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global) states.
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conditions.
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global frustrated state.
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Geometric frustration appears in a broad range of systems, generally emerging as disordered ground con-
figurations, thereby impeding understanding of the phenomenon’s underlying mechanics. We report on a
continuum system featuring locally bistable units that allows for the controlled and self-sustained man-
ifestation of macroscopic geometric frustration. The patterning of the units encodes a finite set of ordered
ground configurations (spin-ice states) and a unique family of co-existing higher-order frustrated states
(spin-liquid states), which are both activated upon unit inversion. We present a strategy for accessing any
globally frustrated state on-demand by controlling the constitutive units’ inversion sequence. This con-
trol strategy allows for observing the unfolding of geometric frustration as the microstructural features
evolve due to the energy minimization of the constitutive units’ interactions. More broadly, our model
system offers a blueprint for ‘‘taming” macroscopic geometric frustration, enabling novel applications
such as path-driven computation and solving optimization problems using structural systems.
� 2022 The Authors. Published by Elsevier Ltd. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Geometric frustration arises when a lattice system cannot
simultaneously minimize all of its local interaction energies due
to constraints [1,2]. This leads to a high degree of degeneracy in
the system, and the emergence of multiple disordered, high
entropy ground configurations. This phenomenon is most com-
monly seen in ordinary water ice [1], wherein the hydrogen ions
surrounding the central oxygen atom are arranged in a tetrahedral
configuration to minimize the interaction energy. Interestingly,
geometric frustration is also argued to have implications on the
folding of proteins to form a well-defined structure with biological
functionality [3]. The essence of this phenomenon is captured
using a model of Ising spins with antiferromagnetic interactions
arranged in a two-dimensional triangular lattice [4,5]. The three
interaction energies cannot all be simultaneously minimized,
resulting in two antiparallel spins, while the third is frustrated
(Fig. 1a). This simple model is extrapolated to describe several
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physical systems exhibiting frustration, including artificial spin-ice
systems [6–12], colloid systems [2,13], periodically arranged mag-
netic rotors [14], acoustic channel lattices [15] and elastic struc-
tural systems [16–18]. However, the majority of these systems
show high entropy, disordered states, which impede deeper under-
standing of the mechanics of geometric frustration. Therefore,
there is a growing interest in establishing physical systems featur-
ing ordered frustrated configurations, as a route to unveiling the
intricacies of important processes such as natural protein folding
[3], self-assembly of fibers [19,20] and nanotubules for targeted
drug delivery [21], and memory storage in microelectronic devices
[21,22].

Mechanical systems exhibiting deformation-driven frustration
present an intriguing avenue for understanding the emergence of
order in otherwise disordered systems. Cellular structures featur-
ing beam [18] and shell units [16,23,24] have been shown to nat-
urally exhibit unique and ordered global patterns that emerge
either as a result of local elastic constraints or non-near neighbor
(NNN) interactions. The mechanics for the emergence of degener-
ate states in elastic systems were first investigated by Mansfield,
in his seminal work employing a prototypical thin plate subjected
to a through-thickness temperature gradient [25,26]. For low ther-
mal field values, the deformed configuration exhibits constant
spherical curvature (positive Gaussian curvature, K > 0), charac-
terized by both membrane and bending stresses. This spherical
deformation results from the absence of any preferential direction
for bending in the ideal circular plate. However, upon reaching a
threshold in the external field value, the membrane stresses are
released. This results in the plate bifurcating into a developable
cylindrical form (K ¼ 0), curling up about any diametrical axis
(for an ideal plate). This leads to infinitely many post-buckled
degenerate states (Fig. 1b). Invariably, imperfections in practical
realizations control the orientation of the bending axis. Hence,
while the possibility of achieving bending in any direction is fasci-
nating and desirable for shape morphing, uncontrolled degeneracy
renders it as a prohibitively complicated control problem. Further-
more, this concept and other examples of magnetic, colloidal and
elastic frustrated systems rely on continuously applied external
forcing fields for frustration to emerge, thus limiting the utilization
of geometric frustration in practical applications.

We report on a classical mechanics lattice system that features
controlled macroscale geometric frustration that is primarily dri-
ven by the bistability of the microscale units. The system is com-
posed of bistable dome-like units arranged in a continuum
metasheet. Local inversion (local buckling) of the domes intro-
duces pre-stress in the system. The interactions between the
inverted units’ deformation fields result in global geometric frus-
tration in the lattice (Figs. 1c-d). We note that the dome inversion
and the ensuing geometric frustration are elastic and reversible in
nature. Consequently, the emergence of geometric frustration is
independent of the material properties as long as the inversion-
induced stresses are within the failure limits (see Appendix A,
Materials and Methods). The macroscale frustration in our system
uniquely manifests in the form of hierarchical multistability
[24,27], which we define as the emergence of multiple global states
for a given dome inversion pattern. Hierarchical multistability
departs from the characteristic one-to-one correspondence
between the microscale and the macroscale states commonly
found in mechanical metamaterials (Figs. 1e-f, see Appendix B
for length scale definitions). The studied model lattice features four
unique characteristics with regards to geometrically frustrated
classical systems, namely: (i) local bistability allows for self-
supported pre-stress, thus eliminating the need for sustained
external forcing fields to realize geometric frustration; (ii) the elas-
tic constraints imposed by the units patterning naturally lead to
the emergence of a finite set of ordered global ground configura-
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tions; (iii) in addition to the ordered ground states, the system dis-
plays selectively ordered-disordered configurations that closely
resemble the spin-liquid states observed in condensed matter frus-
trated systems; and (iv) all the global hierarchical stable states can
be achieved on-demand by controlling the interactions between
the units through the history of dome inversions (i.e., the spa-
tiotemporal deformation path). The designs, analyses, and results
presented in this manuscript serve as general blueprints for study-
ing geometric frustration at an accessible length scale, as well as
enabling unique applications in mechanical computation, soft
robotics [24] and morphing structures [28].
2. Mechanics of deformation-driven geometric frustration

The inversion of local units results in the global out-of-plane
bending of the metasheet, thus allowing for reversible 2D to 3D
shape and property transformation (Figs. 1, 2). Similar to Mans-
field’s thin plates, the degeneracy in our system arises due to a
non-unique cylindrical bending axis once a sufficient number of
domes with interacting deformation fields are inverted. Contrary
to the heated flat plates’ case, the resistance to out-of-plane defor-
mation is not uniform throughout the dome sheet. Instead, the
resistance to bending is affected by the metasheet’s topology,
which is dictated by the patterning of the units. This purely geo-
metric feature leads to a finite set of preferential global bending
directions that limit the degree of degeneracy, thereby allowing
for the controlled manifestation of geometrically frustrated macro-
scopic states. To better understand this characteristic, we adopt a
homogenization scheme following Ref. [27], designed to model
the emergence of global modes due to the variation in bending
stiffness from dome inversions in the metasheet. We employ a
simple square pattern for the analysis and the schematic in
Fig. 2a outlines the relevant co-ordinate frames. The square pat-
terned units are aligned with the X1Y1Z1 co-ordinate set; the frame
is fixed with respect to the units but is free to rotate by the angle h
with respect to a globally fixed frame X2Y2Z2, such that
X1 ¼ X2 cosðhÞ þ Y2 sinðhÞ and Y1 ¼ �X2 sinðhÞ þ Y2 cosðhÞ. Inverting
the domes results in the metasheet adopting a curled configuration
with an undulating profile that is modeled by a smooth function
z ¼ f 1ðX1;Y1Þ ¼ f 2ðX2;Y2; hÞ, capturing the middle points’ heights
from the X2Y2-plane and assumed constant thickness t. Without
loss of generality, we assume that cylindrical bending of the
metasheet always occurs about the X2-axis; this assumption does
not impose any limiting constraints as the orientation of the domes
h is set to be free with respect to the X2-axis. Consequently, the
bending stiffness can be expressed as,

