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The somewhat paradoxical phenomenon of long-range order-
ing driven by maximizing entropy is observed in only a few 
systems in nature1, such as vibrofluidized hard spheres, in 

which ordering maximizes the spheres’ so-called free volume2,3. 
Often, ordering in one subset of degrees of freedom is driven 
by the possibility of increasing entropy in another subset, and 
thus of the total entropy. For instance, in the thin rod model of 
Onsager4, rods order nematically to increase their translational 
entropy5–8. Entropy-driven ordering has been demonstrated pri-
marily in out-of-equilibrium soft-matter systems such as col-
loids, hard-sphere suspensions and liquid crystals, where it has 
importance in self-assembly9,10 for systems of biological and 
technological relevance3,5,8,11–14. Furthermore, entropy maximiza-
tion is also implicated in the formation of high-entropy alloys of  
metallurgical importance15.

While these effects have been studied in chemistry and in the 
physics of soft matter, a related yet different phenomenon in mag-
netic materials, so-called order by disorder16,17, pertains instead to 
the interaction of spins arranged on a lattice in magnetic materi-
als where collective excitations among magnetic moments select an 
ordered rather than disordered configuration in the ground state18–23.

In this Article, we report entropy-driven ordering in an artificial 
spin ice, a structurally ordered nanomagnet array24,25. Specifically, 
we examine entropy-driven ordering in tetris artificial spin ice 
(referred to as ‘tetris ice’ for the remainder of the paper)26,27. We 
demonstrate a different paradigm for such ordering, quite distinct 
from what has been observed previously. Crucially, ordering in this 
system has strong similarities to the soft-matter systems described 
above, even though tetris ice is a structured nanomagnet array with 
no mechanical motion. Its degrees of freedom are, instead, the 

binary orientations of the nanoscale moments that are configured 
through thermalization.

Artificial spin ices can serve as models for a wide range of 
unusual physics unavailable in other systems because they can be 
lithographically designed at will. The ability to probe the magnetic 
degrees of freedom at the resolution of a single magnetic moment 
has provided the first realizations of celebrated vertex models28 and 
also led to experimental demonstrations of a number of new models 
for collective behaviour24,25,29. Relevant to our study, the characteris-
tic that the individual magnetic degrees of freedom are constrained 
to point in one of two directions for each moment sets tetris ice 
apart from the entropy-driven orderings referenced above.

The structure of tetris ice is obtained by selective removal of 
moments from the canonical square ice structure, as illustrated in 
Fig. 1a,b. This system belongs to a category of artificial spin ices that 
are ‘vertex-frustrated’26,29, that is, structured such that every lattice 
vertex cannot have its moments arranged in their local low-energy 
configuration. As a result, the system necessarily has multiple 
‘unhappy vertices’ that are excited out of their local vertex ground 
states, as well as zero-point entropy associated with the degeneracy 
in allocating the unhappy vertices within the lattice.

We start our discussion of the collective states of tetris ice with 
a description of the energy and entropy of moment configurations 
at low energy. As indicated in Fig. 1b, the system’s lowest-energy 
manifold is composed of two different one-dimensional subsystems 
of alternating stripes of moments, so-called backbones (BBs) and 
staircases (SCs)26,27. In the system’s ground state, the SC moments 
contain unhappy vertices and are disordered. Moreover, the indi-
vidual SC zero-temperature disorder, and thus its correlations, 
are well described by a disordered one-dimensional Ising phase27. 
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In contrast, the BB moments do not contain any unhappy verti-
ces and are ordered longitudinally, that is, along the length of the 
stripes. Within a nearest-neighbour coupling approximation, a 
given ground-state configuration of the array receives no energetic 
advantage from being transversely ordered, meaning that mutual 
order among the different BBs is neither favoured nor disfavoured 
energetically26.

To characterize ordering among the BB moments, we use the 
staggered order parameter, ⟨Ψ⟩ = (−1)i+j SBBij , where SBBij  denotes 
the polarization of the BB moments and i and j are the vertical and 
horizontal location indices of the moments in the underlying square 
ice lattice28. Note that Ψ  here is simply the standard antiferromag-
netic order parameter for the ordering of square ice: the average 
value ⟨Ψ⟩ = ±1 corresponds to the two equivalent ordered ground 
states of that lattice. In other words, two ordered BBs have the same 
⟨Ψ⟩ if their moments’ orientations belong to the same ground state 
of the underlying square lattice.

