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Entropy-driven order in an array of nanomagnets
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Long-range ordering is typically associated with a decrease in entropy. Yet, it can also be driven by increasing entropy in cer-
tain special cases. Here we demonstrate that artificial spin-ice arrays of single-domain nanomagnets can be designed to pro-
duce such entropy-driven order. We focus on the tetris artificial spin-ice structure, a highly frustrated array geometry with
a zero-point Pauling entropy, which is formed by selectively creating regular vacancies on the canonical square ice lattice.
We probe thermally active tetris artificial spin ice both experimentally and through simulations, measuring the magnetic
moments of the individual nanomagnets. We find two-dimensional magnetic ordering in one subset of these moments, which
we demonstrate to be induced by disorder (that is, increased entropy) in another subset of the moments. In contrast with
other entropy-driven systems, the discrete degrees of freedom in tetris artificial spin ice are binary and are both designable
and directly observable at the microscale, and the entropy of the system is precisely calculable in simulations. This example, in
which the system’s interactions and ground-state entropy are well defined, expands the experimental landscape for the study

of entropy-driven ordering.

ing driven by maximizing entropy is observed in only a few

systems in nature', such as vibrofluidized hard spheres, in
which ordering maximizes the spheres’ so-called free volume®”.
Often, ordering in one subset of degrees of freedom is driven
by the possibility of increasing entropy in another subset, and
thus of the total entropy. For instance, in the thin rod model of
Onsager’, rods order nematically to increase their translational
entropy”®. Entropy-driven ordering has been demonstrated pri-
marily in out-of-equilibrium soft-matter systems such as col-
loids, hard-sphere suspensions and liquid crystals, where it has
importance in self-assembly”'® for systems of biological and
technological relevance*>®!'-'*. Furthermore, entropy maximiza-
tion is also implicated in the formation of high-entropy alloys of
metallurgical importance®.

While these effects have been studied in chemistry and in the
physics of soft matter, a related yet different phenomenon in mag-
netic materials, so-called order by disorder'®", pertains instead to
the interaction of spins arranged on a lattice in magnetic materi-
als where collective excitations among magnetic moments select an
ordered rather than disordered configuration in the ground state'*-*".

In this Article, we report entropy-driven ordering in an artificial
spin ice, a structurally ordered nanomagnet array’**. Specifically,
we examine entropy-driven ordering in tetris artificial spin ice
(referred to as ‘tetris ice’ for the remainder of the paper)**”. We
demonstrate a different paradigm for such ordering, quite distinct
from what has been observed previously. Crucially, ordering in this
system has strong similarities to the soft-matter systems described
above, even though tetris ice is a structured nanomagnet array with
no mechanical motion. Its degrees of freedom are, instead, the

| he somewhat paradoxical phenomenon of long-range order-

binary orientations of the nanoscale moments that are configured
through thermalization.

Artificial spin ices can serve as models for a wide range of
unusual physics unavailable in other systems because they can be
lithographically designed at will. The ability to probe the magnetic
degrees of freedom at the resolution of a single magnetic moment
has provided the first realizations of celebrated vertex models* and
also led to experimental demonstrations of a number of new models
for collective behaviour?**>*. Relevant to our study, the characteris-
tic that the individual magnetic degrees of freedom are constrained
to point in one of two directions for each moment sets tetris ice
apart from the entropy-driven orderings referenced above.

The structure of tetris ice is obtained by selective removal of
moments from the canonical square ice structure, as illustrated in
Fig. 1a,b. This system belongs to a category of artificial spin ices that
are ‘vertex-frustrated”®?, that is, structured such that every lattice
vertex cannot have its moments arranged in their local low-energy
configuration. As a result, the system necessarily has multiple
‘unhappy vertices’ that are excited out of their local vertex ground
states, as well as zero-point entropy associated with the degeneracy
in allocating the unhappy vertices within the lattice.

