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1 Introduction

New anti-de Sitter (AdS) vacua of maximal supergravity in four dimensions with the specific
gauge groups

G_=1[8S0(6) x SO(1,1)] x R?  or G4 =[SO(6) x SO(2)] x R? , (1.1)

have been recently found [1-7]. These vacua are interesting because they are in one-to-one
correspondence with type IIB supergravity solutions of the form

AdSy x S° x St (1.2)

via consistent uplift [8] (see also [6]). On this type of solutions, the type IIB fields that lie
in non-trivial representations of the SL(2,R) S-duality group often take on non-trivial mon-
odromies around the S! factor in (1.2) [8]. For this reason, the resulting solutions are typi-
cally non-geometric and go under the name of S-folds. For certain solutions (1.2) that uplift
from the G gauging, the monodromies are trivial, though, and the solutions are perfectly



geometric [6]. These type IIB configurations generically are limiting cases of Janus-type so-
lutions [9] and, therefore, the dual three-dimensional conformal field theories (CFTs) should
arise as limits of four-dimensional N' = 4 super-Yang-Mills at codimension-one defects [10].
See [11-14] for alternative supergravity constructions that also lead to this type of S-folds.

A characteristic feature of the vacua of the D = 4 N = 8 gaugings (1.1) is that
they tend to arise as critical loci on the E(7)/SU(8) scalar manifold. This is unlike other
gaugings [15, 16] with similar higher-dimensional origin [17-19], whose vacua correspond
instead to isolated critical points of the corresponding scalar potentials. In other words, the
vacua of the G4 gaugings (1.1), all known of which are AdS, come in families parameterised
by (pseudo)scalars of the D = 4 N/ = 8 supergravity that remain massless. Thus, the
corresponding families of S-folds (1.2) should be holographically dual to (subsectors of)
conformal manifolds of the boundary CFTs. This feature makes of the gaugings (1.1)
excellent starting points to study holographically this class of conformal manifolds. In
contrast, for solutions that uplift from isolated critical points [17-19], specific methods [20,
21] beyond gauged supergravity need to be employed in order to study their conformal
manifolds, see e.g. [22, 23].

For example, the G_ gauging has an AdS critical point with residual supersymmetry
N = 4 and bosonic symmetry SO(4) [1]. This gives rise to a type IIB S-fold (1.2) with
the same (super)symmetries [8], whose dual CFT was identified in [24]. The N' =4 SO(4)
critical point [1] is not isolated, though: it belongs to a two-parameter family of AdS
solutions with generic supersymmetry N = 2 and U(1)? C SO(4) bosonic symmetry [4]
(see also [3, 14] for previously constructed subsectors of this N' = 2 family and [5] for a non-
supersymmetric extension). The two parameters that characterise the family of solutions
are (pseudo)scalars of the D = 4 N' = 8 supergravity that remain massless. Thus, although
the type IIB uplift (1.2) of the entire two-parameter family has not been constructed in
full generality (see [3, 8, 25, 26] for partial results), it is guaranteed to exist by consistent
uplift [8]. The resulting two-parameter family of type IIB S-folds should thus be dual to
the conformal manifold of the N' =4 CFT of [24].

In this paper, we turn our attention to the remaining known supersymmetric families
of AdS vacua of the D = 4 N = 8 gaugings (1.1). These include three instances, all of
them strictly with A/ = 1 supersymmetry: one in the G_ gauging [2, 3] and two in the G
gauging [6, 7]. See section 2 for a review. The family of AdS solutions in the G_ gauging
is two-parametric and generically U(1)?-invariant. It displays symmetry enhancements to
SU(2) x U(1) at one-dimensional subloci and to SU(3) at a point. Both families in the
G4 gauging are one-parametric and generically U(1) invariant. One of them presents a
symmetry enhancement to SO(3) at a point. The type IIB uplifts (1.2) of the U(1)%-
invariant family [2, 27] and of the SO(3) point [6] are known. These solutions should
be dual to infrared conformal fixed surfaces, lines and points of four-dimensional N' = 4
super-Yang-Mills theory at codimension-one defects [14, 27].

Specifically, we compute the spectrum of Kaluza-Klein (KK) perturbations above these
families of N = 1 AdS, solutions, thereby extending to these cases the recent KK analy-
sis [25, 26] for the AN/ = 2 holographic conformal manifold [4] of the N' = 4 point [1, 8].
Our results assess holographically the spectrum of single trace operators on the marginally



deformed N = 1 dual CFTs. For all three families of solutions, we characterise their spec-
tra by listing their complete algebraic structure in terms of OSp(4|1) x G representations
at all KK levels. Here, G stands for any of the residual symmetry groups, U(1)2, U(1),
etc., mentioned above. Except for a few massless cases that we identify, all the OSp(4|1)
multiplets in the spectra are long. For this reason, the dimensions of (the superconformal
primaries in) these multiplets are not fixed by the above algebraic structure and need to be
computed independently. In order to do this, we have diagonalised the bosonic [28, 29] (see
also [30]) and fermionic [31] mass matrices recently derived for the KK perturbations on the
AdS solutions of the higher-dimensional supergravities that uplift consistently [6, 8, 15, 16]
from D = 4 N = 8 gauged supergravities. These KK mass matrices were obtained in those
references with the help of exceptional field theory (ExFT) [32-34], a duality-covariant
reformulation of the higher-dimensional supergravities (see [35] for a review).

Section 3 contains the main results of our KK analysis, and further details can be found
in the appendices. Remarkably, for the U(1)2-invariant family we are able to give closed
formulae for the supermultiplet dimensions at all KK levels. For the other two families we
also provide some analytic results for the dimensions, but most of them are numerical: we
give the multiplet dimensions for the first few KK levels at discretised values of the moduli
that label each family. In all cases, the dependence of the supermultiplet dimensions on
the moduli is locked into fixed combinations that involve one of the two KK levels and the
G charges. Together with the independence on this KK level of the algebraic structure of
the spectra, this fact is responsible for the periodicity of the latter in moduli space. This
compact character of the moduli is intrinsically ten-dimensional and cannot be seen at the
level of the D = 4 N = 8 supergravity. This compactness has been previously observed
for one [25], but interestingly not the other [26], of the two moduli of the holographic
conformal manifold [4] of the N' = 4 S-fold [1, 8] in this class.

This paper extends previous partial results on the KK spectrum of the N' = 1 AdS
solutions at hand, including the lowest-lying spectra [3, 6, 7] and the spin-two spectrum [36]
at the SU(3) point. Together with [25, 26], we exhaust the KK spectra of all known (to
date) supersymmetric type IIB S-fold solutions of the form (1.2) that uplift from D = 4
N = 8 supergravity with gaugings (1.1). Together with [25, 26] and [29-31, 37-41], we also
exhaust the KK spectra of all known supersymmetric AdS4 solutions of M-theory or type
IT that uplift consistently [8, 17-19] from D = 4 N = 8 gauged supergravities. Other KK
spectra of related AdS solutions that have been recently computed using the ExFT-derived
methods of [28, 31] include [42-47].

2 Solutions

We start by reviewing the N/ =1 AdS vacua of the gauged supergravities under consider-
ation [2, 3, 6, 7] in order to fix our notation.
2.1 Common aspects

We are interested in a specific class of type IIB S-folds that uplift from vacua of two
concrete gaugings of D = 4 N = 8 supergravity. These have dyonically-gauged, in the



sense of [48-50], gauge groups (1.1), and are characterised by an embedding tensor [51]
(see [52] for a review) in the 36 and 36 of SL(8,R),

A
045D = 2640pp . ©4BC |, — 95l ¢BI0. (2.1)
Here, A =1,...,8 is a fundamental index of SL(8, R) and
0 = gdiag(0,1,1,1,1,1,1,0), ¢ = mdiag(x,0,0,0,0,0,0,1), (2.2)

respectively are the SO(6)-invariant quadratic form corresponding to the electrically-gauged
SO(6) factor of either gauge group (1.1), and the quadratic form of the magnetically gauged
SO(1,1) (if # = —1) or SO(2) (if x = 1) factors in (1.1). The gaugings G4 (1.1) uplift
consistently on S° x S! to type IIB supergravity [8] (see also [6]). In particular, the vacua of
these D = 4 N = 8 supergravities give rise to ten-dimensional solutions of the form (1.2).
Upon uplift, the SO(6) factor of G4 rotates S° while SO(1,1) or SO(2) act on the S*.