BðY2Þ ¼ E
Z

z2tdX2; ð1Þ

where E is the elastic Young’s modulus of the material. Next, jðY2Þ
is defined as the singly varying curvature of the middle plane, and
thus, the angle subtended by the bent metasheet is,

/ ¼
Z
jðY2ÞdY2 ¼

Z
M

BðY2ÞdY2 /
Z

dY2R
z2dX2

¼ 1
�
; ð2Þ

where M is any general bending moment leading to bending about
the X2-axis, � is a relative measure of the bending stiffness and
linearity is assumed. With this setup, for any given z profile,
the directions of least bending stiffness are identified by analyzing
the variation in � as a function of the dome orientation h. We
assume an idealized biharmonic profile z ¼ cosðnX1Þ cosðnY1Þ ¼
cosnðX2 cosðhÞþY2 sinðhÞÞcosnð�X2 sinðhÞþY2 cosðhÞÞ, with X2;Y2 2
½�p;p� and, n defining the dome packing density, that
qualitatively captures the undulating profile for an inverted square
metasheet (Fig. 2b). The results indicate two well-defined minima



Fig. 1. (a) Schematic illustrating the Ising model. Antiferromagnetic interaction spins are satisfied on a square but cannot be satisfied in a triangular arrangement. (b)
Structural degeneracy in heated thin plates. When the temperature gradient crosses a threshold value, the plate bifurcates from a spherical to a cylindrical bending
configuration with a degenerate bending axis. (c) A dome unit in the base and inverted states (see SI video 1). (d) Square patterned dome metasheet (e) - (f) Manifestation of
geometric frustration as an increasing number of domes are inverted.
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in the �ðhÞ plot, thereby suggesting the existence of two unique
bending directions when a sufficient number of interacting domes
are inverted. Interestingly, both the minimum bending stiffness ori-
entations are aligned with the diagonals, i.e., with the two least
packing directions of the square patterned units (Fig. 2d). This is
confirmed by the FE and experimental results (Fig. 2e) (see Appen-
dix A, Materials and Methods for details). This indicates the emer-
gence of second neighbor interactions (long range interactions) in
the frustrated stable states that develop as an increasing number
of domes are inverted in the metasheet. The observed cylindrical
configurations bear close resemblance to the ground state configu-
rations seen in other examples of geometrically frustrated systems
Fig. 2. (a) Schematic defining the co-ordinate frames employed in the homogenization m
are inverted (iii) Biharmonic function modeling the undulating profile in the inverted me
the bending stiffness orientations corresponding to the ground states (GS1, GS2) and highe
the ground states and the higher-order frustrated states. The top view columns illustrate
state of the metasheet. The arrows indicate the bending axes for the respective states. (g) S
normalized as the Energy Ratio (ER) with respect to the strain energy associated with G
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as: (i) they have bending axes aligned with the programmed prefer-
ential directions; (ii) they exhibit identical strain energy levels
(Fig. 2g); and (iii) they are reached when the maximum self-
sustaining pre-stress field is introduced. The latter feature implies
that inversion of all domes in the metasheet is analogous to freezing
down to 0K in naturally frustrated systems. However, in contrast to
the random and highly degenerate ground states seen in other sys-
tems, the dome metasheets sustain a finitem-dimensional manifold
of ground configurations, m being the number of least packing
directions that are programmed purely by virtue of the unit pat-
terning in the metasheets. Finally, we note the emergence of second
neighbor interactions in the ordered ground states in our system is
odel. (b) (i) Base state of the 3� 3 metasheet. (ii) Undulating profile when the domes
tasheet. (c)-(d) �ðhÞ plot and schematic of the metasheet illustrating the minima in
r-order frustrated states (HFS1, HFS2). (e)-(f) FE and experimental results illustrating
the deformation field corresponding to the respective state, over-plotted on the base
train energy levels associated with the four hierarchical stable states. The values are
S1.
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not surprising as the mechanism of long range interactions leading
to ordered global states has also been found in other classes of geo-
metrically frustrated systems [12,18,29].
3. Higher-order frustrated states

Besides the two global minima in the �ðhÞ plot, there are two
additional local minima oriented orthogonally to the unit-
patterning directions of the metasheet. To investigate this feature
we perturb the ground states in both FE and experiments by apply-
ing external mechanical forces and find that the local minima
indeed correspond to additional physically stable global states for
the same dome inversion pattern, i.e., all domes inverted (Fig. 2f;
see SI video 2). Noticeably, these states exist at a higher strain
energy level than the ground configurations (Fig. 2g). Conse-
quently, these are associated with a shallower potential well in
the global energy landscape, and the metasheet is easily perturbed
out from these stable configurations. This observation is supported
by the fact that the higher energy states feature a shorter bending
axis compared to the ground states. Since the bending axis is equal
to the side length in the former and equal to the diagonal length in
the latter, the metasheet has a higher propensity to assume the
more stable ground configurations. Based on the symmetry in
the shapes and as observed in the �ðhÞ modeling results, these
higher energy states are uniquely characterized by the metasheet
being ‘‘trapped” in a configuration between the two ground states.
The metasheet has equal propensity to go to either of the ground
states and in the process, assumes a higher energy frustrated con-
figuration between two (already) frustrated ground states. We
term these higher energy states as higher-order frustrated states.
In a physical sense, these are characterized by the inability of the
metasheet to release all of the membrane strain energy, thereby
assuming a local minimum displaying stronger stretching-
bending interactions. These are energetically unfavorable com-
pared to their ground state counterparts, where the strain energy
is primarily bending dominated. Finally, we note that the emer-
Fig. 3. (a) Higher-order post-buckling shapes for units featuring a (i) circular (ii) square a
the region featuring a non-axisymmetric deformation state. The central dome reverts b
number of symmetry axes in the boundary shape are increased. (b) The three bending
higher-order frustrated state for the hexagonal metasheet displays a non-developable po
top view column illustrates the deformation field corresponding to the respective state,
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gence of hierarchical multistable states is conditional on the
inverted units’ ability to introduce preferential global bending
directions in the metasheet. We find that this feature stems from
the interaction of the axisymmetric deformation field introduced
by dome inversion with the boundary constraints imposed by the
non-axisymmetrically packed units, and hence, is directly depen-
dent on the packing density of the domes. We predict the associ-
ated design limits necessary for the manifestation of geometric
frustration in our metasheet using an analytical approach model-
ing the topology of an inverted unit, as detailed in Appendix C.
4. Post-Buckling Trends: Breaking Unit Cell Deformation
Symmetry

