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Hydrogels are crosslinked polymer networks swollen with an aqueous solvent, and play 
central roles in biomicrofluidic devices. In such applications, the gel is often in contact 
with a flowing fluid, thus setting up a fluid-hydrogel two-phase system. Using a recently 
proposed model (Young et al. [41] 2019), we treat the hydrogel as a poroelastic material 
consisting of a Saint Venant-Kirchhoff polymer network and a Newtonian viscous solvent, 
and develop a finite-element method for computing flows involving a fluid-hydrogel 
interface. The interface is tracked by using a fixed-mesh arbitrary Lagrangian-Eulerian 
method that maps the interface to a reference configuration. The interfacial deformation 
is coupled with the fluid and solid governing equations into a monolithic algorithm using 
the finite-element library deal.II. The code is validated against available analytical solutions 
in several non-trivial flow problems: one-dimensional compression of a gel layer by a 
uniform flow, two-layer shear flow, and the deformation of a Darcy gel particle in a planar 
extensional flow. In all cases, the numerical solutions are in excellent agreement with the 
analytical solutions. Numerical tests show second-order convergence with respect to mesh 
refinement, and first-order convergence with respect to time-step refinement.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Hydrogels are soft deformable materials containing a solid skeleton, usually an entangled polymer network, and an in-
terstitial aqueous solvent. Because of their softness and lack of toxicity, hydrogels have found applications in many emerging 
technologies, e.g. in medical devices [1], drug delivery [2–5], tissue engineering [6,7] and stimulus-sensitive actuators [8–10]. 
Of particular note are recent developments of microfluidic devices that use hydrogel as scaffold or carrier for cell culture 
and drugs [11–16]. In such applications, gel-fluid two-phase flows play a central role. How does the exterior flow compress 
and deform the hydrogel surface through mechanical interactions? How does the fluid permeate the hydrogel, and how does 
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this permeation modify the structure and mechanical properties of the gel? Those questions have not been systematically 
examined before in the context of gel-fluid two-phase flows.

Previous studies of hydrogel mechanics fall into three categories. The first consists of solid-mechanics models that treat 
hydrogels as elastomers that swell due to solvent diffusion driven by the chemical potential of solvent-polymer interactions 
[17–19]. No fluid flow is involved. Besides, the swelling process is typically very slow, on the time scale of hours to days 
[20,21], and is essentially irrelevant to the flow situations of interest here.

The second category contains phenomenological yield-stress models such as the Bingham model [22,23]. These can be 
used to describe complex flow of viscoplastic fluids [24,25]. They treat the gel as a homogeneous material, with no regard 
to the constituent solvent and polymer chains. In this sense, therefore, they are one-phase instead of two-phase models. 
Nevertheless, in spatially nonuniform flows a portion of the gel may “yield” under stress to become fluid-like. Such a 
transition may create fluid and solid domains within the gel, and much effort has gone into the determination of the yield 
surface that evolves dynamically in complex flows [26,27]. Yielding does produce a two-phase flow situation, albeit in a 
different sense than the gel-solvent flow that is the focus of this study. We will not consider it further here.

The third category is the most relevant to the present work. Poroelastic models treat the gel as a mixture of two 
interpenetrating effective continua, one made of the solvent and the other of the polymer network [28]. Each component 
obeys its own mass and momentum balances, with interaction between the two phases. Despite its long history [29,30], 
this approach has so far seen limited applications in the fluid mechanics context. In most such applications, the gel-fluid 
interface is either immobile or has simple and easily computable displacements so as not to require the coupled solution 
of the fluid flow and elastic deformation of the solid skeleton. These include 1D shear flow past a layer of poroelastic 
material [31,32], 1D compression of a poroelastic layer [28], flow in a wavy channel coated with a thin poroelastic layer 
[33], and linear stability analysis of shear flow past a poroelastic layer [34–36]. Recently, poroelastic modeling has been 
used to explain the dynamics of the actomyosin gel inside biological cells [37,38].

At least two difficulties may have hindered the development of a two-phase poroelastic gel flow theory: the boundary 
conditions on the interface between the gel and the clear fluid, and the fluid-structure interaction problem in moving and 
deforming that interface. Note that we use the term “two-phase gel flow” to refer to the situation where a domain of gel 
coexists with a domain of pure fluid, separated by a dynamically deforming interface. A poroelastic model for the gel itself 
is sometimes called “two-phase” for the solvent and solid skeleton inside the gel [37]. The boundary condition between 
a porous medium and a clear fluid has long been a point of debate [39,40,32,41,42]. The crux is that an additional stress 
condition is needed because of the two momentum equations posed inside the gel for the network and interstitial fluid. The 
fluid-structure interaction problem on the gel interface is complicated by the fluid entering and exiting the solid network, 
making the “structure” a compressible and dynamically evolving entity.

Recently, Young et al. [41,42] took a new approach to these two difficulties. They invoked an energy dissipation argument 
to pose boundary conditions to ensure positive entropy production in the gel-fluid two-phase system. This led to velocity 
discontinuities at the interface, both between the gel and the exterior fluid and between the solid and solvent inside the 
gel, that are driven by stresses at the interface. Furthermore, Young et al. [41] applied such boundary conditions to solve 
the problem of a Darcy gel particle deforming slightly in an external flow field. The analytical solution was derived using 
perturbation in the limit of small deformations. This forms the starting point for the work to be presented here.

Our goal in the present paper is to construct a general computational method for gel-fluid two-phase flows. This is 
accomplished by overcoming the two obstacles discussed in the above. First, we develop a finite-element formalism to 
incorporate the complex and unconventional boundary conditions between a deforming hydrogel and an external fluid 
flow. Second, we develop a fixed-mesh arbitrary Lagrangian-Eulerian scheme to compute large deformations of the gel-fluid 
interface driven by the external flow.

2. Theoretical formulation

We adopt the poroelastic model for a fluid-permeated hydrogel as presented by Young et al. [41], together with recent 
developments of boundary conditions for the fluid-gel interface [42].

2.1. Governing equations

The computation domain � is divided into an inner region �i occupied by the hydrogel and an outer region �o occupied 
by the exterior viscous fluid (Fig. 1). The same fluid also permeates the pores of the hydrogel. Inside �i , the fluid and solid 
phases are treated as interpenetrating continua, with volume fractions φ f and φs that satisfy φ f + φs = 1. The gel-fluid 
interface � is defined by the extent of the solid network or “skeleton” of the gel.

In �o , the velocity V and the pressure P of the solvent satisfy the incompressible Stokes equations:

∇ · V = 0, (1)

∇ · (� − P I) = 0, (2)

where � = μ[∇V + (∇V)T ] is the viscous stress tensor and μ is the solvent viscosity. We ignore fluid inertia as the target 
applications are typically microscopic slow flows. It will be straightforward to add inertia to the external flow.
2



L. Li, J. Zhang, Z. Xu et al. Journal of Computational Physics 451 (2022) 110851
Fig. 1. A schematic of a particle of poroelastic gel in a Newtonian viscous fluid. The symbols are defined in the text.

In the hydrogel domain �i , the volume conservation of each phase leads to the following continuity equations:

∂φ f

∂t
+ ∇ · (φ f v f

) = 0, (3)

∂φs

∂t
+ ∇ · (φsvs) = 0, (4)

where v f and vs are, respectively, the intrinsic phase-averaged fluid and solid velocities [32], i.e. volume-averaged over a 
small volume that contains only one of the phases. The same average is implied for other gel-based quantities such as 
pressure and stress. Summing the two equations above gives us a solenoidal average velocity q = φsvs + φ f v f :

∇ · (φsvs + φ f v f
) = 0, (5)

although neither v f nor vs is divergence-free in general.
Each phase satisfies a Brinkman-type momentum equation:

∇ · (φ f σ f
) − φ f ∇p +F s→ f = 0, (6)

∇ · (φsσ s) − φs∇p +F f →s = 0, (7)

where σ f and σ s are the Cauchy stress tensors for the two phases, and p is the pressure in the hydrogel. The fluid stress 
is given by σ f = μe[∇v f + (∇v f )

T ], where μe is the effective viscosity [42]. The solid stress σ s is a function of the solid 
displacement us , which is related to the solid velocity vs by the kinematic equation

dus

dt
− vs = 0, (8)

where d
dt = ∂

∂t + vs · ∇ denotes the material derivative. For the solid stress tensor σ s , we adopt the Saint Venant-Kirchhoff 
constitutive model. Since the strain and stress tensors need to be posed in the Lagrangian frame, we defer the equations 
to Sec. 4.2, after describing the Lagrangian-Eulerian transformation. The frictional force or Darcy drag between the skeleton 
and the solvent is given by

F s→ f = −F f →s = ξφ f φs
(
vs − v f

)
, (9)

where the drag coefficient ξ is taken to be a constant.