We start our discussion of the collective states of tetris ice with
a description of the energy and entropy of moment configurations
at low energy. As indicated in Fig. 1b, the system’s lowest-energy
manifold is composed of two different one-dimensional subsystems
of alternating stripes of moments, so-called backbones (BBs) and
staircases (SCs)*>”. In the system’s ground state, the SC moments
contain unhappy vertices and are disordered. Moreover, the indi-
vidual SC zero-temperature disorder, and thus its correlations,
are well described by a disordered one-dimensional Ising phase”.
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Fig. 1| Tetris artificial spin ice. a, Scanning electron microscopy image of a
tetris artificial spin ice (sample A). b, Schematic of the tetris ice structure,
showing BB nanomagnet islands (blue) and SC islands (grey) with vertical
(dashed borders) and horizontal moments (solid borders). The longitudinal
direction is defined as the direction parallel to the stripes, approximately
26.5° from the horizontal, and the transverse direction as perpendicular

to that. ¢, XMCD-PEEM image of the tetris ice lattice, showing the
direction of the incident X-ray beam (yellow arrow). The islands that have
a magnetization component along (opposite to) the X-ray direction yield
black (white) contrast (sample A at T=120K). d, Magnetic moment
configuration map corresponding to ¢ with the same colour scheme as in b.

In contrast, the BB moments do not contain any unhappy verti-
ces and are ordered longitudinally, that is, along the length of the
stripes. Within a nearest-neighbour coupling approximation, a
given ground-state configuration of the array receives no energetic
advantage from being transversely ordered, meaning that mutual
order among the different BBs is neither favoured nor disfavoured
energetically®.

To characterize ordering among the BB moments, we use the
staggered order parameter, (W) = (—1)"" SBB, where S,J denotes
the polarization of the BB moments and i and j are the vertical and
horizontal location indices of the moments in the underlying square
ice lattice®. Note that ¥ here is simply the standard antiferromag-
netic order parameter for the ordering of square ice: the average
value (¥) = %1 corresponds to the two equivalent ordered ground
states of that lattice. In other words, two ordered BBs have the same
(@) if their moments’ orientations belong to the same ground state
of the underlying square lattice.

Figure 2a schematically illustrates the case of neighbouring BBs
in the ground state with the same (¥). It has been proven that, in
this configuration, the ground state of the SC moments between the
BBs is necessarily disordered”. An alternative ground state for the
system has neighbouring BBs with values of (¥) alternating between
+1 and —1 (Fig. 2b). In this other ground-state configuration, the
SC moments between the BBs must be ordered”. These two alter-
native ground-state configurations have the same energy, but the
disorder in the SCs of the former gives an entropic advantage for
neighbouring BBs to have the same value of (¥). Thus, there is an
entropic advantage for the entire two-dimensional system to have
all BBs with either () = 1or (¥) = —1, implying two-dimensional
order among the BB moments. In other words, the BBs order to the
same (¥) to gain global entropy for the system, which comes from
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Fig. 2 | Entropic interactions in tetris ice. a, Schematic of a ground-state
configuration that leads to maximal disorder in SCs due to the transverse
ordering among the BBs, all having the same (¥). b, Schematic of a
ground-state configuration where BBs alternate their order parameter
(@), leading to the SC moments being ordered. ¢, Schematic of BB defect
attraction where two longitudinal defects attract each other due to the
entropy cost of ordering portions of the adjacent SCs. d, Schematic of

BB defect attraction across multiple BBs, where BB defects attract each
other due to the entropy cost of ordering portions of the adjacent SCs,
thus favouring two-dimensional domain walls that cross multiple BBs.
Moment orientations that correspond to these schematics are shown in
Supplementary Fig. 2.5.

Defect attraction

YWWWW

the entropy of the disordered SC moments. The system sacrifices
the entropy that it would gain by having randomness in the value of
(¥) among different BBs because that entropy scales subextensively
(since (¥) is binary, the entropy of a BB-disordered configuration is
proportional to the number of BBs in the system, which scales as the
square root of the area of the array). In doing so, the system gains
entropy from the SCs, which instead scales extensively, that is, with
the system size (Supplementary Section 5).

