Journal of Computational Physics 451 (2022) 110851

Journal of Computational Physics

Contents lists available at ScienceDirect Fﬂ;"s':""““"""
CS,

www.elsevier.com/locate/jcp

An arbitrary Lagrangian-Eulerian method for simulating n
interfacial dynamics between a hydrogel and a fluid

Lei Li*!, Jiagi Zhang ', Zelai Xu?, Y.-N. Young¢, James J. Feng ¢,

Pengtao Yue ©*

4 Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
b School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC 29634, USA

¢ Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA

d Department of Mathematics, University of British Columbia, Vancouver, BC V6T 122, Canada

€ Department of Mathematics, Virginia Tech, Blacksburg, VA 24061, USA

ARTICLE INFO

ABSTRACT

Article history:

Received 15 July 2021

Received in revised form 4 November 2021
Accepted 9 November 2021

Available online 17 November 2021

Keywords:

Fixed-mesh ALE method
Poroelasticity model
Fluid-structure interaction
Hyperelasticity
Permeability

Hydrogels are crosslinked polymer networks swollen with an aqueous solvent, and play
central roles in biomicrofluidic devices. In such applications, the gel is often in contact
with a flowing fluid, thus setting up a fluid-hydrogel two-phase system. Using a recently
proposed model (Young et al. [41] 2019), we treat the hydrogel as a poroelastic material
consisting of a Saint Venant-Kirchhoff polymer network and a Newtonian viscous solvent,
and develop a finite-element method for computing flows involving a fluid-hydrogel
interface. The interface is tracked by using a fixed-mesh arbitrary Lagrangian-Eulerian
method that maps the interface to a reference configuration. The interfacial deformation
is coupled with the fluid and solid governing equations into a monolithic algorithm using
the finite-element library deal.ll. The code is validated against available analytical solutions
in several non-trivial flow problems: one-dimensional compression of a gel layer by a
uniform flow, two-layer shear flow, and the deformation of a Darcy gel particle in a planar
extensional flow. In all cases, the numerical solutions are in excellent agreement with the
analytical solutions. Numerical tests show second-order convergence with respect to mesh
refinement, and first-order convergence with respect to time-step refinement.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Hydrogels are soft deformable materials containing a solid skeleton, usually an entangled polymer network, and an in-
terstitial aqueous solvent. Because of their softness and lack of toxicity, hydrogels have found applications in many emerging
technologies, e.g. in medical devices [1], drug delivery [2-5], tissue engineering [6,7] and stimulus-sensitive actuators [8-10].
Of particular note are recent developments of microfluidic devices that use hydrogel as scaffold or carrier for cell culture
and drugs [11-16]. In such applications, gel-fluid two-phase flows play a central role. How does the exterior flow compress
and deform the hydrogel surface through mechanical interactions? How does the fluid permeate the hydrogel, and how does
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this permeation modify the structure and mechanical properties of the gel? Those questions have not been systematically
examined before in the context of gel-fluid two-phase flows.

Previous studies of hydrogel mechanics fall into three categories. The first consists of solid-mechanics models that treat
hydrogels as elastomers that swell due to solvent diffusion driven by the chemical potential of solvent-polymer interactions
[17-19]. No fluid flow is involved. Besides, the swelling process is typically very slow, on the time scale of hours to days
[20,21], and is essentially irrelevant to the flow situations of interest here.

The second category contains phenomenological yield-stress models such as the Bingham model [22,23]. These can be
used to describe complex flow of viscoplastic fluids [24,25]. They treat the gel as a homogeneous material, with no regard
to the constituent solvent and polymer chains. In this sense, therefore, they are one-phase instead of two-phase models.
Nevertheless, in spatially nonuniform flows a portion of the gel may “yield” under stress to become fluid-like. Such a
transition may create fluid and solid domains within the gel, and much effort has gone into the determination of the yield
surface that evolves dynamically in complex flows [26,27]. Yielding does produce a two-phase flow situation, albeit in a
different sense than the gel-solvent flow that is the focus of this study. We will not consider it further here.

The third category is the most relevant to the present work. Poroelastic models treat the gel as a mixture of two
interpenetrating effective continua, one made of the solvent and the other of the polymer network [28]. Each component
obeys its own mass and momentum balances, with interaction between the two phases. Despite its long history [29,30],
this approach has so far seen limited applications in the fluid mechanics context. In most such applications, the gel-fluid
interface is either immobile or has simple and easily computable displacements so as not to require the coupled solution
of the fluid flow and elastic deformation of the solid skeleton. These include 1D shear flow past a layer of poroelastic
material [31,32], 1D compression of a poroelastic layer [28], flow in a wavy channel coated with a thin poroelastic layer
[33], and linear stability analysis of shear flow past a poroelastic layer [34-36]. Recently, poroelastic modeling has been
used to explain the dynamics of the actomyosin gel inside biological cells [37,38].

At least two difficulties may have hindered the development of a two-phase poroelastic gel flow theory: the boundary
conditions on the interface between the gel and the clear fluid, and the fluid-structure interaction problem in moving and
deforming that interface. Note that we use the term “two-phase gel flow” to refer to the situation where a domain of gel
coexists with a domain of pure fluid, separated by a dynamically deforming interface. A poroelastic model for the gel itself
is sometimes called “two-phase” for the solvent and solid skeleton inside the gel [37]. The boundary condition between
a porous medium and a clear fluid has long been a point of debate [39,40,32,41,42]. The crux is that an additional stress
condition is needed because of the two momentum equations posed inside the gel for the network and interstitial fluid. The
fluid-structure interaction problem on the gel interface is complicated by the fluid entering and exiting the solid network,
making the “structure” a compressible and dynamically evolving entity.

Recently, Young et al. [41,42] took a new approach to these two difficulties. They invoked an energy dissipation argument
to pose boundary conditions to ensure positive entropy production in the gel-fluid two-phase system. This led to velocity
discontinuities at the interface, both between the gel and the exterior fluid and between the solid and solvent inside the
gel, that are driven by stresses at the interface. Furthermore, Young et al. [41] applied such boundary conditions to solve
the problem of a Darcy gel particle deforming slightly in an external flow field. The analytical solution was derived using
perturbation in the limit of small deformations. This forms the starting point for the work to be presented here.

Our goal in the present paper is to construct a general computational method for gel-fluid two-phase flows. This is
accomplished by overcoming the two obstacles discussed in the above. First, we develop a finite-element formalism to
incorporate the complex and unconventional boundary conditions between a deforming hydrogel and an external fluid
flow. Second, we develop a fixed-mesh arbitrary Lagrangian-Eulerian scheme to compute large deformations of the gel-fluid
interface driven by the external flow.

2. Theoretical formulation

We adopt the poroelastic model for a fluid-permeated hydrogel as presented by Young et al. [41], together with recent
developments of boundary conditions for the fluid-gel interface [42].

2.1. Governing equations

The computation domain 2 is divided into an inner region ; occupied by the hydrogel and an outer region 2, occupied
by the exterior viscous fluid (Fig. 1). The same fluid also permeates the pores of the hydrogel. Inside 2;, the fluid and solid
phases are treated as interpenetrating continua, with volume fractions ¢y and ¢s that satisfy ¢ + ¢s = 1. The gel-fluid
interface T is defined by the extent of the solid network or “skeleton” of the gel.

In Q,, the velocity V and the pressure P of the solvent satisfy the incompressible Stokes equations:

V.V=0, (1)
V. (X —-PI)=0, (2)

where ¥ = u[VV+ (VV)T] is the viscous stress tensor and 1 is the solvent viscosity. We ignore fluid inertia as the target
applications are typically microscopic slow flows. It will be straightforward to add inertia to the external flow.
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Fig. 1. A schematic of a particle of poroelastic gel in a Newtonian viscous fluid. The symbols are defined in the text.

