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We study the temperature and magnetic field dependence of the total magnetic moment of large-area
permalloy artificial square spin ice arrays. The temperature dependence and hysteresis behavior are
consistent with the coherent magnetization reversal expected in the Stoner-Wohlfarth model, with clear
deviations due to interisland interactions at small lattice spacing. Through micromagnetic simulations, we

explore this behavior and demonstrate that the deviations result from increasingly complex magnetization
reversal at small lattice spacing, induced by interisland interactions, and depending critically on details of
the island shapes. These results establish new means to tune the physical properties of artificial spin ice
structures and other interacting nanomagnet systems, such as patterned magnetic media.
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Artificial spin ice (ASI) systems [1] consisting of two-
dimensional arrays of ferromagnetic single-domain nano-
islands can be studied in a nearly limitless range of lattice
geometries that lead to exotic collective behavior [2-5].
Control over the design of the lattice geometry has enabled
experimental study of a range of physical phenomena,
including classical statistical physics models, magnetic-
monopole-like excitations, and unusual topological physics
[4,5], as well as possible applications, including novel
computing paradigms and magnonic devices [6-8]. ASI
studies typically treat the individual ferromagnetic ele-
ments as simple Ising-like moments that switch between
orientations with thermal fluctuations or upon the appli-
cation of a magnetic field. The reversal of island moments
is recognized, however, to have considerable complexity
[9-16], with dependence on island size and shape as well as
the lattice spacing and geometry [10,13,17-20]. Notably,
ASTI also serves as an accessible model platform for probing
superparamagnetism with an unusually high degree of
control over the moments and their interactions [21].

Despite extensive recent attention, only a small number
of researchers have examined the collective static magneti-
zation of entire ASI arrays [20,22-31], due to the large
array dimensions required. Although these prior measure-
ments indicate that the magnetization of an array has quite
different properties from the bulk constituent ferromagnetic
materials, there has been little systematic attention paid to
this fundamental collective property.

Here, we present a detailed experimental and simulation
study of the magnetization of extended square ASI arrays,
examining the temperature and field dependence of the
magnetization of arrays with varied lattice spacing. We find
behavior consistent with coherent magnetization reversal,
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closely following expectations of the Stoner-Wohlfarth
model [32,33] for large lattice spacings, but with systematic
deviations at small spacing. We compare our results to
micromagnetic simulations, demonstrating that these devi-
ations result from interisland interactions that depend
critically on individual island shape. Our results highlight
a path to a fine-tuning of the magnetic response of ASI and
other nanomagnet arrays, with implications for both device
applications [7,8,34,35] and novel collective magnetic
states.

Our permalloy (NijgoFeq,9) square ASI arrays were
patterned via electron-beam lithography (Fig. 1) at thick-
nesses ¢ =10, 15, and 25 nm, on Si/SiO, substrates,
including two sets of ¢=25nm samples, labeled
A and B. Each array is composed of approximately
25 million islands, with lateral array sizes of 1 x 1 mm?
to 3.5 x 3.5 mm?. Such large array sizes are required
because of the extremely small moment of each island
(~10713 emu). For each thickness, we studied arrays with
varying lattice spacing (a = 320, 380, 500, and 1000 nm),
as well as a separate set of samples (labeled C) with ¢ =
25 nm and with a = 280, 290, 300, 310, 320, 340, 360, and
380 nm. These spacings correspond to distances from the
end of the islands to the vertex center of 30-390 nm, for
a = 280 and 1000 nm, respectively. The island size for all
arrays was (2204 11) x (80 +8) nm. At these thick-
nesses, the Curie temperature (7¢) is at or near the bulk
value (~850 K) [36]; thus, all measurements occur well
below the superparamagnetic blocking temperature
[37,38]. For comparison, we also measured a continuous
permalloy film with # = 25 nm. Samples were measured in
a commercial superconducting quantum interference
device magnetometer (MPMS3, Quantum Design), with
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FIG. 1. Scanning electron microscope image of a portion of a
t = 25 nm sample (sample B) with lattice spacing a = 320 nm.
The applied magnetic field (H) direction is shown.

the magnetic field (H) aligned 45° from the long axis of the
islands so that all islands have the same orientation relative
to H (Fig. 1) [18,23,25].