Entropy maximization implies mutual transverse ordering
among BBs, but it also explains the longitudinal ordering within
a single BB. Consider a configuration of ordered BBs all with the
same (¥) but in which one BB has a finite longitudinal domain of
length L, with opposite (¥) (Fig. 2c). The two defects induce two
ordered regions on the adjacent SCs, above and below the domain,
corresponding to an increase in the SC free energy of approximately
AF = K + TLgssc, where K is the energy of the domain boundaries,
T is the system temperature, and ssc is the entropy per moment of
the disordered SC (Supplementary Section 5). This entropic term
in the free energy yields a constant attraction ~Tssc among the two
defects, suppressing the growth of the bound domain. This purely
entropic interaction is crucial to explain the individual longitudinal
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Fig. 3 | Two-dimensional ordering in tetris ice. a, Digitized XMCD-PEEM snapshot of tetris ice near the ground state, showing single-domain ordering
of the BBs (sample A at T=120K). b, Digitized XMCD-PEEM snapshot of tetris ice above the ground state, showing BBs ordering in two-dimensional
domains while the SCs remain disordered (sample B at T=190K). Black dots indicate unhappy vertices. The red and blue arrows indicate regimes of
opposite antiferromagnetic order parameter. ¢, Staggered antiferromagnetic order parameter for the BB moments plotted as a function of increasing
average vertex energy from sample A to C. d, Relative probability of flipping for BB, horizontal and vertical SC islands, that is, the fractional flip rate,
showing that more than 80% of the kinetics is in the SCs. Error bars show the s.d. of the data collected at different temperatures.

ordering of the BBs since, as a one-dimensional system, a single BB Section 2 for details), the system ranged from the moments fluctuat-
would not be expected to order without this attractive interaction  ing faster than the images could capture at the highest temperatures
among defects. Using similar reasoning, one can show that defects  to the moments being effectively frozen at the lowest temperatures.
on neighbouring BBs also interact entropically, favouring their = We note that this technique has been demonstrated previously to
alignment into two-dimensional domain walls (Fig. 2d). effectively thermalize the moments in artificial spin ice*’ and has
We now turn to experimental studies of this system. We have  been used extensively under the assumption of thermalization***.
experimentally investigated the entropy-driven ordering in tetris  For all of the samples, the temperature dependence of the average
ice through X-ray magnetic circular dichroism photoemission elec-  vertex statistics is quite small, suggesting that the system thermal-
tron microscopy (XMCD-PEEM) measurements on three samples  ized at room temperature, and relaxed upon cooling to a metastable
of tetris ice composed of thin permalloy (NigFe,) nanoislands. moment configuration within which the moments fluctuated with-
The thickness (~3nm) was chosen so that the island moments out further reducing the overall system energy. This suggests that
were thermally active in the measurement temperature range, that  further relaxation to the ground state is limited by the complex
is, thermal moment reversals occurred on the time scale of imag-  topology of the lattice’>”, in combination with intrinsic structural
ing. The samples (A, B and C) had different interaction strengths  disorder associated with limitations of the lithography.
between neighbouring moments, associated with differences in the Figure 3a,b shows schematics of the digitized moment configu-
island size and spacing. Sample A (studied previously”’) had the rations obtained from XMCD-PEEM measurements of two samples
strongest interactions while sample C had the weakest interactions,  with different interaction strengths and therefore different proximity
based on micromagnetic calculations. A representative scanning  to the ground state. Figure 3a shows a moment configuration close
electron microscopy image is shown in Fig. 1a, and detailed descrip-  to the ground state, demonstrating close to full two-dimensional
tions of the samples and measurements are given in Methods and  ordering of the BBs, coexisting with disorder in the SCs. Note that
Supplementary Section 1). the ordered configurations in the BBs correspond to those of the
The XMCD-PEEM technique allows full-field imaging of antiferromagnetic ground state of square ice from which the tetris
moment orientations in the lattice on time scales on the order of ice structure is obtained, but the disordered moments on the SCs
seconds. A typical XMCD-PEEM image is shown in Fig. 1¢,and the  do not. This ordering is apparent in the series of so-called type I
corresponding map of moment directions is shown in Fig. 1d. In  vertices’ in the BBs that correlate both along the BBs and across
the temperature range studied for each sample (see Supplementary  them, leading to visible structure in the moment orientation, that is,
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Fig. 4 | Longitudinal and transverse moment correlations. a, Schematic of the tetris ice structure highlighting the horizontal SC islands, showing the