An interesting consequence of the multiple global frustrated
states is the emergence of local higher-order buckling modes on
the individual domes [30,31]. This feature is distinctly seen on
the center dome in the higher-order frustrated states (black dashed
circle in Fig. 2f), whereby the center dome departs from the locally
axisymmetric (mirror-buckled) configuration to assume an ellipti-
cal shape with major axis aligned with the side of the square (see
Appendix D). These local post-buckled shapes are again character-
ized by strong stretching-bending interactions, in contrast to the
mirror-buckled state where the deformation is primarily bending
dominated [32]. The emergence of local post-buckled shapes in
our system is primarily dictated by two parameters, namely: (i)
the individual unit design, a microscale property; and (ii) the glo-
bal configuration that the system assumes following unit cell
inversion, which is a macroscale property. Investigating the micro-
scale design, we find that the flat’s region geometry surrounding
the dome plays a crucial role in the manifestation of local post-
buckled shapes. The units’ boundary shape largely dictates the
elastic interactions with the neighboring inverted units (or in gen-
eral any boundary conditions). When the interactions are strong,
they impose a higher-order polygonal post-buckled shape on the
central dome, moving away from the preferred axisymmetric
nd (iii) hexagonal boundary shape. The grey shaded area on the schematics indicates
ack to its preferred mirror-buckled state as the flat planform area increases or the
axes and (i)-(iii) the associated ground states for a hexagonal metasheet. (iv) The
sitive Gaussian curvature surface when all domes are inverted (see SI video 3). The
over-plotted on the base state of the metasheet.
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inverted shape. This characteristic is visualized in a simple exper-
iment involving units with different geometries but equal flat
region area (Fig. 3a). We pin the boundary edges to simulate the
limiting case of the elastic constraints that are imposed on any
individual unit in the metasheet when sufficient domes are
inverted. The results indicate that for non-axisymmetric bound-
aries and a small flat region area, the edge constraints impose a
non-axisymmetric post-buckled shape on the central dome in the
inverted configuration. The break in axisymmetry originates from
the boundary shape and is found to localize away from the dome
center as the flat region area increases. Furthermore, the central
dome regains an axisymmetric shape for smaller area values if
the boundary shape features a higher number of symmetry axes
(e.g., for a hexagon as compared to a square, Figs. 3a.(ii)-(iii)). In
the limiting case of a circular planform, axisymmetry is never lost.
This emergence of microscale higher-order buckling modes based
on the unit geometry can be subsequently leveraged for program-
ming the desired number of hierarchically multistable ground
states at the macroscale. As illustrated in Fig. 2, a regular square
pattern of the units features two preferential global bending direc-
tions. Similarly, a regular hexagonal pattern features three least
packing directions due to the unit’s symmetry, thus showing three
degenerate global ground states after a sufficient number of units
are inverted (Fig. 3b). Consequently, the microscale geometry can
be tuned to program the desired number of macroscale ground
states. However, triangles, rectangles and hexagons are the only
polygonal geometries that can be arranged in a regular, completely
packed 2D pattern. All other tessellations form irregular patterns
and introduce broken symmetries, but in the process enable the
ability to program non-uniform directions of least packing result-
ing in unique, irregular global shapes.
Fig. 4. (a)-(b) Ordered ground states (OGS) featuring ‘‘concerted or aligned local buckling”
images of the 5� 5 metasheet). (c)-(d) Local order clusters (OLC

m example highlighted by
order propagation in the higher-order frustrated states OHFS

n for the respective metasheets
when an insufficient number of interacting domes are inverted in the metasheets. The to
over-plotted on the base state of the metasheet.
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Along with the shape of the unit boundary, the metasheet’s glo-
bal deformed state also determines the post-buckling behavior of
the individual domes. In general, the global ground states are char-
acterized mainly by ‘‘concerted local buckling” of the microscale
units. This is illustrated in Figs. 4a-b for square patterned meta-
sheets. In these cases, the units assume elliptical post-buckled
shapes with major axes diagonally aligned. Interestingly, this
alignment direction coincides with the bending axis associated
with each global ground state. Thus, there is an underlying order
OGS for the (local) post-buckling behavior that propagates across
all the units in the global ground states. A square patterned meta-
sheet exhibits two ground state ordering trends, OGS 2 ½OGS

1 ;OGS
2 �,

corresponding to the order associated with each preferential direc-
tion as programmed by the unit arrangement. The units’ tendency
to naturally and collectively orient towards their NNN in the post-
buckled configuration again confirms the role of long-range inter-
actions in the emergence of ordered global states, as previously
discussed in the homogenization model results (Fig. 2). In contrast,
analyzing the ordering trends in the units’ post-buckling behavior
for the higher-order frustrated states, OHFS, no such long-range
order similar to OGS is evident. Instead, we find spatially distributed
clusters of local order throughout the metasheet (Figs. 4c-d). This

is mathematically expressed as OHFS 2 OHFS
1 ;OHFS

2 ; . . .
h i

, where,

OHFS
n ¼ OLC

1

���
A1

þ OLC
2

���
A2

þ . . .. Here, each OLC
m corresponds to a differ-

ent order cluster. The ordering trend of the resulting nth higher-
order frustrated state OHFS

n is determined by combining the covered

areas Am of each individual cluster OLC
m . While the set of local order

clusters can in principle be very large, we note that the microstruc-
of the units for a 3� 3 and 5� 5 square metasheet (see Appendix E for experimental
the dashed red square in (d)) and non-developable deformation blocks preventing
. (e) Disorder within the microstructure achieved by random dome patterning and (f)
p view figures illustrate the deformation field corresponding to the respective state,
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tural post-buckling shapes are still constrained by the unit design
and the pattern-driven finite number of preferential bending direc-
tions encoded into the metasheet. Further inspection of the results
in Figs. 4c-d reveals that order trends resembling both OGS

1 and OGS
2

are evident, albeit at different spatial locations for distinct groups
of units. Neither of the ground state ordering trends has enough
authority to force the metasheet into its respective global configu-
ration. This results in deformation along diagonally opposite cor-
ners in a manner resembling both the ground states. However,
the units in the center of the metasheet are trapped with equal
propensity to adopt either state. As a result, the metasheet’s central
region assumes a locally non-developable deformation state
impeding order propagation throughout. This non-developable
region characterizes all the higher-order frustrated configurations
and is essential for their emergence. In general, as the number of
units is increased, there is an increased propensity for the emer-
gence of different local order clusters, and the ensuing higher-
order frustrated states (Fig. 1f). A similar trend is also expected
for metasheets featuring a rectangular m� n arrangement of
domes. While the underlying states are still governed by the
non-nearest neighbor interactions, the global deformed state of
the metasheet plays a non-trivial role in determining the post-
buckling behavior of the microscale units. Consequently, the
unequal lengths of the edges of the rectangular planform could
potentially have the propensity to induce distinct higher-order
frustrated states, than what are seen on the square counterparts.