For temperature-dependent measurements, arrays were
measured on warming after field polarization at high
temperature and cooling in zero field. We define the
magnetization (M) as the measured magnetic moment
normalized by the total number of islands. The saturation
magnetization (Mg) is taken as the magnetization at
+2 kOe, and the remanent magnetization (M) is the value
at H = 0 upon decreasing the field from positive saturation.
The coercive field (H) is taken as the M = 0 crossing
point averaged over positive and negative fields (or at the
maximum slope in the hysteresis loop for the small number
of samples with significant background contributions at
H = 0; see part SM-5 of the Supplemental Material [39]).
We define Mg, My, and H in Fig. 2(c). The values of
magnetization are typically normalized to Mg to account
for lithographic defects, which introduce an uncertainty of
~10% in measured M values (see part SM-1 of the
Supplemental Material [39]). Most data shown below are
for t = 25 nm (sample B), where such effects were mini-
mized, and our results are consistent across all sample
thicknesses.

In the inset of Fig. 2(a), we show Mg(T) at various
lattice spacings, where small vertical offsets among the
curves are attributable to lithographic defects (see part
SM-1 of the Supplemental Material [39]). The temperature
dependence of My is considerable (~10%), even in this
regime well below T . We note that the form of My(T) is
consistent among all lattice spacings and with the continu-
ous films, as shown in the normalized data in Fig. 2(a).
This suggests that lateral dimensions of the islands and
interisland interactions do not substantially impact the
thermally excited spin dynamics that are responsible for
the temperature dependence of Mj. While continuous
permalloy films are very soft, with H- = 1 Oe, the shape
anisotropy of ASI islands leads to H. values of several
hundred oersteds [23,28,29], as shown in Figs. 2(b) and
2(c), where we illustrate the temperature evolution of H.

To further understand these temperature dependences, in
Fig. 2(d) we plot AM(T) = [M(25 K) — M(T)] for both
Mg(T) and Mg(T), as well as AHq(T) = [He(25 K)—
H(T)]. We show these data on a log-log scale, normalized
to the low-temperature values, demonstrating a clear
power-law dependence. Fits for 7 > 100 K (to avoid
spurious effects from sidewall oxidation [40,41]) give
AH(T) o TH4H003 " AM o(T) o T15004 "and AM (T
7208002 Tmportantly, the proportionality of AH~(7') and
AM(T) is consistent with expectations from the Stoner-
Wohlfarth model for coherent rotation of the island
moments [12,42], in which

K 2
He o —, K o« My,
M
where K is the (uniaxial) shape anisotropy constant. The first
proportionality here arises from the Stoner-Wohlfarth
model, while the second arises from shape anisotropy,
assuming (as expected in permalloy) that it is dominant
over magnetocrystalline anisotropy. Our measured expo-
nents are consistent across all measured samples and lattice
spacings (see part SM-5 of the Supplemental Material [39]),
and thus affirm previous evidence for coherent moment
reversal in similar artificial spin ice systems [10,18].

We note that the common measured exponent for
AH(T) and AMg(T) is also consistent with expectations
for a Bloch-like (7°/%) dependence of the magnon-induced
suppression of the magnetization in conventional ferro-
magnets [43]. The difference between the exponent values
for AMg(T) and AMg(T) can be ascribed to the suppres-
sion of low-energy (long-wavelength) spin waves in an
applied field, when one notes that finite dimensions are
well known to affect spin waves, and thus also the
temperature-dependent magnetization in nanoscale ferro-
magnets [44-51]. In addition, the difference between the
exponent values for M(T) and Mg(T) is less dramatic in
our continuous permalloy films, where we find My « T'38
and Mg o T'7. This again suggests that the field-
suppressed spin waves in our ASI samples are those
impacted by the lateral island dimensions. We note that
the lowest-lying spin waves at the I" point in the first
Brillouin zone of a square ASI are edge modes formed by
oscillations of the magnetization localized near island
edges [9]. These modes may lie below the uniform
Kittel-like mode, and, in the presence of an external field,
these modes contribute less to the thermal spin excitations
that suppress the magnetization at finite temperatures.

In Figs. 3(a) and 3(b), we see that Hc(a) is approx-
imately constant for a > 500 nm and then decreases at
smaller spacing, which is consistent with previous mea-
surements [23]. Figure 3(c) shows that qualitatively similar
lattice-spacing dependence is observed for all thicknesses,
and that H,. decreases with decreasing #, which is
consistent with the expected smaller energy barrier to
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(a) Remanent magnetization, M z(T'), normalized to the value at T = 25 K for various lattice spacings and a continuous film

with ¢ = 25 nm after each array was field polarized at 7 = 380 K. Inset: the same My(T') values without normalization. The legend is
presented in (b). (b) H¢(T) for a = 320, 380, 500, and 1000 nm. The small relative variation between the data for the two largest values
of a is well within the measurement uncertainty. (c) M(H) for a variety of temperatures for a = 320 nm. (d) Log-log plots of
AM(T) = [Mr—psx — M(T)] for AMg and AMy and AH(T) = [Hc 75 x — Hc(T)] for a = 320 nm, normalized to the 7 = 25 K
values of Mg, M, and H, respectively. Solid lines show power laws, as described in the text. All data are for # = 25 nm, sample B.