two horizontal SC islands that are each other's nearest neighbours in the longitudinal (green) and transverse direction (blue) as well as the next-nearest
neighbours in the longitudinal (purple) and transverse direction (orange). We do not consider the pairs of horizontal moments that are within a particular
stair of the SCs, since such pairs are highly correlated. b, The average moment correlations as a function of distance (in units of the lattice constant of the
underlying square ice lattice structure) within horizontal SCs (longitudinal correlations) for the three samples studied. ¢, The average moment correlations
as a function of distance across the horizontal SCs (transverse correlations) for the three samples studied. d-f, As in a-c but for the BB moments. g-i, As in
a-c but for the vertical SC moments. Error bars represent the s.d. of the data collected at different temperatures.

the formation of near-complete loops of approximate head-to-tail
flux closure in the moment orientations, broken only by disorder
on the SCs. Such structure can also be seen to a lesser extent in
Fig. 3b, which shows a moment configuration somewhat further
from the ground state with domain walls in the BBs between regions
of different (¥).

Figure 3c shows the resulting order parameter (¥) as a func-
tion of the average vertex energy for the different samples, not-
ing that the different interaction strengths associated with the
differences among the samples lead to different energies in the
thermalized states. The average vertex energy, E,,,, is defined as
Eavg = Y €aNa/Nioral» where Ny is the number of observed vertices
of type a, &, is the vertex energy and N, is the total number of
vertices. The vertex energies, &,, were calculated using micromag-
netic simulations® for different vertices, lattice constants and island
dimensions (see Supplementary Section 3 for details). The numbers
of vertices, N,, were extracted from the XMCD-PEEM data. Since

the temperature dependence of the vertex statistics was weak, we
show data averaged over the full temperature range in which we
took data (see Supplementary Section 2 for details).

Because (¥) in Fig. 3c is measured over the entire image, its
increasing value with stronger interaction energy corresponds to a
transverse ordering of the moments in the BBs. Figure 3d shows
the fractional flipping rate of different moments in the system as
a function of the interaction energy (defined as the fraction of the
moment flips between successive frames that are among the BB
moments, vertical SC moments or horizontal SC moments). The
results show that the kinetics are largely confined to the disordered
SCs, especially for the interaction energies of largest magnitude.

We now analyse the longitudinal and transverse correlations to
quantify the two-dimensional order across the system. If SEB and S5%
are two BB moments, we define their transverse and longitudinal
correlations as Cgg = SgBS%ﬁ (=1)"" 7 where Cy=+1 if the
moments have the same value of ¥ and Cy; =—1 if the values of ¥ are
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Fig. 5 | Two-dimensional ordering in tetris ice simulation. a, Specific heat (C,), entropy (S) and order parameter (¥) for the BB moments versus
temperature computed via Monte Carlo simulations (details provided in Supplementary Section 4). The specific heat shows a peak corresponding to
the entropy-induced ordering transition of the BBs, while the entropy shows a residual value at zero temperature that is associated with the SCs. b, The
temperature dependence of the moment fractional flip rates for different types of moments in the lattice.

opposite. For both horizontal and vertical SC moments, we instead
define the usual ferromagnetic correlation, that is, Csc = S,SjCSf‘/?,.
Since we are primarily interested in longer-range correlations, we
consider only those horizontal SC moments where the two adjacent
moments in a step are aligned head to tail.

Figure 4 shows measured correlations among different moment
pairs for the three samples, again averaged over all temperatures.
The error bars here represent the s.d. of the data collected at dif-
ferent temperatures. Figure 4a defines the pairs of nearest- and
next-nearest-neighbour moments, both longitudinally and trans-
versely, through colour labels (similar definitions apply in Fig. 4d,g).
Figure 4b plots longitudinal correlations of horizontal moments
within the same SCs. Note that the distance dependence of the lon-
gitudinal moment correlations within the horizontal SCs does not
change much among the samples, because those correlations are a
property of the constrained disorder of the ground state. By con-
trast, there are considerable differences among the three samples in
the longitudinal correlations within the BBs (Fig. 4¢). They become
increasingly more correlated with increasing interaction strength
(from C to B to A), and the correlations evolve to an almost flat
(Cgg) = 1value as a function of distance for sample A, as expected
for the ground state.