2.2. Boundary conditions

The boundary conditions (BCs) between a clear fluid and a porous medium have long been a subject of investigation and 
debate [39,43,44,40,45,32]. The root of the difficulty is that with a homogenized view of the porous medium as a mixture of 
fluid and solid, any geometric information of the fluid-fluid and fluid-solid contact at the nominal interface is lost. Should 
the fluid velocity be continuous across the interface? How should the traction from the pure fluid side be sustained by the 
fluid and solid components on the porous side? Moreover, these questions are sometimes obscured by the use of different 
volume averaging schemes [32].

Recently, Young et al. [41,42] took a thermodynamically based approach to the question of the BCs on a fluid-gel inter-
face. First, the fluid mass balance and total traction balance on the interface � yield two generally valid BCs:

(V − vs) · n = φ f (v f − vs) · n, (10)(−pI + φ f σ f + φsσ s
) · n = (−P I+ �) · n. (11)
3
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Next, the principle of energy dissipation suggests relations between the velocity jumps at the interface and the tractions on 
either side of the interface. Such a proposal being sufficient but non-unique for guaranteeing positive entropy production 
on �, two sets of BCs have been postulated to supplement Eqs. (10), (11):

BC1 :

⎧⎪⎨
⎪⎩

(V − vs) · n = ηn · [(� − P I) − (σ f − pI)] · n,

(V − vs) · T = β (� · n) · T,
φ f (v f − vs) · T = −β (σ f · n) · T,

(12)

BC2 :

⎧⎪⎨
⎪⎩

(V − v f ) · n = ηn · [(� − P I) − (σ s − pI)] · n,

(V − v f ) · T = β (� · n) · T,
φs(vs − v f ) · T = −β (σ s · n) · T,

(13)

where η > 0 is an interfacial permeability, β > 0 is an interfacial slip coefficient, n is the unit normal pointing from �i to 
�o , and T = I − n ⊗ n is the projection tensor that projects vectors to the tangent plane of �.

For the purpose of this paper, we will adopt BC1 as the default. An exception is the two-layer shear flow of Sec. 5.2, 
where a comparison with BC2 is made. Questions remain, of course, regarding which more faithfully represents real flow 
situations. These will be investigated further in separate studies.

3. Finite-element weak form

A unique feature of the weak form is the incorporation of the boundary conditions of Eqs. (10)–(12). We solve the 
governing equations by the Galerkin finite element method. In particular, we seek weak solutions V ∈ H1(�o), P ∈ L2(�o), 
v f ∈ H1(�i)

d , vs ∈ H1(�i)
d , us ∈ H1(�i)

d , p ∈ L2(�i), and φs ∈ L2(�i), where d is the spatial dimension of the problem. 
The corresponding test functions are 	V , 	P , 	v f , 	vs , 	us , 	p , and 	φs , respectively. φ f can be directly computed from 
φ f = 1 − φs .

The weak formulations of Eqs. (1), (2), (5)–(7) can be obtained by taking the inner products of Eq. (1) with 	P in �o , 
Eq. (2) with 	V in �o , Eq. (5) with 	p in �i , Eq. (6) with 	v f in �i , and Eq. (7) with 	vs in �i . By summing up these 
inner products, performing integration by parts, and plugging in Eq. (12), we arrive at the unified weak form for BC1:

(�,∇	V)�o
− ((� − P I) · n,	V)∂�o\�

+ (
φ f σ f ,∇	v f

)
�i

− (
φ f (σ f − pI) · n,	v f

)
∂�i\�

+ (
φsσ s,∇	vs

)
�i

− (
φs(σ s − pI) · n,	vs

)
∂�i\�

− (P ,∇ · 	V)�o
+ (∇ · V,	P )�o

− (
p,∇ · (φ f 	v f + φs	vs )

)
�i

+ (∇ · (φ f v f + φsvs),	p
)
�i

+ (
ξφ f φs(v f − vs),	v f − 	vs

)
�i

+
(
1

η
(V − vs) · n, (	V − 	vs ) · n

)
�

+
(
1

β
(V− vs) · T,	V − 	vs

)
�

+
(

φ2
f

β
(v f − vs) · T,	v f − 	vs

)
�

=0, (14)

where (·, ·) denotes the inner product over the region specified by the subscript. Here, the outer boundary ∂� is partitioned 
into ∂�o\� and ∂�i\�: ∂�o\� is a segment of the outer boundary not in contact with the gel, and ∂�i\� is part of the 
gel surface not in contact with the exterior fluid but with, say, a solid wall.

The above formulation is notable for the treatment of the boundary conditions (Eqs. (10)–(12)). First, we have used 
Eq. (10) as an essential condition and thus the test functions for velocities satisfy the same constraint:

(	V − 	vs )
∣∣
�

· n = φ f (	v f − 	vs )
∣∣
�

· n. (15)

Then, the traction balance of Eq. (11) and the velocity jumps of Eqs. (12) are incorporated into the boundary integrals. It 
is remarkable that the surface integrals on � can be combined into such simple forms. Detailed derivation can be found in 
Appendix A.

The weak formulations of Eqs. (4) and (8) are straightforward:(
∂φs

∂t
+ ∇ · (φsvs),	φs

)
�i

= 0, (16)

(
dus

dt
− vs,	us

)
�i

= 0. (17)
4
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We keep these two equations separate from Eq. (14) because combining them does not lead to a simpler formulation. 
Besides, these two equations involve time derivatives and need to be solved by a time-stepping scheme while Eq. (14)
evolves accordingly in a quasi-static fashion.

By taking 	V = V, 	v f = v f , 	vs = vs , 	P = P , and 	p = p, Eq. (14) yields∫
�i

φsσ s : ∇vsdx =
∫

∂�o\�
V · (� − P I) · nds

+
∫

∂�i\�
φ f v f · (σ f − pI) · nds +

∫
∂�i\�

φsvs · (σ s − pI) · nds

−
∫
�o

� : ∇Vdx−
∫
�i

φ f σ f : ∇v f dx

−
∫
�i

ξφ f φs|v f − vs|2dx

−
∫
�

[
((V − vs) · n)2 + 1

β
|(V− vs) · T|2 + φ2

f

β

∣∣(v f − vs) · T∣∣2
]
ds, (18)

which is exactly the same dissipative energy law as Eq. (21) in [41]. For a hyperelastic skeleton, the left-hand side can be 
expressed as dEdt , where E is the elastic energy stored in the solid skeleton [41,46]. On the right-hand side, the terms on the 
first and second lines are the external work done on the outer boundary. The terms in the third line are viscous dissipations 
of fluids outside and inside the hydrogel, respectively. The fourth line is the dissipation due to the Darcy drag between the 
solid and fluid phases inside the hydrogel. The terms in the last line are dissipations due to boundary conditions on the 
hydrogel interface. All these dissipation terms are non-positive, which guarantees that the free energy of the whole system 
(i.e., E ) decreases in time if there is no external work. Physically, this dissipative energy law ensures the model’s consistency 
with the second law of thermal dynamics. Numerically, it plays an important role in the stability of solutions and may guide 
the design of energy-stable numerical schemes [47].

Different boundary conditions on hydrogel interface will lead to different inner product terms on � in Eq. (14). To use 
BC2 of Eq. (13) in place of BC1, we only need to replace the terms(

1

η
(V − vs) · n, (	V − 	vs ) · n

)
�

+
(
1

β
(V − vs) · T,	V − 	vs

)
�

with (
1

η
(V − v f ) · n, (	V − 	v f ) · n

)
�

+
(
1

β
(V− v f ) · T,	V − 	v f

)
�

in the weak form of Eq. (14). Thanks to their thermodynamic basis, both formulations lead to an energy law in the finite-
element representations. In contrast, ad hoc BCs, say based on stress partition [31,32], would not allow simplifications of 
the surface integrals in the weak form, and would not lead to an energy law.

4. Fixed-mesh ALE method

To handle the interfacial deformation, we adopt an arbitrary Lagrangian-Eulerian (ALE) method. The ALE method can 
be implemented by two different approaches: to use a fixed mesh and a formulation in the reference frame, or to use a 
moving mesh and a formulation in the Eulerian frame [48]. Theoretically, these two approaches are equivalent. Although the 
Eulerian formulation is algebraically simpler than the reference-frame formulation, the moving mesh is more challenging to 
work with than the fixed mesh. We thus choose the fixed-mesh ALE approach in this work.