Figure 2a schematically illustrates the case of neighbouring BBs 
in the ground state with the same ⟨Ψ⟩. It has been proven that, in 
this configuration, the ground state of the SC moments between the 
BBs is necessarily disordered26. An alternative ground state for the 
system has neighbouring BBs with values of ⟨Ψ⟩ alternating between 
+1 and −1 (Fig. 2b). In this other ground-state configuration, the 
SC moments between the BBs must be ordered26. These two alter-
native ground-state configurations have the same energy, but the 
disorder in the SCs of the former gives an entropic advantage for 
neighbouring BBs to have the same value of ⟨Ψ⟩. Thus, there is an 
entropic advantage for the entire two-dimensional system to have 
all BBs with either ⟨Ψ⟩ = 1 or ⟨Ψ⟩ = −1, implying two-dimensional 
order among the BB moments. In other words, the BBs order to the 
same ⟨Ψ⟩ to gain global entropy for the system, which comes from 

the entropy of the disordered SC moments. The system sacrifices 
the entropy that it would gain by having randomness in the value of 
⟨Ψ⟩ among different BBs because that entropy scales subextensively 
(since ⟨Ψ⟩ is binary, the entropy of a BB-disordered configuration is 
proportional to the number of BBs in the system, which scales as the 
square root of the area of the array). In doing so, the system gains 
entropy from the SCs, which instead scales extensively, that is, with 
the system size (Supplementary Section 5).

Entropy maximization implies mutual transverse ordering 
among BBs, but it also explains the longitudinal ordering within 
a single BB. Consider a configuration of ordered BBs all with the 
same ⟨Ψ⟩ but in which one BB has a finite longitudinal domain of 
length Ld with opposite ⟨Ψ⟩ (Fig. 2c). The two defects induce two 
ordered regions on the adjacent SCs, above and below the domain, 
corresponding to an increase in the SC free energy of approximately 
ΔF = K+ TLdsSC, where K is the energy of the domain boundaries, 
T is the system temperature, and sSC is the entropy per moment of 
the disordered SC (Supplementary Section 5). This entropic term 
in the free energy yields a constant attraction ∼TsSC among the two 
defects, suppressing the growth of the bound domain. This purely 
entropic interaction is crucial to explain the individual longitudinal 
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Fig. 1 | Tetris artificial spin ice. a, Scanning electron microscopy image of a 
tetris artificial spin ice (sample A). b, Schematic of the tetris ice structure, 
showing BB nanomagnet islands (blue) and SC islands (grey) with vertical 
(dashed borders) and horizontal moments (solid borders). The longitudinal 
direction is defined as the direction parallel to the stripes, approximately 
26.5° from the horizontal, and the transverse direction as perpendicular 
to that. c, XMCD-PEEM image of the tetris ice lattice, showing the 
direction of the incident X-ray beam (yellow arrow). The islands that have 
a magnetization component along (opposite to) the X-ray direction yield 
black (white) contrast (sample A at T = 120 K). d, Magnetic moment 
configuration map corresponding to c with the same colour scheme as in b.
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Fig. 2 | Entropic interactions in tetris ice. a, Schematic of a ground-state 
configuration that leads to maximal disorder in SCs due to the transverse 
ordering among the BBs, all having the same ⟨Ψ⟩. b, Schematic of a 
ground-state configuration where BBs alternate their order parameter 
⟨Ψ⟩, leading to the SC moments being ordered. c, Schematic of BB defect 
attraction where two longitudinal defects attract each other due to the 
entropy cost of ordering portions of the adjacent SCs. d, Schematic of 
BB defect attraction across multiple BBs, where BB defects attract each 
other due to the entropy cost of ordering portions of the adjacent SCs, 
thus favouring two-dimensional domain walls that cross multiple BBs. 
Moment orientations that correspond to these schematics are shown in 
Supplementary Fig. 2.5.
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ordering of the BBs since, as a one-dimensional system, a single BB 
would not be expected to order without this attractive interaction 
among defects. Using similar reasoning, one can show that defects 
on neighbouring BBs also interact entropically, favouring their 
alignment into two-dimensional domain walls (Fig. 2d).

