5: Multiplicative t-closeness # (k, €)-DP

N — kclo (kicro, I)-closeness &

D. Interpretability

A second look at Figure 1 reveals an interpretation of
t-closeness in terms of DP and vice versa as illustrated in
Figure 3. Note that grey arrows are used in Figure 3 to explain
how one privacy definition can be turned into another one, not
to be confused with implication arrows. The close relationship
between (k, f)-closeness and (k, €)-DP enable us to establish
a link between the privacy concepts of f-closeness and DP.
In fact, we can interpret DP as multiplicative f-closeness
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Generalise the partition
—k

{-closeness (k,t)-closeness <> (k,¢)-DP

k-anonymity
)
Fix one partition

Fig. 3. (k,t)-closeness provides a link between the concept of f-closeness
and DP. DP can be interpreted as f-closeness with a generalised partition while
t-closeness can be seen as DP with a fixed partition.

PLop 1 — pLop

Actual Value

1/n 1/n

[11 an

Fig. 4. A randomised response mechanism for LDP for a nominal variable
where pppp is selected to reach a desired value of €.

with a generalised partition, which describes the extension
from multiplicative f-closeness to (k, f)-closeness. In the other
direction we can interpret multiplicative f-closeness as DP
where we only consider the privacy guarantee for one fixed
partition of the dataset with groups of size k or more.

V. EVALUATION

We will now show how the quality of sanitised data can be
improved using our privacy implications. To this end, we will
consider a range of datasets that need to satisfy two privacy
definitions. Using our privacy implications, we then obtain
better utility using just a e-LDP mechanism to satisfy both
e-LDP and multiplicative f-closeness, instead of using two
mechanisms, one for each privacy definition.

A. Mechanism Selection

Randomised response [6] is a mechanism invented to allow
deniability in reported survey responses. The mechanism spec-
ifies that every answer has a chance of being replaced with
a value selected randomly from a fixed set of answers. This
ensures that every participant in the survey can deny that the
output of the mechanism is their true response. More recently,
randomised response has been shown to satisfy DP [34] and
LDP [35], and can be used in a modified version to ensure
stronger privacy guarantees for data mining [36].

A randomised response algorithm can be represented by
a directed stochastic decision tree of nodes connected by
branches where every branch is associated with a probability
of following that particular branch to a lower-level node; see
Figure 4. The output of the algorithm is decided by the leaf
node reached when starting from the root node and traversing
the tree down through the branches.

To more easily compare and provide an explanation for
the potential utility gain of using our proposed framework,
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we decided to focus on the randomised response mechanism
for e-LDP represented in Figure 4. The mechanism is designed
for a nominal variable and a parameter pppp defines the
probability that the output equals the input while there is a
1 — pLpp chance that the output will be uniformly sampled
from the set {ay, ..., a,,}.3 It can be shown that the parameter
pLDp controls the strongest e privacy level that the mechanism
offers, as follows:

B PLDP
¢—1n (1 + pwp)) . M

Inspired by the use of randomised response in e-LDP we
introduce a similar mechanism for a nominal variable for
multiplicative t-closeness; see Figure 5. Similar to the mecha-
nism for e-LDP, a parameter p,; determines the probability
that the output value equals the input value but (1 — p;)
instead determines the chance that the output will be sampled
from the empirical distribution of the attribute values in
the entire dataset.* The randomised response mechanism is
applied locally to every record individually after the dataset
has been partitioned by a k-anonymity mechanism.

To find the dependence of the privacy level t on p; we
observe that independent of how the dataset is partitioned by
a k-anonymity mechanism, an upper limit estimation of the
value of f can be provided by a group whose confidential
attributes takes on the same value a; € {ay,...,a,} before
applying the f-closeness mechanism. These extreme cases
enable us to determine the value of  as follows:

Ui Ui ]
pe/py@)+ (1 —po)” pyla)(1—p) |’

pi = py@)(pe+ (1 = popy(@) + (1 — p) D py(@))).
J#

t= maxmax[
I

(2)

We will use these randomised response mechanisms to show
benefits of privacy implications based on the gain in utility,
defined in the next subsection.

