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Interactions between proteins are conceptually described as lock-
and-key complexes1, reflected in multiple successful protein–
protein interactions (PPI) algorithms, such as PRISM, PSIVER 

and MaSIF2–4. These and other computational packages predict 
protein complex formation and interaction sites by assessing the 
pairwise similarity of a potential ‘key’ with many other ‘keys’. A 
similar concept can be applied to nanoparticle (NP)–protein inter-
actions, but its realization requires a massive library of X-ray dif-
fraction data for NP–protein pairs comparable to the Protein Data 
Bank (PDB), which is currently unavailable. Other PPI algorithms, 
such as SPPIDER and Pre-PPI, combine the geometrical descrip-
tion of docking molecules with structural relations at the organism 
level, exemplified by protein networks from evolutionary homol-
ogy and genomics5,6. Importantly, these PPI software packages7–11 
also assume that the interacting molecules are linear polymers 
from amino acids (AAs). Such descriptors are natural for proteins 
but make it impossible to extend these algorithms to bioinspired 
inorganic NPs, even though they may carry some AAs as surface 
ligands11–13. The simplified molecular-input line-entry system can 
annotate the structure of nonpeptide biomolecules14 but is, again, 
inapplicable to biomimetic NPs, even those based on carbon atoms, 
while many NPs exhibiting strong specific biological activity are 
entirely inorganic15,16. Unifying structural description of proteins 
and NPs is possible at the atomistic molecular dynamics (MD) level 
that represents the state of the art in predictions of NP–protein inter-
actions17–19. However, the interaction time probed by typical atomis-
tic MD methods is mainly limited to hundreds of nanoseconds17–21. 
Even with the dedicated Anton2 supercomputer, the interaction 
time can only reach up to 2 μs (ref. 22), while the time required for 
the formation of protein–protein and NP–protein complexes may 

exceed minutes or sometimes hours23,24. While being significant for 
complexes between macromolecules, the weak multicentre interac-
tions exemplified by dipole–dipole forces and collective hydrogen 
bonds are difficult to implement without drastic time restrictions. 
The complexity of the energy landscape for nanoscale interactions 
may also lead to entrapment of MD simulations in metastable states 
before the formation of a fully equilibrated complex.

Here, we analyse the role of different structural features con-
tributing to the formation of protein–protein complexes with the 
goal of identifying structural descriptors that could be uniformly 
applicable to complexes between proteins and NPs. Identifying such 
descriptors would enable one to extend the knowledge gained from 
the vast PPI datasets and existing algorithms to NP–protein pairs 
encountered in diverse biomedical contexts, from drug delivery to 
the environmental effects of NPs.

Results
Distance matrices of protein complexes. A protein complex (Fig. 
1a) can be represented as a distance matrix DAB (di,k) where 1 < i < NA 
and 1 < k < NB with a set of matrix elements di,k representing the dis-
tance in angstroms between pairs of α-carbon (Cα) in AA residues 
from proteins A and B (Fig. 1b)25. The darkest areas of the matrix 
(yellow boxes) indicate the AAs in macromolecules A and B that 
are the closest to each other. The level of proximity of Ai and Bk in 
DAB (di,k) will be used to distinguish interacting and noninteracting 
residue pairs in machine-learning (ML) algorithms (Supplementary 
Fig. 1). The proteins are less likely to form a lock-and-key com-
plex when the predicted probabilities of interacting AA residue 
pairs within 7 Å from each other are low (<0.5). If this mathemati-
cal approach is successful for protein complex, it can, perhaps, be 
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extended to nanoscale assemblies from abiological nanostructures 
because it relies on structural coding based on the three-dimen-
sional (3D) geometry of the macromolecules.

Contributing descriptors. The chemical (CH), geometrical 
(GE) and graph-theoretical (GT) descriptors are computed and 
embedded into each of Ai and Bk to form characteristic feature 
matrices that comprehensively characterize the interacting mac-
romolecules from different physicochemical perspectives. The 
CH descriptors include the electrostatic charge (C-charges)26, 
hydrophobicity (Hp), molecular weight (MW), polarity and 

atomic compositions (C-count) of the biomolecules (Fig. 1c–f 
and Supplementary Figs. 8–10).