magnetization reversal. The three values of # were chosen to
validate the results for different moments and interaction
strengths. The saturation of H(a) at larger lattice spacing
indicates that the behavior appropriately asymptotes to the
case of noninteracting islands. The lattice-spacing depend-
ence at small spacing is consistent with expectations that
interactions become most important in that limit. The slope
of He(a) increases substantially for the smallest lattice
spacing, as expected due to the nonlinear strength of
dipolar interactions with island separation. The decrease
in H(a) continues down to our smallest measured lattice
spacing of a = 280 nm, as shown in part SM-4 of the
Supplemental Material [39] for sample C.

The shape of M(H) in Fig. 3(a) provides further
evidence that the magnetization reversal in this system is
qualitatively consistent with expectations of Stoner-
Wohlfarth in the large-spacing limit [32,33]. The expected
M(H) for ideal Stoner-Wohlfarth behavior is shown in
Fig. 4(a) (details are given in part SM-8 of the
Supplemental Material [39]), where the qualitative sim-
ilarity to the shape of the experimental hysteresis loops is
notable, especially for ¢ = 1000 nm in Fig. 3(a). However,
experimental loops become markedly more square by
a = 320 nm, suggesting that interisland interactions induce
deviations from coherent magnetization rotation, as might

be expected [14,18]. These conclusions are reinforced by
the behavior of Mz/Mg shown in Fig. 3(d), where this
“squareness ratio” is close to ~1/,/2 = 0.707, the Stoner-
Wohlfarth value, but consistently higher for a < 380 nm.
Outliers in Fig. 3(d) (e.g., for # = 10 nm) are presumably
associated with nonideal M (H) curves with steps at small
H in various samples (see parts SM-2 and SM-5 of the
Supplemental Material [39]).

To better understand the magnetization reversal process,
we performed athermal micromagnetic simulations (details
are given in part SM-7 of the Supplemental Material [39]
and in Ref. [52]). Because there are many factors that
cannot be reproduced precisely in micromagnetic simula-
tions, including edge roughness and thermal fluctuations,
we used the (temperature-dependent) Mg as a fitting
parameter to obtain M(H) loops in good qualitative and
semiquantitative agreement with the experiment. For the
results shown here, we used Mg = 700 x 10> A/m and
assumed zero intrinsic magnetocrystalline anisotropy and a
micromagnetic exchange parameter A = 13 pJ/m [53] (the
effects of changing A are discussed in part SM-7 of the
Supplemental Material [39]). Measurements at 300 K give
Mg =733 x 10> A/m for continuous 25-nm-thick films,
and ~800 x 10° A/m for bulk permalloy [54]. We used an
island thickness ¢ = 25 nm and varied the lattice spacing
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(a) M(H) at 300 K for t = 25 nm sample B for a variety of a, including the 25 nm continuous film for comparison [the legend

is shown in (b)]. (b) Normalized derivative (dM/dH)/Mg of the data in (a), showing broadening of the loop with increasing a (data
smoothed using adjacent averaging over five neighboring points). (c) H(a) at 300 K for multiple island thicknesses. (d) Mg/ Mg at
300 K as a function of a, with the Stoner-Wohlfarth (S-W) value of 0.707 shown for comparison.

and shape. Simulated islands are oriented along the
horizontal (x) and vertical (y) directions, with H applied
45° to the horizontal direction.

Previous micromagnetic simulations showed that the
single island reversal process is strongly impacted by the
shape of the island ends [13]. We therefore used two
different island shapes in our simulations in Fig. 4(d): S1
(a rectangle with semicircular ends) and S2 (a rectangle
with elliptical ends), as detailed in part SM-6 of the
Supplemental Material [39]. Lithographic variations of
our samples seen in SEM indicate variations of island
shapes that do not perfectly map to either S1 or S2; however,
simulations for both shapes give values of H - within ~10%
of the measured low-temperature value. As shown in
Fig. 4(a), shape S2 generates good qualitative agreement
with both experiments and the Stoner-Wohlfarth model with
respect to the form of M(H). However, shape S1 has
qualitatively different hysteresis loops [see Fig. 4(b)] that
include a sharp change in slope and small steps in the
magnetization near H ., thus confirming the sensitivity to
island shape.