B. Utility Measure

Consider a dataset modelled by a random variable X that
contains some confidential and some non-confidential infor-
mation. From X we extract some information represented
by the random variable ¥ for data release. Before releasing
the extracted information, a privacy mechanism pzy(-|-) will
be applied to Y, creating the random variable Z, to limit
the amount of confidential information from X that can be
derived from observing Z. However, in addition to satisfying
the privacy requirement we also need to consider the utility
of pzjy(-|-), defined as how much information about ¥ that
can be extracted from Z. For this purpose we consider a user
who based on observing Z can use some post-processing to
improve their guess Yof Y. A gain function g(y, y) further

3This adheres to the spirits of common mechanisms for e-DP where
independent noise of a specific distribution (independent of the dataset’s
statistics) is added [16].

4This choice ensures that the distribution of subsets of records gets closer
to that of the dataset as p; decreases.
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measures how useful it is to guess y when the actual value
is y.

For the global utility /(Y, Z) of the privacy mechanism we
use the definition presented by Alvim ef al. [37]

U, z) =2 py» > pGINEw. 3)
y hJ

A special case of the gain function is the binary gain function,
where all guesses y but the correct one, y, are equally useless,
org(y,y) = dy 5- This is applicable when no obvious distance
metric exists to measure how the usefulness of a guess ¥
changes based on the distance from the true answer y.

For the binary gain function, (3) can be simplified to the
following:

U, z) :Zm‘gxp(}’,z). “4)

The expression in (4) represents the utility and gain func-
tions that will be used in this paper. For our utility computa-
tions we further assume that N is large so that the frequency
of 1s and Os in a dataset, f, closely resembles the underlying

distribution p,. That is: p(y, 2) = Py Py = Pely fy-
Expanding the utility function in (4) for the e-LDP mech-

anism gives
Urpp(Y; Z) = Z max
Z
1 — pLop 1 — pLpp
[Y}Ig(}’y (@;)) N N

To similarly compute the utility for the combined multi-
plicative f-closeness and e-LDP mechanism we first define
the functions fi and f> to simplify our notation.

fi(@i) = py(ai)(pe[pLop + (1 — prop)/N]
+ (1 — p)lpy(@i) pLop + (1 — pLop)/N])
f2(ai, aj) = py(ai)(p:(1 — pLop)/N
+ (1 — p)lpy(a;)(prop + (1 — prLor)/N)1)
Using fi; and f> from above we can now express the utility
function as

Uciowpp(Y; Z) = 3 maxmax{fi(a:), f2(ai, a;)}  (6)
i

, Py(@i)(pLop + M 4

In addition, we can also derive the utility function for the
randomised response based multiplicative f-closeness mecha-
nism, Uicio(Y; Z), by setting prpp = 1 in (6). Note that this
utility function also corresponds to UiClo+oo-LDP(Y; Z) Which
provides an upper limit for Uicio+Lpp(Y; Z) when varying €g.

C. Evaluation Setup

To evaluate the potential utility gains of using our proposed
framework, we focus on a dataset structure with a nominal
confidential attribute. We consider a situation where a data
publisher aims to guarantee a certain privacy level fp of
multiplicative f-closeness and at the same time also ensure a
privacy level gy of e-LDP. For this purpose, the data publisher
can choose to either apply both a e-LDP and a multiplicative £-
closeness mechanism or use our framework to guarantee both

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

P: 1 —pi

Actual Value

Py (a1) 'py(&n)

"-11 N an

Fig. 5. A randomised response mechanism for f-closeness for a nominal
variable where pr is selected to reach a desired t and py(a;) is the frequency
of the variable taking the value a;, i € [1: n].

1.00 \ /
~ /
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T & rscnfh
Fer)
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Fig. 6. Utility computed with (4) for the e-LDP mechanism (solid), combined
multiplicative f-closeness and e-LDP mechanism (dashed), and f-closeness
mechanism (dash dotted) for varying initial frequency of the attribute value
ay, py(ay), and n = 2. The utility of the -closeness mechanism marks the
upper limit for the utility of the combined mechanism for a fixed t = #.
Thus, the utility for the e-LDP mechanism is always higher or equal to the
utility for the combined mechanism.

privacy definitions with a e-LDP mechanism. For this reason,
we focus on the following three mechanisms:

1) The e-LDP mechanism in Figure 4

2) A sequential execution of the multiplicative f-closeness
mechanism in Figure 5 and the ¢-LDP mechanism in
Figure 4 where the root node of the e-LDP mechanism
is attached to every leaf node in the multiplicative
t-closeness mechanism

3) The t-closeness mechanism in Figure 5.

For mechanism 1 we use the relationship between ¢ and €, N
and k for e-LDP [5] to compute the required privacy level of
e-LDP, denoted as ¢, which guarantees both ¢ and fp.
We start by looking at examples where ¢ > ¢, but later
argue for the result of letting ¢; < €p. Equation (5) is used
to compute the utility for mechanism 1 where pypp can be
derived from (1) knowing e;.