In the hydrogel domain €2;, the volume conservation of each phase leads to the following continuity equations:

ad
%f + V- (¢pv5) =0, (3)
05 _

o TV @) =0, )

where vy and vs are, respectively, the intrinsic phase-averaged fluid and solid velocities [32], i.e. volume-averaged over a
small volume that contains only one of the phases. The same average is implied for other gel-based quantities such as
pressure and stress. Summing the two equations above gives us a solenoidal average velocity q = ¢sVs + ¢5vy:

' (¢SV5 +¢fo)=0, (5)

although neither v nor v; is divergence-free in general.
Each phase satisfies a Brinkman-type momentum equation:

V- (prof) —¢Vp+FI =0, (6)
V- ($s05) —psVp + F/ 5 =0, (7)

where o ¢ and o5 are the Cauchy stress tensors for the two phases, and p is the pressure in the hydrogel. The fluid stress
is given by 0§ = te[Vvy + (va)T], where . is the effective viscosity [42]. The solid stress o5 is a function of the solid
displacement ug, which is related to the solid velocity vs by the kinematic equation

dug

— —v; =0, 8

a (8)
where % = % + v - V denotes the material derivative. For the solid stress tensor o5, we adopt the Saint Venant-Kirchhoff
constitutive model. Since the strain and stress tensors need to be posed in the Lagrangian frame, we defer the equations
to Sec. 4.2, after describing the Lagrangian-Eulerian transformation. The frictional force or Darcy drag between the skeleton
and the solvent is given by

Fol = —FI=S =105 (vs — vy), (9)

where the drag coefficient & is taken to be a constant.
2.2. Boundary conditions

The boundary conditions (BCs) between a clear fluid and a porous medium have long been a subject of investigation and
debate [39,43,44,40,45,32]. The root of the difficulty is that with a homogenized view of the porous medium as a mixture of
fluid and solid, any geometric information of the fluid-fluid and fluid-solid contact at the nominal interface is lost. Should
the fluid velocity be continuous across the interface? How should the traction from the pure fluid side be sustained by the
fluid and solid components on the porous side? Moreover, these questions are sometimes obscured by the use of different
volume averaging schemes [32].

Recently, Young et al. [41,42] took a thermodynamically based approach to the question of the BCs on a fluid-gel inter-
face. First, the fluid mass balance and total traction balance on the interface I' yield two generally valid BCs:

(V—v5) -n=¢5(Vf —Vs)-n, (10)
(=pl+¢f0f+¢s05) - n=(—PI+X)-n. (11)
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Next, the principle of energy dissipation suggests relations between the velocity jumps at the interface and the tractions on
either side of the interface. Such a proposal being sufficient but non-unique for guaranteeing positive entropy production
on I', two sets of BCs have been postulated to supplement Eqgs. (10), (11):

V—-vy) - n=nn-[(X—-P)—(oy—phl-n,
BCl:] (V—v5)-T=8(Z-n)-T, (12)
pp(vg—vs) - T=—f(of-m-T,
V—vg)-n=nn-[(X¥—PI)— (65— pD]-n,
BC2: V—-vf) - T=8(Z-n)-T, (13)
¢s(Vs —Vf) - T=—p(0s-m)-T,
where 7 > 0 is an interfacial permeability, 8 > 0 is an interfacial slip coefficient, n is the unit normal pointing from ; to
o, and T=1—n® n is the projection tensor that projects vectors to the tangent plane of T.

For the purpose of this paper, we will adopt BC1 as the default. An exception is the two-layer shear flow of Sec. 5.2,

where a comparison with BC2 is made. Questions remain, of course, regarding which more faithfully represents real flow
situations. These will be investigated further in separate studies.

3. Finite-element weak form

A unique feature of the weak form is the incorporation of the boundary conditions of Eqs. (10)-(12). We solve the
governing equations by the Galerkin finite element method. In particular, we seek weak solutions Ve H1(Q,), P € L2($),
ve e HU(Q)4, vs € H(Q0)4, us € H'(2)%, p € L2(Qi), and ¢ € L?(%;), where d is the spatial dimension of the problem.
The corresponding test functions are Wy, Wp, Wy, Wy, Wy, Wp, and Wy, respectively. ¢ can be directly computed from
$r=1-o¢s.

The weak formulations of Egs. (1), (2), (5)-(7) can be obtained by taking the inner products of Eq. (1) with Wp in Q,,
Eq. (2) with Wy in ,, Eq. (5) with W, in Q;, Eq. (6) with Wy, in €, and Eq. (7) with Wy, in ;. By summing up these
inner products, performing integration by parts, and plugging in Eq. (12), we arrive at the unified weak form for BC1:

(Z, VWy)g, — (X = PD - n, Wy)yor
+(bro . V) — (65 —pD-m Wy ) o1
+ (9505, V) — (ds(0s — pD -1, Wy )0 -
— (P, V- Wy)q, +(V-V,¥p)q,
—(p.V - (bW, +ds W) g + (V- (@55 +svs). Wp) o,

1
+ (Eprps(vy —Vs), Wy, — ‘va)gi + (5(v_vs) n, (By — Wy,) - n)
r

1 %
+<_(V_Vs)'T’ ‘IJV_‘IJVS) + | > Wr—vs5)-T, \I"vf_‘yvs
g B )

=0, (14)

where (-, -) denotes the inner product over the region specified by the subscript. Here, the outer boundary 92 is partitioned
into 9€2,\I' and 92;\TI": 32, \I" is a segment of the outer boundary not in contact with the gel, and 9€2;\I" is part of the
gel surface not in contact with the exterior fluid but with, say, a solid wall.

The above formulation is notable for the treatment of the boundary conditions (Eqs. (10)-(12)). First, we have used
Eq. (10) as an essential condition and thus the test functions for velocities satisfy the same constraint:

(‘Pv—‘lfvs)|r~ﬂ=¢f(\lfvf—‘Vvs)|r-l1- (15)

Then, the traction balance of Eq. (11) and the velocity jumps of Eqs. (12) are incorporated into the boundary integrals. It
is remarkable that the surface integrals on I can be combined into such simple forms. Detailed derivation can be found in
Appendix A.

The weak formulations of Egs. (4) and (8) are straightforward:

(—8"’S+v-<¢svs>,w¢s) _o, (16)
ot o

dug _

(dt _v57lIJl-ls>Qi_0' (]7)
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We keep these two equations separate from Eq. (14) because combining them does not lead to a simpler formulation.
Besides, these two equations involve time derivatives and need to be solved by a time-stepping scheme while Eq. (14)
evolves accordingly in a quasi-static fashion.

By taking Wy =V, Wy, = vy, Wy, =vs, ¥p =P, and ¥p = p, Eq. (14) yields

/qﬁsas:Vvsdx: / V. (X —PI)-nds

Qi 3Qo\I"
+ / ¢V - (05— pl)-nds+ / ¢svs - (05 — pl) - nds
oQ;\Il aQ;\T
—/Z:Vde—/¢faf:vadx
Q Qi

—/s¢f¢s|vf — vy[2dx
Qi

2
—/ [«V—vs)-n)2 + %I(V—Vs) TP+ % 7 -T!Z} ds, (18)
r

which is exac(glg/ the same dissipative energy law as Eq. (21) in [41]. For a hyperelastic skeleton, the left-hand side can be

expressed as 57, where £ is the elastic energy stored in the solid skeleton [41,46]. On the right-hand side, the terms on the
first and second lines are the external work done on the outer boundary. The terms in the third line are viscous dissipations
of fluids outside and inside the hydrogel, respectively. The fourth line is the dissipation due to the Darcy drag between the
solid and fluid phases inside the hydrogel. The terms in the last line are dissipations due to boundary conditions on the
hydrogel interface. All these dissipation terms are non-positive, which guarantees that the free energy of the whole system
(i.e., £) decreases in time if there is no external work. Physically, this dissipative energy law ensures the model’s consistency
with the second law of thermal dynamics. Numerically, it plays an important role in the stability of solutions and may guide
the design of energy-stable numerical schemes [47].

Different boundary conditions on hydrogel interface will lead to different inner product terms on I' in Eq. (14). To use

BC2 of Eq. (13) in place of BC1, we only need to replace the terms
1

(l(v_vs)'na (\Ijv_qjvs)n> +<
n r B

(V—vs) - T, by — ‘vas)
r

with
<1(V—Vf) n, (Wy — Wy) - n) + (l(V—Vf) T, Wy — \vaf)
n r B r

in the weak form of Eq. (14). Thanks to their thermodynamic basis, both formulations lead to an energy law in the finite-
element representations. In contrast, ad hoc BCs, say based on stress partition [31,32], would not allow simplifications of
the surface integrals in the weak form, and would not lead to an energy law.