The GE descriptors include Cartesian (local distances and 
shapes), topological (global organization) and asymmetry (chirality) 
characteristics of the interacting subunits at the nanoscale. The GE 
descriptors also include the minimum inaccessible radius (Rinacc), the 
accessible shell volume (Shell) and the pocketness (Pocket)27 (Fig. 1g–i  
and Supplementary Fig. 11). Chirality is calculated for the vicinity of 
each AA residue as the Osipov–Pickup–Dunmur (OPD, Fig. 1j) indi-
ces28. These GE measures assesses the compatibility of the protein 
geometries to each other at nanometre and subnanometre scales.  
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Fig. 1 | The concept of the distance matrix of a protein complex and the introduction of descriptors. a, An example of two interacting proteins, chain A 
and B of PDB ID 1MA9 (vitamin D binding protein and α-actin). b, The distance matrix (in Å) of a protein complex (PDB ID 1MA9), where the yellow box 
represents the interaction fingerprints between two different proteins. The darkest areas of the matrix (yellow boxes) indicate the AAs in macromolecules 
A and B that are the closest to each other. c, Feature list of chemical (CH) descriptors. d–f, Example feature visualization of electrostatic charge of the 
carbon atom (d), hydrophobicity (e) and molecular weight (f). g, Feature list of geometrical (GE) descriptors. h–j, Example feature visualization of 
minimum inaccessible radius (Rinacc) (h), pocketness (Pocket) (i) and Osipov–Pickup–Dunmur (OPD) chirality index (j). k, Feature list of graph-theoretical 
(GT) descriptors. l–n, Example feature visualization of Ollivier–Ricci curvature (ORC) (l), Gaussian network models (GNM) modes (m) and multifractal 
dimension (MFD) (n).
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We found that the areas of positive OPD values in proteins are dis-
tinctly associated with α-helices (Supplementary Fig. 12).

The proteins and their assemblies can also be represented as 
a graph, G(n, e), constructed by taking individual AA residues 
as nodes (n) while the edges (e) between the nodes are assigned 
depending on the distance matrix for a single-folded protein,  
DA (di,j). GT descriptors enable structural encoding of protein 
complexes without reliance on the AA sequence in the macromol-
ecule. Furthermore, GT descriptors add classifiers that depict the 
shape complexity, chemical connectedness and molecular deform-
ability of these structures (Fig. 1k–n). GT descriptors utilize well-
developed applied-mathematics methods that enable acceleration 
of the computations while reducing the computational resources 
required29,30. For GT descriptors, three parameters were calculated: 
(1) Gaussian network models (GNMs) representing macromol-
ecules as elastic networks to describe their flexibility31,32 (Fig. 1m 
and Supplementary Fig. 15), (2) the Ollivier–Ricci curvature (ORC) 
and Forman–Ricci curvature (FRC) describing the macromolecules 
in terms of Riemannian geometry to identify the segments subject 
to conformational changes (Fig. 1l and Supplementary Fig. 14) 
and (3) the node-based multifractal dimension (MFD) describing 
the molecules as fractals to account for the hierarchical organiza-
tion of macromolecules essential for their interactions (Fig. 1n and 
Supplementary Fig. 13).