For mechanism 2 we choose t = fp and € = ¢p to satisfy
our privacy requirement. To study the dependence of ¢y on the
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utility of mechanism 2 we evaluate U cjo.1.pp for two values of
€p: €; as computed for mechanism 1, and oco. Selecting €9 = 0o
gives an upper bound on Uclo.Lpp for a fixed value of #p and
corresponds to only applying the multiplicative f-closeness
mechanism, mechanism 3. Again, pppp and p; can be derived
from (1) and (2) respectively knowing €p, fp, and p,.

To evaluate the difference between the utilities pp and
Uiclo+Lpp We further vary the parameters fp, the number of
output options for the confidential attribute n, the frequency of
aj in the initial dataset p,(a;) with n = 2, the minimum group
size parameter k for multiplicative f-closeness, and the number
of records N. As mentioned earlier, we first consider ¢; > &g,
which in numerical terms translates to g > ¢;,. We will later
complete the analysis for €9 < ¢ with additional arguments.
All other parameters can be derived from the above mentioned
parameters.

Note that our assumption that the frequency of attribute
values, fy, closely resembles the underlying distribution py,
enables us to use the utility functions Urpp and Ucle+LDP
to compute the utility for our mechanisms without having to
generate or use real-world datasets. Instead we represent a
dataset with our parameters as follows: for a total of N records,
the number of records with attribute a; is Npy(a;) forall i €
[1:n]. Varying p,(a1) between 0 and 1 with n = 2 therefore
enables us to compute the corresponding utility for any dataset
of one binary variable with given privacy levels. Utilities for
datasets with nominal attributes can similarly be computed by
varying n and the individual attribute values’ frequencies.

D. Results

To display the dependence of p,(a1) on Urpp and Uiclo+LDP
we set fp =2, n =2, N = 100, and kK = 5 which results in
€; = 0.7. The results are available in Figure 6. The shape of the
graphs consist of splices of linear, constant, and polynomial
functions where the splice occurs when there is a shift in
which terms are the largest in the sums representing Ui pp
and Uicio+Lpp- From Figure 6 it is evident that choosing the
same € = ¢ for mechanism 1 and 2 results in a value of
Urpp that is higher or equal to Ucio.Lpp for all values of
Py(a1). Furthermore, considering that Ucj, provides an upper
limit for Uclos1LDP, corresponding to €p = oo, and that Uice
is lower or equal to Urpp for all values of p,(a;) we can
conclude that the e-LDP mechanism has better utility than
the combined mechanism for any py(ai) and €9 < €. If
€ > ¢ we would have to select € = ¢p instead of ¢ in
mechanism 1 to satisfy our required privacy levels of fp and
€p. Thus, both mechanism 1 and 2 are using the same privacy
level € = ¢y for e-LDP and will have the same reduction in
utility caused by applying the e-LDP part of the mechanism.
However, mechanism 2 has an additional reduction in utility
caused by applying the multiplicative f-closeness mechanism
as seen in Figure 6 and 7 where the same e is used for both
mechanisms.

We also observed that decreasing the ratio of N to k causes
the breakaway points between the utility curves of the e-LDP
and combined mechanism in Figure 6 to move further away
from each other. This increases the range of p,(ai) values for
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which the e-LDP mechanism’s utility is strictly larger than the
combined mechanism’s utility for € = ¢;.

The values of Ui pp and Uicio+LDp for fo € [1, 101, py(a;) =
I/n,i e [1 : n],n = 2,46, N =100, and k = 5 are
presented in Figure 7. Again, the utility for the multiplica-
tive f-closeness mechanism provides an upper limit for the
utility for the combined mechanism when varying ¢p for all
tested values of n. Additionally, the difference between the
highest and lowest utility of the different mechanisms seems
to increase with increasing n. We can therefore conclude that
mechanism 1 has higher or equal utility than mechanism 2
for all values of fp and o for our setups. Selecting p,(ai1)
close to either 0 or 1 does however cause U pp and UiClo+LDP
to coincide for smaller values of fp, but we chose to display
py(a;) = 1/n,i € [1 : n] since it gives the largest difference
in utility.