4. Fixed-mesh ALE method

To handle the interfacial deformation, we adopt an arbitrary Lagrangian-Eulerian (ALE) method. The ALE method can
be implemented by two different approaches: to use a fixed mesh and a formulation in the reference frame, or to use a
moving mesh and a formulation in the Eulerian frame [48]. Theoretically, these two approaches are equivalent. Although the
Eulerian formulation is algebraically simpler than the reference-frame formulation, the moving mesh is more challenging to
work with than the fixed mesh. We thus choose the fixed-mesh ALE approach in this work.

4.1. ALE mapping

In essence, we use a coordinate transformation to map the deformed domain to a time-independent reference domain,
and solve the transformed governing equations in the latter. In the following, we use the hat ~ to mark quantities defined
in the reference frame. We introduce a reference frame with coordinates X that coincides with x at the initial time ty. We
further define the reference domains Q, Q, and ; to be time-independent and overlapping the initial physical domains
Q, Q,, and ;, respectively. The displacement field (X, t) defines an invertible mapping M; from the reference domain to
the physical domain at time t: M; : Q — Q(t), X x =X + (X, t). Every field function f(x,t) can thus be redefined in the
reference frame as f(f(, t) := f(X(X, 1), ).
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In & occupied by the elastic solid, it is customary to choose @ = Giy such that the reference frame reduces to the
Lagrangian frame. The displacement field can be extended to @t =7 in Q by different techniques, such as harmonic
extension, biharmonic extension, and pseudo-elasticity extension, to reduce the distortion of the mapping M, [48]. In this
work, for simplicity, we choose the harmonic extension with a stiffening parameter «:

oy . oA

— —Vvs=0 inQ; 19

a " e (19)
and

V. (Ol@ﬁf) =0 in fzo (20)

with the Dirichlet condition @iy =15 on ' and the no-slip (ay =0) or slip condition on 8f20\f‘. The slip condition can be
expressed as (- V)il; =0 and fif; =0, where il and fi, are the tangential and normal components of iis, respectively.
Often, the slip condition is preferred because it leads to a smaller distortion in @y. It should be noted that the material

aa“tf in the reference frame. Since 0y and @ £ are continuous across I', the two equations above can

be solved together using a single function @ in the continuous finite element space defined on Q.
Based on the displacement field we can define the deformation gradient tensor

derivative d“S reduces to

F:=— =1+Va (21)

and its determinant ] := det(F). Correspondingly, we define F:= g—’,: =F1 and J:=det(F)= ]! for the inverse mapping
a U

from x to X. In this work, we use the convention (Vw);; = (%l;)ij = 33‘)’("]’ and (V-W); = . For any scalar field f,

vector field w, and tensor field W, the derivatives in the two different frames are connected by the following relations:
Vif=Vf-F1, vw=VWw-F!, V.w=VW:F, and V-W=VW:FT. The volume integrals satisfy [, fdx= [5 f JdX.

4.2. Constitutive model for the skeleton

For the constitutive equation of the solid phase in the hydrogel, we choose the hyperelastic Saint Venant-Kirchhoff model,
which allows large deformation. In €2;, we define the Green-Lagrange strain tensor

BE=—GF . F—1= [Vu+ )T + T (Vu)] (22)
The second Piola-Kirchhoff stress tensor is given by

S = 2/u6E + Astr(B)1, (23)
where A and us are the Lamé constants of the solid skeleton. The Cauchy stress tensor can then be obtained from
1o o ap

6,=-F.-S.FT. (24)
]

This enters the momentum balance of the solid skeleton, as in the weak form given below.

4.3. Weak form in the reference frame

In the reference frame, we seek weak solutions V e H($2,), P € L2(), Vs e HY(QnY, ¥ € HY(Q)Y, p e [2(Qy), and
d;s € Lz(fzi), with the corresponding test functions By, Up, \il‘,f, \il,,s, \TJP, and \if(ps. The weak form of Eq. (14) is then
transformed to

és(]&s-ﬁ‘T),st)Qi—(¢SU(&S py-ET]-A o)ml_\
Py B, (9 GTET ),
BV 1Byl + st FT1), 4 (V-1 Griy 4590 F 1)

6
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. . 1 . . .. .
+ <$¢f¢s(vf -Vs) ], ‘I"vf - WVS)Q,— + (E(V_Vs) -n, (Wy — Wy,) -nm])

f
1. . S ¢F . o

+<—(V—v5)-T,(\IJV—\I/,,S)m]> + | 5 W =Ve) - T, Wy, —Wy)m] | =0, (25)
B r B P

where m = [F~T - fi|, and fi is the unit normal in the reference frame. Here we have utilized the Piola transformation
fQ V - wdx = fQV (JW - F~T)d%, where w can be either a tensor or a vector. Special attention should be given to the

surface mtegrals on F First, unlike field functlons the unit normal n in the Eulerian frame is different from n and they are

related by n=E fds= [z fmJds.
In the reference frame Eq (4) for solid volume fractron can be cast into
alno A ~
8t¢5 +VVs:FT=0 in;. (26)

This form has two benefits. First, if we decouple this equation from the others, then it is simply a linear ordinary differential
equation for In¢s. Second, ¢s > 0 is guaranteed. The weak form of Eq. (26) reads

dngs - ao T
( . ,\pd,s)QJr(vVS.F ,w%)ﬁi_o. 27)

The weak form for the mesh displacement and propagation (Egs. (19), (20)) requires special attention. As we have noted
before, the displacement field @t can be represented by a single function in the continuous finite element space. We seek
solution & € H'(Q)? with corresponding test function Wy. Earlier studies have used this weak form [48]:

(3“ . wu> + (098,90 + (aFi-h b)) 0. (28)
at & Q f

But we have found that the relation %‘t‘ = Vs is easily violated on f with significant errors, and « has to be very small to
achieve reasonable accuracy. This is not surprising since the second and the third terms in Eq. (28) make the weak form
inconsistent with 2 3“ ¢ =Vs on [. Taking alternative forms of the surface integral on I" or even removing that term completely
does not resolve thrs issue. We thus come up with an improved formulation:

o . An Aa
V j—
( ™ — Vs, \pu>§z,~ +c (a u, Vv )Qo 0 (29)

with the slip or no-slip condition on the part of outer boundary not in contact with the hydrogel (aﬁo\f), where c =1 for

test functions with \ifu|1: =0 and ¢ =0 for all other Jy. It is easy to see that this equation is equivalent to

F2] | P . A
<—S — s, \vus) =0, Vi, e H () (30)
ot &
and
(a%ﬁf, %\iruf)é =0, Wiy, e H () (31)

with the Dirichlet condition @iy = @i; on [* and the slip or no-slip condition on afzo\f. Thus Eq. (29) enjoys the advantages
of both Eq. (28) and Egs. (30), (31): only a single function @ defined on the whole domain Q is required, there is no need
to impose Dirichlet condition on the inner boundary f, and f)—‘t‘ = Vs is guaranteed on f.

To sum up, in the reference frame, we seek solutions V, P, vy, Vs, D, &5, and @ that satisfy Eqgs. (25), (27), (29) for all
admissible test functions, with the following constraints on the velocities and their corresponding test functions:

(V — )

f_-l‘l:(];f(flf—\’\ls)f‘ n (32)

(by — b)) | m=dr(dy, — )| - m

(33)

The unit normal n here is inherited from Egs. (10), (15) and should not be confused with f in the reference frame.

It should be noted that the implementation of the constraints above is non-trivial. At each node on I, we identify
the n component with the greatest magnitude. Without loss of generality, suppose n, has the greatest magnitude. In two
dimensions, Eq. (32) can then be rewritten as
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N 1 /4~ . . N
Vx:—(qsfvf-n+¢5vs-n—Vyny). (34)
Ny

Using this equation, we replace the unknown Vy by a combination of Vy, V¢, and Vs at the same node on f. Similarly, Byy

is replaced by a combination of \ilvy, \iJ‘,f, and \i/vs. In coding, this operation is realized by the AffineConstraints class in
deal.Il [49].