Interestingly, the appearance of local order clusters in the
higher-order frustrated states of our dome metasheets is qualita-
tively reminiscent of the spin-liquid regime found in
temperature-driven magnetic frustrated systems [1,33]. When
such magnetic systems are cooled below the Curie–Weiss temper-
ature, the spins form into local clusters with strong interactions
that obey the ground state constraints, albeit, there is no long
range propagation of the associated order within the system. This
absence of long range order propagation is the precise characteris-
tic that we find in the higher-order frustrated states in our dome
metasheets. Further, we uniquely find that stable configurations
Fig. 5. (a) Single inverted dome retains a largely axisymmetric configuration. (b) Differe
3� 3 square metasheet. (i) Diagonal inversion sequence leading to the ordered ground
frustrated state. (c) Dome inversion sequence (i) - (iv) leading to a higher-order frustrate
the top view. For (b) and (c), the plot pairs for each state correspond to the top view of th
base configuration.
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qualitatively resembling both the spin-ice regime (ground-state
configurations) and the spin-liquid regime (higher-order frustrated
states) can co-exist for the same input conditions on our system.
For example, when all the domes are inverted, we find both the
developable ground states (ordered spin-ice states) and the
higher-order frustrated states (spin-liquid states) as illustrated in
Figs. 4a-d. With this characteristic, our system joins an exclusive
group of exotic systems exhibiting the co-existence of these two
distinct stability regimes [34–37]. The appearance of both families
of states in our system is a purely elastic consequence (compatible
with different material chemistries, see Appendix E) determined by
the programmed preferential bending directions and how much of
the stored membrane energy – added by virtue of dome inversion
at the microscale – is released at the macroscale. In essence, this
co-existence of two qualitatively distinct stability regimes for the
same input conditions is a result of the intriguing interactions at
play between structural elasticity and geometric frustration in
our continuum lattice system.

Finally, local disorder can also be programmed into the
microstructure by randomly patterning the domes in the meta-
sheet (Fig. 4e). In such cases, inverting all domes results in a com-
plex energy landscape featuring global shapes with no clearly
defined preferential bending directions. These degenerate global
shapes feature a microstructure consisting of inverted domes that
assume random and strongly disordered post-buckled shapes. In
these designs, the interactions between structural elasticity and
geometric frustration are not meaningfully leveraged, yielding
macroscale shapes that while unique, are neither robust nor easily
controllable. Additionally, disordered configurations in the
microstructure also emerge when an insufficient number of inter-
acting domes are inverted, resulting in limited authority to impose
the programmed shape on the macrostructure (Fig. 4f). However,
in general, we find that by leveraging the interactions between
pattern-driven elastic constraints and deformation-driven geomet-
ric frustration, the prevalent behavior is ordered configurations,
whereas disordered configurations need to be intentionally pro-
grammed into the system.
nt dome inversion sequences leading to the desired global frustrated states for the
state. (ii) Diamond-like symmetric inversion sequence leading to the higher-order
d state for the 5� 5 square metasheet. All the FE simulation results are displayed in
e deformed configuration and the top view of the deformed field over-plotted on the
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5. Accessing the desired frustrated states on-demand: A control
strategy

As noted before, the post-buckled shape and orientation of the
units characterizes the global frustrated states. These characteris-
tics can be further leveraged to achieve on-demand access to any
desired global frustrated state. A dome unit is stress-free in its base
state and assumes a stressed configuration only upon inversion.
When a single unit is inverted, it assumes the axisymmetric
mirror-buckled shape (Fig. 5a). However, as an increasing number
of interacting units are inverted, the domes progressively transi-
tion into one of their polygonal post-buckled shapes depending
on the sequence in which the interactions and elastic constraints
are imposed. This feature can be leveraged to achieve any desired
order, i.e., OGS

n or OHFS
n , within the microstructure. Collectively, these

interactions force the macrostructure to assume the specific global
frustrated state corresponding to the respective microscale order-
ing scheme. Thus, distinct global frustrated configurations corre-
sponding to the same inversion pattern can be readily accessed
simply by controlling the dome inversion sequence. This concept
is illustrated on a prototypical 3� 3 square patterned metasheet.
When the dome inversion sequence is initiated in a diagonal sense,
i.e., inverting a series of second neighbor domes from one corner to
the other, the metasheet assumes the corresponding ground state
configuration (Fig. 5b.(i), see SI video 4). In contrast, if the dome
inversion sequence is initiated symmetrically about the center
dome, implying we first invert the four middle domes in a diamond
fashion and subsequently invert the four corner domes, we find
that the diagonally-aligned bending axis necessary for reaching
either of the ground states is not activated as the central dome is
still in its base, stress-free state (Fig. 5b.(ii)). This inversion
sequence imposes a configuration symmetrically aligned with
either of the ground states, thus leading to the higher-order frus-
trated state when the center dome is finally inverted (see SI video
5). Similar inversion sequences can also be realized for larger meta-
sheets by selectively imposing the desired microscale interactions
between units; an example inversion sequence leading to a higher-
order frustrated state for a 5� 5 square metasheet is shown in
Fig. 5c (also see SI video 6). Noticeably, this strategy reveals that
the mapping of the number of inversion sequences to the total
number of frustrated states is not unique; the number of sequences
is N!; N being the number of domes, and is presumably larger than
the set of global frustrated states. While there may be multiple
paths leading to a given global state, we note that no single path
can guide the system into two frustrated states. This observation
renders the inversion sequencing strategy as both robust and reli-
able in controlling the manifestation of geometric frustration in
our system.
6. Outlook and Conclusions

In this work, we present a classical mechanics system display-
ing geometric frustration that can be controlled by the inversion
(i.e., loading) sequence of its bistable units. We unveiled the mech-
anisms through which geometric frustration emerges using analyt-
ical tools and FE analysis. We establish geometric frustration as the
phenomenon responsible for the hierarchical multistable behavior
of the metasheet model system.We leverage the elastic constraints
imposed by the domes’ local bistability as a mechanism for selec-
tively reaching the desired microscale interactions needed to real-
ize distinct global frustrated states. This is a powerful concept that
enables our system to serve as a testbed for accessibly studying the
mechanisms governing geometric frustration, as well as for open-
ing avenues for novel applications like path-driven computation
7

paradigms in structural systems [24]. More generally, the ability
to ‘‘tame” geometric frustration enables the design of machine-
like structural systems that serve as physical embodiments of com-
plex optimization problems. The co-existing hierarchically multi-
stable states discretize the system’s configuration space into
distinct, albeit finite minimum energy points. In this regard, the
ground (ordered spin-ice) and higher-order frustrated (spin-
liquid) states correspond to global and local minima, respectively.
The ability to separate and achieve any global frustrated state on-
demand as controlled by distinct sequences of discrete external
events (i.e., the local dome inversions and their history) sets a
physical paradigm for mechanical optimization and information
processing. In this regard, the presented dome metasheets open
an avenue for implementing discrete optimization paradigms, both
exact algorithms like the branch and bound [38] and metaheuris-
tics like simulated annealing [39], into mechanical metamaterials.
The macroscale deformation enables in situ monitoring of the opti-
mization process or unfolding of geometric frustration, whereby
iterative dome inversions allow for reaching the global minimum
or ground state if required. The ability to encode the desired num-
ber of ground states (global minima) further enriches the optimiza-
tion and computation paradigm afforded by our metamaterial
architecture and enables the physical mapping of Pareto-
optimality. These features are absent in the general class of frus-
trated systems that exhibit uncontrolled degeneracy, and conse-
quently, inhibit the ability to achieve a desired frustrated state
on demand. Contrary to unfrustrated systems with a single global
energy minimum, hierarchical multistability enables the mapping
of richer optimization paradigms with complex energy landscapes.