To put our results into context, consider a large dataset
with 2 binary attributes that describes if a hospital patient
has tested positive to HIV and whether or not they have
skin cancer. If our dataset has a uniform distribution over
the combination of the attributes and we select t = 2 in the
setup described in this section, then Figure 7 tells us that using
our framework almost doubles the utility of the sanitised data
compared to applying the LDP mechanism and multiplicative
t-closeness mechanism sequentially. With better utility we can,
for example, expect better machine learning models being
developed based on our sanitised data.

E. Additional Remarks

The mechanisms introduced in Figure 4 and 5 can also be
used in settings with multiple nominal confidential attributes.
Let a}l,aé,...,ag"l where i; € [1 : nj] for j € [1 : m]
represent the possible values for m confidential attributes.
Instead of releasing the attributes separately by applying the
privacy mechanism independently to each attribute, we can
instead release them in one vector. We must then consider the
distribution of all combinations of values for the confidential
attributes and the output for the mechanism will be of the
format [a}I , a;‘;, cey a;.’:" ]. With this in mind we can now argue
that the results in Figure 7 also apply to multiple nominal
attributes. For example, n = 4 not only represent one nom-
inal attribute with 4 possible values but also corresponds to
2 binary attributes. Hence, our results show that increasing the
amount of attributes increases the utility difference between
the mechanisms.

In addition, we note that the computation of achieved ¢ in
(2) from using mechanism 3 can also be used to compute
the achieved t for (k,)-closeness. The computation in (2)
relies on the worst-case scenarios of all confidential values
being identical in an equivalence class, which corresponds
to the same computation needed to compute t for (k,1)-
closeness. By applying Theorem 4 we can now also argue
that mechanism 3 can be used to satisfy (k,€)-DP. With
this in mind, we can provide another example for when our
framework provides increased utility. Suppose we need to
achieve both (kg, fp)-closeness and (N — ki, €g)-DP where
ko = ki. Selecting mechanism 3 to be used for both
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Utility computed with (4) for varying fy for the e-LDP mechanism (solid), combined f-closeness and e-LDP mechanism (dashed), and f-closeness

mechanism (dash dotted) when the number of output variables n is 2,4, and 6. The utility of the f-closeness mechanism marks the upper limit for the utility
from the combined mechanism for a fixed t = fp and shows that the utility for the e-LDP mechanism is always higher or equal to the utility for the combined

mechanism. The utility difference is also seen to increase with increasing n.

(k, t)-closeness and (k, €)-DP, we will now compare the use
of mechanism 3 once to achieve both (kg, fp)-closeness and
(ko, €0)-DP, Scheme 1, to using mechanism 3 twice as a
concatenation of the mechanisms for (ko, fp)-closeness and
(ko, €0)-DP, Scheme 2. For Scheme 1, Theorem 4 gives
€ = €9, which implies that we need to apply the (ko, €o)-
DP mechanism once to satisfy both privacy definitions. Since
Scheme 2 uses this exact mechanism plus another mechanism
we can conclude that Scheme 1 provides better utility than
Scheme 2 due to additional noise being applied in Scheme 2.
Thus, our framework improves the utility in this case too.

As a final remark, it should be mentioned that the utility
gain from using the proposed framework is dependent on
existing mechanisms for the privacy definitions between which
an implication exists. The framework reveals new mechanisms
for privacy definitions by allowing mechanisms from other
privacy definitions to be used. If a utility gain is achieved or
not therefore depends on properties of these mechanisms as
well as and properties of the found implication function. For
example, we would expect to see a utility gain in the case A
= B where the mechanism for A has better or similar utility
than the mechanism for B, and the implication function f(a)
does not require very strict privacy levels a for A to achieve
any privacy level g for B.

VI. CONCLUSION

We have shown that DP and a form of syntactic privacy
called f-closeness are closely linked in both directions in terms
of how the privacy levels can be translated between the models.
An extension and respectively a generalisation to the models,
(k, t)-closeness and (k, €)-DP, provide the missing link that
enables us to more fully connect e-LDP, k-anonymity with
multiplicative f-closeness, and e-DP. This extended knowledge
of the models’ connection can assist data publishers when
deciding on an appropriate privacy definition for their appli-
cation and can increase the utility of the data in cases where
both ¢-closeness and DP are desired. We showed how using a
€-LDP mechanism to guarantee both e-LDP and multiplica-
tive f-closeness for certain desired privacy levels, fp and
€p, provides better data utility than sequentially applying a
multiplicative #-closeness mechanism and a e-LDP mechanism
to obtain the same privacy levels.