4.4. Numerical discretization

We solve Egs. (25), (27), (29) with a code developed on top of the step-46 tutorial program of the open-source finite-
element library deal.ll [49] The reference domain Q is partltloned into quadrilateral cells with " covered by cell edges. We
use Q1 elements for p and P and Q2 elements for V, Vg, Vs, @1, and #s. In the following, we only focus on the temporal
discretization.

The volume fraction equation (27) is discretized by the forward Euler scheme:

Ing™*+! — In g fon enlT
(T by )+ (Vu TG, =0, (5)
Qi !
where At" = t™t1 — " is the time step and n denotes the time level. As this equation is nonlinear in q@?“. we thus take a
two-step approach that only involves a linear equation. We first solve

Vo son. & -T 4 ) —
(ﬁ’q""s Q.—F(va.(F) ,w%)éi_o (36)

to get 1/7 which is in the same Q2 finite-element space as ¢s. We then use q@?“ = 432 exp(tff) at each node to recover 432“.
The displacement equation (29) is discretized by the backward Euler scheme:

<ﬁn+1 _—ty

o+l vt v -
¥ ,wu)A +o(avdm™ Vi), =0, (37)

Qi o

Equation (25) does not involve any time derivatives and it is thus solved with the constraints of Eq. (32), (33) at time
level n+ 1. Equations (25), (37) are solved together and the resulting nonlinear system is solved using Newton’s method. In
each Newton iteration, the linear system is solved by the direct sparse linear solver UMFPACK [50]. We stop the iteration
once the L, norm of the residual of the nonlinear system falls below 1078. It typically takes less than five iterations to
reach convergence if the solution at time level n is used as the initial guess.

The solution procedure can be summarized as follows:

(1) Create a mesh in Q=Q,U Q, w1th the fluid-gel interface F Q0N Q, coinciding with cell edges.

(2) Set initial conditions @° =0, v =0 (required to compute ¢s) and ¢>S

(3) For each time level n > 0, choose a proper At" and perform the following steps until a steady state or a stopping time
is reached.
(i) Solve Eq. (36). Obtain J)?‘” based on q3§‘ and V7.
(ii) Solve Egs. (25), (37) with the constraints of Eqs. (32), (33). Obtain V™!, pn+1, \7’}”, Vit pn*1 and 6"+ based on

4" and @1,
Our code works in both 2D and 3D, and that is one of the advantages of using the deal.ll platform. To avoid high comput-

ing costs, we will only use 2D numerical examples below to validate the numerical tools. Three-dimensional computations
are left for future studies.

5. Numerical examples

In this section, we will use three test problems to demonstrate the robustness and accuracy of our method. Most field
functions, such as V, s, Vs, s, P, and p, do not change their values in the coordinate transformation. Some others do,
including X and y. In the following, we will drop ~ above the variables in the first group unless doing so causes confusion.
We employ the following scaling to render the governing equations and boundary conditions dimensionless:

(*.3) = y)/Lo, (V,Vs,V5) = (V,Vs5,vf)/Vo, E=tVo/Lo,
ug = us/Lo, (276556’f,1_),f7):(270'570'f,P7P)/M5,

where the bar denotes dimensionless quantities, V¢ is the characteristic velocity, and Lg is the characteristic length for the
specific problems. The parameters can be organized into the following dimensionless groups:

(38)
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Fig. 2. Geometric setup of the 1D compression of a gel layer. We take the thickness of the gel layer to be the characteristic length Ly such that d = 1. The
rectangular computational domain is indicated by the dashed line, with length L =2 and height H =1.
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Fig. 3. The evolution of (a) the displacement us|z_; and (b) the pore fluid velocity v |z—; at the upstream interface X = 1. The solid curves represent the
Darcy flow with effective viscosity @, =0, and the dash-dot curves the Brinkman flow with @, = 1/60. The other dimensionless groups governing the
problem are As =1, § =2/15, n =30, Ca=1, and ¢s = 0.5. The mesh size and the time step for this case are Ax=1/8 and At =0.01, respectively.

fle = e/ ks As=hs/ls, E=EL3/1L,
(B, 1) = (B, /Lo, Ca=Vou/(Lois), $s0,

where ¢y is the initial solid fraction in the undeformed hydrogel. Note that Ca indicates the ratio between the external
viscous stress and the elastic stress of the solid skeleton, and can be viewed as an effective capillary number. The following
discussion will only involve dimensionless variables. Therefore, we omit the bar for simplicity.

(39)

5.1. Compression of hydrogel by uniform flow

We consider a slab of hydrogel of thickness d =1 that is compressed by a uniform flow of velocity Vy =1 perpendicular
to the gel surface (Fig. 2). The solution is one-dimensional, with no flow, deformation, or any spatial variation along the
y direction. Using this as a benchmark problem for our code, however, we draw a rectangular computational domain with
length L =2 and height H =1, and carry out the simulation in 2D. On the fluid-gel interface ¥ = 1, we impose BC1 for this
benchmark problem.

The right side of the hydrogel layer is constrained so as to have zero displacement: ug|;_; = 0, while its left side is
subject to compression by the flow. We start with a spatially uniform solid fraction ¢so = 0.5 at t = 0. The incoming flow has
a constant velocity: Vy|s_o =1 and Vy|;_o = 0. At the right surface of the gel we specify the tangential velocity vy|z—; =0
and the normal traction (—p + 0fxx)|;_; = 0. For the top and bottom boundaries, we impose symmetry conditions such
that the y-components of all the variables are put to zero, as are the d/dy gradient of their x-components. For the mesh
displacement u in the clear fluid, we impose the no-slip condition on the left boundary and the slip condition on the
top and bottom boundaries. All the numerical results in this subsection are computed with a uniform Cartesian mesh of
representative mesh size Ax and a fixed time step At.

Upon start of flow, the Darcy drag compresses the solid skeleton, and the upstream surface of the gel, at Lagrangian
coordinate X = 1, starts to shift in the flow direction. Fig. 3(a) shows the temporal evolution of the interfacial displacement
usx toward a steady state with and without the Brinkman stress. This displacement is accompanied by an increase in the
solid fraction ¢s and a decreases in the void fraction ¢¢. Consequently, the fluid velocity inside the gel also rises in time
to maintain fluid mass conservation, as depicted by the evolution of v fx|3_; at the upstream interface in Fig. 3(b). A steady
state is reached when the elastic stress of the solid network balances the compression of the fluid. The Brinkman stress
hinders the compression of the hydrogel, but the effect is minor for the parameters used (Fig. 3a). In the rest of this
subsection, we will focus on the Darcy solution. An analytical solution is available for Darcy flow in the 1D compression
(see Appendix B), and we will use it as the benchmark to validate the numerical solutions.

The steady-state solution is depicted in Fig. 4. Outside the gel, the clear fluid maintains a constant velocity Vy =1 and
pressure P, and so we focus on the profiles inside the gel. The Darcy drag inside the gel compresses the solid network to
produce an elastic stress ogs. As the downstream surface of the gel is fixed at X = 2, the cumulative effect of compression
is such that ogy increases in magnitude along x (Fig. 4a). Consistent with this, the displacement profile ug, shows the
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Fig. 4. Steady-state profiles for the Darcy-flow solution in the gel layer compressed by uniform flow. (a) The normal elastic stress osyx, the displacement
usx, and the solid fraction ¢s along the X-direction. (b) The pressure p and the fluid velocity vy along the X-direction. The parameters are the same as in
Fig. 3 with @, =0.
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Fig. 5. Validation of the numerical solution of ¢s by the analytical solution of Appendix B, for three sets of moderate parameters: (&, ) = (1/5, 15), (2/15,
15), and (2/15, 30). The other parameters are the same as in Fig. 3 with p, = 0. The mesh size and the time step for this case are Ax=1/8 and At =0.01,
respectively.

Uy

X
downstream. Naturally, this increasing compression leads to a rising ¢ profile, the greatest compression being ¢s = 0.573
at X =2 and the smallest being ¢s =0.511 at x=1.