Descriptor correlations in protein–protein complexes. We anal-
ysed cross-correlations between the CH, GE and GT descriptors to 
understand their (1) independent inputs into the formation of pro-
tein complexes and (2) enumeration of suitability of non-protein-
aceous macromolecules for descriptors of similar complexes with 
NPs. Apart from some a priori expected correlations between FRC 
and ORC, Shell versus Rinacc and MW and C-count, the correlation 
between different components of the descriptors is small (Fig. 2a,b). 
Notably, the correlations between the descriptors for the molecules 
overall (Fig. 2a) and interfaces are quite different (Fig. 2b). This fact 
highlights (1) the mutual structural adaptation of the macromol-
ecule at the interface and (2) the significance of descriptors such as 
Rinacc, Shell, Pocket, OPD, ORC and MFD characterizing the geom-
etry and dynamics of the interfaces. In view of the lock-and-key 
concept, one can also ask whether a specific value of descriptors 
in one protein requires a particular value of the same feature on 
the counterpart forming the complex, which will be informative in 
predictions of preferred interaction sites33,34. The contour plots in 
Fig. 2c–e present the distribution of Rinacc, ORC and OPD for AA 
pairs at different distances from each other. The plots for distances 
of <7 Å and 7–10 Å represent AAs located in close proximity of PPI. 
The distinct maxima on these plots, especially for AAs located at 
distances of 7–10 Å, vividly indicate that all these structural descrip-
tors indeed require specific values when the macromolecules try to 
fit each other. As such, the local chirality in the neighbourhood of 
AAs located directly across the interface (<7 Å) tends to be small, 
indicating that highly mirror-asymmetric ‘holes’ have greater dif-
ficulty in finding a fitting ‘key’, which shifts to mutually positive 
OPD values of about 0.3 × 107 for AAs separated by 7–10 Å. The 
three maxima observed in the contour plots for Rinacc for distances 
of 10–20 Å clearly indicate the long-range correlation between GE 
features required for complex formation (see Supplementary Figs. 
16 and 17 for additional descriptors).

ML algorithms for protein–protein complexes. CH, GE and GT 
descriptors calculated for each AA residue of the constituents in 
the protein complexes served as inputs for ML algorithms, while 
the distance matrix DAB (di,k) was the output (Figs. 1 and 3a and 
Supplementary Sections 1.1–1.4). We trained different ML algo-
rithms, namely logistic regression, Gaussian naïve Bayes, support 
vector machine (SVM), random forest (RF), XGBoost (XGB) and 

deep neural network (DNN), using seven independent datasets: all 
descriptors, CH only, GE only, GT only, CH + GE, CH + GT and 
GE + GT. Among the sets with a single descriptor type, the GT-only 
set performed best versus the CH-only or GE-only sets, with an 
area under the receiver operating characteristic curve (ROC-AUC) 
of 87.7 ± 0.7%, accuracy as high as 80.8 ± 1% and an F1 score of 
80.0 ± 1.2% with the tenfold cross-validated DNN model. The same 
characteristics were 83.8 ± 1.3%, 77.0 ± 1.2% and 75.6 ± 1.2% for 
the GE descriptors and 59.0 ± 1.1%, 57.4 ± 0.8% and 54.8 ± 2.8% 
for the CH descriptors, respectively. It was unexpected that, when 
adding the CH descriptors to the GE descriptors for training the 
high-performance DNN model, the ROC-AUC and accuracy 
increased by only 1.9% and 2.1%, respectively. With the addition of 
the CH descriptors to the GT descriptors, the ROC-AUC and accu-
racy scores decreased by 0.1% and 0.2%, respectively (Fig. 3b,c and 
Table 1). The other ML algorithms, such as RF and XGB (Table 1  
and Supplementary Fig. 18), performed similarly to the DNN and 
maintained the same trends in terms of ROC-AUC, accuracy and 
F1 score (Supplementary Section 3.2.1).