Future research on this topic could reveal functions that
give a more precise estimate of the optimal privacy levels
in the implications than what we have shown in this paper.
It may also be possible to show more general results regarding
the utility gains of utilising our framework. In addition, our
privacy implication mapping can be extended to include addi-
tional privacy definitions under the privacy models f-closeness
and differential privacy.

APPENDIX

This section contains proofs of Lemmas and Theorems from
the main part of the paper. We consider the tables presented
in the proofs as being the result of having applied a privacy
mechanism Z to a dataset. The tables have two or three of
the following attributes: Id which is the row number of the
record, QI which is a quasi-identifier attribute for the records,
and attribute probability which presents the probability that a
record with Id i € [1 : N], where N is the number of records,
has a confidential attribute value ¢; = a;. Here we only
consider the case where the confidential attribute is limited
to two values, a; and ap, as it captures the ideas required
for proving the results in general. We use the notation g;,
i € [1: NJ, to represent the quasi-identifier for the record with
Id i and xp € range(QI) is a value used to sort the records
into equivalence classes based on their quasi-identifiers.

For our proofs we use the set of buckets {By,..., By} as
defined in Definition 7. We have also adopted a shortened nota-
tion for Pr(Z(c;)), where Pr(Z(c;)) = Pr(Z(c;) € By), | €
[1 : pl, in order to declutter some equations. In these cases,
buckets play a minor role in the proof and it is implied that
the equations are to hold for all buckets B;, I € [1: p].

A. Proof of Theorem 1

Proof: (Theorem 1) Consider the two equivalence classes
in Table III. Using Definition 4, we get

Prj({a1}) = Prg,({a1}) = Prg, ({a1}) = g,
Prj({a2}) = Prg, ({a2}) = Prp, ({a2}) = 1 — .
The anonymised dataset in Table III thereby satisfies

1-closeness independently of the value of ¢. To calculate €
in local e-DP for the dataset we note that from Table III we
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TABLE III

RECORDS 1-2 AND 3-4 CONSTITUTE TwO EQUIVALENCE CLASSES
E| AND E7. THIS DATASET FULFILS MULTIPLICATIVE 1-CLOSENESS
AND LoCAL In 2u—0)/s-DP

T QI Atiribute probability
B 1 i1 <ag | Prlei=a1)=p
2 | qiza<mo | Prlca=a1)=p
B 3 qiz > o Pr(C3 =a1)=0
2[4 [ qia>m0 | Pr(cs=a1) =2

have Pr(Z(c1) € {a1}) = p and Pr(Z(c3) € {a1}) = 0. From
Definition 6, the dataset fulfils local e-DP only if € > In(x /o).
Now suppose that there exists a function f such that
multiplicative f-closeness = f(f)-LDP. We know that € =
In i /o and that g is independent of ¢, which imply that letting
o — 0 causes ¢ — o00. We also know that the mechanism
that has been applied to Table III guarantees multiplicative
t-closeness for t = 1, that is, the ¢ value is independent
of . The value of ¢ can therefore be chosen arbitrarily
close to 0 without affecting the ¢ value. In addition, if we
let each unique value of o represent a different mechanism
for multiplicative f-closeness, then we can always choose a
sufficiently small ¢ such that the resulting optimal privacy
level €* = In(u /o) fulfils f(f) > €*. Hence, there exists at
least one mechanism for multiplicative f-closeness that cannot
guarantee e-LDP for a fixed ¢ which leads to a contradiction.
Thus, multiplicative f-closeness = local e-DP. See Section A
for additional comments. |
1) Additional Comments for the Proof of Theorem 1: We
can further show that the privacy parameters for multiplicative
t-closeness, k and N, where k is the size of the smallest
equivalence class in D and N is the number of records, also do
not impact the lack of implication between multiplicative #-
closeness and local e-DP. Suppose that there exists another
function fi y such that multiplicative f-closeness = local
Ji,n(£)-DP. Such a function would only be able to provide
a lower limit for € if k, N, and ¢ affect the value of e.
We can however show that € can vary independently of k, N,
and f. For example, record 1 in Table III can be replicated
and added to the first equivalence class without affecting ¢
or € since the mean probability is preserved. Hence f and N
cannot solely determine e. Furthermore, k can be increased by
adding records to the first equivalence class as described and
changing the second equivalence class to contain k records
where k — 1 records contain attribute a; with probability
a/(k—1) and the remaining record contains a; with probability
— (k — 1)o. This new table has the same value of f and ¢
can still vary independently of ¢,k and N.