The shrinking void fraction means that the interstitial fluid must accelerate to maintain continuity of the fluid phase,
and this is indeed what the velocity profile v, shows in Fig. 4(b). Note the velocity jumps at the gel surfaces. Across the
fluid-gel interface at X =1, the fluid velocity changes from Vx =1 outside to v, = 2.05 inside the gel. At the downstream
interface X = 2, the fluid velocity reaches v s, = 2.34. Note also the declining pressure in the gel layer. This negative pressure
gradient acts against the Darcy drag and drives the fluid downstream (see Eq. (6)). The zero normal traction condition at
X =2 reduces to p =0 in the Darcy flow. Accordingly, p = 0.145 at the interface and the free stream takes on a constant
pressure P = 0.178 upstream the gel layer, as dictated by the boundary condition governing normal force balance (Eq. (11)).

To benchmark our numerical solution by the analytical solution of Appendix B, we plot the profiles of the solid volume
fraction ¢s(X) in Fig. 5 for three sets of parameters. The numerical solution is in excellent agreement with the analytical
one, the relative error being less than 0.5% in all three cases. The other profiles, e.g. vy, p and osx, show similarly close
agreement. As intuitively expected, the amount of compression increases with the Darcy drag coefficient & but decreases
with the permeability 7.

Finally, we explore the convergence of the numerical solution with respect to temporal and spatial resolution. Based
on the time-stepping and finite-element schemes in Sec. 4.4, we expect first-order convergence with decreasing At and
second-order convergence with refining Ax. First, we fix the mesh with Ax =1/32, and reduce At gradually from 0.01

to 2.5 x 1075. The relative error Ex; is computed from ¢s|3—; at t = 0.1, before the steady-state is reached, relative to
the finest Aty =2.5 x 1076: Epr = |¢5Atf — ¢3At|/¢sAtf. Fig. 6(a) shows approximately first-order convergence with At, as

expected. Next, we fix At =5 x 107%, and refine the mesh by halving Ax from 1/4 down to 1/128. The relative error
Egx = \¢SAX - ¢sAxf|/¢sAxf is defined relative to the solution on the finest mesh Axy =1/128, for ¢s|s—; at t =0.1. As
expected, Fig. 6(b) manifests roughly second-order convergence with refining Ax. Even at the coarsest At = 1/4, the relative
error is only Exx = 3.5 x 107, It should be noted that higher spatial order may be achieved for individual variables. For
example, the interfacial displacement exhibits a fourth-order convergence with refining Ax. But the overall spatial order
of the whole scheme is limited by ¢s. For the other numerical examples presented below, we have carried out similar At
and Ax refinements and determined the level of resolution required for accurate solutions. For brevity, we will not include
results for these convergence tests in the following.

strain

to increase downstream, even though ugy itself is greatest at the upstream surface of the gel and decreases

10
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Fig. 6. (a) Convergence test with respect to the time step At. The error is for the interfacial value of solid fraction ¢s|3—; relative to the finest At =
2.5 x 1076 at t = 0.1. The mesh size is fixed at Ax = 1/32. The solid line indicates a slope of 1. (b) Convergence test with respect to the mesh size Ax. The
error is computed from ¢s|;_; at t =0.1 relative to the finest mesh Ax =1/128. The time step is fixed at At =5 x 10-5. The solid line indicates a slope

of 2. The parameters are the same as in Fig. 3 with @, =0.
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Fig. 7. The computational setup for a two-layer shear flow, with a layer of clear fluid flowing over a horizontal gel layer. The top boundary moves with a
constant velocity Vy =1 while the bottom is fixed. Periodic boundary conditions apply between the left and right boundaries.

5.2. Two-layer shear flow

To test the performance of our code for shear flow, we compute the two-layer shear flow of Fig. 7. A layer of clear fluid
lies atop a gel layer, both of unit thickness. The top boundary moves with constant velocity of Vy =1 to generate a shear
flow in the fluid. The bottom boundary is fixed so the fluid velocity vy and the solid displacement us are both zero. Periodic
boundary conditions apply for the left and right boundaries of our domain. To remove the indeterminacy in the value of
pressure, we have imposed a zero-mean constraint on p on the top boundary. To reduce mapping distortion, we impose the
slip condition for u on the top boundary. At t =0, the hydrogel has a uniform solid fraction ¢so = 0.5. The physical question
of interest is the flow entrained in the gel layer, especially the velocity jump at the interface. Therefore, we will investigate
the effects of interfacial slip coefficient g and the friction coefficient &.

The two-layer shear flow has been often used in the past for testing the boundary conditions between a fluid and a
porous medium [31,32]. In particular, Feng and Young [42] have shown that the boundary conditions BC1 and BC2 yield
qualitatively different steady-state solutions: BC1 predicts no entrained flow inside the hydrogel while BC2 does predict
such a flow. Aside from using their solutions as benchmarks to validate our numerical solutions, we will also explore the
solutions’ dependence on the model parameters g and &, as well as the time transients after the top boundary starts
abruptly. As it turns out, both BC1 and BC2 predict transient flows.

First, the numerical computation has confirmed that BC1 induces zero steady-state flow inside the gel, whereas BC2
entrains a steady-state shear. The latter solution is illustrated by the fluid velocity and solid displacement profiles in Fig. 8.
The most notable feature is perhaps the discontinuity in tangential velocity across the interface. This arises from BC2 that
assumes such a “slip” to be proportional to the shear stress in the clear fluid (Eq. (13)). In contrast, BC1 stipulates that
the fluid velocity in the gel be proportional to the Brinkman shear stress inside the gel (Eq. (12)). With the fixed boundary
at the bottom, this leads to zero flow in the steady state. With BC2, the fluid flow exerts a Darcy drag on the solid phase,
producing the displacement profile usy. Since ]-'Xf_)s > 0, the solid-phase force balance (Eq. (7)) implies a negative y-gradient
in the solid shear stress. This is why the displacement profile us()) exhibits an upward concavity. Similarly, v ;x(3) exhibits

= }"Xfﬁs < 0. Also shown in Fig. 8 are profiles from the analytical solution of Feng

a downward concavity because F, "’ = —
and Young [42]. The numerical solution agrees with the analytical one within 1%, providing additional validation for the

numerical algorithm.
There is a subtlety in the above comparison with the analytical solution. The latter can be easily obtained only for a

linearly elastic solid [42]. Therefore, the agreement is meaningful only in the limit of small displacement, which is largely
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Fig. 8. The steady-state profiles in the two-layer shear flow, with boundary conditions BC2 on the fluid-gel interface and dimensionless parameters (e =1,
As=1,6=10, 8=0.5 n=1, Ca=0.1, and ¢s9 = 0.5. The clear fluid has a linear profile V() as expected, while inside the gel, nonlinear fo(j/) and
usx(y) profiles are entrained. The symbols denote the numerical results while the solid lines are theoretical solutions for a linearly elastic solid phase in
the gel [42].
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Fig. 9. Effects of the interfacial slip coefficient 8 and Darcy drag coefficient & on the shear velocity profile inside the gel layer. We have adopted BC2 on the
fluid-gel interface. (8, &) = (0.5, 1.0), (2.0, 1.0), and (0.5, 10) from bottom to top. The other dimensionless parameters are the same as in Fig. 8.

satisfied in the ug, range of Fig. 8. But note that the numerical solution falls increasingly short of the analytical ug, toward
the interface, as the magnitude of usy surpasses 0.06. This is not a numerical error but a manifestation of the nonlinear
elasticity in the solid skeleton. In addition, the Saint Venant-Kirchhoff equation predicts a small positive normal stress osyy
when a simple shear is imposed, implying a slight vertical shrinkage of the gel layer. For the parameters of Fig. 8, the
interface shifts slightly downward, by about 0.002, relative to the undeformed state.