We now consider correlations transverse to the BBs and SCs.
Figure 4c shows no discernible transverse correlation among the
horizontal moments of different SCs. In contrast, Fig. 4f reveals
considerable transverse correlations among BB moments, with cor-
relation values almost as large as in the longitudinal case (Fig. 4e).
As in that case, they grow with increasing interaction strength,
eventually approximating the flat (Cgg) = 1 value that corresponds
to two-dimensional long-range order. This can be seen clearly in
real-space snapshots that reveal isotropic domains of various sizes
(Supplementary Figs. 2.6-2.8). The contrasting complete lack of
transverse order among the horizontal SC moments is a clear indi-
cation of the separation of the BBs and the SCs in terms of their
entropy, with the entropy of the BBs minimized and the entropy
of the SCs (and thus of the whole system) maximized. Note that,
because the SCs separate the BBs, the impressive ordering of the
BB moments is strong evidence for the entropically mediated inter-
actions among the BBs. Our Monte Carlo simulations, discussed
below, show that a near-neighbour model, with no interaction
whatsoever among BBs, replicates these experimental findings
(Supplementary Fig. 4.2).

Completing our discussion of Fig. 4, the correlations among
the vertical moments in the SCs are shown in Fig. 4h,i. We observe
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that the correlation among the vertical moments is almost flat in
magnitude (but alternating in sign), as if they were ordered, but the
value of the correlation is [(Csc)| ~0.5 for sample A and smaller
for samples B and C. These moments thus possess features of both
long-range order (correlation almost constant in space) as well as
disorder, in the sense that |(Csc)| never approaches unity, even for
near neighbours. As shown in Supplementary Section 6, correla-
tions among vertical SC moments are dictated both by horizontal
SC moments, which are disordered, and also by the BB moments
surrounding the SCs, which are ordered. A value of |(Csc)| = 0.5
is expected in the system ground state. This sort of half-ordering
of the vertical moments is highly unusual in magnetic systems. It
is neither short-range ordering, which should approach |(Csc)| ~ 1
at short distances along a given lattice direction and fall sharply
with increasing separation, nor a disordered state, as the abso-
lute value of the correlation persists at nearly the same value with
distance. Rather, this represents a consequence of the peculiar
frustration in tetris ice.

We now discuss simulations of this system, which enhance our
understanding of the experimental results. The attribution of trans-
verse ordering to entropic effects assumes that the ordering does not
arise from long-range interactions among the moments. To confirm
that long-range interactions are not needed to explain the order-
ing, we performed Metropolis Monte Carlo simulations within a
vertex model that considers only interactions among moments
that share a common vertex. This excludes interactions amongst
the moments belonging to different BBs and SCs and thus provides
an important corroboration of the entropy-induced mechanism of
the BB ordering. Significantly, because the Monte Carlo simulation
produces a collective state that mirrors what we see in experiment,
it provides a separate validation that our experimental system was
well thermalized (details of the Monte Carlo results are given in
Supplementary Section 4).

Figure 5a shows the entropy, the specific heat and the order
parameter (¥) from our simulations, as functions of temperature.
We note the sharp peak in the specific heat, associated with order-
ing of the BBs. The transition temperature corresponds to the
energy scale of vertex interaction energies, which indicates that
longer-range interactions are not driving the transition, a conclu-
sion that is also suggested by the disorder on the SC moments. The
observation of an ordering transition among the BB moments,
a disordered state among the SC moments and a residual entropy for
the system, which must be associated with that disorder, shows the
clear separation of the entropy among the two subsets of moments.
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Because the BB moments are ordered, this simulation also provides
a quantification of the entropy associated with the SC disorder.