4.1. ALE mapping

In essence, we use a coordinate transformation to map the deformed domain to a time-independent reference domain, 
and solve the transformed governing equations in the latter. In the following, we use the hat ˆ to mark quantities defined 
in the reference frame. We introduce a reference frame with coordinates x̂ that coincides with x at the initial time t0. We 
further define the reference domains �̂, �̂o and �̂i to be time-independent and overlapping the initial physical domains 
�, �o , and �i , respectively. The displacement field û(x̂, t) defines an invertible mapping Mt from the reference domain to 
the physical domain at time t: Mt : �̂ → �(t), ̂x �→ x = x̂+ û(x̂, t). Every field function f (x, t) can thus be redefined in the 
reference frame as f̂ (x̂, t) := f (x(x̂, t), t).
5
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In �̂i occupied by the elastic solid, it is customary to choose û = ûs such that the reference frame reduces to the 
Lagrangian frame. The displacement field can be extended to û = û f in �̂o by different techniques, such as harmonic 
extension, biharmonic extension, and pseudo-elasticity extension, to reduce the distortion of the mapping Mt [48]. In this 
work, for simplicity, we choose the harmonic extension with a stiffening parameter α:

∂ûs

∂t
− v̂s = 0 in �̂i (19)

and

∇̂ · (α∇̂û f ) = 0 in �̂o (20)

with the Dirichlet condition û f = ûs on �̂ and the no-slip (û f = 0) or slip condition on ∂�̂o\�̂. The slip condition can be 
expressed as (n̂ · ∇̂)û f ‖ = 0 and û f ⊥ = 0, where û f ‖ and û f ⊥ are the tangential and normal components of û f , respectively. 
Often, the slip condition is preferred because it leads to a smaller distortion in û f . It should be noted that the material 
derivative dus

dt reduces to ∂ûs
∂t in the reference frame. Since ûs and û f are continuous across �̂, the two equations above can 

be solved together using a single function û in the continuous finite element space defined on �̂.
Based on the displacement field we can define the deformation gradient tensor

F̂ := ∂x

∂ x̂
= I+ ∇̂û (21)

and its determinant Ĵ := det(F̂). Correspondingly, we define F := ∂ x̂
∂x = F̂−1 and J := det(F) = Ĵ−1 for the inverse mapping 

from x to x̂. In this work, we use the convention (∇w)i j = (
∂w
∂x

)
i j = ∂wi

∂x j
and (∇ · W)i = ∂Wij

∂x j
. For any scalar field f , 

vector field w, and tensor field W, the derivatives in the two different frames are connected by the following relations: 
∇ f = ∇̂ f̂ · F̂−1, ∇w = ∇̂ŵ · F̂−1, ∇ ·w = ∇̂ŵ : F̂−T , and ∇ ·W = ∇̂Ŵ : F̂−T . The volume integrals satisfy 

∫
�

f dx = ∫
�̂

f̂ Ĵdx̂.

4.2. Constitutive model for the skeleton

For the constitutive equation of the solid phase in the hydrogel, we choose the hyperelastic Saint Venant-Kirchhoff model, 
which allows large deformation. In �̂i , we define the Green-Lagrange strain tensor

Ê = 1

2
(F̂T · F̂− I) = 1

2

[
∇̂û+ (∇̂û)T + (∇̂û)T · (∇̂û)

]
. (22)

The second Piola-Kirchhoff stress tensor is given by

Ŝ = 2μsÊ+ λstr(Ê)I, (23)

where λs and μs are the Lamé constants of the solid skeleton. The Cauchy stress tensor can then be obtained from

σ̂ s = 1

Ĵ
F̂ · Ŝ · F̂T . (24)

This enters the momentum balance of the solid skeleton, as in the weak form given below.

4.3. Weak form in the reference frame

In the reference frame, we seek weak solutions V̂ ∈ H1(�̂o), P̂ ∈ L2(�̂o), v̂ f ∈ H1(�̂i)
d , v̂s ∈ H1(�̂i)

d , p̂ ∈ L2(�̂i), and 
φ̂s ∈ L2(�̂i), with the corresponding test functions 	̂V , 	̂P , 	̂v f , 	̂vs , 	̂p , and 	̂φs . The weak form of Eq. (14) is then 
transformed to(

Ĵ �̂ · F̂−T , ∇̂	̂V

)
�̂o

−
(
[ Ĵ (�̂ − P̂ I) · F̂−T ] · n̂,	V

)
∂�̂o\�̂

+
(
φ̂ f ( Ĵ σ̂ f · F̂−T ), ∇̂	̂v f

)
�̂i

−
(
φ̂ f [ Ĵ (σ̂ f − p̂I) · F̂−T ] · n̂, 	̂v̂ f

)
∂�̂i\�̂

+
(
φ̂s( Ĵ σ̂ s · F̂−T ), ∇̂	̂vs

)
�̂i

−
(
φ̂s[ Ĵ (σ̂ s − p̂I) · F̂−T ] · n̂, 	̂v̂s

)
∂�̂i\�̂

−
(
P̂ , ∇̂ · ( Ĵ	̂V · F̂−T )

)
�̂o

+
(
∇̂ · ( Ĵ V̂ · F̂−T ), 	̂P

)
�̂o

−
(
p̂, ∇̂ · [ Ĵ (φ̂ f 	̂v f + φ̂s	̂vs ) · F̂−T ]

)
ˆ +

(
∇̂ · [ Ĵ (φ̂ f v̂ f + φ̂sv̂s) · F̂−T ], 	̂p

)
ˆ
�i �i

6
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+
(
ξ φ̂ f φ̂s(v̂ f − v̂s) Ĵ , 	̂v f − 	̂vs

)
�̂i

+
(
1

η
(V̂− v̂s) · n, (	̂V − 	̂vs ) · nm Ĵ

)
�̂

+
(
1

β
(V̂− v̂s) · T, (	̂V − 	̂vs )m Ĵ

)
�̂

+
(

φ̂2
f

β
(v̂ f − v̂s) · T, (	̂v f − 	̂vs )m Ĵ

)
�̂

= 0, (25)

where m = |F̂−T · n̂|, and n̂ is the unit normal in the reference frame. Here we have utilized the Piola transformation ∫
�

∇ · wdx = ∫
�̂

∇̂ · ( Ĵŵ · F̂−T )dx̂, where w can be either a tensor or a vector. Special attention should be given to the 
surface integrals on �̂. First, unlike field functions, the unit normal n in the Eulerian frame is different from n̂ and they are 
related by n = F̂−T ·n̂

m . Second, due to stretching of surfaces, the surface integrals are related by 
∫
�
f ds = ∫

�̂
f̂ m Ĵdŝ.

In the reference frame, Eq. (4) for solid volume fraction can be cast into

∂ ln φ̂s

∂t
+ ∇̂v̂s : F̂−T = 0 in �̂i . (26)

This form has two benefits. First, if we decouple this equation from the others, then it is simply a linear ordinary differential 
equation for ln φ̂s . Second, φ̂s > 0 is guaranteed. The weak form of Eq. (26) reads(

∂ ln φ̂s

∂t
, 	̂φs

)
�̂i

+
(
∇̂v̂s : F̂−T , 	̂φs

)
�̂i

= 0. (27)

The weak form for the mesh displacement and propagation (Eqs. (19), (20)) requires special attention. As we have noted 
before, the displacement field û can be represented by a single function in the continuous finite element space. We seek 
solution û ∈ H1(�̂)d with corresponding test function 	̂u . Earlier studies have used this weak form [48]:(

∂û

∂t
− v̂s, 	̂u

)
�̂i

+
(
α∇̂û, ∇̂	̂u

)
�̂o

+
(
α∇̂û · n̂, 	̂u

)
�̂

= 0. (28)

But we have found that the relation ∂û
∂t = v̂s is easily violated on �̂ with significant errors, and α has to be very small to 

achieve reasonable accuracy. This is not surprising since the second and the third terms in Eq. (28) make the weak form 
inconsistent with ∂û

∂t = v̂s on �̂. Taking alternative forms of the surface integral on �̂ or even removing that term completely 
does not resolve this issue. We thus come up with an improved formulation:(

∂û

∂t
− v̂s, 	̂u

)
�̂i

+ c
(
α∇̂û, ∇̂	̂u

)
�̂o

= 0 (29)

with the slip or no-slip condition on the part of outer boundary not in contact with the hydrogel (∂�̂o\�̂), where c = 1 for 
test functions with 	̂u|

�̂
= 0 and c = 0 for all other 	̂u . It is easy to see that this equation is equivalent to(

∂ûs

∂t
− v̂s, 	̂us

)
�̂i

= 0, ∀	̂us ∈ H1(�̂i)
d (30)

and (
α∇̂û f , ∇̂	̂u f

)
�̂o

= 0, ∀	̂u f ∈ H1(�̂o)
d (31)

with the Dirichlet condition û f = ûs on �̂ and the slip or no-slip condition on ∂�̂o\�̂. Thus Eq. (29) enjoys the advantages 
of both Eq. (28) and Eqs. (30), (31): only a single function û defined on the whole domain �̂ is required, there is no need 
to impose Dirichlet condition on the inner boundary �̂, and ∂û

∂t = v̂s is guaranteed on �̂.