We now turn to experimental studies of this system. We have 
experimentally investigated the entropy-driven ordering in tetris 
ice through X-ray magnetic circular dichroism photoemission elec-
tron microscopy (XMCD-PEEM) measurements on three samples 
of tetris ice composed of thin permalloy (Ni80Fe20) nanoislands. 
The thickness (~3 nm) was chosen so that the island moments 
were thermally active in the measurement temperature range, that 
is, thermal moment reversals occurred on the time scale of imag-
ing. The samples (A, B and C) had different interaction strengths 
between neighbouring moments, associated with differences in the 
island size and spacing. Sample A (studied previously27) had the 
strongest interactions while sample C had the weakest interactions, 
based on micromagnetic calculations30. A representative scanning 
electron microscopy image is shown in Fig. 1a, and detailed descrip-
tions of the samples and measurements are given in Methods and 
Supplementary Section 1).

The XMCD-PEEM technique allows full-field imaging of 
moment orientations in the lattice on time scales on the order of 
seconds. A typical XMCD-PEEM image is shown in Fig. 1c, and the 
corresponding map of moment directions is shown in Fig. 1d. In 
the temperature range studied for each sample (see Supplementary 

Section 2 for details), the system ranged from the moments fluctuat-
ing faster than the images could capture at the highest temperatures 
to the moments being effectively frozen at the lowest temperatures. 
We note that this technique has been demonstrated previously to 
effectively thermalize the moments in artificial spin ice31 and has 
been used extensively under the assumption of thermalization24,25. 
For all of the samples, the temperature dependence of the average 
vertex statistics is quite small, suggesting that the system thermal-
ized at room temperature, and relaxed upon cooling to a metastable 
moment configuration within which the moments fluctuated with-
out further reducing the overall system energy. This suggests that 
further relaxation to the ground state is limited by the complex 
topology of the lattice32,33, in combination with intrinsic structural 
disorder associated with limitations of the lithography.

Figure 3a,b shows schematics of the digitized moment configu-
rations obtained from XMCD-PEEM measurements of two samples 
with different interaction strengths and therefore different proximity 
to the ground state. Figure 3a shows a moment configuration close 
to the ground state, demonstrating close to full two-dimensional 
ordering of the BBs, coexisting with disorder in the SCs. Note that 
the ordered configurations in the BBs correspond to those of the 
antiferromagnetic ground state of square ice from which the tetris 
ice structure is obtained, but the disordered moments on the SCs 
do not. This ordering is apparent in the series of so-called type I 
vertices2 in the BBs that correlate both along the BBs and across 
them, leading to visible structure in the moment orientation, that is, 
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Fig. 3 | Two-dimensional ordering in tetris ice. a, Digitized XMCD-PEEM snapshot of tetris ice near the ground state, showing single-domain ordering 
of the BBs (sample A at T = 120 K). b, Digitized XMCD-PEEM snapshot of tetris ice above the ground state, showing BBs ordering in two-dimensional 
domains while the SCs remain disordered (sample B at T = 190 K). Black dots indicate unhappy vertices. The red and blue arrows indicate regimes of 
opposite antiferromagnetic order parameter. c, Staggered antiferromagnetic order parameter for the BB moments plotted as a function of increasing 
average vertex energy from sample A to C. d, Relative probability of flipping for BB, horizontal and vertical SC islands, that is, the fractional flip rate, 
showing that more than 80% of the kinetics is in the SCs. Error bars show the s.d. of the data collected at different temperatures.
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the formation of near-complete loops of approximate head-to-tail 
flux closure in the moment orientations, broken only by disorder 
on the SCs. Such structure can also be seen to a lesser extent in  
Fig. 3b, which shows a moment configuration somewhat further 
from the ground state with domain walls in the BBs between regions 
of different ⟨Ψ⟩.

Figure 3c shows the resulting order parameter ⟨Ψ⟩ as a func-
tion of the average vertex energy for the different samples, not-
ing that the different interaction strengths associated with the 
differences among the samples lead to different energies in the 
thermalized states. The average vertex energy, Eavg, is defined as 
Eavg =

∑
εαNα/Ntotal, where Nα is the number of observed vertices 

of type α, εα is the vertex energy and Ntotal is the total number of 
vertices. The vertex energies, εα, were calculated using micromag-
netic simulations30 for different vertices, lattice constants and island 
dimensions (see Supplementary Section 3 for details). The numbers 
of vertices, Nα, were extracted from the XMCD-PEEM data. Since 

the temperature dependence of the vertex statistics was weak, we 
show data averaged over the full temperature range in which we 
took data (see Supplementary Section 2 for details).