B. Proof of Lemma 2

Proof: (Lemma 2) The proof of points (1)-(3) in Lemma 2
can be simplified by observing that the value of ¢ in (k,1)-
closeness is solely determined by the group of k records, E]fm
and Eﬁm, that has the highest respectively smallest probability
of taking on any of the possible bucket values. For the three
properties we can then state the following

1) Consider the two record groups Eﬁax, EEH of size
ko that have the highest respectively smallest probability
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TABLE IV

THIS DATASET SATISFIES (k, f)-CLOSENESS WHERE! = N —k+ 1 < 00
WHILE f = oo FOR (kp, t)-CLOSENESS WITHkp < k

Id Attribute probability
1 Pr(ci =a1) =0
k—1 | Pr(cg_1 =a1)=0
k Pr(ey =a1)=p
N Prley =a1) =p

of taking on any bucket value B;, [ € [1 : p], in a
(ko, to)-closeness dataset. More formally, Ef,,“ax ={E;:

Ei = {rji,rjys--sTj, L Ej = {rji,rjs, ...,rj;_o} such

that Prg, (B)) = Pre;(Bi) and jg # jg1,jy # Jons
if ¢ # q',q" # q"" for jg, jy € [1: N1l € [1:p],
and q,q',9',q"" € [1:kol}, where r; is referring to
a record in the dataset. We can similarly define E:fm

with the inequality turned so that Prg; (B,-) < Prg; (By).
ky

min of size

For the corresponding record groups Enm, E
k1 = ko we have two cases.
a) An extreme valued record set Efl, X € {max,min}
occurs for the same bucket value B; as Ef” Then
ER® < EM and any additional records in EX will
have probabilities closer to the mean value of the
whole dataset or equal to the kgth highest or lowest
probability. That is, PrE,‘I (By) < Pr o (By) or

Pr k1 (B)) = Pl'EkO (B,-) “Which resulls inf; <

to accordmg to Definition 7.

b) An extreme valued record set EJ|c , X € {max,min}
occurs for a different bucket value B;, j € [1: p] :
Jj#LPr £ (Bj) must then be closer or equally
close to the mean value compared to Pr o (By).
Using the result in (a) we therefore get
Pl'kl(B) = Pryy (Bj) < Pr 1 (By) or
pr o (Bj) = PrEJ‘D"TB ) = Prpg (ﬁ’) which
resu"its in f; < fo.

Thus, we can choose the function f(f) = ¢ which fulfils
(ko, t)-closeness = (ki1, f(r))-closeness for k1 = ko.
2) Consider the sanitised dataset in Table IV where u > 0.

This dataset satisfies (k, t)-closeness where

t = W—kiDp/y = N —k +1 < oo while (ko, tp)-
closeness for kg < k results in fy = oo. Thus, there exist
no function fi(f) that based on the values of k and ¢
for a dataset satisfying (k, f)-closeness can compute a
lower limit of fp for (kp, t)-closeness with ky < k, that
is, (k, t)-closeness % (ko, fg)-closeness for kg < k.

3) To show that (k, t)-closeness = multiplicative
fo-closeness, consider a dataset that satisfies multiplica-
tive f-closeness with a fixed partition of equivalence
classes {Ey, ..., E,}. For any equivalence class E; €

{E1,..., Ep}: |Ej| = k and any bucket B;, I € [1: p],
we have
Prg;(Bi) < Prgr (Bi) )
Prg;(By) > Prgt(Bi) (€]
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TABLE V

THIS DATASET SATISFIES 1-CLOSENESS INDEPENDENTLY OF ¢ WHILE THE
VALUE OF t FOR (k, )-CLOSENESS IS DEPENDENT ON &

d ] QI Attribute probability

B 1 gi1 < zp | Pr(er = a1) _Q,u—cr
1 2 gqiz <xzg | Prlca =a1) =

B 3 qiz > o Pr(C3 =a1) = 2p — 0o
2[4 [ qia>z0 | Prlca=a1) =

due to the definitions of EX__and Eﬁﬁn. For equivalence
classes E; € {Ei,...,En} : |Ej| = k' = k we

can use this result and the result in item (1a) in this
proof to show that Prg; (B) < PrEp (B) < Pree (B)
and Prg;(B) > PrEk« (B) > Pl'Ek ?B) Accordmg to
Definition 7 we theréfore must have fo < t. Thus,
we can choose the function f(f) = ¢ which fulfils
(k, t)-closeness = multiplicative f(t)-closeness.
To show that multiplicative f-closeness = (ko, fo)-
closeness, first observe the dataset fulfilling multiplica-
tive 1-closeness in Table V.
We select kp = 2 and assume that g > ¢. Table V
then satisfies (ko, fp)-closeness for fo = /s but & does
not affect the value of ¢ for multiplicative f-closeness.
Similar to the proof of Theorem 1 we can show that
there exist no function fj, () that for a dataset satisfying
multiplicative f-closeness can compute a lower limit of
to for (ko, tp)-closeness.