Figure 5b plots the corresponding temperature dependence of
the moment fractional flip rates, showing how the dynamics of
the system below the ordering temperature is confined to the SC
moments. Note that the fractional flip rates for both vertical and
horizontal SCs are non-zero at the lowest temperatures and the ver-
tical SC fractional flip rate rises continuously as the temperature
decreases, suggesting that those are the most active moments. This
again points to the distinct behaviour of the BB and SC moments
within the tetris ice structure, despite being strongly correlated.

We also use our Monte Carlo simulations to demonstrate
entropy-based ordering in a situation that cannot be easily repro-
duced experimentally. Specifically, we initiate the system in a
ground-state configuration corresponding to an order parameter of
zero, that is, (¥)=+1 on alternating BBs (Supplementary Fig. 4.3a).
We then allow the system to evolve at a temperature of only ~0.3T,
where T is the ordering temperature for the BBs. Our simulations
show that the system spontaneously evolves through thermal fluc-
tuations into a BB-ordered state corresponding to uniform (¥)=1
(Supplementary Fig. 4.3b). This further supports the robust nature
of the observed entropically driven ordering among BB moments
since it can be obtained through multiple thermodynamic paths,
not just through cooling from high temperature.

We now compare our entropy-driven ordering with similar phe-
nomena in other systems. Our observed ordering in the tetris ice
system is substantially different from the so-called order by dis-
order found in some other magnetic systems'*?’. In those cases,
fluctuations can lift the degeneracy of the ground state by select-
ing ordered states of lower energy excitation. In our case, however,
the very ground-state manifold at zero temperature ‘favours’ order,
because this order maximizes the residual entropy that results from
frustration. Indeed, configurations with ordered BBs numerically
dominate the ground-state manifold in the large size limit, as dem-
onstrated in Supplementary Section 5.

The tetris ice system is therefore conceptually closer in nature to
the entropy-based ordering seen in structurally disordered materi-
als, where some degrees of freedom become ordered to enable more
entropy in other degrees of freedom. A paradigmatic example is
the nematic ordering of rod-shaped objects in the seminal Onsager
model"*. The tetris ice system similarly has two distinct and compet-
ing entropies, that of the SC moments and that of the BB moments.
The latter is reduced to maximize the former, a mechanism which
maximizes the total entropy, analogous to the Onsager model. An
important difference, however, is that the tetris ice system is well
structured around a specific geometry, with discrete degrees of free-
dom that are accessible experimentally. While the two entropies cor-
respond in the Onsager model to different coordinates of the same
rods, in tetris ice they refer to different positions in a lattice. The two
cases are mathematically similar in that the entropy of a subset of
degrees of freedom is reduced to maximize the total entropy, but the
nature of the degrees of freedom are strikingly different, mechanical
and continuous in the former, binary in the latter, distinctly separat-
ing the two cases.

Many groups have now established that frustration in a magnetic
system can result in a residual entropy, with the spin-ice pyrochlore
materials providing an excellent example*. Our findings go consid-
erably further, demonstrating that such residual entropy can drive
robust ordering in a frustrated magnetic system. This suggests that
a range of other artificial spin-ice geometries could be designed to
tune the balance between energetic and entropic effects in ordering
of moments, a possibility that would be quite difficult to realize in
other physical systems.

The observation of entropy-driven magnetic ordering in the tet-
ris ice system also adds a new category to the types of systems that
display entropy-driven ordering. While our experiments are driven

purely through thermal effects, the addition of quantum fluc-
tuations™ will likely drive yet more exotic phenomena associated
with entropic considerations. Future studies will be able to probe
additional bespoke artificial spin ice structures with ground state
entropy that favours other types of ordering phenomena. More gen-
erally, our results show how non-trivial forms of frustration can be
used to generate unusual, even apparently paradoxical phenomena
that are broadly related to other physical phenomena in disparate
systems’, and to do so in ways that enable more detailed studies of
the microscopic driving behaviour.
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Methods

Arrays of tetris artificial spin ice with various lateral dimensions and thicknesses
were fabricated on silicon substrates with native oxide using electron beam
lithography and lift-off as described in previous work®>*>**. The bilayer e-beam
resist was spin-coated onto the substrate and exposed to the electron beam to
write the desired structures. After development, permalloy (Nig,Fe,,) films with
varying thicknesses (2.5-3.5 nm) were deposited by ultra-high-vacuum electron
beam evaporation at a rate of 0.5 A s™. The base pressure of the system was 10!