In a parametric study, we explore how the steady-state shear flow inside the gel depends on the interfacial slip coef-
ficient B and the Darcy drag coefficient £ (Fig. 9). With a relatively small Darcy drag (§ = 1), the velocity profile v (3)
is almost linear, as the flow is mostly driven by the velocity on the interface vi = vyx|;—1 as if in a simple shear flow.
The interfacial velocity v; decreases with the slip coefficient 8, according to the tangential slip velocity condition of BC2
(Eqg. (13)). Increasing & from 1 to 10 not only hinders the fluid flow everywhere inside the gel, but also increases the down-
ward concavity of the vy profile. We are testing very large pores to highlight the velocity profiles. For realistic pore sizes
(e.g. £ =1000), the velocity inside the gel will be much reduced.

To end this subsection, let us examine the temporal development of the flow inside the gel layer after inception of
the shear flow. Initially all fluid and solid components are at rest. At t = 0, the top boundary abruptly starts to move
with Vx = 1. Note first that the momentum equations for both phases are inertialess (Eqs. (6), (7)). Thus, time-dependence
comes solely from the transient deformation of the skeletal phase (Eq. (8)). As the solid skeleton starts from a state of zero
strain and zero stress, it offers no initial resistance to the Darcy drag. Thus, initially v = v; throughout the gel, with both
components moving with the same velocity. For the lack of Darcy drag, the fluid flow vy is fastest at the start, and it decays
in time as the Darcy drag develops. The initial velocity discontinuity across the fluid-gel interface is governed by the shear
stress of the clear fluid: Vy — vy = Vx — vsx = BXxy. The above observations about the initial moment apply to both BC1
and BC2.

12
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Fig. 10. The temporal evolution of the velocity field inside the layer of hydrogel with BC1. The dimensionless parameters are the same as in Fig. 8. (a) The
evolution of the velocity profile v (y) from t =0.05 to 0.4 with a constant time interval of 0.05. (b) The evolution of the fluid velocity at the interface,
also the maximum velocity in the hydrogel. The velocity field approaches zero eventually, which is consistent with the theoretical prediction.
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Fig. 11. The temporal evolution of the velocity field inside the layer of hydrogel with BC2 with parameters (8, £) = (0.5, 10). (a) The variation of velocity
along y-direction(vertical) of the ten different time ¢ from 0.05 to 0.5. (b) The evolution of the fluid velocity at the interface, also the maximum velocity in
the hydrogel.

But the subsequent development differs. More quantitatively, BC1 relates the slip velocity between the two phases to the
Brinkman shear stress oy, on the gel side of the interface (Eq. (12)):

Df(Vix — Vsx) = —B0Ofxy. (40)

As the early velocity profile of Fig. 10(a) shows, oy, > 0. Consequently, the fluid velocity always lags the solid velocity.
As the solid elastic stress builds up, the solid deformation slows down, with vg, — 0. Thus, the fluid inside the gel comes
to rest in time as well (Fig. 10b). In contrast, BC2 determines the slip velocity between the two phases by the solid shear
stress osxy (Eq. (13)):

ds(Vsx — Vx) = —BOsxy. (41)

As the solid network deforms, oy, builds up in time while vsx — 0. On balance, vy, sees a relatively mild decay in time
(Fig. 11b).

5.3. Deformation of a Darcy particle in planar elongational flow

A planar elongational flow has hyperbolic streamlines that collide along the horizontal x-axis and separate along the
vertical y-axis (Fig. 12a). When a circular particle of Darcy hydrogel, with the effective viscosity p. set to zero and the
Brinkman stress omitted, is placed at the center of the flow, it will be squeezed horizontally and stretched vertically. We
will use our code to compute the flow and deformation in this problem. Note that omitting the Brinkman stress term in
the momentum equation of the fluid (Eq. (6)) removes V2vf. Thus, we will no longer need the third boundary condition
for the tangential slip velocity in BC1 (Eq. (12)).

For symmetry, we take the computational domain to be a circular sector covering the first quadrant of the flow (Fig. 12a).
We choose the characteristic length Ly to be the initial particle radius and the characteristic velocity Vo = €L, where ¢ is
the undisturbed elongation rate. In dimensionless terms, the undeformed particle has a radius of R =1 and the domain has
a radius of 35 to ensure negligible boundary effects. Symmetry conditions are imposed on the x and y axes, while on the
external boundary we impose the velocity of the undisturbed flow field: (Vx, Vy)|r=35 = (—x, ¥), where r = /x? 4+ y2. The
mean value of P is set to zero on the external boundary to remove indeterminacy in the value of pressure. For the mesh
displacement u in the clear fluid, we impose the no-slip condition on the external boundary and the slip condition on the
x and y axes. To ensure proper spatial resolution, we employ a spatially graded meshing scheme with three levels of mesh
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(b)

Fig. 12. (a) Planar elongation of the exterior fluids deforms a Darcy gel particle centered at the origin. The undeformed particle has a radius R =1, and the
steady-state deformation of the particle is measured by the elongation at the north pole (us.) and the compression at the equator (usc). (b) The mesh with
minimum mesh size hp;;, = 0.06 inside the particle and maximum hyq = 3 along the exterior boundary, with a magnified view of the dense mesh around
the particle. The red dash line is the initial location of the interface of the Darcy particle. (For interpretation of the colors in the figure(s), the reader is
referred to the web version of this article.)

Pressure

0.084
I 0.06
0.03

-0
—-0.03

-0.06
[ -0.09
-0.126

Fig. 13. Steady state streamlines and pressure contours around the Darcy gel particle, with dimensionless parameters Ca = 0.0375, & =400, n = 0.0025,
B=0.5, ks =1, and ¢so = 0.5. The white dash line delineates the steady-state interface between the gel particle and the pure fluid.

sizes, with the finest inside the particle and the coarsest in the far field of the flow (Fig. 12b). Refinements in the mesh
size and time step have shown that those used are adequate for accurate solution. The error in ¢s is consistent with the
second-order mesh convergence.

The steady-state solution is depicted by the streamlines and pressure contours in Fig. 13 and the velocity and pressure
profiles along the x and y axes in Fig. 14. For this solution, the effective capillary number Ca = e /s = 0.0375 is high
enough to produce considerable deformation in the gel particle. The porosity of the gel and the permeation and slip coeffi-
cients are such that its surface presents considerable resistance to fluid penetration. Thus, on approaching the gel along the
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Fig. 14. (a) The pressure and fluid velocity profiles inside (X < 1) and outside the gel (X > 1) along the x-axis. Note the different velocity scales inside and
outside the gel. (b) Similar profiles along the y-axis. In both plots, the gray dash line marks the location of interface.
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Fig. 15. (a) Gel particle deformation at the north pole ug, increases with the effective capillary number Ca. The other dimensionless parameters are fixed
at the values of Fig. 13. The numerical results (symbols) are also compared with analytical solutions for the limit of small deformation (lines). (b) The
difference of the two measures of deformation, us. and usc.

x-axis, the magnitude of the incoming velocity |V| drops to 6.270 x 10~3 at the upstream “stagnation point” (%, ) = (1, 0)
(Fig. 14a). Just inside the gel, |v x| =1.333 x 102, maintaining fluid mass conservation (Eq. (10)) according to the local
porosity ¢y = 0.471. Thus, the streamlines appear to be discontinuous at the interface (Fig. 13). Most of the external stream-
lines go around the gel particle, and only those close to the x-axis end up penetrating the interface to produce the Darcy
flow inside. Meanwhile, the pressure P rises toward the interface as if in a flow around an impermeable particle. Inside the
gel, Darcy drag causes the pressure p to drop along the internal streamlines. The profiles of Fig. 14(b) at the downstream
“stagnation point” (%, y) = (0, 1) can be interpreted in similar ways.

Fig. 15(a) plots the interfacial displacement ug at the north pole (i.e., the gel-particle elongation) as a function of the
effective capillary number Ca. The numerical data exhibit a simple proportionality us, o Ca. Besides, we also compare the
numerical solution to an analytical solution valid in the small-deformation limit. Young et al. [41] calculated the deformation
of a Darcy particle in a uniaxial elongational flow in the limit of small deformation. It turns out that a similar solution can
be derived in the planar elongational flow as well (Appendix C), and it serves as a benchmark for our numerical solution in
Fig. 15(a). The difference is a mere 0.2% for the small deformation at Ca = 3.75 x 10~%, With increasing Ca, the numerical
solution increasingly falls below the analytical formula, reaching a difference of 3.8% at Ca = 0.0375.