To sum up, in the reference frame, we seek solutions V̂, P̂ , v̂ f , v̂s , p̂, φ̂s , and û that satisfy Eqs. (25), (27), (29) for all 
admissible test functions, with the following constraints on the velocities and their corresponding test functions:

(V̂− v̂s)
∣∣∣
�̂

· n = φ̂ f (v̂ f − v̂s)
∣∣∣
�̂

· n, (32)

(	̂V − 	̂vs )

∣∣∣
�̂

· n = φ̂ f (	̂v f − 	̂vs )

∣∣∣
�̂

· n. (33)

The unit normal n here is inherited from Eqs. (10), (15) and should not be confused with n̂ in the reference frame.
It should be noted that the implementation of the constraints above is non-trivial. At each node on �̂, we identify 

the n component with the greatest magnitude. Without loss of generality, suppose nx has the greatest magnitude. In two 
dimensions, Eq. (32) can then be rewritten as
7
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V̂ x = 1

nx

(
φ̂ f v̂ f · n+ φ̂sv̂s · n− V̂ yny

)
. (34)

Using this equation, we replace the unknown V̂ x by a combination of V̂ y , v̂ f , and v̂s at the same node on �̂. Similarly, 	̂Vx

is replaced by a combination of 	̂Vy , 	̂v f , and 	̂vs . In coding, this operation is realized by the AffineConstraints class in 
deal.II [49].

4.4. Numerical discretization

We solve Eqs. (25), (27), (29) with a code developed on top of the step-46 tutorial program of the open-source finite-
element library deal.II [49]. The reference domain �̂ is partitioned into quadrilateral cells with �̂ covered by cell edges. We 
use Q 1 elements for p̂ and P̂ and Q 2 elements for V̂, v̂ f , v̂s , û, and φ̂s . In the following, we only focus on the temporal 
discretization.

The volume fraction equation (27) is discretized by the forward Euler scheme:(
ln φ̂n+1

s − ln φ̂n
s

�tn
, 	̂φs

)
�̂i

+
(
∇̂v̂ns : (F̂n)−T , 	̂φs

)
�̂i

= 0, (35)

where �tn = tn+1 − tn is the time step and n denotes the time level. As this equation is nonlinear in φ̂n+1
s , we thus take a 

two-step approach that only involves a linear equation. We first solve(
ψ̂

�tn
, 	̂φs

)
�̂i

+
(
∇̂v̂ns : (F̂n)−T , 	̂φs

)
�̂i

= 0 (36)

to get ψ̂ , which is in the same Q 2 finite-element space as φ̂s . We then use φ̂n+1
s = φ̂n

s exp(ψ̂) at each node to recover φ̂n+1
s .

The displacement equation (29) is discretized by the backward Euler scheme:(
ûn+1 − ûn

�tn
− v̂n+1

s , 	̂u

)
�̂i

+ c
(
α∇̂ûn+1, ∇̂	̂u

)
�̂o

= 0. (37)

Equation (25) does not involve any time derivatives and it is thus solved with the constraints of Eq. (32), (33) at time 
level n + 1. Equations (25), (37) are solved together and the resulting nonlinear system is solved using Newton’s method. In 
each Newton iteration, the linear system is solved by the direct sparse linear solver UMFPACK [50]. We stop the iteration 
once the L2 norm of the residual of the nonlinear system falls below 10−8 . It typically takes less than five iterations to 
reach convergence if the solution at time level n is used as the initial guess.

The solution procedure can be summarized as follows:

(1) Create a mesh in �̂ = �̂o ∪ �̂i with the fluid-gel interface �̂ = �̂o ∩ �̂i coinciding with cell edges.
(2) Set initial conditions û0 = 0, v̂0s = 0 (required to compute φ̂1

s ), and φ̂0
s .

(3) For each time level n ≥ 0, choose a proper �tn and perform the following steps until a steady state or a stopping time 
is reached.
(i) Solve Eq. (36). Obtain φ̂n+1

s based on φ̂n
s and v̂ns .

(ii) Solve Eqs. (25), (37) with the constraints of Eqs. (32), (33). Obtain V̂n+1, P̂ n+1, v̂n+1
f , v̂n+1

s , p̂n+1, and ûn+1 based on 
ûn and φ̂n+1

s .

Our code works in both 2D and 3D, and that is one of the advantages of using the deal.II platform. To avoid high comput-
ing costs, we will only use 2D numerical examples below to validate the numerical tools. Three-dimensional computations 
are left for future studies.

5. Numerical examples

In this section, we will use three test problems to demonstrate the robustness and accuracy of our method. Most field 
functions, such as V̂, ûs , v̂ f , v̂s , P̂ , and p̂, do not change their values in the coordinate transformation. Some others do, 
including x̂ and ŷ. In the following, we will drop ˆ above the variables in the first group unless doing so causes confusion. 
We employ the following scaling to render the governing equations and boundary conditions dimensionless:

(x̄, ȳ) = (x, y)/L0, (V̄, v̄s, v̄ f ) = (V,vs,v f )/V0, t̄ = tV0/L0,

ūs = us/L0, (�̄, σ̄ s, σ̄ f , P̄ , p̄) = (�,σ s,σ f , P , p)/μs,
(38)

where the bar denotes dimensionless quantities, V0 is the characteristic velocity, and L0 is the characteristic length for the 
specific problems. The parameters can be organized into the following dimensionless groups:
8
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Fig. 2. Geometric setup of the 1D compression of a gel layer. We take the thickness of the gel layer to be the characteristic length L0 such that d = 1. The 
rectangular computational domain is indicated by the dashed line, with length L = 2 and height H = 1.

Fig. 3. The evolution of (a) the displacement us|x̂=1 and (b) the pore fluid velocity v f |x̂=1 at the upstream interface x̂ = 1. The solid curves represent the 
Darcy flow with effective viscosity μe = 0, and the dash-dot curves the Brinkman flow with μe = 1/60. The other dimensionless groups governing the 
problem are λs = 1, ξ = 2/15, η = 30, Ca = 1, and φs0 = 0.5. The mesh size and the time step for this case are �x = 1/8 and �t = 0.01, respectively.

μ̄e = μe/μ, λ̄s = λs/μs, ξ̄ = ξ L20/μ,

(β̄, η̄) = (β,η)μ/L0, Ca = V0μ/(L0μs), φs0,
(39)

where φs0 is the initial solid fraction in the undeformed hydrogel. Note that Ca indicates the ratio between the external 
viscous stress and the elastic stress of the solid skeleton, and can be viewed as an effective capillary number. The following 
discussion will only involve dimensionless variables. Therefore, we omit the bar for simplicity.

5.1. Compression of hydrogel by uniform flow

We consider a slab of hydrogel of thickness d = 1 that is compressed by a uniform flow of velocity Vx = 1 perpendicular 
to the gel surface (Fig. 2). The solution is one-dimensional, with no flow, deformation, or any spatial variation along the 
y direction. Using this as a benchmark problem for our code, however, we draw a rectangular computational domain with 
length L = 2 and height H = 1, and carry out the simulation in 2D. On the fluid-gel interface x̂ = 1, we impose BC1 for this 
benchmark problem.

The right side of the hydrogel layer is constrained so as to have zero displacement: us|x̂=L = 0, while its left side is 
subject to compression by the flow. We start with a spatially uniform solid fraction φs0 = 0.5 at t = 0. The incoming flow has 
a constant velocity: Vx|x̂=0 = 1 and V y |x̂=0 = 0. At the right surface of the gel we specify the tangential velocity v f y |x̂=L = 0
and the normal traction (−p + σ f xx)

∣∣
x̂=L = 0. For the top and bottom boundaries, we impose symmetry conditions such 

that the y-components of all the variables are put to zero, as are the ∂/∂ y gradient of their x-components. For the mesh 
displacement u in the clear fluid, we impose the no-slip condition on the left boundary and the slip condition on the 
top and bottom boundaries. All the numerical results in this subsection are computed with a uniform Cartesian mesh of 
representative mesh size �x and a fixed time step �t .

Upon start of flow, the Darcy drag compresses the solid skeleton, and the upstream surface of the gel, at Lagrangian 
coordinate x̂ = 1, starts to shift in the flow direction. Fig. 3(a) shows the temporal evolution of the interfacial displacement 
usx toward a steady state with and without the Brinkman stress. This displacement is accompanied by an increase in the 
solid fraction φs and a decreases in the void fraction φ f . Consequently, the fluid velocity inside the gel also rises in time 
to maintain fluid mass conservation, as depicted by the evolution of v f x|x̂=1 at the upstream interface in Fig. 3(b). A steady 
state is reached when the elastic stress of the solid network balances the compression of the fluid. The Brinkman stress 
hinders the compression of the hydrogel, but the effect is minor for the parameters used (Fig. 3a). In the rest of this 
subsection, we will focus on the Darcy solution. An analytical solution is available for Darcy flow in the 1D compression 
(see Appendix B), and we will use it as the benchmark to validate the numerical solutions.