Notably, our system naturally exhibits non-volatile memory at
the microscale. The local bistable states of the units can be ascribed
to bit values ‘‘0” and ‘‘1” [40,41]. This feature, complimented with
the intrinsic deformation-driven optimization paradigm in our
metasheets, provides a unique information processing capability
on mechanical metamaterials. These characteristics paired
together enable our geometrically frustrated metasheets to display
a finite-state machine type behavior that solves optimization prob-
lems based on external inputs, internal unit states (bit values), and
also stores long-term event history memory. We envision our sys-
tem as a blueprint for achieving controlled interactions between
structural elasticity and geometric frustration, leading to novel
metamaterials with path-driven morphological computation cap-
able of parsing spatially complex mechanical information for soft
robotics [42–45], haptic devices [46,47], wearables, and adaptive
aerospace systems [48,49].
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Appendix A. Materials and Methods

A.1. Experimental Specimen Design and Manufacturing

The experimental specimens are manufactured using Fused
Deposition Modeling (FDM) 3D printing. The specimens are first
modeled in SolidWorks 2016. The 3D files are then sliced using
Ultimaker Cura 4.3.0 and printed on an Ultimaker 3+ using white
thermoplastic polyurethane, supplied as Ultimaker TPU 95A
(white). The specimens are printed flat on the print bed with mate-
rial extruded from a single nozzle.
A.2. Details on Finite Element (FE) Analyses

For the FE analysis, the specimens are modeled using Abaqus/
CAE 2018 and Python scripting. A linear-elastic material formula-
tion for TPU is employed for the simulations with an elastic mod-
ulus of 51 MPa and Poisson’s ratio 0.3. The effective elastic
modulus for Ultimaker TPU 95A (white) is determined by conduct-
ing dogbone tests in-line with the ASTM D638 standard (Fig. A.1).
Six dogbone samples are tested, each at two different loading rates.
The results indicate that the different strain rates do not have any
significant effect on the measured modulus of the TPU (Fig. A.1),
and hence a linear-elastic material model is employed for the FE
simulations. The simulation consists of multiple loading steps for
dome inversion and each loading step is followed by two/three
relaxation steps to allow the sheet to relax after each inversion
event. Additionally, the metasheets are pinned at the center over
the entire simulation to avoid any rigid body motion. The speci-
mens are then meshed with a seed size of 6 2mm using a quad-
dominated mesh (shell elements). Diving into the loading details,
individual domes are sequentially inverted in each loading step
(Dome 1 in LoadStep-1, Dome2 in LoadStep-2, and so on) by an
applied displacement (velocity)-load at the domes’ center while
constraining the internal and external edges of the specimen. The
boundary conditions are released in the subsequent relaxation
steps to allow the specimen to relax in the deformed global config-
uration following each dome inversion cycle, thus simulating a
programmed sequence of dome inversion events on the metasheet.
Numerical damping factor values of 6 10�6 are defined for each
step in the simulation. Finally, the simulations are solved with
Abaqus/Standard (implicit formulation) on the Brown community
cluster at Purdue University. A single node on the Brown cluster
features 24 processor cores and 96 GB of RAM.

For the higher-order frustrated states in Fig. 2 in the main text,
following dome inversion and subsequent relaxation, small loads
are applied at specific control points on the metasheet. The loca-
tion and orientation of these small displacement loads are chosen
M
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Fig. A.1. (a) Dogbone test for determining the modulus of white Ultimaker TPU 95A. (b) P
under two different loading rates.
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to favor one of the co-existing hierarchical states. The sheet is
again allowed to relax after load application and is allowed to set-
tle in the desired stable hierarchical state.

For the 3� 3 and 5� 5 metasheets’ ground state configurations
(Figs. 2, 4, and 5 in the main text), the specimens exhibit self-
contact when all the domes are inverted. To account for this, Gen-
eral Contact (Standard) interaction property is defined for the
respective metasheets. The self-contact formulation models fric-
tionless tangential behavior and the system default normal contact
behavior, i.e., ‘‘hard” contact pressure-overclosure and default con-
straint enforcement method. Additionally, to render the 5� 5
metasheet simulations time efficient, the solver formulation is
switched to Dynamic-Implicit, Quasi-Static for all of the loading
steps and some of the relaxation steps. Accordingly, we use a den-
sity of 1:22 g/cm3 for the material formulation [50].

A.3. Details on Analytical Modeling

We use the symbolic manipulation software Wolfram Mathe-
matica 9 for implementing both of the analytical formulations
employed in this work, i.e., the homogenization model for finding
the dominant global deformation modes and the Rayleigh–Ritz
model for investigating the topology of the deformed axisymmetric
units. The models are solved for in Mathematica and the data is
subsequently exported for plotting and post-processing in MATLAB
R2016b.

A.4. Dimensions of specimens employed in the manuscript figures

A.4.1. 3� 3 square metasheets
The 3� 3 square metasheets illustrated in Figs. 2, 4, and 5 in the

main text feature dome units with dome base radius, R ¼ 8 mm,
dome height, h ¼ 5 mm, unit thickness t ¼ 0:7 mm, and unit side
length, SS ¼ 22:4 mm. For the square metasheets, the unit side
length is equal to the spacing between two nearest neighbor dome
centers.

A.4.2. Unit cell buckling analysis
The specimens employed for the unit cell buckling analysis in

Fig. 3 in the main text have dimensions, R ¼ 8 mm, h ¼ 5 mm
and, t ¼ 0:5 mm. The three different planform area values for the
flat regions are A1 � 122:93 mm2, A2 � 282:93 mm2 and,
A3 � 582:93 mm2.