The vacua of D = 4 N/ = 8 supergravity with G4 gaugings, all of which are known
to be AdS, tend to come in families parameterised by supergravity moduli. Consequently,
the resulting type IIB uplifts (1.2) also depend on these moduli. In this paper, we will
be interested in three specific such families of AdS solutions. All of them preserve N' =1
supersymmetry and have residual bosonic, continuous symmetry groups G. While G for a
given family possibly depends on the position in moduli space, it always turns out to be
contained in the SU(3) subgroup of the SO(6) ~ SU(4) factor of either gauge group (1.1).
The full (super)symmetry group of these solutions, OSp(4|1) x G, at a specific point in
their moduli spaces is thus always contained in

0Sp(4]1) x SU(3) . (2.3)

The factor of OSp(4]1) is common to all solutions and G C SU(3) C SU(4) ~ SO(6) C G.
From the ten-dimensional perspective (1.2), G acts on the CP? base of the Hopf fibration
of S°.

The AdS vacua under consideration may have additional bosonic discrete symmetries.
In fact, at least one representative in each family enjoys the same specific discrete symme-
tries that allow for a truncation of Gi-gauged D = 4 N' = 8 supergravity to the N’ = 1
seven-chiral model with scalar manifold

[Sg&’g)] " (2.4)

associated to the maximal torus of E7(7)/SU(8). In other words, at least one representative
in each family of solutions can be recovered as a solution within the ' = 1 subtruncation of
maximal supergravity specified by (2.4). In the next three subsections, we will denote the
real scalar components of these multiplets by (i, x;), @ = 1,...,7, with ¢; proper scalars
and x; pseudoscalars taking values on (2.4). We follow the parameterisation conventions
of [3].



2.2 Two-parameter U(1)2-invariant solution with SU(3) enhancement

The first family of AdS solutions that we will consider occurs in the G_ gauging and was first
found in [2]. The solution depends on two pseudoscalar parameters and preserves N = 1
supersymmetry for all their values. At generic points in this two-dimensional moduli space,
the bosonic symmetry of the solution is the G = U(1)? = U(1); x U(1)s Cartan subgroup
of the SU(3) contained in the SO(6) factor of the gauge group G_, namely,

SO(6) ~ SU(4) > SU(3) x U(1), D SU2) x U(1)a x U(1); D U(1)1 x U(1)2 x U(1)r . (2.5)

Here, U(1); € SU(2). The U(1); that commutes with SU(3) inside SU(4) ~ SO(6) is
broken by the family of vacua, but is included in (2.5) for clarity.

The sector invariant under this U(1)? of G_-gauged D = 4 N = 8 supergravity was
studied in [2], and the two-parameter family of AdS vacuum solutions that we are interested
in was already reported in that reference. In [3], the same two-parameter family of vacua
was found to be included in the seven-chiral sector (2.4) of the maximal supergravity. In
our conventions and with ¢ = m =1 in (2.2) without loss of generality, the location of this
family within the seven-chiral model occurs at

r=—1, 291 — o202 — o2¢3 97 o201 — 205 _ 206 _ 207 _ 9,
5 5
1
xt+x2+x3=0, X4:X5:X6:X7:—%. (2.6)

The pseudoscalars x1, x2 are free and parameterise the family of vacua, while x3 is fixed in
terms of them as indicated in (2.6). The squared radius of AdS on this family is independent
of x1, x2 and reads, in our conventions,
o825 , (2.7)
Vo 108

with V < 0 the value of the cosmological constant at the critical locus (2.6).

While the family of vacua (2.6) preserves N’ = 1 supersymmetry for all values of x1,
X2, its bosonic symmetry depends on the position in moduli space. For generic values
of the parameters, the solution is invariant under the U(1); x U(1)2 specified in (2.5).
On the one-dimensional locus x; = Z£x2, there is a symmetry enhancement to either
G =8SU(2) x U(1)2 or G = U(1); x SU(2) depending on whether x; = x2 or x1 = —x2.
Of course, both choices are physically equivalent. Finally, at the x1 = £x2 = 0 point, the
symmetry enhances itself to G = SU(3). The full (super)symmetry group of the family
is thus indeed contained in (2.3), and becomes exactly the latter at the origin (in our
conventions) of moduli space. The x; = x2 = 0, SU(3)-invariant solution was uplifted to
type IIB in [2], and the two-parameter family was uplifted in [27]. See appendix C below
for a follow-up on the latter uplift.

As D = 4 supergravity scalars, x1, x2 take values on two copies, contained in (2.4),
of the real line. However, on the associated family of type IIB solutions, a periodicity on
these parameters must be enforced,

2T 2

~ —_— ~ —_— 2.8
X1 X1+T’ X2 X2+T’ (2.8)



so the moduli space becomes a two-torus. The quantity 7" in (2.8) is the inverse radius of
the S-folded S! of the corresponding type IIB solutions (1.2). This periodicity cannot be
seen at the D = 4 N = 8 supergravity level and is an intrinsic feature of the uplifted type
IIB solutions. This can be verified with the explicit uplift of appendix C, and reflects itself
in the KK spectrum discussed in section 3.2. Similar observations about the compactness
of the pseudoscalar moduli in related models have been previously made in [25, 26, 47].

2.3 One-parameter U(1)-invariant solution with SO(3) enhancement

In [6] (see also [7]), an AdS vacuum of the G gauging (1.1) of D = 4 N' = 8 supergravity
was found within the seven chiral subsector (2.4). In our conventions, this vacuum is

located at
r=1 e2P1 — 2P2 — o293 — g edra — Aes — plve — pder — @
Y 9y 25 Y
2 ! B ) (2.9)
X1=X2=X3= 73\/? X4—X5—X6—71081/4 o XT= 10871 .

and has AdS squared radius

5
- 25\/; : (2.10)
Vo 162

This solution preserves the SO(3) subgroup of the G gauge group that is embedded in
the SO(6) factor of the latter as

SO(6) ~ SU(4) © SU(3) x U(1), 5 SO(3) , (2.11)

with SO(3) the real subgroup of SU(3) so that the fundamental is irreducible.

The critical point (2.9) can be extended into a one-parameter family of AdS solutions
of the same D = 4 N = 8 gauged supergravity [6] (see also [7]). This can be done using the
solution generating technique first introduced in [4] and systematised in [5]. The modulus,
X, that labels the family is a pseudoscalar of the D = 4 N/ = 8 supergravity that is not
contained in (2.4). For all x does the family have the same cosmological constant (2.10)
and preserves N/ = 1 supersymmetry. For generic y, the family only preserves the U(1)
Cartan subgroup of the SO(3) in (2.11). At x = 0, the critical point (2.9) is attained and
the symmetry is enhanced to SO(3). Only this y = 0 point can be recovered within the
seven-chiral sector (2.4) of the D = 4 supergravity.

The x = 0, SO(3)-invariant solution was uplifted in [6] to a type IIB S-fold of the
form (1.2). From the KK spectrum discussed in section 3.3, it follows that the type IIB
uplift of this family of solutions must have the pseudoscalar parameter x periodically
identified as

27
X~x+? , (2.12)

similarly to all other known cases, (2.8) and [25, 26]. In appendix C we comment on the
type IIB uplift of this family of AdS, solutions.



2.4 One-parameter U(1)-invariant solution with no enhancement

A final one-parameter family of N'=1 AdS vacua that we will consider was found in [7]
within the G gauging (1.1). The representative of this family contained in the seven chiral
subsector (2.4) of the D =4 N = 8 supergravity is located, in our conventions, at

.’13:]., Xlz_i7 X2:X3:_ﬂ7 X4=— o2 )
2/6 44/2 2v/3(2K2 —5)Y/4
VE VK2 +2(2k2—5)"74
X5:X6:2'61/47 X7=— \/6(2-%) )
e e g V3R23 e-m:e-w:l(?ﬂ?_g) v
2V2’ 42 K\ 2 ’

1
~p5 —gmvo — [ S /4\f 2.13
e e 9 K, (2.13)

with & = \/v/13 — 1. Using (2.13) as a seed for the solution generating technique of [4,
5], a one-parameter family of AdS solutions parameterised by a pseudoscalar y can be
obtained [7]. All members of the family preserve N' = 1 supersymmetry and the same
G = U(1) bosonic symmetry as the family discussed in section 2.3, namely the Cartan
subgroup of the SO(3) in (2.11). Also, all members of the family share the following
x-independent AdS squared radius:

_ =6 _ 81
Voo 30./70 +26V13

The modulus x is a D = 4 N' = 8 supergravity scalar that lies outside the seven chiral

LQ

(2.14)

subsector (2.4). For this reason, only the y = 0 representative (2.13) of this family of vacua
lies within that sector. Unlike in the previous cases, there is no symmetry enhancement
anywhere in the family, including x = 0. Like in the previous solutions, the parameter
X is restricted to take values on a circle in the full type IIB solution, as in (2.12). This
observation follows from the KK spectrum for this solution covered in section 3.4.