To develop a more quantitative understanding, we plot
m,, which is the vertical component of the magnetization,
my(H) = M,(H)/M, for horizontal islands of shape S2 in
the inset to Fig. 4(c), averaged over the full island. These
data show a sharp minimum corresponding to magnetiza-
tion reversal, with the depth of this minimum correspond-
ing to how coherently the magnetization rotates. In the
main panel of Fig. 4(c), we plot the depth of that minimum

as a function of lattice spacing. We see that the minimum of
m, is near the expected value for the Stoner-Wohlfarth
model at large spacings but rises significantly at smaller
lattice spacings. This rise simply reflects that the magneti-
zation has a more substantial twist from one edge of the
island to the other during the reversal process (as seen in
Fig. 5), causing the loop to be more square. This confirms
that the island reversal is largely coherent in the absence of
interisland interactions.

While the hysteresis loops suggest that shape S2 is a
more appropriate model to capture the behavior of our
system, the effects of the interisland interactions indicate
that a more nuanced understanding is required [55].
Figure 5 shows a mapping of the magnetization from
simulations for both island shapes S1 and S2, at fields
corresponding to Mg, My, and H for a = 280, 320, and
1000 nm. The arrows show the local direction of the
magnetization, and the color scale indicates the local value
of m, for islands aligned along the x axis. The effects of the
interisland interactions are readily apparent from the spread
in colors for the island near H., where a wider spread in
colors implies less coherent rotation. Smaller lattice spac-
ings create local fields, which impact rotation of the island
magnetization near the island ends, thus making the
reversal less coherent. We note that even though the
magnetization rotation is not fully coherent, the magneti-
zation texture in islands of our studied size and shape is
always smooth and not broken into distinct domains, which
cannot be assumed in all cases [8].
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FIG. 4. Simulated M(H) (averaged over all islands) for @ = 320 and 1000 nm, and an ideal curve from the Stoner-Wohlfarth (S-W)
model for (a) shape S2 and (b) shape S1. (¢) The minimum value of the y component of the average magnetization (77,) of the horizontal
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shape S2. (d) Simulated H as a function of lattice spacing for shapes S1 and S2 and outlines of island shapes S1 and S2, showing the

different end curvature.

Since interisland interactions suppress coherence of
magnetization reversal, we can now understand the reduced
H for smaller lattice spacings as a consequence of a
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—710 Oe for 280, 320, and 1000 nm, respectively), (middle) S2
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FIG. 5.

respectively), and (bottom) ideal Stoner-Wohlfarth model
mapped onto shape S2 (H. = —514.5 Oe). The values chosen
for Hq are taken just prior to the moment reversal. Arrows
indicate the local direction of the magnetization, and color coding
indicates its normalized component m, with the field applied at
45° to the horizontal direction.

smaller energy barrier for a less coherent reversal process in
ASI. This is the case for both shapes S1 and S2 down to
a = 320 nm [Fig. 4(d)]. As a is reduced below 320 nm,
however, the simulated M(H) of the S1 and S2 arrays
become markedly different, as shown in Fig. 4(d). H.
increases dramatically with further reduced lattice spacing
for shape S2. By contrast, for S1, H - decreases with further
decreasing lattice spacing for a < 320 nm. This difference
between S1 and S2 can be understood in terms of the
energy cost associated with the magnetization rotating near
the curved edge of the islands. For the elliptical edges of
S2, there is increased energy cost to rotate the magnetiza-
tion. This effect is greatly enhanced by strong interisland
interactions, which couple to the more elliptical shape to
create good flux closure horizontally and vertically at a
vertex. Experimentally, microscopic island edge roughness
presumably suppresses this energy cost, leading to behavior
more like that of shape S1.

The substantial temperature and lattice-spacing depend-
ence in our measurements of M and H. has direct
implications for future studies in these systems, since
fine-tuning of experimental protocols will need to take
these effects into account. This is especially true for
strongly interacting arrays, where the simple expectation
of coherent magnetization reversal following a Stoner-
Wohlfarth model begins to break down. More generally, the
results also have implications for the wide range of other
interacting nanomagnet systems, including a range of
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superparamagnetic materials and patterned media that have
important technological implications. Because the exact
nature of the interaction-induced effects at low lattice
spacing depend crucially on details of the shape of the
islands, precise lithographic control could exploit this
dependence to further control the collective behavior.
This creates the possibility for new degrees of freedom
in tuning the behavior of these systems, for both applica-
tions and exploration of the fundamental physics of the
collective phenomena.
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