The analytical solution shows that in the limit of small deformation, the two measures of the deformation of hydrogel,
use and ugc, are exactly the same. Our numerical results show greater compression at the equator than the elongation at
the pole: ug. > uge, and the difference Au = ug. — uge increases with Ca (Fig. 15b). For small Ca, Au approaches zero as
expected from the theoretical solution.

If we continue to increase the elongation rate, at a certain threshold the code fails to produce a steady-state solution.
This is illustrated by the snapshots in Fig. 16 for Ca = 0.075, which also depict the instantaneous ¢ distribution inside
the gel particle. As the particle stretches gradually in the vertical direction, two sharp points eventually form at the two
poles of the particle, where the solid fraction also decreases markedly. Finally, our simulation diverges due to the emerging
singularity at the poles. This may correspond to a physical situation of a loss of steady-state solution. Such a behavior can
be likened to the well-known tip-streaming on highly stretched liquid drops [51,52].

6. Concluding remarks

This paper presents a finite-element method to compute two-phase flows that involve a clear solvent fluid outside a
hydrogel, with potential solvent permeation into the gel. From a theoretical viewpoint, this problem is complicated by open
questions about the boundary conditions that should be posed on the interface. As long as one adopts a coarse-grained

mixture model for the gel, pore-scale morphological information is lost. This implies an insufficient number of boundary
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Fig. 16. Cusp formation on a highly deformed gel particle at Ca = 0.075, with severely reduced solid fraction at the tips. The computation fails to converge
to a steady-state solution in this case.

conditions, based on the overall mass and force balance alone, for solving for the motion of both the fluid and solid phases
inside the gel. We have adopted additional boundary conditions from recent work that ensures positive entropy production
at the fluid-gel interface. Thus, we have a mathematically well-posed problem.

To compute nontrivial fluid-gel two-phase flows, one has to deal with two numerical challenges. The first is to implement
the unconventional and complex boundary conditions in a finite-element framework. This has been resolved by imposing
constraints on the test functions for different unknown variables that are constrained by the boundary conditions. Second,
we must resolve the interfacial motion accurately and efficiently in essentially a fluid-structure interaction problem. This
is handled by adopting a fixed-grid arbitrary Lagrangian-Eulerian method that maps the deformed domain and mesh back
onto a fixed reference domain and mesh at each time step.

To validate the computational tool, we have applied it to three test problems: one-dimensional compression of a hy-
drogel layer by a uniform flow normal to the layer, two-layer shear flow with a clear fluid flowing above a gel layer, and
finally, the deformation of a Darcy particle at the stagnation point of a planar elongational flow. In all three cases, we have
derived analytical solutions, at least under limiting conditions, to benchmark the numerical solutions. The comparisons have
confirmed the accuracy of the latter, and further established the order of convergence with respect to refinements in mesh
size and time step. Thus, we have developed a numerical package based on the finite-element library deal.ll.

The algorithm and codes developed herein can be applied to explore a wide range of problems. These include funda-
mental two-phase flow problems involving a hydrogel, biological modeling of the cytoplasm during cell migration, as well
as engineering design and optimization in deploying hydrogels in microfluidic devices for culturing cells and tissues.
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Appendix A. Inner products on I in the weak form
In this appendix, we explain how to obtain the surface integrals on I' in the weak form of Eq. (14). To shorten the
derivation, we only consider the combined weak form of Egs. (2), (6), (7). By taking the inner products of Eq. (2) with Wy

in €2, Eq. (6) with Wy, in €;, and Eq. (7) with Wy, performing integration by parts, and summing them up, we get
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(Z, Viy)g, — (X = PD - n, Wy)sonr + (X — PD) -n, Yy)r
+(pro 1. VU)o = (80 —pD 1 Wyp) o = (67 (0 — pD-m, Wy )
+(Ps0s, VWy ), — (¢s(0s —pD)-m, Wy ).\ — (@s(0s — pD) - m, “I’vs)
Q; 9Q;\I" r
=0, (A1)
where we have partitioned 9<2; and 9€2, into I and another portion on the outer boundary. The unit normal n points from
Q; to ©, on I' and outwards elsewhere. We are only interested in the inner products on I':
S=((T~PD-n,Wy)r — (¢r(05 —pb) -0, Wy,) . — (¢s(0s — pD -, Wy,) .. (A2)
To proceed, we decompose velocity vectors and their test functions into tangential (denoted by subscript ) and normal
(denoted by subscript | ) components. Taking V as example, we have V=V +V, where V; =V-(n®n) and V) =V-V, =
V- (I —n®n). For convenience, we introduce the projection tensor T= (I - n® n) such that Vy=V-T.
The mass balance condition of Eq. (10) can be rewritten as
Vi —vsy =¢p(VpL —vVsp)onT. (A.3)
We freeze ¢y such that this relation is linear. This can be achieved if we decouple the volume fraction equation from the
equations for V, vy, and v;. Consequently, the velocity variations, i.e., their test functions, satisfy

Wy — Wy =@ (Wy,1 — Wyo1)onl (A.4)

Then we can rewrite S as

S=(Z—-PD-n, (WyL — Wy 1)+ Wy — Wy) + Wy, -

— (5o —pD-n, (Wyp 1 — Wye1) + (Wyp ) — Wy + \va)r
— (¢5(05—pD - m, Wy,

=((E=Ph)— (o7 —pDh]-n, Wy, — Wy 1)
+((Z=PD -0, By — By) — (¢5(0 7 — pD -0 Wy — Wy ).
+ ([(Z = PD) — (¢50 s 4+ ¢s0s — pD] -, Wy, ) .

=Mm-[(E—PD—(os—pD]-n, (Wy— ¥y, n),
+([(Z=PD-n]-T, Yy — W) — ([p5(0 s —pD -n] - T, Wy, — ‘lfvs)F

=Mm-[(E—PD)— (o —pD]-n, (Yy— W) n),
+((Z-n) T, Wy — Wy) . — (¢r(0f-m) - T, Wy, — Wy,) ., (A.5)

where we have used Eq. (A.4) in the second equality, traction balance of Eq. (11) in the third equality, and (I-n) -T=0 in
the last equality.

By plugging in BC1 of Eq. (12), we can obtain the inner products on I' that appear in Eq. (14):

5=<1<V—vs)-n, (wv—wvsyn) + (1(V—vs> T, ‘I’v—\l’w)
n r B r

2
+ (¢_f(vf —vs)- T, ‘IJVf - lIjv5> . (A.6)
/3 r

The term S for BC2 of Eq. (13) can be derived in a similar way:

1 1
5=<—(V—Vf) -m, (Wy — Wy) -11> + (—(V—Vf)~T, ‘lJv—‘IJvf>
n r B r

2
+ <¢f("f —Vs) - T, Wy, — ll’vs) . (A.7)
ﬂ r
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Appendix B. Theoretical solution of 1D compression

For the steady-state 1D compression by a uniform flow discussed in Sec. 5.1, an analytical solution can be obtained in
the limit of Darcy flow, i.e. when the Brinkman stress term is dropped in favor of the Darcy drag and pressure gradient. The
algebra is simplest if we use ¢s(x) as the primary unknown function.