The steady-state solution is depicted in Fig. 4. Outside the gel, the clear fluid maintains a constant velocity Vx = 1 and 
pressure P , and so we focus on the profiles inside the gel. The Darcy drag inside the gel compresses the solid network to 
produce an elastic stress σsxx . As the downstream surface of the gel is fixed at x̂ = 2, the cumulative effect of compression 
is such that σsxx increases in magnitude along x (Fig. 4a). Consistent with this, the displacement profile usx shows the 
9
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Fig. 4. Steady-state profiles for the Darcy-flow solution in the gel layer compressed by uniform flow. (a) The normal elastic stress σsxx , the displacement 
usx , and the solid fraction φs along the x̂-direction. (b) The pressure p and the fluid velocity v f x along the x̂-direction. The parameters are the same as in 
Fig. 3 with μe = 0.

Fig. 5. Validation of the numerical solution of φs by the analytical solution of Appendix B, for three sets of moderate parameters: (ξ , η) = (1/5, 15), (2/15, 
15), and (2/15, 30). The other parameters are the same as in Fig. 3 with μe = 0. The mesh size and the time step for this case are �x = 1/8 and �t = 0.01, 
respectively.

strain 
∣∣∣ ∂usx

∂ x̂

∣∣∣ to increase downstream, even though usx itself is greatest at the upstream surface of the gel and decreases 
downstream. Naturally, this increasing compression leads to a rising φs profile, the greatest compression being φs = 0.573
at x̂ = 2 and the smallest being φs = 0.511 at x̂ = 1.

The shrinking void fraction means that the interstitial fluid must accelerate to maintain continuity of the fluid phase, 
and this is indeed what the velocity profile v f x shows in Fig. 4(b). Note the velocity jumps at the gel surfaces. Across the 
fluid-gel interface at x̂ = 1, the fluid velocity changes from Vx = 1 outside to v f x = 2.05 inside the gel. At the downstream 
interface x̂ = 2, the fluid velocity reaches v f x = 2.34. Note also the declining pressure in the gel layer. This negative pressure 
gradient acts against the Darcy drag and drives the fluid downstream (see Eq. (6)). The zero normal traction condition at 
x̂ = 2 reduces to p = 0 in the Darcy flow. Accordingly, p = 0.145 at the interface and the free stream takes on a constant 
pressure P = 0.178 upstream the gel layer, as dictated by the boundary condition governing normal force balance (Eq. (11)).

To benchmark our numerical solution by the analytical solution of Appendix B, we plot the profiles of the solid volume 
fraction φs(x̂) in Fig. 5 for three sets of parameters. The numerical solution is in excellent agreement with the analytical 
one, the relative error being less than 0.5% in all three cases. The other profiles, e.g. v f x , p and σsxx , show similarly close 
agreement. As intuitively expected, the amount of compression increases with the Darcy drag coefficient ξ but decreases 
with the permeability η.

Finally, we explore the convergence of the numerical solution with respect to temporal and spatial resolution. Based 
on the time-stepping and finite-element schemes in Sec. 4.4, we expect first-order convergence with decreasing �t and 
second-order convergence with refining �x. First, we fix the mesh with �x = 1/32, and reduce �t gradually from 0.01
to 2.5 × 10−6. The relative error E�t is computed from φs|x̂=1 at t = 0.1, before the steady-state is reached, relative to 
the finest �t f = 2.5 × 10−6: E�t = |φ�t f

s − φ�t
s |/φ�t f

s . Fig. 6(a) shows approximately first-order convergence with �t , as 
expected. Next, we fix �t = 5 × 10−6, and refine the mesh by halving �x from 1/4 down to 1/128. The relative error 
Edx = |φ�x

s − φ
�x f
s |/φ�x f

s is defined relative to the solution on the finest mesh �x f = 1/128, for φs|x̂=1 at t = 0.1. As 
expected, Fig. 6(b) manifests roughly second-order convergence with refining �x. Even at the coarsest �t = 1/4, the relative 
error is only E�x = 3.5 × 10−5. It should be noted that higher spatial order may be achieved for individual variables. For 
example, the interfacial displacement exhibits a fourth-order convergence with refining �x. But the overall spatial order 
of the whole scheme is limited by φs . For the other numerical examples presented below, we have carried out similar �t
and �x refinements and determined the level of resolution required for accurate solutions. For brevity, we will not include 
results for these convergence tests in the following.
10
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Fig. 6. (a) Convergence test with respect to the time step �t . The error is for the interfacial value of solid fraction φs|x̂=1 relative to the finest �t =
2.5 × 10−6 at t = 0.1. The mesh size is fixed at �x = 1/32. The solid line indicates a slope of 1. (b) Convergence test with respect to the mesh size �x. The 
error is computed from φs|x̂=1 at t = 0.1 relative to the finest mesh �x = 1/128. The time step is fixed at �t = 5 × 10−6. The solid line indicates a slope 
of 2. The parameters are the same as in Fig. 3 with μe = 0.

Fig. 7. The computational setup for a two-layer shear flow, with a layer of clear fluid flowing over a horizontal gel layer. The top boundary moves with a 
constant velocity Vx = 1 while the bottom is fixed. Periodic boundary conditions apply between the left and right boundaries.

5.2. Two-layer shear flow

To test the performance of our code for shear flow, we compute the two-layer shear flow of Fig. 7. A layer of clear fluid 
lies atop a gel layer, both of unit thickness. The top boundary moves with constant velocity of Vx = 1 to generate a shear 
flow in the fluid. The bottom boundary is fixed so the fluid velocity v f and the solid displacement us are both zero. Periodic 
boundary conditions apply for the left and right boundaries of our domain. To remove the indeterminacy in the value of 
pressure, we have imposed a zero-mean constraint on p on the top boundary. To reduce mapping distortion, we impose the 
slip condition for u on the top boundary. At t = 0, the hydrogel has a uniform solid fraction φs0 = 0.5. The physical question 
of interest is the flow entrained in the gel layer, especially the velocity jump at the interface. Therefore, we will investigate 
the effects of interfacial slip coefficient β and the friction coefficient ξ .

The two-layer shear flow has been often used in the past for testing the boundary conditions between a fluid and a 
porous medium [31,32]. In particular, Feng and Young [42] have shown that the boundary conditions BC1 and BC2 yield 
qualitatively different steady-state solutions: BC1 predicts no entrained flow inside the hydrogel while BC2 does predict 
such a flow. Aside from using their solutions as benchmarks to validate our numerical solutions, we will also explore the 
solutions’ dependence on the model parameters β and ξ , as well as the time transients after the top boundary starts 
abruptly. As it turns out, both BC1 and BC2 predict transient flows.

First, the numerical computation has confirmed that BC1 induces zero steady-state flow inside the gel, whereas BC2 
entrains a steady-state shear. The latter solution is illustrated by the fluid velocity and solid displacement profiles in Fig. 8. 
The most notable feature is perhaps the discontinuity in tangential velocity across the interface. This arises from BC2 that 
assumes such a “slip” to be proportional to the shear stress in the clear fluid (Eq. (13)). In contrast, BC1 stipulates that 
the fluid velocity in the gel be proportional to the Brinkman shear stress inside the gel (Eq. (12)). With the fixed boundary 
at the bottom, this leads to zero flow in the steady state. With BC2, the fluid flow exerts a Darcy drag on the solid phase, 
producing the displacement profile usx . Since F f →s

x > 0, the solid-phase force balance (Eq. (7)) implies a negative y-gradient 
in the solid shear stress. This is why the displacement profile usx( ŷ) exhibits an upward concavity. Similarly, v f x( ŷ) exhibits 
a downward concavity because F s→ f

x = −F f →s
x < 0. Also shown in Fig. 8 are profiles from the analytical solution of Feng 

and Young [42]. The numerical solution agrees with the analytical one within 1%, providing additional validation for the 
numerical algorithm.

There is a subtlety in the above comparison with the analytical solution. The latter can be easily obtained only for a 
linearly elastic solid [42]. Therefore, the agreement is meaningful only in the limit of small displacement, which is largely 
11
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Fig. 8. The steady-state profiles in the two-layer shear flow, with boundary conditions BC2 on the fluid-gel interface and dimensionless parameters μe = 1, 
λs = 1, ξ = 10, β = 0.5, η = 1, Ca = 0.1, and φs0 = 0.5. The clear fluid has a linear profile Vx( ŷ) as expected, while inside the gel, nonlinear v f x( ŷ) and 
usx( ŷ) profiles are entrained. The symbols denote the numerical results while the solid lines are theoretical solutions for a linearly elastic solid phase in 
the gel [42].