4) The property follows directly from Definition 7. ]

C. Proof of Theorem 2

Proof: (Theorem 2) Let = & 3 ;1.3 Pr(Z(ci), for a
bucket B;, [ € [1 : p]. Starting with k = 1 in Definition 7 we
can write the privacy guarantee for (1, f)-closeness as

% <Pr(Z(c)) <t ©)

for all i € [1: N]. This gives

I

Pr(Z(ci)) <tu = rz; < 2 Pr(Z(c;))

for any i, j € [1 : N]. The same can be shown to hold for all
I € [1: pl. Thus, (1, 1)-closeness = local In(¢2)-DP since the
function f(t) = In(t2) approximates a lower estimate of € in
local €-DP for a dataset that satisfies (1, )-closeness.
Starting instead with Definition 6 for local e-DP we have
Pr(Z(c;)) < e Pr(Z(c;)) for all i, j € [1 : N]. Thus

1 1
p= F;E%]Pr(z(m) < (€N =D Pr(Z(c)))
Rz = LD e w1+ 1) (10

for any j e [1 : N]. Similarly, by shuffling the local e-DP
requirement we get e Pr(Z(c;)) < Pr(Z(c;)) and

1 1
p= F;E%]Pr(z(m) > (€ (N =) Pr(Z(c;))
+Peze)) = D e -+ an
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TABLE VI

THIS DATASET SATISFIES (2, 2)-CLOSENESS INDEPENDENTLY OF ¢ WHILE
THE VALUE OF € IN LOCAL ¢-DP IS DEPENDENT ON @

I

(=N

Attribute probability

1 | Prlei=a1)=p

2 Pr(ca = a1) = 2u

3 Prica=a1)=p—o
4 Prlca=a1)=o

for any j e [1 : N]. Equations (9), (10), and (11) now reveal
that we can choose

7@ = max (W -1+,

-D+ )
e<(N—1)+1)
= —; (N —1)+1)

since the first term is always greater than the second, and
hence, local e-DP= (1, f(e))-closeness. We have thereby
shown that local €-DP < (1, f)-closeness. [ |

D. Proof of Theorem 3

Proof: (Theorem 3) To prove that local e-DP = (k, t)-
closeness for k > 1 we can use all but the last step in
the proof for local e-DP = multiplicative f-closeness by
Domingo-Ferrer and Soria-Comas [5]. Instead of assuming
that there exist multiple equivalence classes in the last step
we ensure that the closeness of the distributions ensured for
multiplicative -closeness has to hold for all subsets of size k,
concluding that local e-DP = (k, f)-closeness where

po k(N
=5 ; .

On the other hand, we can use the example in Table VI to
show that (k, )-closeness % local €-DP.

Assuming that ¢ < pu and selecting k = 2 we can
comzpule that Table VI satisfies (2,2)-closeness since t =
U‘%%ﬁ = 2 independently of ¢ and u. However,
noting that € in local e-DP is determined by the multiplicative
difference between the largest and smallest attribute probabil-
ity we get € = In(2#/s), that is, € is dependent of € and u.
With similar arguments to the ones in Section A we can show
that there exist no function f(f) that can estimate a lower
bound for € in local ¢-DP and hence (k, t)-closeness # local
e-DP for k > 1. ]

E. Proof of Lemma 3

Proof: (Lemma 3) We prove each point listed in Lemma 3
separately.

1) This lemma follows from point (1) in Lemma 2 by first
observing that (ko, 1)-DP & (N — ko, f)-closeness and
(k1,€)-DP & (N — ki, t)-closeness and secondly that
k1 = ko entails N — k; < N — ko.