to 107" torr with a deposition pressure of 107'° to 10~ torr. Subsequently, a 2nm
capping layer of Al was deposited to prevent oxidation of the permalloy. The lattice
constants and island sizes were measured using scanning electron microscopy and
determined to be 602, 606 and 806 nm and 157 x 433, 157 X433 and 178 X 483 nm?
for sample A, B and C, respectively. Further details of the samples can be found

in Supplementary Table 1.1. We performed XMCD-PEEM experiments on our
tetris ice arrays at the PEEM-3 station at beamline 11.0.1.1 of the Advanced Light
Source at Lawrence Berkley National Laboratory. Magnetic imaging was carried
out at the Fe L3 edge. We conducted two XMCD-PEEM runs using different X-ray
polarization sequences, exposure times and temperature ranges. The details of the
XMCD-PEEM measurements can be found in Supplementary Table 2.1.

Data availability
Underlying data are available at https://datadryad.org/stash/
share/-sT0veB1900OcBSNk3G_ZW 1gqMalyjbu7zjZhs-galmVo0.

Acknowledgements

We thank I.-A. Chioar for fruitful discussions and A. Scholl for assistance with the early
XMCD-PEEM measurements. Work at Yale University and the University of Illinois

at Urbana-Champaign was funded by the US Department of Energy (DOE), Office

of Basic Energy Sciences, Materials Sciences and Engineering Division under grant

nos. DE-SC0010778 and DE-SC0020162 to H.S., A.K,, N.-H,, X.Z,N.S.B,, YL, LG,

].S. and P.S. This research used resources of the Advanced Light Source, a DOE Office

of Science User Facility under contract no. DE-AC02-05CH11231 to R.V.C. Work at
the University of Minnesota was supported by NSF through grant nos. DMR-1807124
and DMR-2103711 to J.R., ].D.W. and C.L. Work at the University of Liverpool was
supported by the UK Royal Society through grant no. RGS\R21180208 to D.B. and L.O.
Work at Los Alamos National Laboratory was carried out under the auspices of the

US DOE through LANL, operated by Triad National Security, LLC under contract no.
892333218NCA000001 and financed by DOE LDRD (A.D. and C.N.).

Author contributions

J.R. and J.D.W. performed film depositions under the guidance of C.L., and D.B.
prepared other samples under the guidance of L.O., with H.S,, X.Z,, 1.G,, Y.L., ].S. and
N.S.B. overseeing the lithography. H.S., X.Z., L.G., Y.L., .S, N.S.B. and R.V.C. performed
the XMCD-PEEM characterization of the thermally active samples, and H.S., A.K. and
N.H. analysed the data. H.S. performed micromagnetic calculations. A.D. performed
Monte Carlo simulations, under the guidance of C.N. C.N. and P.S. supervised the entire
project. All authors contributed to the discussion of results and to the finalization of the
manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41567-022-01555-6.

Correspondence and requests for materials should be addressed to
Cristiano Nisoli or Peter Schiffer.

Peer review information Nature Physics thanks Erik Folven, Alan Farhan and the other,
anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

NATURE PHYSICS | www.nature.com/naturephysics


https://datadryad.org/stash/share/-sT0veB190OcBSNk3G_ZW1qMa1yjbu7zjZhs-galmV0
https://datadryad.org/stash/share/-sT0veB190OcBSNk3G_ZW1qMa1yjbu7zjZhs-galmV0
https://doi.org/10.1038/s41567-022-01555-6
http://www.nature.com/reprints
http://www.nature.com/naturephysics

	Entropy-driven order in an array of nanomagnets

	Online content

	Fig. 1 Tetris artificial spin ice.
	Fig. 2 Entropic interactions in tetris ice.
	Fig. 3 Two-dimensional ordering in tetris ice.
	Fig. 4 Longitudinal and transverse moment correlations.
	Fig. 5 Two-dimensional ordering in tetris ice simulation.