Fig. 9. Effects of the interfacial slip coefficient β and Darcy drag coefficient ξ on the shear velocity profile inside the gel layer. We have adopted BC2 on the 
fluid-gel interface. (β , ξ ) = (0.5, 1.0), (2.0, 1.0), and (0.5, 10) from bottom to top. The other dimensionless parameters are the same as in Fig. 8.

satisfied in the usx range of Fig. 8. But note that the numerical solution falls increasingly short of the analytical usx toward 
the interface, as the magnitude of usx surpasses 0.06. This is not a numerical error but a manifestation of the nonlinear 
elasticity in the solid skeleton. In addition, the Saint Venant-Kirchhoff equation predicts a small positive normal stress σsyy

when a simple shear is imposed, implying a slight vertical shrinkage of the gel layer. For the parameters of Fig. 8, the 
interface shifts slightly downward, by about 0.002, relative to the undeformed state.

In a parametric study, we explore how the steady-state shear flow inside the gel depends on the interfacial slip coef-
ficient β and the Darcy drag coefficient ξ (Fig. 9). With a relatively small Darcy drag (ξ = 1), the velocity profile v f x( ŷ)
is almost linear, as the flow is mostly driven by the velocity on the interface vi = v f x| ŷ=1 as if in a simple shear flow. 
The interfacial velocity vi decreases with the slip coefficient β , according to the tangential slip velocity condition of BC2 
(Eq. (13)). Increasing ξ from 1 to 10 not only hinders the fluid flow everywhere inside the gel, but also increases the down-
ward concavity of the v f x profile. We are testing very large pores to highlight the velocity profiles. For realistic pore sizes 
(e.g. ξ = 1000), the velocity inside the gel will be much reduced.

To end this subsection, let us examine the temporal development of the flow inside the gel layer after inception of 
the shear flow. Initially all fluid and solid components are at rest. At t = 0, the top boundary abruptly starts to move 
with Vx = 1. Note first that the momentum equations for both phases are inertialess (Eqs. (6), (7)). Thus, time-dependence 
comes solely from the transient deformation of the skeletal phase (Eq. (8)). As the solid skeleton starts from a state of zero 
strain and zero stress, it offers no initial resistance to the Darcy drag. Thus, initially v f = vs throughout the gel, with both 
components moving with the same velocity. For the lack of Darcy drag, the fluid flow v f is fastest at the start, and it decays 
in time as the Darcy drag develops. The initial velocity discontinuity across the fluid-gel interface is governed by the shear 
stress of the clear fluid: Vx − v f x = Vx − vsx = β�xy . The above observations about the initial moment apply to both BC1 
and BC2.
12
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Fig. 10. The temporal evolution of the velocity field inside the layer of hydrogel with BC1. The dimensionless parameters are the same as in Fig. 8. (a) The 
evolution of the velocity profile v f x( ŷ) from t = 0.05 to 0.4 with a constant time interval of 0.05. (b) The evolution of the fluid velocity at the interface, 
also the maximum velocity in the hydrogel. The velocity field approaches zero eventually, which is consistent with the theoretical prediction.

Fig. 11. The temporal evolution of the velocity field inside the layer of hydrogel with BC2 with parameters (β , ξ ) = (0.5, 10). (a) The variation of velocity 
along y-direction(vertical) of the ten different time t from 0.05 to 0.5. (b) The evolution of the fluid velocity at the interface, also the maximum velocity in 
the hydrogel.

But the subsequent development differs. More quantitatively, BC1 relates the slip velocity between the two phases to the 
Brinkman shear stress σ f xy on the gel side of the interface (Eq. (12)):

φ f (v f x − vsx) = −βσ f xy . (40)

As the early velocity profile of Fig. 10(a) shows, σ f xy > 0. Consequently, the fluid velocity always lags the solid velocity. 
As the solid elastic stress builds up, the solid deformation slows down, with vsx → 0. Thus, the fluid inside the gel comes 
to rest in time as well (Fig. 10b). In contrast, BC2 determines the slip velocity between the two phases by the solid shear 
stress σsxy (Eq. (13)):

φs(vsx − v f x) = −βσsxy . (41)

As the solid network deforms, σsxy builds up in time while vsx → 0. On balance, v f x sees a relatively mild decay in time 
(Fig. 11b).

5.3. Deformation of a Darcy particle in planar elongational flow

A planar elongational flow has hyperbolic streamlines that collide along the horizontal x-axis and separate along the 
vertical y-axis (Fig. 12a). When a circular particle of Darcy hydrogel, with the effective viscosity μe set to zero and the 
Brinkman stress omitted, is placed at the center of the flow, it will be squeezed horizontally and stretched vertically. We 
will use our code to compute the flow and deformation in this problem. Note that omitting the Brinkman stress term in 
the momentum equation of the fluid (Eq. (6)) removes ∇2v f . Thus, we will no longer need the third boundary condition 
for the tangential slip velocity in BC1 (Eq. (12)).

For symmetry, we take the computational domain to be a circular sector covering the first quadrant of the flow (Fig. 12a). 
We choose the characteristic length L0 to be the initial particle radius and the characteristic velocity V0 = εL0, where ε is 
the undisturbed elongation rate. In dimensionless terms, the undeformed particle has a radius of R = 1 and the domain has 
a radius of 35 to ensure negligible boundary effects. Symmetry conditions are imposed on the x and y axes, while on the 
external boundary we impose the velocity of the undisturbed flow field: (Vx, V y)|r=35 = (−x, y), where r = √

x2 + y2. The 
mean value of P is set to zero on the external boundary to remove indeterminacy in the value of pressure. For the mesh 
displacement u in the clear fluid, we impose the no-slip condition on the external boundary and the slip condition on the 
x and y axes. To ensure proper spatial resolution, we employ a spatially graded meshing scheme with three levels of mesh 
13
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Fig. 12. (a) Planar elongation of the exterior fluids deforms a Darcy gel particle centered at the origin. The undeformed particle has a radius R = 1, and the 
steady-state deformation of the particle is measured by the elongation at the north pole (use) and the compression at the equator (usc ). (b) The mesh with 
minimum mesh size hmin = 0.06 inside the particle and maximum hmax = 3 along the exterior boundary, with a magnified view of the dense mesh around 
the particle. The red dash line is the initial location of the interface of the Darcy particle. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

Fig. 13. Steady state streamlines and pressure contours around the Darcy gel particle, with dimensionless parameters Ca = 0.0375, ξ = 400, η = 0.0025, 
β = 0.5, λs = 1, and φs0 = 0.5. The white dash line delineates the steady-state interface between the gel particle and the pure fluid.

sizes, with the finest inside the particle and the coarsest in the far field of the flow (Fig. 12b). Refinements in the mesh 
size and time step have shown that those used are adequate for accurate solution. The error in φs is consistent with the 
second-order mesh convergence.

The steady-state solution is depicted by the streamlines and pressure contours in Fig. 13 and the velocity and pressure 
profiles along the x and y axes in Fig. 14. For this solution, the effective capillary number Ca = εμ/μs = 0.0375 is high 
enough to produce considerable deformation in the gel particle. The porosity of the gel and the permeation and slip coeffi-
cients are such that its surface presents considerable resistance to fluid penetration. Thus, on approaching the gel along the 
14
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Fig. 14. (a) The pressure and fluid velocity profiles inside (x̂ < 1) and outside the gel (x̂ > 1) along the x-axis. Note the different velocity scales inside and 
outside the gel. (b) Similar profiles along the y-axis. In both plots, the gray dash line marks the location of interface.

Fig. 15. (a) Gel particle deformation at the north pole use increases with the effective capillary number Ca. The other dimensionless parameters are fixed 
at the values of Fig. 13. The numerical results (symbols) are also compared with analytical solutions for the limit of small deformation (lines). (b) The 
difference of the two measures of deformation, use and usc .

x-axis, the magnitude of the incoming velocity |Vx| drops to 6.270 × 10−3 at the upstream “stagnation point” (x̂, ŷ) = (1, 0)
(Fig. 14a). Just inside the gel, |v f x| = 1.333 × 10−2, maintaining fluid mass conservation (Eq. (10)) according to the local 
porosity φ f = 0.471. Thus, the streamlines appear to be discontinuous at the interface (Fig. 13). Most of the external stream-
lines go around the gel particle, and only those close to the x-axis end up penetrating the interface to produce the Darcy 
flow inside. Meanwhile, the pressure P rises toward the interface as if in a flow around an impermeable particle. Inside the 
gel, Darcy drag causes the pressure p to drop along the internal streamlines. The profiles of Fig. 14(b) at the downstream 
“stagnation point” (x̂, ŷ) = (0, 1) can be interpreted in similar ways.

Fig. 15(a) plots the interfacial displacement use at the north pole (i.e., the gel-particle elongation) as a function of the 
effective capillary number Ca. The numerical data exhibit a simple proportionality use ∝ Ca. Besides, we also compare the 
numerical solution to an analytical solution valid in the small-deformation limit. Young et al. [41] calculated the deformation 
of a Darcy particle in a uniaxial elongational flow in the limit of small deformation. It turns out that a similar solution can 
be derived in the planar elongational flow as well (Appendix C), and it serves as a benchmark for our numerical solution in 
Fig. 15(a). The difference is a mere 0.2% for the small deformation at Ca = 3.75 × 10−4. With increasing Ca, the numerical 
solution increasingly falls below the analytical formula, reaching a difference of 3.8% at Ca = 0.0375.