A.4.3. Hexagonal metasheets
The hexagonal metasheets in Fig. 3 in the main text have

dimensions R ¼ 8 mm, h ¼ 4 mm, t ¼ 0:5 mm and spacing between
two nearest neighbor dome centers, SS ¼ 23:2 mm.
men Number
53 4 6

Rate 2mm/min
Rate 5mm/min
Mean Value

ost-processed results indicating the modulus for 6 different specimens, each tested
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A.4.4. 5� 5 square metasheets
The 5� 5 square metasheets in Figs. 4 and 5 in the main text

have dimensions R ¼ 8 mm, h ¼ 4 mm, t ¼ 0:5 mm, and
SS ¼ 22:4 mm.
A.4.5. Random pattern metasheet
The random pattern metasheet in Fig. 4 in the main text has

dimensions, R ¼ 8 mm, h ¼ 4 mm and, t ¼ 0:4 mm.
A.4.6. 8� 8 square metasheet
The 8� 8 square metasheet in Fig. 4 in the main text has dimen-

sions R ¼ 8 mm, h ¼ 5 mm, t ¼ 0:625 mm and SS ¼ 20:8 mm.
A.4.7. Specimens for studying hierarchical multistability boundaries
The specimens in Figs. C.1 and C.3 have dimensions R ¼ 8 mm,

h ¼ 5 mm, t ¼ 0:625 mm and SS is varied.
Appendix B. Length scale definitions in the analysis of dome
patterned metasheets

The dome patternedmetasheets analyzed in this study are char-
acterized by a hierarchical structure spanning three different
length scales (Fig. B.1). Characteristic features at each of the three
length scale combine together to allow for the unique property-set
and hierarchical multistable behavior at the global scale. Accord-
ingly, the different length scales are defined as:

1. Microscale - The microscale comprises the individual units. The
local dome dimensions and the dimensions of the flat region
constitute the microscale design. Additionally, the inversion of
the domes and the local post-buckling behavior of individual
units are also microscale features.

2. Mesoscale - The mesoscale consists of the patterning of the
local dome units. For example, the square and hexagonal pat-
terned metasheets featuring identical dome units are distin-
guished from each other at the mesoscale. Similarly, regular
v/s irregular tessellations, ordered v/s random patterns are all
mesoscale design parameters.

3. Macroscale - The macroscale characterized the global behavior
of the metasheet. The globally deformed configurations that the
metasheet assumes as the domes are inverted constitute the
macroscale. Accordingly, the hierarchical states are distin-
guished from each other at the macroscale.
Fig. B.1. The different length scales involved in the de
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Appendix C. Analytical model for predicting the boundaries of
hierarchical multistability

Geometric frustration in our metasystem and the ensuing hier-
archical multistability characteristics only manifest when a suffi-
cient degree of pre-stress is inputted into the system, as with the
temperature-driven degenerate bending plates [25,26]. This invari-
ably corresponds to the pre-stress introduced via dome inversion
and its propensity to introduce preferential bending directions in
the dome metasheets. If the domes are packed in a sparse manner,
the metasheet in the all domes inverted state assumes a non-
developable, bent configuration, qualitatively similar to that seen
for low thermal field values in the bending plates (Fig. C.1a). As
the packing density of the domes is increased beyond a certain
threshold, the metasheet bifurcates into a developable form as
the domes are inverted in the system. We identify the packing
ratio, i.e., the ratio of the unit side length ðSÞ to the radius of the
dome ðRÞ; ðPK ¼ S

RÞ as a critical parameter governing this bifurca-
tion in the metasheets. This observation stems from the fact that
inversion of a dome results in axisymmetric out-of-plane bending
of the flat region surrounding the dome. This axisymmetric out-of-
plane deformation field interacts with the non-axisymmetrically
shaped boundary leading to the non-uniform bending resistance
central to the manifestation of the preferential bending directions
at the macroscale. However, if the packing factor is sufficiently
large, such that the flat region of any given unit extends beyond
the radius of influence of the inversion-induced field, the interplay
between the non-axisymmetric boundary shape and the axisym-
metric deformation field is lost (Fig. C.1b). This excess region offers
largely uniform bending resistance in all directions and, conse-
quently, the metasheet loses preferential bending directions and
starts behaving like a flat sheet subjected to external loading.

We capture this bifurcation between hierarchical to non-
hierarchical global behavior employing an analytical approach
modeling the topology of an axisymmetric unit in the inverted
state. Specifically, we model the topology as the microscale pack-
ing factor PK is varied, inspecting the change in the gradient ðkrÞ
at the flat region’s boundary for each design. A zero-crossing in
the krðPKÞ plot marks the limit beyond which the flat region topol-
ogy is unaffected by the inversion induced deformation field,
thereby indicating the loss of hierarchical multistability.

We employ the Föppl-von Kármán equations (assuming
axisymmetry) in the radial co-ordinates r and h,

Dr4w� t
r
@

@r
@w
@r

@U
@r

� �
¼ 0 &

r4U
E

þ 1
r
@w
@r

@2w

@2r
¼ 0; ðC1Þ
sign and analyses of the hierarchical metasheets.



Fig. C.3. (a) Topology of the inverted axisymmetric unit as predicted by the analytical model and FE simulations. The red markers correspond to FE results for the actual dome
geometry. The blue markers correspond to FE results for the mathematical function approximating the dome geometry that is employed for the analytical model (Eq. (2)). (b)
krðPKÞ plot illustrating the model predicted boundary separating hierarchical and non-hierarchical design regimes. The insets illustrate experimental examples of the
respective designs.

Fig. C.1. (a)-(b) Geometric frustration manifests only when the domes are sufficiently densely packed and the region of influence of the deformation field following dome
inversion exceeds beyond the unit boundary.

Fig. C.2. (a) (i) The axisymmetric dome unit. (ii)-(iii) The different design parameters and the regions R1 and R2 involved in the analysis. (b) Topology of the axisymmetric unit
employed in the analytical model as compared to the ideal dome geometry. The red markers correspond to the actual dome geometry. The black dashed line corresponds to
the mathematical function approximating the dome geometry that is employed for the analytical model.
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where, D ¼ Et3

12ð1�m2Þ is the flexural rigidity, and U and E are the Airy’s

stress function and elastic Young’s modulus respectively. Following
Ref. [51], we decouple Eqs. (C1) into their stretching and bending
components and solve for the stable states by Rayleigh–Ritz mini-
mization of the total potential energy.

The unit is divided into two distinct regions: (i) the
central initially curved dome; and (ii) the surrounding flat region
(Fig. C.2a). We start by assuming an initially curved shape for the
unit as,

w0
R1 ¼ ð1� q2Þw0

m & w0
R2 ¼ 0; ðC2Þ
10
where,w0
R1 andw0

R2 are the initial displacements of the central dome
and the flat region respectively, q ¼ r

a is the dimensionless radial
parameter, with a being the base diameter of the dome and w0

m is
the initial midpoint deflection of the dome. The geometry assumed
in Eq. (C2) is an approximation of the ideal dome geometry.
Nonetheless, the results are found to be in good agreement with
the actual dome FE results (see Fig. C.2b and Fig. C.3). As discussed
in the main text, the initial or the base state of the unit is stress-free.
Next, we denote the displacement of the inverted, stressed configu-
ration by wR1 and wR2 for the dome and the flat region respectively.
Accordingly, the change in displacement is given by
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ŵR1 ¼ wR1 �w0
R1 and ŵR2 ¼ wR2 �w0

R2 respectively. The gradient ðkrÞ,
radial and circumferential curvature (jr and jh) terms are derived
from the displacement expressions for the respective states as,

kr ¼ �dw
dr

; jr ¼ �d2w
dr2

& jh ¼ �1
r
dw
dr

; ðC3Þ

and the variations in the respective terms (k̂r; ĵr and ĵh) between
the initial and the final states follow naturally. Correspondingly,
the principal bending moments and the shear stress terms are
defined as,

mr ¼ Dðjr þ mjhÞ; mh ¼ Dðjh þ mjrÞ & qr ¼
dmr

dr
þmr �mh

r
;

ðC4Þ
where, m is the Poisson’s ratio and linear elastic, isotropic material
behavior is assumed. Again, since the base state is stress free, the
change in the respective quantities in Eq. (C4) is equal to the final
value of the quantities, i.e., m̂r ¼ mr; m̂h ¼ mh, and q̂r ¼ qr . Lastly,
all of the quantities in Eqs. (C3) and (C4) are calculated for both
of the dome and the flat regions, i.e., R1 and R2.