3 Spectra

Let us now move on to present the KK spectrum for each of the families of AdS4 solutions
reviewed in section 2, starting with aspects common to all of them.

3.1 Common aspects

The characterisation of the KK spectrum on the AdS, solutions at hand can be achieved by,
firstly, obtaining the structure of OSp(4|1) x G representations and, secondly, computing
the OSp(4/1) supermultiplet dimensions.

Finding the complete algebraic structure of OSp(4|1) multiplets and their charges
under the (parameter-dependent) bosonic symmetry group G is a purely group-theoretical
exercise. This structure is dictated by the consitent uplift and follows from an adaptation



to the present setting of the technique employed in [37] in a related context. The structure
of individual KK states follows from tensoring the D = 4 N' = 8 supergravity multiplet
with the [0, ¢, 0], representation of SO(6) x SO(2) for all £ and n ranging as

(=0,1,2,... n=0,%l, £2, ... (3.1)

These so-called KK levels are associated with the internal S® and S! of the I1IB S-folds (1.2).
The resulting SO(6) x SO(2) representations can be found in appendix B of [26]. These
then need to be branched under G and regrouped into OSp(4|1) multiplets with the same
G charges.

As remarked in section 2 above, the (super)symmetry group OSp(4]1) x G for all three
families of solutions under consideration in this paper is contained in (2.3). Consequently,
the supermultiplets present in all three spectra must branch from putative representations
of the latter. For this reason, it is helpful to present these putative representations in
detail. These are obtained by tensoring as outlined above, then branching under the first
inclusion in (2.5), and finally recombining into OSp(4|1) supermultiplets with the same
SU(3) charges. Denoting the representations of (2.3) as'

MULT[Eo; [p, ]| . (3.2)
we find the following content at KK level £ = 0 and all n:

GRAV [Ey; [0,0]] & GINO[Eq; [L,0]] & GINO[Eq; [0, 1]]
& CHIRAL|Eq; [2,0]] ® CHIRAL[Ey; [0,2]] @ 2 x CHIRAL[Ey: [0,0]] . (3.3)

At fixed ¢ > 1 and for all n, the (2.3) representation content is:

y4
D GRAV [Eo; [p, ¢ —p]]

p=0

¢ 1
a@ @ GINO|[Ey; [p+1—a,{—p+a]]
p=0a=0
-1 1
@@@(GINO[EO; [p+a,l—p—1]] ® GINO[Ey; [p,ﬁ—p—i—a—lﬂ)
p=0a=0

'Here, the acronym MULT refers to a supermultiplet of OSp(4|1) with dimension Ey and any possible
superconformal primary spin so < 2: so = 3 ((M)GRAV), so = 1 (GINO), so = 3 ((M)VEC) or sp =
0 (CHIRAL), where M denotes a massless multiplet. The Dynkin labels [p,q] characterise the SU(3)
representation. All these multiplets are long, except the massless multiplets MGRAV and MVEC, for
which Ey = g and Ey = %7 respectively. See e.g. table 1 of [31] for their field content. No massless GINO
or singleton multiplets appear in the spectra.



14 1 1
PP VEC[Eo; [p+a,l—p+b]]
p=0a=0b=0
-1 2
sPP (VEC[EO; [p+a,0—p—1]] & VEC[Ep; [p,e—p+a—1]])
p=0a=0
-2 1 1
e PP VEC[Ey; [p+a,—p+b—2]]

p=0a=0b=0

¢ 1
PP (CHIRAL [Eo; [p+2a, £ — p)] ® CHIRAL [ Ey; [p,e—p+2a]])

p=0a=0
/-1 1
>PBPp (CHIRAL [Eo; [p+1—a,l—p]] ® CHIRAL|[Ey; [p+ 1,€—p—a]])
p=0a=0
-2 2
&P EP (CHIRAL[Ey; [p+a,(—p—2]] & CHIRAL[Ey; [p,¢—p+a—2]]). (3.4)
p=0a=0

For each solution with symmetry G at a certain location in moduli space, the complete
OSp(4]1) x G algebraic structure of the spectrum at all KK levels ¢ and n (3.1) follows
from branching the SU(3) representations in (3.3), (3.4) under G C SU(3). The OSp(4|1)
multiplets are the same as in these equations, but their dimensions Ey will typically also
split under the branching G C SU(3). The role of the underlined ¢ = 0 multiplets in (3.3)
will be discussed around (3.9) and (3.10) below.

The supermultiplet structure (3.3), (3.4) of the KK spectra of all three families is
independent of n, and only depends on £ as indicated. The only dependence of the spectrum
on n is through the dimensions FEjy, see below. The total multiplicities of each type of
OSp(4|1) multiplet at fixed KK levels is thus also independent of n. Naively adding up the
dimensions of the different SU(3) representations in (3.3), (3.4) for each type of OSp(4|1)
multiplet at fixed KK level ¢, these multiplicities are

GRAV : Dyg GINO : 6Dy , 55)
VEC : 14Dy CHIRAL : 14Dy |, '

for all n. Here,

Dig = (@5) _ (ﬁfg) = B2+ ) (3.6)

is the dimension of the [0, ¢, 0] representation of SU(4) ~ SO(6). This is a consequence of
the fact that all multiplets can be taken to be long, and of the generic algebraic structure of
the KK spectrum on the class of AdSy solutions (1.2) of type IIB that we are considering.

Having obtained the algebraic structure of the spectra, it remains to determine the
supermultiplet dimensions. Except for the handful of massless cases mentioned below,
the OSp(4|1) multiplets present in (3.3), (3.4) are all typically long. For this reason, the
dimensions do not follow from group theory and must be computed independently. In
order to do this, we have used the mass matrices given in [28, 29, 31] (see also [30]) for



the KK perturbations above AdS backgrounds that uplift from D = 4 N/ = 8 gauged
supergravities. As remarked in those references, only gauged supergravity data together
with minimal information on the uplift, including the generators of the maximal isometry
SO(6) x SO(2) of S® x S!, enter those mass matrices. Using the details reviewed in section 2
and the generators of SO(6) x SO(2) (see appendix B of [26] for our conventions), we have
evaluated these mass matrices for each of these families of solutions. Finally, we have
diagonalised them at some fixed KK levels to obtain the mass spectrum of the individual
KK perturbations at those levels. Then, we have translated these masses into dimensions,
and have grouped them into OSp(4|1) supermultiplets. It is reassuring that the latter step
agrees, as it must, with the independent algebraic supermultiplet structure (3.3), (3.4).

Our results for the multiplet dimensions are mostly numerical, and allow us to infer
important patterns. We have also obtained some analytic results, which confirm those
patterns. Specifically, the supermultiplet dimensions Ej typically exhibit a complicated
dependence on the S KK level ¢ and possibly on the quantum numbers of intermediate,
broken symmetry groups. However, their dependence on the S' KK level n, on the moduli
(x1,x2) or x, and on the G = U(1); x U(1)3 or G = U(1) charges (m1,ms) or m is always
locked into the fixed combinations

2mn 1 1 2 2mn 2
Jrmims (X1, X2) = +m1(X1—X2)+m2(X1+X2)] or <+mx> - (3.7)

T 2 2 T
The expression on the left corresponds to the two-parameter family of [2, 3] that was
reviewed in section 2.2, and the one on the right to the one-parameter families of [6, 7]
reviewed in sections 2.3 and 2.4. In (3.7), T is the inverse radius of the S-folded S! of the
corresponding type IIB solutions. A similar behaviour has been observed for the spectra
discussed in [25, 26].