The analytical solution shows that in the limit of small deformation, the two measures of the deformation of hydrogel, 
use and usc , are exactly the same. Our numerical results show greater compression at the equator than the elongation at 
the pole: usc > use , and the difference �u = usc − use increases with Ca (Fig. 15b). For small Ca, �u approaches zero as 
expected from the theoretical solution.

If we continue to increase the elongation rate, at a certain threshold the code fails to produce a steady-state solution. 
This is illustrated by the snapshots in Fig. 16 for Ca = 0.075, which also depict the instantaneous φs distribution inside 
the gel particle. As the particle stretches gradually in the vertical direction, two sharp points eventually form at the two 
poles of the particle, where the solid fraction also decreases markedly. Finally, our simulation diverges due to the emerging 
singularity at the poles. This may correspond to a physical situation of a loss of steady-state solution. Such a behavior can 
be likened to the well-known tip-streaming on highly stretched liquid drops [51,52].

6. Concluding remarks

This paper presents a finite-element method to compute two-phase flows that involve a clear solvent fluid outside a 
hydrogel, with potential solvent permeation into the gel. From a theoretical viewpoint, this problem is complicated by open 
questions about the boundary conditions that should be posed on the interface. As long as one adopts a coarse-grained 
mixture model for the gel, pore-scale morphological information is lost. This implies an insufficient number of boundary 
15
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Fig. 16. Cusp formation on a highly deformed gel particle at Ca = 0.075, with severely reduced solid fraction at the tips. The computation fails to converge 
to a steady-state solution in this case.

conditions, based on the overall mass and force balance alone, for solving for the motion of both the fluid and solid phases 
inside the gel. We have adopted additional boundary conditions from recent work that ensures positive entropy production 
at the fluid-gel interface. Thus, we have a mathematically well-posed problem.

To compute nontrivial fluid-gel two-phase flows, one has to deal with two numerical challenges. The first is to implement 
the unconventional and complex boundary conditions in a finite-element framework. This has been resolved by imposing 
constraints on the test functions for different unknown variables that are constrained by the boundary conditions. Second, 
we must resolve the interfacial motion accurately and efficiently in essentially a fluid-structure interaction problem. This 
is handled by adopting a fixed-grid arbitrary Lagrangian-Eulerian method that maps the deformed domain and mesh back 
onto a fixed reference domain and mesh at each time step.

To validate the computational tool, we have applied it to three test problems: one-dimensional compression of a hy-
drogel layer by a uniform flow normal to the layer, two-layer shear flow with a clear fluid flowing above a gel layer, and 
finally, the deformation of a Darcy particle at the stagnation point of a planar elongational flow. In all three cases, we have 
derived analytical solutions, at least under limiting conditions, to benchmark the numerical solutions. The comparisons have 
confirmed the accuracy of the latter, and further established the order of convergence with respect to refinements in mesh 
size and time step. Thus, we have developed a numerical package based on the finite-element library deal.II.

The algorithm and codes developed herein can be applied to explore a wide range of problems. These include funda-
mental two-phase flow problems involving a hydrogel, biological modeling of the cytoplasm during cell migration, as well 
as engineering design and optimization in deploying hydrogels in microfluidic devices for culturing cells and tissues.
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Appendix A. Inner products on � in the weak form

In this appendix, we explain how to obtain the surface integrals on � in the weak form of Eq. (14). To shorten the 
derivation, we only consider the combined weak form of Eqs. (2), (6), (7). By taking the inner products of Eq. (2) with 	V

in �o , Eq. (6) with 	v in �i , and Eq. (7) with 	vs , performing integration by parts, and summing them up, we get
f
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(�,∇	V)�o
− ((� − P I) · n,	V)∂�o\� + ((� − P I) · n,	V)�

+ (
φ f σ f ,∇	v f

)
�i

− (
φ f (σ f − pI) · n,	v f

)
∂�i\� − (

φ f (σ f − pI) · n,	v f

)
�

+ (
φsσ s,∇	vs

)
�i

− (
φs(σ s − pI) · n,	vs

)
∂�i\� − (

φs(σ s − pI) · n,	vs
)
�

=0, (A.1)

where we have partitioned ∂�i and ∂�o into � and another portion on the outer boundary. The unit normal n points from 
�i to �o on � and outwards elsewhere. We are only interested in the inner products on �:

S = ((� − P I) · n,	V)� − (
φ f (σ f − pI) · n,	v f

)
�

− (
φs(σ s − pI) · n,	vs

)
�

. (A.2)

To proceed, we decompose velocity vectors and their test functions into tangential (denoted by subscript ‖) and normal 
(denoted by subscript ⊥) components. Taking V as example, we have V = V‖ +V⊥ , where V⊥ = V · (n ⊗n) and V‖ = V −V⊥ =
V · (I − n ⊗ n). For convenience, we introduce the projection tensor T = (I − n ⊗ n) such that V‖ = V · T.

The mass balance condition of Eq. (10) can be rewritten as

V⊥ − vs⊥ = φ f (v f ⊥ − vs⊥) on �. (A.3)

We freeze φ f such that this relation is linear. This can be achieved if we decouple the volume fraction equation from the 
equations for V, v f , and vs . Consequently, the velocity variations, i.e., their test functions, satisfy

	V⊥ − 	vs⊥ = φ f (	v f ⊥ − 	vs⊥) on �. (A.4)

Then we can rewrite S as

S = (
(� − P I) · n, (	V⊥ − 	vs⊥) + (	V‖ − 	vs‖) + 	vs

)
�

− (
φ f (σ f − pI) · n, (	v f ⊥ − 	vs⊥) + (	v f ‖ − 	vs‖) + 	vs

)
�

− (
φs(σ s − pI) · n,	vs

)
�

= ([(� − P I) − (σ f − pI)] · n,	V⊥ − 	vs⊥
)
�

+ (
(� − P I) · n,	V‖ − 	vs‖

)
�

− (
φ f (σ f − pI) · n,	v f ‖ − 	vs‖

)
�

+ ([(� − P I) − (φ f σ f + φsσ s − pI)] · n,	vs
)
�

= (
n · [(� − P I) − (σ f − pI)] · n, (	V − 	vs ) · n)

�

+ ([(� − P I) · n] · T,	V − 	vs
)
�

− ([φ f (σ f − pI) · n] · T,	v f − 	vs
)
�

= (
n · [(� − P I) − (σ f − pI)] · n, (	V − 	vs ) · n)

�

+ (
(� · n) · T,	V − 	vs

)
�

− (
φ f (σ f · n) · T,	v f − 	vs

)
�

, (A.5)

where we have used Eq. (A.4) in the second equality, traction balance of Eq. (11) in the third equality, and (I · n) · T = 0 in 
the last equality.

By plugging in BC1 of Eq. (12), we can obtain the inner products on � that appear in Eq. (14):

S =
(
1

η
(V − vs) · n, (	V − 	vs ) · n

)
�

+
(
1

β
(V − vs) · T,	V − 	vs

)
�

+
(

φ2
f

β
(v f − vs) · T,	v f − 	vs

)
�

. (A.6)

The term S for BC2 of Eq. (13) can be derived in a similar way:

S =
(
1

η
(V − v f ) · n, (	V − 	v f ) · n

)
�

+
(
1

β
(V − v f ) · T,	V − 	v f

)
�

+
(

φ2
f

β
(v f − vs) · T,	v f − 	vs

)
. (A.7)
�
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Appendix B. Theoretical solution of 1D compression

For the steady-state 1D compression by a uniform flow discussed in Sec. 5.1, an analytical solution can be obtained in 
the limit of Darcy flow, i.e. when the Brinkman stress term is dropped in favor of the Darcy drag and pressure gradient. The 
algebra is simplest if we use φs(x) as the primary unknown function.