For the Rayleigh–Ritz formulation, we assume a polynomial ser-
ies expansion for the change in the radial curvature for both of the

regions in the unit, i.e., ĵr ¼
Pn
i¼0

ciri, and the other quantities are

then calculated in terms of the generalized co-ordinates, ci. This
results in two additional constants for each region in their respec-
tive displacement expressions originating due to the double inte-
gration operation for transforming between the two fields. These
additional constants are satisfied by imposing the boundary condi-
tions (BC) and continuity conditions in the out-of-plane problem.
For this formulation, we assume that the unit is pinned at its outer-
most boundary. This assumption is an idealization of the more
realistic spring-type BC that is levied by the surrounding elastic
continuum on any given unit in the metasheet. However, we find
that the results obtained by following a pinned outer edge BC allow
for a conservative estimate of the limits on hierarchical multista-
bility in our metasheets. A more precise bound can be obtained
by augmenting the model in it’s current form with springs
assumed at the edges. The pinned BC for the out-of-plane problem
can be mathematically expressed as,

wR2jr¼b ¼ 0 & mr�R2jr¼b ¼ 0: ðC5Þ
Additionally, for the full dome with no slits/cuts, we have two other
conditions for the center point of the unit that are expressed as,

qr�R1jr¼0 ¼ 0 &
@wR1

@r

����
r¼0

¼ 0: ðC6Þ

These BCs for the out-of-plane problem (Eqs. (C5) and (C6)) are fur-
ther augmented by considering the elastic continuity conditions for
the displacement and the slope at the boundary connecting the
dome to the surrounding flat region,

wR1jr¼a ¼ wR2jr¼a &
@wR1

@r

����
r¼a

¼ @wR2

@r

����
r¼a

: ðC7Þ

This set of six constraint equations in the out-of-plane problem is
first employed to solve for the four constants resulting from the
double integration operation to find the displacement fields from
the assumed curvature expressions. The remaining constraint
expressions are satisfied by reducing the number of degrees of free-
dom by the corresponding amount. For example, for the full dome
shell, considering only even terms in the assumed curvature expres-
sion automatically satisfies the BC for the shear force (Eq. (C6)), thus
simplifying the model and improving the computational efficiency.
Additionally, we find that considering four terms in the assumed
curvature fields for each of the regions allows for sufficient accuracy
11
in modeling the topology of the inverted unit. Accordingly, the
assumed expressions for the change in the radial curvature are
given as,

ĵrð ÞR1 ¼
X4
i¼0

cið ÞR1r2iR1 & ĵrð ÞR2 ¼
X4
i¼0

cið ÞR2riR2: ðC8Þ

Next, moving on to the in-plane problem, we employ the Airy’s
stress function, U, for describing the mid-plane stress resultants
(rr and rh) as

rr ¼ 1
r
dU
dr

& rh ¼ d2U
dr2

: ðC9Þ

The corresponding in-plane strains (�r and �h) are given as,

�r ¼ 1
E
ðrr � mrhÞ & �h ¼ 1

E
ðrh � mrrÞ: ðC10Þ

The nonlinearity associated with the dome inversion and the ensu-
ing bistable behavior is modeled by using nonlinear strain–dis-
placement relationships that allow for large displacements but
maintain low strains. This relationship is expressed in the radial
co-ordinates as

�r ¼ dur

dr
þ 1

2
dw
dr

� �2

� 1
2

dw0

dr

� �2
" #

& �h ¼ ur

r
: ðC11Þ

In order to express the in-plane stresses and strains purely in terms
of the generalized co-ordinates, we model the stretching-bending
interaction be connecting the change in Gaussian curvature to the
in-plane strains and by extension, the Airy’s stress function as

�Eĝ ¼ d4U
dr4

þ 2
r
d3U
dr3

� 1
r2

d2U
dr2

þ 1
r3

dU
dr

: ðC12Þ

Solving this equation, the complete solution for each region consists
of the homogeneous solution (expressed in terms of r) and the par-
ticular solution, that is expressed as,

D1 þ D2Log½r� þ 1
2
D3r2 þ D4r2 �1

4
þ 1
2
Log½r�

� �
: ðC13Þ

We note that four additional constants are added in the respective
solutions for each region. Taking derivatives to find the mid-plane
stress resultants, these constants subsequently appear in the
respective expressions in the following form,

rr ¼ D2
1
r2

þD3 þD4Log½r� þ . . . & rh ¼ �D2
1
r2

þD3 þD4 1þ Log½r�ð Þ þ . . .

ðC14Þ
This set of six additional constants (three for each region) is solved
for by employing the in-plane boundary conditions and the in-plane
continuity conditions. To begin with, the stress at the center of the
dome ðR1Þ cannot be infinite. Hence, D2ð ÞR1 ¼ D4ð ÞR1 ¼ 0. Next,
using the expressions for �r and �h, we obtain two distinct expres-
sions for the in-plane displacement field, ur for the flat region, R2.
However, for real solutions to the problem, both of the obtained
expressions for the displacement fields need to be compatible with
each other. Solving for the ensuing compatibility equation,
ur �rð Þ½ �R2 ¼ ur �hð Þ½ �R2, the constant D4ð ÞR2 is determined. The remain-
ing three constants D3ð ÞR1; D2ð ÞR2, and D3ð ÞR2 are determined by
solving for the in-plane pinned BC at the outer edge,

urð ÞR2
��
r¼b ¼ 0; ðC15Þ

and the continuity conditions for the in-plane displacement and the
circumferential stress at the shared boundary,

urð ÞR1
��
r¼a ¼ urð ÞR2

��
r¼a & rhð ÞR1

��
r¼a ¼ rhð ÞR2

��
r¼a: ðC16Þ
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With these simplifications, all of the quantities in the in-plane and
out-of-plane problem are unambiguously expressed purely in terms
of the generalized co-ordinates, ci, and the radial co-ordinate, r. The
bending and stretching energy contributions (PB andPS) for each of
the two regions can be subsequently expressed as,

PB ¼ 1
2

Z
X
ĵrmr þ ĵhmhð ÞdA & PS ¼ t

2

Z
X
�rrr þ �hrhð ÞdA:

ðC17Þ
Adding the bending and stretching energy contributions for both
the dome and the flat region P ¼ PBð ÞR1 þ PSð ÞR1 þ PBð ÞR2þ

�
PSð ÞR2Þ, local minima in the total potential energy expression are
determined by employing the FindMinimum function in Mathemat-
ica. These local minimum energy points correspond to equilibrium
configurations of the unit, i.e., the base state and the inverted state.
The stability of each of the equilibrium points is confirmed by eval-

uating the positive definiteness of the Hessian Matrix Hij ¼ @2P
@ci@cj

.