The behaviour (3.7) has various consequences. Firstly, it follows that an OSp(4|1)
multiplet in each spectrum is neutral under U(1); xU(1)5 or U(1) if and only if its dimension
is independent of the moduli that parameterise the family. Secondly, (3.7) also leads to
degeneracy in Fy of the multiplets at S KK levels |n| and —|n|, at fixed moduli and S° KK
level ¢, and opposite U(1); x U(1)2 or U(1) charges. Finally, equation (3.7) also establishes
the periodic behaviour of the multiplet dimensions in the moduli. Indeed, for all fixed
S® KK level ¢, the dimension of any given multiplet with charges (m1,ms), evaluated at
(X1 = X100, X2 = X2(0)) OF X = X(0) and S KK level n, coincides with the dimension of the

same multiplet evaluated at (x1 = x1(0) + %, X2 = X200 + 271}’2) or X = X0 + 2 and S!

level n/, with
1 1
n':n—i(ml—i—mg)hl%—i(ml—mg)hg or n=n—-m. (3.8)

Independent integer winding numbers (h1, ha) need to be introduced in the expressions
corresponding to the family of solutions of section 2.2, but are unnecessary for the solutions
of sections 2.3 and 2.4. Either way, the KK level n’ in (3.8) is well defined, as all charges
m1, m2 and m are integer in our conventions, and both (m; + mg) and (m; — mg) are
even numbers: see (3.11). The periodicity of the multiplet dimensions, together with the
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n-independence of the algebraic structure (3.3), (3.4), leads to the periodicity in moduli
space of the full spectra.

All the multiplets (3.4) present in the spectra of all three families at KK levels ¢ >
1 and any n are always long. At KK level ¢ = 0, most of the multiplets (those not
underlined) in (3.3) are also long, but the underlined singlet GRAV and 8 VECs therein
behave differently. For n = 0, this GRAV multiplet is long as indicated, but at n = 0 it
becomes massless for all values of the parameters (x1, x2) or x via the splitting:

GRAV [Eo =2+ e] — MGRAV [Eo _ 2} ® GINO[Ep — 3] . (3.9)
e—

Only the dimensions, and not any other (vanishing) charges, are shown here. The MGRAV
multiplet on the r.h.s. of (3.9) contains the £ = n = 0 massless graviton of the D =4 N =8
gauged supergravity, and is accompanied by an additional massive GINO multiplet of fixed
dimension, as indicated in (3.9).

As for the underlined ¢ = 0 VEC multiplets in (3.3), a number dim G of these turn out
to lie in the adjoint of G under the branching of the 8 of SU(3) under G, for all possible
symmetry groups G. These dim G VEC multiplets must be replaced with

VEC [Eo = ; + e} — MVEC {Eo = ;’} @ CHIRAL[E) = 2] . (3.10)

Unlike the straightforward replacement (3.9) at n = 0 across the entire moduli spaces, the
splitting (3.10) is slightly more subtle. At generic loci with minimal symmetry, G = U(1)?
for the family of [2, 3] and G = U(1) for the families of [6, 7], (3.10) does work out like (3.9):
the replacement takes place only at n = 0 and the VEC multiplets stay massive for n # 0.
In these cases, the multiplets on the r.h.s. of (3.10) respectively contain the U(1)? or U(1)
gauge fields and the massless moduli (x1, x2) or X, all of which are D = 4 N’ = 8 super-
gravity fields. At loci or points with enhanced symmetry G = SU(2) x U(1), G = SU(3)
or G = SO(3), the replacement (3.10) must be effected for all the VEC multiplets in the
adjoint of G. In these cases, (3.10) occurs at either n = 0 or at an n’ # 0 given by (3.8), de-
pending on whether the symmetry enhancements occur at the locations specified in D = 4
N = 8 supergravity (x1 = £x2, X1 = £x2 = 0 or x = 0), or at locations periodically identi-
fied with the former via (2.8) or (2.12). As noted in [25, 26] in a similar context, the n’ # 0
situation is reminiscent of the ‘space invaders scenario’ described in [53] (see also [54]).

Whenever the replacements (3.9), (3.10) occur, the generic supermultiplet degenera-
cies (3.5) need to be adapted to account for the extra GINOs and CHIRALs. At symmetry-
enhanced points, these CHIRALSs contain additional massless scalars. These are not mod-
uli, however, since they become massive as (x1,x2) or y move away from the symmetry-
enhanced locations into generic loci with U(1)? or U(1) symmetry. Incidentally, our analysis
seems to suggest that (x1, x2) and x are the only moduli of the families of solutions under
consideration, but this is not conclusive.? Finally, no GINO multiplet ever becomes mass-
less. Thus, the supersymmetry stays strictly N’ = 1 across the moduli spaces of all three
families.

20ur numerics reveal massless scalars at higher KK levels, but these are likely to be an artifact of our
choice T' = 2r for the inverse radius of the S-folded S*. See [6, 24] for more realistic, physically motivated
choices for T.
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3.2 Two-parameter U(1)2-invariant solution with SU(3) enhancement

For the family of solutions of [2, 3] reviewed in section 2.2, we have been able to determine
the multiplet dimensions in closed form at all KK levels and for all values of the param-
eters x1, xo. Together with the full supermultiplet content that we give in all cases, this
determines the complete spectrum for this family in full detail. Our results contain and
extend previous partial results, including the graviton spectrum at the SU(3) point [36]
and the £ = n = 0 spectrum on the two-parameter family [3].

Let us first discuss the complete spectrum for generic values of the parameters x1, x2
away from symmetry-enhanced points. At fixed levels ¢ and n ranging as in (3.1), the KK
spectrum is arranged into the following representations of OSp(4|1) x U(1); x U(1)2. The
OSp(4]1) multiplets are those that appear in (3.3), (3.4), and their U(1); x U(1)2 charges
(mq, m2) branch from the SU(3) representations [p, ¢] therein under U(1); x U(1)2 C SU(3),

namely,
P q

a+b
p.a = PP P (a+b—2m, 2(¢—p) +3(a—1b)). (3.11)
a=0 b=0 m=0

The supermultiplet dimensions depend on the KK levels, on these U(1)? charges and on
the putative SU(3) Dynkin labels. More concretely, the dimension Ey of each OSp(4|1)
multiplet with superconformal primary spin sg, present in the spectrum at KK levels £,
n, with U(1)? charges (m1, mg) that derive through (3.11) from the SU(3) representations
[p, ¢q] indicated in (3.3), (3.4), is

5 5 5
Ey=1+ \/6 —so(s0+ 1)+ 15(5 +4) — §C2(p, q) + anm1mz(X17X2) . (3.12)

Here, C2(p,q) = %[p(p—i—i%) +q(q+3)+pq] is the eigenvalue of the quadratic Casimir operator
of SU(3) on the [p, q] representation, and frm,m, (X1, X2) has been defined in (3.7). Specif-
ically, the dimension of each possible type of OSp(4|1) multiplet present in the spectrum is

(M)GRAV = Ey=1+/3+ 300 +4) = 3C2(p, @) + S fumums (1, x2)
GINO : Ey=1-+ 4+ 3l +4) — 3Ca(p.q) + 3 frmums (X1, X2) »
(MVEC : Eo=1+ /2 + 500+ 4) — 3C2(p.0) + 3 Famms(x1. x2)
CHIRAL : Ey=1+/6+30((+4) = 3Ca(p.q) + S fumims (X1, x2) -

(3.13)

As (3.12) or (3.13) show, only those multiplets charged under U(1); x U(1)y have their
dimensions depend on the parameters y; and xs, in agreement with the general discussion
of section 3.1. The underlined £ = 0 GRAV multiplet in (3.3) is massive for n # 0, but
becomes massless through (3.9) at n = 0, for all values of x; and x2. Similarly, the two
U(1)? singlets that branch from the 8 underlined VEC multiplets at ¢ = 0 in (3.3) are
massive (at n # 0) or become massless (at n = 0) via (3.10) across the two-dimensional
moduli space. These £ = n = 0 MVEC multiplets contain the vectors that gauge the resid-
ual U(1)? in the D = 4 N' = 8 supergravity. The two accompanying CHIRAL multiplets
resulting from (3.10) contain the massless moduli x; and x2. For this family of solutions
and for generic values of the parameters, there are no additional moduli in the spectrum.
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[0, 0] [0,1] [0,2]
GRAV{l +/%+2(3) 2} same as [1,0] same as [2, 0]

2 x CHIRAL[1 + /6 + 3 (22)°]

[1,0] [1,1]
ao[Le 5 ()] | vEcfr i ()]

ot
/N
ﬂF
3
N———
[\
_

VEC(1+ /42 +
2,0

CHIRAL +4/5+ g—

Table 1. OSp(4]1)xSU(3) representations present in the KK spectrum at levels £ = 0 and all n of
the x1 = x2 = 0 SU(3)-invariant solution of [2, 3] reviewed in section 2.2. At n = 0, the underlined
multiplets split as in (3.9), (3.10).