With Darcy flow in the gel, the momentum equations for the fluid and solid phases can be written as

−φ f
dp

dx
− ξφsφ f v f = 0, (B.1)

d(φsσs)

dx
− φs

dp

dx
+ ξφsφ f v f = 0, (B.2)

where σs is a shorthand for the solid normal stress σsxx . Eliminating the pressure gradient between the two equations gives 
us

d(φsσs)

dx
= −ξφs v f . (B.3)

The solid normal stress σs obeys the St. Venant-Kirchhoff constitutive equation:

σs = M

2
(−2c + c2)(1− c), (B.4)

where M = (2μs + λs), and c = −dus/dx̂ is the negative displacement gradient. The fluid velocity v f can be related to the 
incoming velocity of the pure fluid Vx outside the gel through the fluid continuity Eq. (3) and the boundary condition of 
Eq. (10): v f = Vx/(1 − φs). Now the momentum balance of Eq. (B.3) becomes:

d
[
φs

M
2 (−2c + c2)(1 − c)

]
dx

= − ξφsV x

1− φs
. (B.5)

To turn this into an equation for φs(x) only, we relate c and φs through the conservation of solid volume:

φs0 = φs Ĵ , (B.6)

where φs0 is the initial volume fraction of the solid and Ĵ is the determinant of deformation gradient. For 1D compression, 
the determinant can be written as

Ĵ = 1+ dus

dx̂
= 1− c, (B.7)

which gives

c = 1− φs0

φs
. (B.8)

Substituting this into Eq. (B.5), we have

dφs

dx
= ξφ4

s V x

Mφ3
s0(1− φs)

. (B.9)

To validate the steady-state numerical solution on the deformed gel, it is more convenient to use the Lagrangian coordi-
nate x̂ than the Eulerian x:

dφs

dx
= dφs

dx̂

1

1− c
= dφs

dx̂

φs

φs0
. (B.10)

Now Eq. (B.9) can be rewritten as

dφs

dx̂
= K

φ3
s

1− φs
, (B.11)

where K = ξVx

Mφ2
s0
.

At the upstream boundary of the gel x̂ = 1, the value of φs(x̂ = 1) = φs1 can be determined from BC1 and the solid con-
stitutive equation. With the Brinkman stress omitted, the traction balance of Eq. (11) reduces to φsσs = p − P . Meanwhile, 
the permeation condition of Eq. (12) reduces to −Vx = η(p − P ). Thus, ηφsσs = −Vx is a constant on the gel interface x̂ = 1. 
Together with Eqs. (B.4) and (B.8), this yields
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φs1 = φs|x̂=1 = φs0

√
Mηφs0

Mηφs0 − 2 Vx
. (B.12)

Integrating Eq. (B.11) with this above initial condition, we obtained the analytical equation:

φs = 1− √
1− κ(x)

κ(x)
(B.13)

where κ(x) = (2φs1 − 1)/φs1
2 + 2Kx. Note that we have used the original dimensional symbols in this Appendix, and the 

formulas can be easily rendered dimensionless for comparisons in Sec. 5.1.

Appendix C. Small deformation of a Darcy particle in a planar elongational flow

For the Darcy particle in planar elongational flow discussed in Sec. 5.3, the steady-state solution can be obtained ana-
lytically in the limit of small deformation. In the following we adopt dimensional notations, and the final solution can be 
converted to dimensionless form for comparison with the numerical solution (Fig. 15).

C.1. Flow inside the Darcy particle

At steady state, the velocity of the solid phase of the gel vanishes, vs = 0. Thus the continuity and momentum equations 
(Eqs. (5), (6), (7)) can be simplified as

∇ · (φ f v f ) = 0, (C.1)

−∇p − ξφsv f = 0, (C.2)

∇ · (φsσ s) − φs∇p + ξφ f φsv f = 0. (C.3)

Furthermore, the hyperelasticity of the solid phase reduces to linear elasticity in the limit of small deformation:

σ s = 2μsEs + λstr(Es)I, (C.4)

in which the strain tensor Es = (∇us + ∇uT
s )/2, us being the displacement of the solid phase of the particle. Another 

consequence of the small-deformation assumption is a small deviation of the fluid and solid volume fractions from their 
undeformed values. We take the undeformed Darcy particle to be a circle of radius R with uniform porosity φ f |t=0 = φ0. 
Under the small-deformation assumption, the volume fractions φ f and φs can be taken to be constants in the leading order:

φs = φs0 Ĵ ≈ (1− φ0)(1− ∇ · us) ≈ 1− φ0, (C.5)

φ f ≈ φ0 + (1− φ0)∇ · us ≈ φ0, (C.6)

where Ĵ = det(F̂) is the determinant of the deformation gradient tensor.
Eliminating v f between Eqs. (C.1) and (C.2) yields ∇ · (φ f /φs∇p) = 0. To the leading order, we approximate φ f and φs

by their undeformed constant values, and obtain the Laplace equation for the pressure:

∇2p = 0. (C.7)

Eliminating v f from Eqs. (C.2) and (C.3), we obtain a relationship between the solid stress and the pressure:

∇p = ∇ · (φsσ s) ≈ (1− φ0)∇ · σ s, (C.8)

where again we make use of φs ≈ 1 − φ0 in the leading order. The two equations above can be recast in terms of the solid 
stress:

∇ · (∇ · σ s) = 0, (C.9)

∇ × (∇ · σ s) = 0. (C.10)

Recalling the constitutive equation (C.4), we will solve the above two equations for the solid displacement us . Once we have 
the solid displacement and stress tensor, the fluid velocity v f follows from substituting Eq. (C.8) into Eq. (C.2):

v f = −1

ξ
∇ · σ s. (C.11)

We use a polar coordinate system with the origin at the center of the Darcy particle, and θ = 0 along the x-axis of 
Fig. 12(a). The symmetry of the elongational flow dictates a symmetry in the solid deformation. On the leading order, we 
postulate a displacement field of the following form:
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usr(r, θ) = f (r) · cos(2θ), usθ = g(r) · sin(2θ). (C.12)

Plugging these into the constitutive equation, and then the elastic stress tensor into Eqs. (C.9) and (C.10), we arrive at two 
ordinary differential equations for f (r) and g(r):

−3 f − 6g + r[−5 f (1) − 2g(1) + r(2 f (2) + 2g(2) + r f (3))] = 0, (C.13)

6 f + 3g + 2r f (1) + 5rg(1) − r2(2 f (2) + 2g(2) + rg(3)) = 0, (C.14)

where the superscript ‘(n)’ denotes the nth-order derivative. The general solutions of f (r) and g(r) can be written as

f (r) = c1r + a3r
3, g(r) = −c1r + b3r

3, (C.15)

with the coefficients c1, a3, b3 to be determined by the boundary conditions.

C.2. Flow outside the Darcy particle

The flow outside of the Darcy particle is governed by the Stokes equations (Eqs. (1), (2)). Considering the symmetry of 
the problem and the far-field flow, we postulate a stream function

	e =
(
−ε

2
r2 + c2 + d2r

−2
)

· sin(2θ), (C.16)

where ε is the constant elongation rate far from the particle, and the c2 and d2 terms are the leading-order flow distur-
bances due to the Darcy particle. Then the velocity and pressure fields can be calculated:

Vr = (−ε r4 + 2 c2 r2 + 2d2) cos(2θ)

r3
, (C.17)

V θ = (2d2 + ε r4) sin(2θ)

r3
, (C.18)

P = 4c2μ cos(2θ)

r2
. (C.19)

The coefficients c2 and d2 are to be determined, together with c1, a3 and b3, via the boundary conditions on the interface 
between Darcy particle and the Stokes flow.

C.3. Boundary conditions

We impose Eqs. ((10)–(12)) as boundary conditions on the interface. As noted in Sec. 5.3, the condition on the tangential 
slip velocity is dropped from BC1 for a Darcy gel. The remaining five scalar BCs are as follows:

Vr = φ0v f r, (C.20)

Vr = η(2μErr − P + p), (C.21)

V θ = β(2μErθ ), (C.22)

2μErr − P = (1− φ0)σsrr − p, (C.23)

2μErθ = (1− φ0)σsrθ , (C.24)

in which Err and Erθ are the rr and rθ components of the strain rate tensor of the exterior fluid, E = (∇V + ∇VT )/2.
By inserting into the above BCs the expressions for the velocity fields V and v f , the strain-rate of the external flow E, 

the pressure fields P and p on either side of the boundary, and the solid stress σ s , we obtain five algebraic equations for 
the constants c1, a3, b3, c2 and d2. Upon determining these with the help of symbolic computing, we obtain an approximate 
solution to the problem. From the displacement field us = (usr, usθ ), in particular, we can extract the steady-state deforma-
tion of the gel particle. In the limit of small deformation, the amount of compression at the equator usc = |usr(R, 0)| equals 
the amount of elongation at the poles use = usr(R, π/2):

use = 2εμ(A1 · R4 + B1 · R3 + C1 · R2)

3μs(λs + μs)(φ0 − 1)(A2 · R3 + B2 · R2 + C2 · R)
, (C.25)

with the following coefficients dependent on the properties of the hydrogel and the fluid:
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A1 = 3ηλsξ + 2ημsξ − 3ηλsφ0ξ − 2ημsφ0ξ,

B1 = 6λsφ0 + 6μsφ0 + 12βηλsμξ + 12βημμsξ − 12βηλsμφ0ξ − 12βημμsφ0ξ,

C1 = 24βλsμφ0 + 36βμμsφ0 + 12ηλsμφ0,

A2 = ηξ − ηφ0ξ,

B2 = 2φ0 + 24βημ2φ0 + 4βημξ − 4βημφ0ξ,

C2 = 8βμφ0 + 8ημφ0.
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