2) Analogously to point (1), this lemma follows from
point (2) in Lemma 2 by first observing that (ko, )-DP
& (N — ko, t)-closeness and (kq, €)-DP & (N —ky, 1)-
closeness and secondly that k; < kp entails N — k1 >

N — ko.
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TABLE VII

THIS DATASET SATISFIES e-DP WHERE € = max(N/N—1, (N=Dk/(k—1)N)
INDEPENDENTLY OF THE VALUE OF a WHILE IT SATISFIES (K, e;)-DP
WITH ¢j = (N—k)uk/Na WHICH Is DEPENDENT OF a

Id Attribute probability
Pr(ci =a1) =

k-1 Prlck—1=a1)=p
k Pricy, =a1) =p—a
k+] | Prlcg41 =a1) =«
k+2 Pr(Ck+2 = a1) =0

N -].é’r(cN =a1)=0

3) This is a trivial case since setting k = 1 in Definition 8
for (k, er)-DP gives Definition 5 for e-DP. Thus the
function f(€) = € can estimate a lower limit in both
(1,€x)-DP = f(ex)-DP and e-DP = (1, f(€))-DP.
In addition, f(f(€)) = € and thus (1, €)-DP & €-DP.

4) (k, €)-DP = €-DP follows as a special case of point (1)
in Lemma 3.

To show that e-DP = (k, €;)-DP, consider the sanitised
dataset in Table VII where 0 < a < u.

The dataset in Table VII satisfies ¢-DP and (k, € )-DP
where

N (N-—1k
€ = ma (ﬁ k — I)N)
(N — )k
Na

Since ¢ is inversely proportional to a while €, k, N are
independent of a, knowing €, k, N is not enough to put
an lower bound on the value of ¢;. Thus, there exists
no function fi(e) that can compute a lower limit for
the privacy level of (k, €;)-DP given a dataset satisfying
€-DP since we can always choose a value of o so that
Ji(€) > &

5) The property follows directly from Definition 8. [ ]

€ =

E Proof of Theorem 4

Proof: (Theorem 4) To show that (k, f)-closeness & (N —
k, €)-DP we start by using more similar notation for the two
privacy definitions. In Definition 8, we can fix Q(D) to be a
query that returns the distribution of the confidential attributes
c; for the dataset D so that Pr(Z(Q(D)) € B;) = Prp(B)),
for all I € [1 : p], where the right hand side is defined in
Definition 7.

We can now present the two privacy definitions as

o Prp(By) .
~ Prpy i, (B) T
I_l < PI'D(BI)
- PrDﬂ'tClo (BI') -

where kpp and kicj, are the separate k parameters for the two
privacy definitions.

The numerator in both expressions is independent of the
choice of k and we can select kpp = N — kicio to make the
definitions identical for ¢ = e€, irrespective of the choice of
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I € [1: p]. We can thereby identify two functions f(f) =In¢
and g(e) = e that for all € [1,00) and € € [0, co) fulfil
(k, t)-closeness = (N —k, f(t))-DP and (k, €)-DP = (N —
k, g(e))-closeness. In addition, f and g satisfy f(g(e)) =€
and g(f(t)) = t. Hence, (k, t)-closeness & (k, €)-DP.

To show that (kicio, f)-closeness &=  (kpp, €)-DP when
kpp > N — kil we can use point (1) in Lemma 2 and
point (1) in Theorem 4. Observing that (k:ci,, f)-closeness
Z (N — kpp,t)-closeness < (kpp, Int)-DP proves the
implication in point (2) in Theorem 4 since the function
f(r) = In(r) is able to give a lower bound estimation to €
for (kpp, €)-DP given a dataset satisfying (kicio, #)-closeness.

The lack of implication in point (2) follows by revers-
ing the previous observation and applying Lemma 2 again
since (kpp, €)-DP < (N — kpp, e€)-closeness = (k;cio, €€)-
closeness.

Analogously, a proof for point (3) in Theorem 4 can be
constructed using point (1) in Lemma 2 and point (1) in
Theorem 4. ]

G. Proof of Theorem 5

Proof: (Theorem 5) Consider the two equivalence classes
in Table III. Assume that individuals’ quasi-identifiers are
known so that any individual can be linked to an equivalence
class. By using Definition 8 for (ko, €)-DP, applying it to each
equivalence class with kg = 1, and noting that Pr(Z(c3) €
{a1}) = o and Pr(Z([c3, c4]) € {a1}) = u we compute that
the dataset in Table III satisfies (1, #/s)-DP. The dataset in
Table III also satisfies multiplicative 1-closeness.

With the same arguments as in the proof of Theorem 1,
Section A, we can show that there exists no function fi,(f)
such that multiplicative t-closeness = (ko, fi, (t))-DP. There-
fore multiplicative f-closeness # (k, €)-DP. |
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