In the locus x1 = +x2 or identifications (2.8) thereof, the symmetry is enhanced to
SU(2) x U(1). The complete spectrum on this locus is thus given by (3.3), (3.4), with the
SU(3) representations [p, q] therein branched out under the SU(2) x U(1)q in (2.5) as

p q
ED D (@ + b+ 1)ag—p)+30a—t) - (3.14)
a=0 b=0

Here, (a + b + 1) gives the dimension of the SU(2) representation, and the subindex, the
U(1)2 charge. The multiplet dimensions are still given by (3.12), now evaluated at x1 = %x2
modulo (2.8). Finally, at the SU(3) invariant locations, the spectrum is given exactly
by (3.3), (3.4), where the supermultiplet dimensions are again given by (3.12), now evalu-
ated at y1 = £x2 = 0 modulo (2.8). In these symmetry enhanced cases, extra massless mul-
tiplets occur in the spectrum following the pattern discussed around equation (3.10). For
the reader’s convenience, we have tabulated the KK spectrum at the x; = y2 = 0 SU(3)-
invariant point in tables 1 (at £ = 0 and all n) and 2 (at £ = 1 and all n). The tables provide
the OSp(4]1)xSU(3) representation content at these levels following the notation (3.2), only
with the SU(3) representations [p, ¢] factored out in common cells. See appendix B for the
explicit spectrum at KK levels £ = 0 and all n across the two-parameter family of solutions.

3.3 One-parameter U(1)-invariant solution with SO(3) enhancement

We now move on to discuss the KK spectrum on the one-parameter family of AdSy solutions
of [6] (see also [7]), reviewed in section 2.3. At generic values of the parameter x, the
complete spectrum at all KK levels (3.1) has the following OSp(4|1) x U(1) representation
content. The OSp(4|1) multiplets are those that appear in (3.3), for £ = 0, and (3.4), for
¢ > 1, and all n in both cases. The U(1) charges m of these multiplets are obtained by
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[0,0] [0,1] [0,2] [0,3]
2x GINO {1—1— e 3(2’%)2} same as [1,0] same as [2,0] | same as [3,0]

2xvee[iy/ 3o ()]

[1,0] [1,1] [1,2]
GRAV[1+ /550 2xGINO[ 14/ +5 (32)°] | same as [2,1)
GINO[1+ /3T + 5 (52 )?| 2xVEC[1+/ 2 +5 (3)’]

2><VEC[1+ %Jﬁ(%)?} 2><CHIRAL[1+ 2 4 2(2zn)2
3><CHIRAL{1+ 361%(2%)21

[2,0] 2,1]

GINO[H— %Jrg(%"y] VEC[1+ g%(@ﬂ

2xVEC[1+ %%(%")2} CHIRAL[1+ %%(%")2}

[3,0]

CHIRAL {1 +v/5+ 3(’%")2}

Table 2. OSp(4|1)xSU(3) representations present in the KK spectrum at levels £ = 1 and all n of
the x1 = x2 = 0 SU(3)-invariant solution of [2, 3] reviewed in section 2.2.

branching the SU(3) representations [p, g] that appear in (3.3), (3.4) under

SU(3) 5 SO(3) > U(1), (3.15)

with SO(3) the real subgroup of SU(3) as in (2.11). Thus, these charges are obtained by
first branching the [p, ¢] representation of SU(3) into SO(3) representations of spin j and
dimension (27 + 1) through

(5] [3] (2] [ ]
qd —-PP2p+2q—4a—ab+1)e H (2p+2q—4a—4b—1), (3.16)
a=0 b=0 a=0 b=0

and then further branching under SO(3) D U(1) as usual via

(25 +1) @ m. (3.17)
m=—j
We have obtained numerically the dimensions of these multiplets at a large subset of
discretised values of x at various KK levels. See figure 1 for a graphical summary of these
results, and appendix A for further details.
We have also obtained analytically all the multiplet dimensions at KK levels £ = 0 and
all n. Denoting an OSp(4|1) multiplet MULT with dimension Ey and U(1) charge m that
derives from a (27 4 1)-dimensional representation of SO(3) via (3.17) by

MULT|[Eo; m (25 + 1)], (3.18)
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0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

(,In]) = o (0.0) o (0.1) e (0.2 e (0,3) (t]n]) = e (0.0) e (0.1) e (0.2) e (0.3)

0.0 0.2 0.4 0.6 0.8 1.0 00 0.2 0.4 0.6 0.8 70
xT/2m xT/2x
(¢,Inf) = o (0,0) o (0,1) e (0,2) ° (0,3) (t[nl) = e (0.0) e (0.1) e (0,2) e (0,3)

(c) (M)VECs. (d) CHIRALs.

Figure 1. Dimensions Ej of all OSp(4]|1) multiplets present in the spectrum of the family of
solutions of [6] (see also [7]) reviewed in section 2.3, at the specified KK levels (¢, n).

we have, at £ = 0 and all n, the following graviton,

9  10m2n?
GRAV[l 3+ i 0 (1)] , (3.19)

1 2mn\ 2 2mn\ 2
GINO|1+ —— |77 445( =" 5. 1+210( =) :0(3
{+3\/§ +<T>+¢+ (T) U]

and gravitino multiplets,

2
@ GINO {1 + ; £1 (3)]

1 2mn 2 2mn
— 77-|—45<—:|: > +5 1+210(—:|: >
3v2 T \l T —X

1 21n\ 2 21n )\ 2
GINO|[1+4+ ——, |77+ 45 — | —54|1+210( — ) ;0(3
©GINO[1-+ 505 1T+ 45( ) J (F) o)

1 2mn 2 2mn 2
@GINO[lJr— 77+45<—i ) -5 1+210<—i );il 3]. 3.20

Here and elsewhere, the + signs in the labels of a given entry are correlated. For example,
the second line of (3.20) contains two GINO multiplets. The vector multiplets present in
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the spectrum at £ = 0 and all n are

VECH (Y o)

ovecie |23 ) 1)
ovecfie (B 3(3en) a2
VC[F( Jovec]i+ T ras 416

@VEC[lJr \/i + Bo; 0(3)} @VEC[1+ \/% + B+; £1 (3)]
® VEC {1 - \/% + 70 0(3)] @ VEC {1 - \/F; +1 (3)] : (3.21)

where oy, B, ¥m (m = 0,4), are the roots of the following m-, n- and y-dependent
(through (3.7)) cubic polynomials®

Pré(x) = (2 — ) (@ — B ) (€ — Ym)
. [15/27n 2 75 /2mn 4950 /270 2
3 2
—3 |22 2 il s il (sl 1
€T {2<T+mx>+0]x+[4(T+mx>+27< —i—x)—i—OO]m
_125<27m+m >6+1000(27m+m )4_1750<27rn+m )2 (3.22)
g \r "X o7 \ T "X o7 T ) '

Explicit expressions for these can be found that read

9 3[./2mn 2 , 2 .