Because ⟨Ψ⟩ in Fig. 3c is measured over the entire image, its 
increasing value with stronger interaction energy corresponds to a 
transverse ordering of the moments in the BBs. Figure 3d shows 
the fractional flipping rate of different moments in the system as 
a function of the interaction energy (defined as the fraction of the 
moment flips between successive frames that are among the BB 
moments, vertical SC moments or horizontal SC moments). The 
results show that the kinetics are largely confined to the disordered 
SCs, especially for the interaction energies of largest magnitude.

We now analyse the longitudinal and transverse correlations to 
quantify the two-dimensional order across the system. If SBBij and SBBi′j′ 
are two BB moments, we define their transverse and longitudinal 
correlations as CBB = SBBij SBBi′j′ (−1)i−i′+j−j′, where CBB = +1 if the 
moments have the same value of Ψ  and CBB = −1 if the values of Ψ  are 
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Fig. 4 | Longitudinal and transverse moment correlations. a, Schematic of the tetris ice structure highlighting the horizontal SC islands, showing the 
two horizontal SC islands that are each other’s nearest neighbours in the longitudinal (green) and transverse direction (blue) as well as the next-nearest 
neighbours in the longitudinal (purple) and transverse direction (orange). We do not consider the pairs of horizontal moments that are within a particular 
stair of the SCs, since such pairs are highly correlated. b, The average moment correlations as a function of distance (in units of the lattice constant of the 
underlying square ice lattice structure) within horizontal SCs (longitudinal correlations) for the three samples studied. c, The average moment correlations 
as a function of distance across the horizontal SCs (transverse correlations) for the three samples studied. d–f, As in a–c but for the BB moments. g–i, As in 
a–c but for the vertical SC moments. Error bars represent the s.d. of the data collected at different temperatures.
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opposite. For both horizontal and vertical SC moments, we instead 
define the usual ferromagnetic correlation, that is, CSC = SSCij SSCi′j′. 
Since we are primarily interested in longer-range correlations, we 
consider only those horizontal SC moments where the two adjacent 
moments in a step are aligned head to tail.

Figure 4 shows measured correlations among different moment 
pairs for the three samples, again averaged over all temperatures. 
The error bars here represent the s.d. of the data collected at dif-
ferent temperatures. Figure 4a defines the pairs of nearest- and 
next-nearest-neighbour moments, both longitudinally and trans-
versely, through colour labels (similar definitions apply in Fig. 4d,g). 
Figure 4b plots longitudinal correlations of horizontal moments 
within the same SCs. Note that the distance dependence of the lon-
gitudinal moment correlations within the horizontal SCs does not 
change much among the samples, because those correlations are a 
property of the constrained disorder of the ground state. By con-
trast, there are considerable differences among the three samples in 
the longitudinal correlations within the BBs (Fig. 4e). They become 
increasingly more correlated with increasing interaction strength 
(from C to B to A), and the correlations evolve to an almost flat 
⟨CBB⟩ = 1 value as a function of distance for sample A, as expected 
for the ground state.

We now consider correlations transverse to the BBs and SCs. 
Figure 4c shows no discernible transverse correlation among the 
horizontal moments of different SCs. In contrast, Fig. 4f reveals 
considerable transverse correlations among BB moments, with cor-
relation values almost as large as in the longitudinal case (Fig. 4e).  
As in that case, they grow with increasing interaction strength, 
eventually approximating the flat ⟨CBB⟩ = 1 value that corresponds 
to two-dimensional long-range order. This can be seen clearly in 
real-space snapshots that reveal isotropic domains of various sizes 
(Supplementary Figs. 2.6–2.8). The contrasting complete lack of 
transverse order among the horizontal SC moments is a clear indi-
cation of the separation of the BBs and the SCs in terms of their 
entropy, with the entropy of the BBs minimized and the entropy 
of the SCs (and thus of the whole system) maximized. Note that, 
because the SCs separate the BBs, the impressive ordering of the 
BB moments is strong evidence for the entropically mediated inter-
actions among the BBs. Our Monte Carlo simulations, discussed 
below, show that a near-neighbour model, with no interaction 
whatsoever among BBs, replicates these experimental findings 
(Supplementary Fig. 4.2).