For generality and in order to improve the computational effi-
ciency of the model, we express the unit geometry in terms of
three non-dimensional parameters - the shallowness (SH = h=a),
slenderness (SL = h=t) and packing factor (PK = 2b=a). Additionally,
we non-dimensionalize the field variables for both the regions R1
and R2 in the following manner,

q ¼ r
a
; x ¼ w

t
; K ¼ j

a2

t
; S ¼ ra2

Et2
; & M ¼ ma2

Et4
: ðC18Þ
Fig. D.1. (a) The axisymmetric mirror-buckled deformation mode when a single dome i
center dome when all domes are inverted and the metasheet assumes a higher order frus
dome for the metasheet deformation states in (a) and (b).
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Lastly, the generalized co-ordinates, ci are also normalized by the
dome base radius a to further improve the computational efficiency
of the model. The normalized set of generalized co-ordinates is
defined as

ĉi ¼ ci
a
: ðC19Þ

The results for the unit topology and for predicting the limit
of hierarchical multistability in our metasheets are illustrated in
Fig. C.3, and are found to be in good agreement with experimental
results.

Appendix D. Post-buckling mode transition: From mirror-
buckled to elliptical inversion modes

The static bistability of doubly-curved shells or domes has been
extensively studied and analyzed in literature [52–56,51,31,57].
The dominant deformation mode involved in dome inversion is
the axisymmetric mirror-buckled mode. However, while the sec-
ond stable state is largely axisymmetric, asymmetric configura-
tions have been found to emerge while the dome is transitioning
from one state to the other [30,31]. These asymmetric modes have
been largely studied under the context of the dome deformation
when subjected to a point load at the apex. Notably, higher order
polygonal post-buckling modes have been found during such local-
ized loading cases [30–32]. These higher order polygonal modes
feature a strong stretching-bending interaction as compared to
the mirror-buckled mode, where the deformation is largely
s inverted in the metasheet. (b) The elliptic post-buckled deformation mode on the
trated state. (c) The through-thickness stress fields for the center point on the center
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bending-dominated [31,32,56]. As illustrated in Figs. 2, 3 in the
main text, we find these higher order post-buckling modes in our
system as well, although these appear in a qualitatively different
context. In our system, such modes emerge due to the asymmetry
in the design of the unit planform geometry and are found to orig-
inate from the unit boundary. Consequently, they start to localize
away from the dome center as the mesoscale packing factor is
increased. Importantly, these higher order post-buckled modes
play a crucial role in the hierarchical multistable behavior in our
metasheets. A single dome inverted in any metasheet features a
largely axisymmetric shape and assumes the mirror-buckled con-
figuration (Fig. D.1a). However, we notice that as an increasing
number of domes are inverted in the metasheet, interactions start
developing between neighboring inverted units. This results in
post-buckled shapes that are driven by: (i) the unit geometry; (ii)
the state of the neighboring units; and (iii) the sequence in which
the interactions are imposed. This feature is distinctly seen on the
center dome in the higher-order frustrated state for a 3� 3 meta-
sheet, as illustrated in Fig. D.1b. The center dome’s deformation
state departs from the axisymmetric mirror-buckled state and
assumes an elliptical post-buckled shape with major axis aligned
with the vertical (Y-direction) dimension of the metasheet. Analyz-
ing the through-thickness stress fields in the X- (11) and Y-
directions (22) for the center point of the respective units
(Fig. D.1c), we find that for the axisymmetric mode, the through-
thickness fields are qualitatively similar and are bending domi-
nated. In contrast, for the higher-order frustrated state, the
axisymmetry is clearly lost with the stress-fields in the respective
directions exhibiting qualitatively different behavior. Furthermore,
the stretching-bending interaction for the elliptic post-buckled
shape is apparent for the through-thickness field in the Y-
direction, in contrast to the mirror-buckled state where this fea-
ture is absent and the deformation is bending dominated. This dis-
tinct switching behavior between purely bending dominated to a
combined stretching-bending deformation state controls the sym-
metry breaking of the post-buckled mode on the individual domes.
These interactions between the stretching and bending behavior
within the microstructure of our metasheets are central for the
manifestation of macroscale geometric frustration and hierarchical
multistable behavior.
Fig. E.2. Experimental images of the base state and the hierarchical multist

Fig. E.1. Experimental images of the base state and the hierarchical multista
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Appendix E. Geometric scalability and material independence
of hierarchical multistability

Hierarchical multistability is a geometrically scalable phe-
nomenon and correspondingly, the ground states and higher order
frustrated states are also observed in metasheets featuring a higher
number of microscale units. This phenomenon is illustrated in
Fig. 1f, and also in Fig. E.1 illustrating the base state and four hier-
archical multistable states for the 5� 5 metasheet when all domes
are inverted. Furthermore, we note that the manifestation of
macroscale geometric frustration, and the ensuing hierarchically
multistable behavior of our metasheets are purely geometric fea-
tures and independent of the material properties as long as the
dome inversion-induced stresses are within the failure limits for
the corresponding material. We demonstrate this by employing a
Nylon metasheet consisting of domes arranged in a 3� 3 square
pattern (Fig. E.2a). Nylon has an elastic modulus of 579 MPa, i.e.
is 22 � more than TPU [58]. With a glass transition temperature
above 50�C, Nylon shows no viscoelastic effect at room tempera-
ture. All domes in the Nylon-made metamaterial sheet have uni-
form dimensions with height h ¼ 4 mm, base radius R ¼ 12 mm,
thickness t ¼ 0:4 mm and unit side length SS ¼ 28 mm. Locally,
each individual dome features two stable configurations: the as-
printed base state and the inverted state. At the global scale, the
nylon sheet is again found to exhibit hierarchical multistability
with the emergence of the ground states (Fig. E.2a) and the
higher-order frustrated states (Fig. E.2c) when all the domes are
inverted. This result indicates that geometric frustration and the
ensuing hierarchical multistability features are manifested purely
due to the geometry of the metasheets and are compatible with
different material chemistries. Concretely, material viscoelastic
effects observed in many of the soft material systems are not nec-
essary for hierarchical multistability to emerge.

Appendix F. List of Supplementary Videos

1. Inversion of a single dome unit.
2. Shifting between the hierarchically multistable states of a 3� 3

square metasheet by means of external loads.
able states when all domes are inverted for the 3� 3 Nylon metasheet.

ble states when all domes are inverted for the 5� 5 square metasheet.



J.P. Udani and A.F. Arrieta Materials & Design 221 (2022) 110809
3. The hierarchically multistable states of a hexagonal patterned
metasheet

4. Diagonal dome inversion sequence leading to a ground state on
a 3� 3 square metasheet.

5. Symmetric dome inversion sequence leading to a higher order
frustrated state on a 3� 3 square metasheet.

6. Inversion sequence leading to a higher order frustrated state on
a 5� 5 square metasheet.

Appendix G. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at https://doi.org/10.1016/j.matdes.2022.
110809.
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