=0 =3 _3 <T + mx> + 8| — 77,1,/13 [35 <T + mx) + 18} nml/" , (3.23)

gﬁ —3_3<27m+mx>2+8 + €3y /3+26_”/3{35< +mx>2+18]n_1/3

57 T2\ T T mo

9 _ 3, [2mn 2 | —im/3  1/3 in/3 ? ~1/3

5%” =3 _3 (T + mx> + 8_ +e L +2e {35 (T + mx> + 18] N'”
with

2mn 2 2mn 2mn 2 2mn 4
nm:216—720(+mx) —|—10z’(+mx> 5832+108<+mx> +3430(+mx) .
T T T T
(3.24)

30ur (3.22) agrees with (3.26) of [7] under the identifications Ynere = \/%Xthere and There = Qthere — i.
Despite the fact that 7, in (3.24) are complex, the expressions for a,,, Bm and v, in (3.23) are always
real. This does not seem to be the case for the roots (3.27) in [7], which appear to have non-zero imaginary
parts. The variable x in (3.21) should not be confused with the embedding tensor component z in (2.2).
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Finally, the chiral multiplets are

1 21n\ 2 2\ 2
CHIRAL|1 + — 93+45<) +5 172+210( > ;0(5 }
[ 3v2 T J T (3)

1 2mn 2 2n 2
@CHIRAL[l—ir 93+45(i ) +5 172+210(i );il 5]
375 7 Ex T X (5)

1 2mn 2 2mn 2
CHIRAL |1+ —— 93 +45( 22 4 2 5y 172 210(12 ) L 42 5]
@ [ +3\/§ - ( 7 x) + J + 7 £2X (5)
@CHIRAL{lJrl 93+45(2m>2—5 172+210<27m)2-0(5)]
3v2 T T )’
@CHIRAL[lJrl 93+45< LLC )2 5 172—1—210(27mi >2~ i1(5)]
33 7 X 7 £x) i
@CHIRAL[1+1 93+45(27mi2 )2—5 172+210(27mi2 >2- i2(5)]
3v/2 T X T TAX)
4
& (P CHIRAL {1 + Vwi; 0 (1)} : (3.25)

i=1

where w;, i = 1,2,3,4, are now the roots of the n-dependent (but now y-independent,
consistent with (3.7)) quartic polynomials

PChiral(a}) = (z—w)(z — w2)<$ —w3)(x — wy)

4 2
o {10<27m> 122]:53 { <27m) 3860(27m) 43121}52
27
+

[125 (27m>6 2575 <2m>4 22910 <27m>2 179684} (3.26)

2 54 T 81 ‘
625 /27n\° 20375 /2mn\® 93725 /27n\? 52960 /27n\? 6592
16(T>_54<T) 81(T> 81<T) 27

At lowest level, n = 0, this quartic polynomial reduces to that reported in [6, 7],

1
@ 16) (8123 — 199822 4+ 11153z — 1236) . (3.27)

As our numerics suggest and the above analytic results confirm for the reported KK
levels, the dependence of the multiplet dimensions with the KK level n, the modulus ¥,
and the U(1) charge m are locked into the combination (3.7). As discussed generally in
section 3.1, the underlined GRAV multiplet (3.19) becomes massless at n = 0 for all x
via (3.9). Similarly, the singly underlined VEC in (3.21) becomes massless at n = 0 for all
x by (3.10), further producing a CHIRAL multiplet that contains the modulus x. At the
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SO(3) symmetry enhanced points, the doubly underlined VEC multiplets in (3.21) further
become massless and together with the former furnish the adjoint of SO(3). This happens
either at KK level n = 0 or at different KK levels n’ as in (3.8), depending on whether the
SO(3) point is attained at y = 0 or at a location periodically identified with the former
through (2.12). Except for the disagreement in the VEC multiplet dimensions noted in
footnote 3, our £ = n = 0 spectrum recovers that reported in [6, 7].

We have also determined analytically the GRAV multiplet dimensions present at KK
levels ¢ =1 and all n. We have

271 5/2mn\% 10 2mn\ 2
GRAV[1+ 36+2<T> 0 4+3<T) ,0(3)}

2 2
@GRAV[l-i- 2£+;<2,Tix> —10\|4+3<2mix) ;i1(3)}

271 5/2mn\%2 10 2mn\ 2
AV|1 ikl (e —.l4 7).
® GR |:+ 36+2(T>+9 +3(T>,0(3)}

271 5 /2mn 2 10 2mn 2
@GRAV[H 36+2<Tix> +9\l4+3<Tj:X) ,11(3)}.

3.4 One-parameter U(1)-invariant solution with no enhancement

We conclude this section with the discussion of the spectrum on the one-parameter family of
U(1)-invariant solutions of [7], reviewed in section 2.4 above. The content of OSp(4|1)xU(1)
multiplets present in this spectrum is the same outlined at the beginning of section 3.3,
because both families of solutions share the same residual U(1) symmetry. Namely, the
complete KK spectrum at all levels (3.1) is given by (3.3), (3.4), with the SU(3) represen-
tations therein branched out into U(1) representations under (3.15) via (3.16), (3.17). The
¢ =0 GRAV multiplet in (3.3) becomes massless at n = 0 for all y through (3.9). Similarly,
the U(1)-singlet arising from the underlined ¢ = 0 VEC multiplet in (3.3) also splits at
n = 0 and for all y into an MVEC and a CHIRAL multiplet via (3.10). As usual, these
massless multiplets respectively contain the graviton, the gauge field and the modulus .
Unlike for the previous solutions, in this case there are no symmetry enhancements across
the one-dimensional moduli space.

Of course, while the multiplet structure is the same, the multiplet dimensions are
different for this family than those reported in section 3.3 for the family reviewed in sec-
tion 2.3. Most of our results for the supermultiplet dimensions for this family of solutions
at various KK levels are numerical. See figure 2 for a graphical account and appendix A
for further details. Our numerical results endorse also for this family the generic periodic
behaviour in x discussed in section 3.1.

We do have some analytic results for this family as well. More concretely, we have
obtained analytically the GRAV multiplet dimensions at KK levels £ = 0 and ¢ = 1, for
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xT/2m xT/2%
(,In]) = o (0.0) o (0.1) o (0.2) e (0,3) (t]n]) = e (0.0) e (0.1) e (0.2) e (0.3)

SHHTT

0.0 0.2 0.4 0.6 0.8 1.0 00 0.2 0.4 0.6 0.8 70
xT/2m xT/27
(tqnl) = e (0.0) o (0,1) e (0,2) e (0,3) (.n]) = e (0.0) e (0.1) e (0,2) e (0,3)

(c) (M)VECs. (d) CHIRALS.

Figure 2. Dimensions Ej of all OSp(4]|1) multiplets present in the spectrum of the family of
solutions of [7] reviewed in section 2.4, at the specified KK levels (¢, n).

all n in both cases. Denoting an OSp(4|1) multiplet MULT with dimension Ep and U(1)
charge m by

MULT[Ey; m], (3.29)

the GRAV multiplet present in the spectrum at £ = 0 and all n is

2
GRAV [1 + % + o (2:7;") : o] . (3.30)
(VI3 —2) /134 +22V13

At ¢ =1 and all n we have

GRAV (3.31)

2 2
0 \/23+103\/13+\/24(%T") +23+7\/13+2\/3\/ﬁ+3(%7") ]
;0

1+ 4_1+
24/v13—1

0 mﬁ—\/24(%7”)2+23+7\/ﬁ+2\/m<%%)2 -0}
; ;

®GRAV [1+ —t
4 V13-1



2 2
0 2558\/ﬁ—353+\/144(\/ﬁ+5)(2’;ﬁ:tx) +49(5v/13+19)+8 6(\/ﬁ+1)(2”T":I:X)
PGRAV [1+4 | -+ 41
8v24/V13-1
2 2
0 2558@—353—\/144(\/ﬁ+5)(2;"i><) +49(5v/13+19)+8 6(\/ﬁ+1)(2"T”:I:X)
BHGRAV 144 | -+ 1.
8v2y/V13-1

4 Discussion

We have assessed the KK spectrum of three specific families of N' = 1 S-fold solutions (1.2)
of type IIB supergravity that uplift consistently from the AdS vacua of D = 4 N =
8 supergravity with gaugings (1.1) found in [2, 3, 6, 7]. For all three cases, we have
provided the complete algebraic structure of supermultiplets at all KK levels, and also their
dimensions in some cases. Remarkably enough, for the U(1)2-invariant family of [2, 3],
we have managed to also give analytically the expression, (3.12), for the supermultiplet
dimensions at all KK levels. It is interesting to note that this expression conforms to a
generic formula, (1.1) of [31], known to hold for the supermultiplet dimensions of other
similar spectra. For the U(1)-invariant one-parameter families in the G gauging [6, 7], we
have computed the dimensions numerically at discretised values of the modulus that labels
the families and at the first few KK levels, see appendix A. For these two families, we have
obtained analytically some supermultiplet dimensions as well. The latter dimensions tend
to arise as roots of polynomials of degree higher than two and, for this reason, the resulting
expressions (3.19)—(3.31) do not typically conform to the generic formula of [31]. It would
be interesting to understand why that formula [31] works in some cases, like the solutions
of [2, 3], but not in others, [6, 7]. See [41] for a related discussion.