Completing our discussion of Fig. 4, the correlations among 
the vertical moments in the SCs are shown in Fig. 4h,i. We observe 

that the correlation among the vertical moments is almost flat in 
magnitude (but alternating in sign), as if they were ordered, but the 
value of the correlation is |⟨CSC⟩| ~ 0.5 for sample A and smaller 
for samples B and C. These moments thus possess features of both 
long-range order (correlation almost constant in space) as well as 
disorder, in the sense that |⟨CSC⟩| never approaches unity, even for 
near neighbours. As shown in Supplementary Section 6, correla-
tions among vertical SC moments are dictated both by horizontal 
SC moments, which are disordered, and also by the BB moments 
surrounding the SCs, which are ordered. A value of |⟨CSC⟩| = 0.5 
is expected in the system ground state. This sort of half-ordering 
of the vertical moments is highly unusual in magnetic systems. It 
is neither short-range ordering, which should approach |⟨CSC⟩| ~ 1 
at short distances along a given lattice direction and fall sharply 
with increasing separation, nor a disordered state, as the abso-
lute value of the correlation persists at nearly the same value with 
distance. Rather, this represents a consequence of the peculiar  
frustration in tetris ice.

We now discuss simulations of this system, which enhance our 
understanding of the experimental results. The attribution of trans-
verse ordering to entropic effects assumes that the ordering does not 
arise from long-range interactions among the moments. To confirm 
that long-range interactions are not needed to explain the order-
ing, we performed Metropolis Monte Carlo simulations within a 
vertex model that considers only interactions among moments 
that share a common vertex. This excludes interactions amongst 
the moments belonging to different BBs and SCs and thus provides 
an important corroboration of the entropy-induced mechanism of 
the BB ordering. Significantly, because the Monte Carlo simulation 
produces a collective state that mirrors what we see in experiment, 
it provides a separate validation that our experimental system was 
well thermalized (details of the Monte Carlo results are given in  
Supplementary Section 4).

Figure 5a shows the entropy, the specific heat and the order 
parameter ⟨Ψ⟩ from our simulations, as functions of temperature. 
We note the sharp peak in the specific heat, associated with order-
ing of the BBs. The transition temperature corresponds to the 
energy scale of vertex interaction energies, which indicates that 
longer-range interactions are not driving the transition, a conclu-
sion that is also suggested by the disorder on the SC moments. The 
observation of an ordering transition among the BB moments,  
a disordered state among the SC moments and a residual entropy for 
the system, which must be associated with that disorder, shows the 
clear separation of the entropy among the two subsets of moments. 
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Because the BB moments are ordered, this simulation also provides 
a quantification of the entropy associated with the SC disorder.

Figure 5b plots the corresponding temperature dependence of 
the moment fractional flip rates, showing how the dynamics of 
the system below the ordering temperature is confined to the SC 
moments. Note that the fractional flip rates for both vertical and 
horizontal SCs are non-zero at the lowest temperatures and the ver-
tical SC fractional flip rate rises continuously as the temperature 
decreases, suggesting that those are the most active moments. This 
again points to the distinct behaviour of the BB and SC moments 
within the tetris ice structure, despite being strongly correlated.

We also use our Monte Carlo simulations to demonstrate 
entropy-based ordering in a situation that cannot be easily repro-
duced experimentally. Specifically, we initiate the system in a 
ground-state configuration corresponding to an order parameter of 
zero, that is, ⟨Ψ⟩ = ±1 on alternating BBs (Supplementary Fig. 4.3a). 
We then allow the system to evolve at a temperature of only ~0.3TC, 
where TC is the ordering temperature for the BBs. Our simulations 
show that the system spontaneously evolves through thermal fluc-
tuations into a BB-ordered state corresponding to uniform ⟨Ψ⟩ = 1 
(Supplementary Fig. 4.3b). This further supports the robust nature 
of the observed entropically driven ordering among BB moments 
since it can be obtained through multiple thermodynamic paths, 
not just through cooling from high temperature.