With Darcy flow in the gel, the momentum equations for the fluid and solid phases can be written as

dp
_%E;_§%¢Nfza (B.1)
d(¢s0os) dp _
dx _¢sa +E¢spsvy =0, (B.2)

where o5 is a shorthand for the solid normal stress osx. Eliminating the pressure gradient between the two equations gives
us

d(¢sos)

=—Epsvy. B3
dx é: Os f ( )
The solid normal stress o obeys the St. Venant-Kirchhoff constitutive equation:
M 2
05 = ?(—ZC +c*)(1 —o0), (B4)

where M = (2us + As), and ¢ = —dus/dX is the negative displacement gradient. The fluid velocity v, can be related to the
incoming velocity of the pure fluid Vy outside the gel through the fluid continuity Eq. (3) and the boundary condition of
Eq. (10): vf = Vx/(1 — ¢s). Now the momentum balance of Eq. (B.3) becomes:

M. Y1 =
d[qﬁs 5 (—=2c+c¢5)( C)] _ _~§¢svx' (B.5)
dx 1—¢s

To turn this into an equation for ¢s(x) only, we relate ¢ and ¢, through the conservation of solid volume:

~

b0 =s], (B.6)

where ¢ is the initial volume fraction of the solid and ] is the determinant of deformation gradient. For 1D compression,
the determinant can be written as

A du
J=1+—>=1-c (B.7)
dx
which gives
c=1-20 (B.8)
?s
Substituting this into Eq. (B.5), we have
d dv
ﬁ _ Eps Vx (B.9)

dx — Me3(1—s)

To validate the steady-state numerical solution on the deformed gel, it is more convenient to use the Lagrangian coordi-
nate X than the Eulerian x:

dps dgs 1 dgs g

= =" B.10
dx dx 1—c dXx ¢ ( )
Now Eq. (B.9) can be rewritten as
d 3
Qis _K fox ’ (B.11)
dx 1— ¢
_ &Vx
where K = Mgh

At the upstream boundary of the gel X =1, the value of ¢s(X =1) = ¢s1 can be determined from BC1 and the solid con-
stitutive equation. With the Brinkman stress omitted, the traction balance of Eq. (11) reduces to ¢s05 = p — P. Meanwhile,
the permeation condition of Eq. (12) reduces to —Vy = n(p — P). Thus, n¢sos = —Vy is a constant on the gel interface X = 1.
Together with Egs. (B.4) and (B.8), this yields
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AT Mnéso
P51 = bslz=1 = bs0, | Midw —2Vy' (B.12)

Integrating Eq. (B.11) with this above initial condition, we obtained the analytical equation:

K (x)

where K (x) = (2¢s1 — 1)/¢s1% + 2Kx. Note that we have used the original dimensional symbols in this Appendix, and the
formulas can be easily rendered dimensionless for comparisons in Sec. 5.1.

Appendix C. Small deformation of a Darcy particle in a planar elongational flow

For the Darcy particle in planar elongational flow discussed in Sec. 5.3, the steady-state solution can be obtained ana-
lytically in the limit of small deformation. In the following we adopt dimensional notations, and the final solution can be
converted to dimensionless form for comparison with the numerical solution (Fig. 15).

C.1. Flow inside the Darcy particle

At steady state, the velocity of the solid phase of the gel vanishes, vy = 0. Thus the continuity and momentum equations
(Egs. (5), (6), (7)) can be simplified as

V- (¢svp) =0, (c1)
—Vp —&¢svs =0, (C2)
V- (¢s05) —dsVp +Edssvy = 0. (C3)

Furthermore, the hyperelasticity of the solid phase reduces to linear elasticity in the limit of small deformation:

05 =2usEs + Astr(Eg)l, (C4)

in which the strain tensor Eg = (Vug + VusT)/Z, u; being the displacement of the solid phase of the particle. Another
consequence of the small-deformation assumption is a small deviation of the fluid and solid volume fractions from their
undeformed values. We take the undeformed Darcy particle to be a circle of radius R with uniform porosity ¢lc—0 = ¢o.
Under the small-deformation assumption, the volume fractions ¢¢ and ¢s can be taken to be constants in the leading order:

¢s =ds0] ~ (1 —do)(1 =V -us) ~ 1 — ¢o, (C.5)
¢~ do+ (1 —¢o)V -us = ¢y, (C.6)

where ] = det(F) is the determinant of the deformation gradient tensor.
Eliminating vy between Egs. (C.1) and (C.2) yields V - (¢5/¢sVp) = 0. To the leading order, we approximate ¢; and ¢s
by their undeformed constant values, and obtain the Laplace equation for the pressure:

VvZp=o. (C7)
Eliminating vy from Egs. (C.2) and (C.3), we obtain a relationship between the solid stress and the pressure:
Vp=V.-(¢s05)~ (1 —¢o)V -0, (C.8)

where again we make use of ¢s ~ 1 — ¢ in the leading order. The two equations above can be recast in terms of the solid
stress:

V. (V-05) =0, (C.9)
V x (V-05)=0. (C.10)

Recalling the constitutive equation (C.4), we will solve the above two equations for the solid displacement us. Once we have
the solid displacement and stress tensor, the fluid velocity vy follows from substituting Eq. (C.8) into Eq. (C.2):

1
vf:—gV-as. (C11)

We use a polar coordinate system with the origin at the center of the Darcy particle, and 6 = 0 along the x-axis of
Fig. 12(a). The symmetry of the elongational flow dictates a symmetry in the solid deformation. On the leading order, we
postulate a displacement field of the following form:
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Ugr(r,0) = f(r)-cos(20), usp =g(r)-sin(26). (C12)

Plugging these into the constitutive equation, and then the elastic stress tensor into Eqs. (C.9) and (C.10), we arrive at two
ordinary differential equations for f(r) and g(r):

—3f —6g+r[-5fD —2gM +r2f? +2¢@ +rf) =0, (C13)
6f +3g+2rfV +5rg® —122fP 4+ 2g@ 4+ rg®)y =0, (C14)

where the superscript ‘(n)’ denotes the nth-order derivative. The general solutions of f(r) and g(r) can be written as
f(ry=cir+asr®, g(r)=—cir +bsr’, (C15)
with the coefficients c1, as, b3 to be determined by the boundary conditions.

C.2. Flow outside the Darcy particle

The flow outside of the Darcy particle is governed by the Stokes equations (Egs. (1), (2)). Considering the symmetry of
the problem and the far-field flow, we postulate a stream function

We= (=512 + e+ dar?) -sin(26), (C16)

where ¢ is the constant elongation rate far from the particle, and the ¢, and d, terms are the leading-order flow distur-
bances due to the Darcy particle. Then the velocity and pressure fields can be calculated:

(=& 4+ 2c31? +2dy) c0s(26)

V,= 3 , (C17)
r
2d 4) sin(20
V0=( 2+€f3)51n( )’ (C.18)
r
4 20
P = M. (C.19)

2
The coefficients ¢, and d, are to be determined, together with c1, az and b3, via the boundary conditions on the interface
between Darcy particle and the Stokes flow.

C.3. Boundary conditions

We impose Eqgs. ((10)-(12)) as boundary conditions on the interface. As noted in Sec. 5.3, the condition on the tangential
slip velocity is dropped from BC1 for a Darcy gel. The remaining five scalar BCs are as follows:

Vi =¢ovyr, (C.20)

Vi =nQ@2REr— P +p), (C21)

Vg = BR2UE), (C.22)

2WEr — P =1 = ¢0)osr — D, (C.23)
2pErg = (1 —¢o)osro, (C.24)

in which E;; and E¢ are the rr and r6 components of the strain rate tensor of the exterior fluid, E = (VV + VVT)/2.

By inserting into the above BCs the expressions for the velocity fields V and vy, the strain-rate of the external flow E,
the pressure fields P and p on either side of the boundary, and the solid stress o5, we obtain five algebraic equations for
the constants cq, as, b3, ¢z and d,. Upon determining these with the help of symbolic computing, we obtain an approximate
solution to the problem. From the displacement field us = (ug, usp), in particular, we can extract the steady-state deforma-
tion of the gel particle. In the limit of small deformation, the amount of compression at the equator us. = |ug (R, 0)| equals
the amount of elongation at the poles us = ug (R, 7 /2):

B 2e/(A1-R*+B1-R*+Ci - R?)
3ps(hs + ps)(go — (A2 - R*+ Bz - R+ C2 - R)’

with the following coefficients dependent on the properties of the hydrogel and the fluid:

Use (C.25)
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A1 =3nAsé + 215 — 3nhso& — 2npspos,

B1 = 6Aso + 6uspo + 12Bnhspué + 12801 ptsE — 1280hsjidpoé — 128114 fLsho,
C1 =24Bxspugo + 368 1 iLstpo + 12nAs o,

Az =né — neoék,

By = 2¢0 + 24Bn 1> po + 4BN1LE — 4BNiLcok,

C2 =8B 1o + 8nieo.
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