We also note the following curious fact for the spectrum of the U(1)-invariant cases
at hand [6, 7]. For these spectra, there are many individual KK states of spin-1/2 whose
masses (and dimensions) differ by one. Some of these states pair up into VEC multiplets,
together with appropriate KK vector and scalar states (see e.g. table 1 of [31] for the VEC
multiplet content). But not all of them do, and the excess goes into different CHIRAL
multiplets whose (superconformal primary) dimensions differ by one. There is a protection
mechanism (supersymmetry) for this pattern of dimensions of the spin-1/2 states that
belong to the same VEC multiplet. In contrast, there is no obvious mechanism leading
to such type of CHIRALSs in the spectrum. The number of CHIRALs with dimensions
differing by one grows with the KK level £, but not all the CHIRALs at fixed level £ are of
this type. We are not aware of the presence of this type of CHIRAL multiplets in the KK
spectra [31, 41] of other N' = 1 AdS, solutions of M-theory or type ITA that uplift from
D = 4 N = 8 supergravity.

Our results for the KK spectra under consideration confirm that the uplifts of these
families of solutions follow the pattern of similar solutions in this class [25-27], in that the
pseudoscalar deformations produce a local fibration (i.e. a Wilson line, see [6]) of the S°
in (1.2) over the S'. The dependence of the masses on the n quantum number and the
deformations is locked into the combinations in (3.7). Interestingly, for the geometries at
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hand, this observation allows one to work backwards and fully reconstruct the type I1IB
solutions from their (graviton) spectra. Let us sketch the argument, leaving an explicit
application of these ‘reverse engineering’ methods for appendix C.

The KK graviton masses are the eigenvalues of the following second-order differential

operator [55]
67814 8A /= -mn
L=— \@am[e V36 g an] (4.1)

associated to the warped ten-dimensional metric ds?, = 24 (ds?(AdS,) + ds2) in the Ein-

stein frame. The dependence (3.7) implies that the only modification on the operator (4.1)
corresponding to the deformed solutions with respect to the undeformed solutions with
vanishing moduli follows from the replacement

877 —>8,7—|- %(Xl _XQ)kB‘i‘%(Xl‘i‘XQ)kS; or 8,7 _>677+X8,8' (4.2)
Here, k3 = 204 and kg = 2(3 0y, — 0;) are the Killing vectors corresponding to the Cartan
subalgebra of SU(3) in (a suitable rescaling of) the usual Gell-Mann basis, see e.g. (A.1)
in [56] for the embedding of these generators in SO(6). These Killing vectors are normalised
so that their eigenvalues are given by the U(1)? charges (3.11). In (4.2), ¢, ¢, 7 and f3 are
angles on S°, see appendix C. From (4.1), these deformations can be traced back to the
metric and simply amount to the substitutions

p—d—(x1—x2)n, Yv—=v-3x1+x2)n, T=7+01+x2)n (4.3)

for the type IIB uplift of the family in section 2.2, and

B—pB—-xn, (4.4)

for the uplifts of the other two families. Solutions of the full type IIB supergravity can be
then obtained by extending these replacements to the supergravity forms.
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A Supplementary material: numerical spectra

This article comes with three companion Wolfram Mathematica files,
KKSpectrum.nb , KKSpectrum_FamilyS03.wl , KKSpectrum_FamilyUl.wl ,

which provide our numerical results for the KK spectra discussed in sections 3.3 and 3.4 for
the one-parameter families of solutions [6, 7] reviewed in sections 2.3 and 2.4, respectively.
The first of these files, with nb extension, provides a user interface, while the last two wl
files contain the proper databases which can be accessed with the former. All three files
must be downloaded into the same local folder before the nb file can be executed. The data
contained in the wl files must be loaded into memory by running the Get commands in the
nb file. The ‘S03’ label in the first wl file (and in the corresponding function below) refers
to the fact that the family of section 2.3 contains a point with SO(3)-enhanced symmetry,
even though the generic symmetry of this family is only U(1).

The databases can be accessed by executing from the nb file either of the following two

functions, with syntax:
KKSpecS03([x, ¢, n] , KKSpecU1[y, ¢, n] .

These respectively provide the spectrum of OSp(4|1) multiplets at the value x of the
parameter that labels the families of sections 2.3 and 2.4, at S® and S' KK levels ¢ and
n. The KK levels must be contained in ¢ € {0,1,2,3} and n € {0,+1,+2,+3}. For
both functions, the argument x can be any number contained in 0 < x < 1, in steps of
Ax = 0.01. We fix the internal S! radius to 7' = 27 for our numerics.

The output of both functions is the list of OSp(4|1) multiplets present in the KK
spectrum at the specified KK levels ¢, n and location x on the corresponding family of
solutions. More concretely, the functions provide the eigenvalues of the KK mass matrices
at the requested KK levels on the selected point , translated into conformal dimensions,
and repacked into supermultiplets of OSp(4|1). The functions do not keep track of the
U(1) (or SO(3)) charges of these multiplets, and only tally up their multiplicities. For this
reason, the output OSp(4|1) multiplets are simply displayed as

MULT [Eg ,deg] ,

Here, MULT is one of the acronyms for the OSp(4|1) multiplets in the conventions of [31],
which we also use in the main text, Eq is the dimension and deg the multiplicity. If the
input arguments do not meet the above specifications, an error message is printed.

Our calculations were performed with Mathematica’s default machine precision of fif-
teen decimal places. For simplicity of presentation, the database contained in the wl file is
truncated to six digits.

B Further details and checks on the spectra

Equations (3.3) and (3.4) of the main text give the putative representations of (2.3) from
which the algebraic content of all spectra discussed in this paper follows. For bookkeep-
ing purposes, it is convenient to encode the content of those equations in the following
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fugacities:

YL _ gt
Vo) = T
41041 VAR
Yy — T y -
— - 2
vay = (z +y) — +@+y+ )y_x,
YL gt
Vo = (ry+x+y+1-— 5&0)%7%
2, 2 yt —at y 1 — g1 (B.1)
+ @ty +r+y+2) +(y+or+y+1)H{)—,
y—x y—x
(1 _ gl
vo = (@ 4y +2)L =
VA 1 01
— X — X

where H (/) is the Heaviside step function. The subindices on each fugacity v refer to the
spin sg of the superconformal primary of each type of OSp(4|1) multiplet: from top to
bottom, GRAV, GINO, VEC and CHIRAL. The SU(3) Dynkin labels [p, ¢] corresponding
to each of these multiplets present in (3.3) and (3.4), and its multiplicity h, can be read
off from the term haP y? in the polynomial expansion of the corresponding fugacity. The
concrete dictionary is

0+1 ¢

'y ——— — Plp+al—p+1. (B.2)
p=0

It is also useful to explicitly flesh out some of the analytic results for the spectrum
given in section 3.2 for the family of solutions of [2, 3] reviewed in section 2.2. Let us do
that, for example, for the KK tower with £ = 0 and all n, across the entire two-parameter
family of solutions. In order to do this, we introduce the following notation

MULT[E(); mi, ™2 (7’)] y (B3)

for an OSp(4|1) multiplet MULT of dimension Ej given by (3.12), present in the spectrum
at those KK levels, with U(1); x U(1)2 charges m1, mo that derive from each representation
r of SU(3) with Dynkin labels [p, ¢] in (3.3). With these conventions, the KK tower with
¢ =0 and all n, for all values of x1, xo, is

crav 242 (22 0.00)

®GINO 141,151, 1(3)| @ GINO[ 14y, 115 ~1,1(8)| © GINO 1+ G 0,53 0, ~2(3)]
®GINO (14 1,1 =1, =1(3)] @ GINO[14 G115 1, 1 (3)| © GINO[ 14 G 0.2: 0, 2(3)
®VEC[1+60,1,151,1(8)| @ VEC 146, 1,15 =1, 1(3)| @ VEC| 1480, 5; 0, =2(3)]

®VEC[146n, 1,13~ 1, ~1(3)| @ VEC[148,1 151, =1(3)| @ VEC[1+8,,0,5; 0, 2(3)]
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®2 XLIE(J[1+pn,0,0; 0, 0(8)}
®VEC|[1+pp.0; 2, 0(8)| ©VEC|1+py, 205 =2,0(8)]
@%[14'%,1,3; 1, 3(8)} @%[14'%,1,73; 1, —3(8)}

®VEC|1+ pn,1,-3; ~1, ~3(8)| @ VEC|14 p, 13 ~1,3(8)]