We now compare our entropy-driven ordering with similar phe-
nomena in other systems. Our observed ordering in the tetris ice 
system is substantially different from the so-called order by dis-
order found in some other magnetic systems16–23. In those cases, 
fluctuations can lift the degeneracy of the ground state by select-
ing ordered states of lower energy excitation. In our case, however, 
the very ground-state manifold at zero temperature ‘favours’ order, 
because this order maximizes the residual entropy that results from 
frustration. Indeed, configurations with ordered BBs numerically 
dominate the ground-state manifold in the large size limit, as dem-
onstrated in Supplementary Section 5.

The tetris ice system is therefore conceptually closer in nature to 
the entropy-based ordering seen in structurally disordered materi-
als, where some degrees of freedom become ordered to enable more 
entropy in other degrees of freedom. A paradigmatic example is 
the nematic ordering of rod-shaped objects in the seminal Onsager 
model1,4. The tetris ice system similarly has two distinct and compet-
ing entropies, that of the SC moments and that of the BB moments. 
The latter is reduced to maximize the former, a mechanism which 
maximizes the total entropy, analogous to the Onsager model. An 
important difference, however, is that the tetris ice system is well 
structured around a specific geometry, with discrete degrees of free-
dom that are accessible experimentally. While the two entropies cor-
respond in the Onsager model to different coordinates of the same 
rods, in tetris ice they refer to different positions in a lattice. The two 
cases are mathematically similar in that the entropy of a subset of 
degrees of freedom is reduced to maximize the total entropy, but the 
nature of the degrees of freedom are strikingly different, mechanical 
and continuous in the former, binary in the latter, distinctly separat-
ing the two cases.

Many groups have now established that frustration in a magnetic 
system can result in a residual entropy, with the spin-ice pyrochlore 
materials providing an excellent example34. Our findings go consid-
erably further, demonstrating that such residual entropy can drive 
robust ordering in a frustrated magnetic system. This suggests that 
a range of other artificial spin-ice geometries could be designed to 
tune the balance between energetic and entropic effects in ordering 
of moments, a possibility that would be quite difficult to realize in 
other physical systems.

The observation of entropy-driven magnetic ordering in the tet-
ris ice system also adds a new category to the types of systems that 
display entropy-driven ordering. While our experiments are driven 

purely through thermal effects, the addition of quantum fluc-
tuations35 will likely drive yet more exotic phenomena associated 
with entropic considerations. Future studies will be able to probe 
additional bespoke artificial spin ice structures with ground state 
entropy that favours other types of ordering phenomena. More gen-
erally, our results show how non-trivial forms of frustration can be 
used to generate unusual, even apparently paradoxical phenomena 
that are broadly related to other physical phenomena in disparate 
systems1, and to do so in ways that enable more detailed studies of 
the microscopic driving behaviour.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
data and code availability are available at https://doi.org/10.1038/
s41567-022-01555-6.
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Methods
Arrays of tetris artificial spin ice with various lateral dimensions and thicknesses 
were fabricated on silicon substrates with native oxide using electron beam 
lithography and lift-off as described in previous work27,32,33. The bilayer e-beam 
resist was spin-coated onto the substrate and exposed to the electron beam to 
write the desired structures. After development, permalloy (Ni80Fe20) films with 
varying thicknesses (2.5–3.5 nm) were deposited by ultra-high-vacuum electron 
beam evaporation at a rate of 0.5 Å s−1. The base pressure of the system was 10−11 
to 10−10 torr with a deposition pressure of 10−10 to 10−9 torr. Subsequently, a 2 nm 
capping layer of Al was deposited to prevent oxidation of the permalloy. The lattice 
constants and island sizes were measured using scanning electron microscopy and 
determined to be 602, 606 and 806 nm and 157 × 433, 157 × 433 and 178 × 483 nm2 
for sample A, B and C, respectively. Further details of the samples can be found 
in Supplementary Table 1.1. We performed XMCD-PEEM experiments on our 
tetris ice arrays at the PEEM-3 station at beamline 11.0.1.1 of the Advanced Light 
Source at Lawrence Berkley National Laboratory. Magnetic imaging was carried 
out at the Fe L3 edge. We conducted two XMCD-PEEM runs using different X-ray 
polarization sequences, exposure times and temperature ranges. The details of the 
XMCD-PEEM measurements can be found in Supplementary Table 2.1.

Data availability
Underlying data are available at https://datadryad.org/stash/
share/-sT0veB190OcBSNk3G_ZW1qMa1yjbu7zjZhs-galmV0.
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