@2 X CHIRAL{lJr 6+Z <2;">2; 0, 0(1)]
@CHIRAL[l + €02 0,2 (6)} & CHIRAL [1 +&n0.-43 0, —4(6)}
® CHIRAL|1+,1,-1; 1, —1(6)| & CHIRAL|1+¢, 1,_1; —1, ~1(6)|
® CHIRAL[1+.5,5; 2, 2(6)] @ CHIRAL[1+&, .5 ~2, 2(6)]
@ CHIRAL [1 €020, -2 (6)} @ CHIRAL [1 +€n04:0,4 (6)}
® CHIRAL[1+¢&, 11; ~1,1(6)| @ CHIRAL|1+&,11; 1, 1(6)]
® CHIRAL[1+6, 5 »; —2, —2(6)| & CHIRAL[1+&,5 2, —2(8)|. (B.4)

Here we have introduced the following shortand notations,

16 5 109 5
Cn,ml,mz = ? + anmﬂnz (Xla X?) y 5n,m1,m2 = % + anmﬂnz (X17 X2) 5
1 5 4 5
Pn,mi,me = Z + zfnmlmQ (Xl’ XQ) ; Sn,ml,mg = § + anmlmz (Xlu XQ) . (B5)

with frmyms (X1, x2) given in (3.7).
At n = 0, the underlined GRAV multiplet in (B.4) splits as in (3.9) for all values of the

moduli. The resulting MGRAV contains the massless graviton. Similarly, the underlined
VEC multiplet branches at n = 0 and all x1, x2 as in (3.10). The resulting MVEC and
CHIRALS respectively contain the U(1); x U(1)2 gauge fields and the moduli x1, x2. At an
SU(2) x U(1) or SU(3) invariant location, the doubly and triply underlined VEC multiplets
also split through (3.10). This happens at either n = 0 or at a ‘space-invading’ level n’ # 0
given by (3.8), depending on the conditions discussed in section 3.2. In particular, the
¢ = n = 0 scalar and vector spectrum reported for this family in (2.25), (2.26) of [3] is
recovered from (B.4). The ¢ = 0 and all n spectrum summarised in table 1 of the main
text for the x1 = x2 = 0, SU(3)-invariant point, is also recovered from (B.4).

As a final check, we can recover the spectrum of gravitons for the xy; = x2 = 0, SU(3)-
invariant solution, which was computed for all ¢ and n in [36] using the methods of [55].
In table 4 of [36], the graviton masses were given as

5 5 52
— %(6 —2p)° + T (B.6)
with Nhere = Jthere- Now, (3.3), (3.4) of the main text show that £ 4+ 1 GRAV multiplets
arise in the spectrum at fixed ¢ and all n in the [p,¢ — p] representation of SU(3), with

L*M? = gz(e + 4)
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p=0,1,...,¢. By some straightforward manipulation of (3.13) evaluated at xy; = x2 =0
and with these charges, these multiplets can be checked to have dimension

9 5 572
= Z 4 - _ 24 27 _p2
Ey=1+ \/4 + 6€(€ +4) (£ —2p)? + 5 " (B.7)

5
36
Thus, the individual graviton states in these GRAV multiplets have dimension A = Ey+ %
(see e.g. table 1 of [31]) and, indeed, mass (B.6) via M?L? = A(A — 3). Curiously, the
quantum numbers of these GRAVs conspire to have their dimensions depend on their
charges, ¢ — 2p, under the broken U(1), in (2.5) through the branching

¢
SU(3)xU(1
[O>€7 0] M @ [pae - p}f—?pa (BS)

p=0

under the first inclusion in (2.5).

C Some explicit type IIB uplifts

The family of type IIB solutions (1.2) corresponding to the two-parameter family of D = 4
vacua [2, 3] reviewed in section 2.2 was constructed in [27]. Here, we recover the uplift of
this family starting from their KK spectrum, by the reverse engineering process outlined
in section 4. In order to do this, it is helpful to use coordinates a, 0, ¢ 1, 7 on S° adapted
to the Hopf fibration so that the Fubini-Study metric on the complex projective plane and
the one-form o along the Hopf fibre take on the explicit form

o= 1 sin®a (dip + cos 0 dg)
2 (C.1)
ds*(CP?) = do® + ) sin? o {d92 + sin6 d¢p? + cos’a (dip + cos 0 d(b)z} .

It is also helpful to introduce a periodically identified coordinate n ~ n+ T on the S-folded
S1. The coordinates on S' x S° range as

0<n<T, —ggagg, 0<h<rm, 0<¢p<2r, 0<th<2r, 0<7<2m.
(C.2)

In particular, ¢, ¥ and 7 are periodic with period 27. It is also useful to introduce the

frame
e =dao, e 2581nacosoz(v¢+cosﬂv¢), e :§smad9,
1
e4z—§sinasin0v¢, e =v, 40, S =dn, (C.3)
where 1
o = 5 sin?a (vy, + cos O vy) (C4)
and

vy =do — (x1 — x2)dn, vy =dy —3(x1+x2)dn, v, =dr+ (x1+x2)dn, (C.5)
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following (4.3). Finally, it is helpful to write the following one- and two-forms

n =e’, J=ene?+e3net, Q=G i) A (el +iet).  (C.6)
These define a Sasaki-Einstein structure with

JANQ =0, QANQY =20 AT, dn' =2J', dQ =3in' AQ . (C.7)

The type IIB uplift of the two-parameter family of solutions arises by applying the re-
placements (4.3) to the SU(3)-invariant type IIB solution of [2]. With the above definitions
and in the type IIB conventions of appendix A of [57], the result is:

w

Fs==(14+«)n' AT AT,

(V]
—~
Q
oo
~—

1 _
H3+iF3:%(eG/\ Q4365 A Q’),

Cotic® 2sinhn coshn + 4
0 1€ =

sinh? 7 + cosh?n ’

where ds?(CP'?) is the deformation of (C.1) given by
1
ds*(CP?) = do? + 1 sin? o {d«92 + sin6 vé + cos’ar (vy + cosé?%)z} . (C.9)

The only fields in (C.8) that are independent of the parameters yi, x2 are the axion
and the dilaton, Cy and ®. At x1 = x2 = 0, the configuration (C.8) reduces to the SU(3)-
invariant solution given in [2] after fixing some gauge redundancies there. Locally, the
dependence of (C.8) on the moduli xi, x2 can be removed by the change of coordinates

¢ =¢—(x1—x2)n, V' =1 -3(x1+x2)7, =7+ (x1+x2)n. (C.10)

Thus, the solution (C.8) is locally equivalent to the SU(3)-invariant solution of [2]. However,
for generic values of the parameters, the coordinate transformation (C.10) does not generate
a diffeomorphism because it is not globally defined (as the primed coordinates will not
typically have period 27 like the unprimed ones). Only when

27 2

7h1 , X2 = 7h2, h1’2 S Z, (C.ll)

X1=T T

does (C.10) correspond to a diffeomorphism, thus leading to a solution that is globally
equivalent to the x1 = x2 = 0 SU(3)-invariant solution. This leads to the periodic identi-
fication of the moduli advertised in (2.8) and seen in the KK spectrum of section (3.2).

A consequence of the local equivalence of (C.8) and the SU(3)-invariant type IIB
solution of [2] is that the former automatically satisfies the equations of motion, reported
to hold for the latter in that reference. Generically, the solution (C.8) is only invariant
under the U(1)? generated by the Killing vectors k3 and kg specified below (4.2). When
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X1 = X2 modulo (2.8), vy = d¢ from (4.3) and the solution becomes invariant under the
SU(2) that rotates the S? with metric d6? + sin?0 d¢? in (C.9), in addition to still being
invariant under the U(1) generated by ks. Finally, when x; = x2 = 0 modulo (2.8), the
solution is invariant under the SU(3) that rotates the Fubini-Study metric (C.1). In all
cases, the U(1); in (2.5) generated by O is an isometry of the ten-dimensional metric, but
is broken in the full solution by the €’ dependence of the fluxes.

By similar arguments, we can determine the type IIB uplift of the one-parameter
families of [6, 7]. Denoting by 3 the S° angle associated to the preserved U(1), the type
IIB uplifts of these families are obtained from that of the x = 0 representative by applying
the shift (4.4). In particular, the uplift of the family reviewed in section 2.3 can be obtained
simply by making the replacement (4.4) in the one-forms !, U2 and W3 defined in equation
(3.37) of [6]. The resulting y-dependent family of solutions of type IIB reduces to the
SO(3)-invariant solution at xy = 0 given in that reference. The family is also locally
equivalent to the latter, but only globally equivalent at the x locations that lead to the
indentification (2.12).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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