The feature ablation study suggests that the GT descriptors 
make the most significant contribution to the predictive power of 
ML algorithms. Despite the absence of a strong direct correlation 
between the CH and other descriptors, it is apparent that GT and 
GE descriptors contain adequate information to predict the forma-
tion of protein complexes. This finding is quite surprising because 
electrostatic, van der Waals and hydrogen-bonding interactions are 
expected to be most relevant to PPI, being dependent on C-charges, 
MW, C-count and Hp. However, CH descriptors are strongly cor-
related amongst themselves (Fig. 2a), which indicates that train-
ing of ML algorithms using all of them as classifiers increases the 
laboriousness of the process but not the accuracy of the predictions. 
The unexpectedly low impact on the ML algorithm performance of 
adding the CH to the GT or GE descriptors is observed because GE 
and topological parameters of the macromolecules emerge from the 
multiplicity of weak and strong chemical interactions, which cre-
ates a path for partial embedding of chemical information into GE 
and GT features. Another important factor is the scale of GE and 
GT descriptors, which matches the dimensions of the protein–pro-
tein interface covering the area of several square nanometres, while  
the scale of CH features is commensurate with the size of single  
AA residues.

ML predictions for protein–protein complexes. The predictive 
capability of the ML algorithm based on different sets of struc-
tural descriptors was compared for several proteins that were not 
included in the training set. Furthermore, they were nonhomolo-
gous to those present in the database to test the true ‘learning’ 
rather than ‘memorization’ capabilities of the algorithms applied. 
The tested protein complexes included chains A and B of (1) severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleo-
capsid (PDB ID 6WZO)35, (2) fluorescent protein Dronpa (PDB ID 
6NQN)36 and (3) bacterial tryptophan synthase (PDB ID 1C29)37 
(Fig. 4, Supplementary Figs. 19–23 and Supplementary Tables 4–6). 
The formation of a complex was based on the AA residues from 
each macromolecules being within a distance of 7 Å. These residues 
defined interfaces between the interacting molecules. For a fair 
comparison, the ground-truth data were calculated with the same 
assumptions as the ML algorithms (Fig. 4a,c,e and Supplementary 
Section 3.3.1). Comparing the outcomes of ML using different 
descriptor sets, we confirmed that the GE + GT descriptors pre-
dicted the interaction sites of each protein complex (Fig. 4b,d,f) 
with ~80% accuracy with only a few false negatives (Supplementary 
Tables 4–6). The false positives were predominantly located in the 
vicinity of the true interface sites (Supplementary Table 3), which 
reflects the connectivity of the protein globules, perhaps overesti-
mated by GT parameters. When comparing the models trained on 

Nature Computational Science | VOL 2 | April 2022 | 243–252 | www.nature.com/natcomputsci 245

https://doi.org/10.2210/pdb6WZO/pdb
https://doi.org/10.2210/pdb6NQN/pdb
https://doi.org/10.2210/pdb1C29/pdb
http://www.nature.com/natcomputsci


Articles NATure CompuTATionAl Science

a

0 2 4 6

10

8

6

  4

  2

  0

10

8

6

4

2

0

10

3

2

1

0

–1

–2
3210–1–2

3

2

1

0

–1

–2
3210–1–2

3

2

1

0

–1

–2
3210–1–2

3

2

1

0

–1

–2
3210–1–2

1

1

0

0
 –1

1

0

 –1

1

0

 –1

1

0

 –1

 –1 10 –1 10 –1 10 –1

Rinacc

ORC

OPD

D ≤ 7 Å 7 Å < D ≤ 10 Å 10 Å < D ≤ 20 Å
Protein B

Protein A

c

d

e

b

MW

Hp

C-charge

C-count

Shell

Rinacc

Pocket

OPD

ORC

FRC

GNM

MFD

M
W Hp

C-c
ha

rg
e

C-c
ou

nt
She

ll

R ina
cc

Poc
ke

t
OPD

ORC
FRC

GNM
M

FD

MW

Hp

C-charge

A
ll area feature correlation for a protein (P

D
B

 ID
 1M

A
9) (a.u.)

Interface area feature correlation for a protein (P
D

B
 ID

 1M
A

9) (a.u.)

C-count

Shell

Rinacc

Pocket

OPD

ORC

FRC

GNM

MFD

M
W Hp

C-c
ha

rg
e

C-c
ou

nt
She

ll

R ina
cc

Poc
ke

t
OPD

ORC
FRC

GNM
M

FD

–1

0

1

–1

0

1

20 Å < D ≤ 50 Å

108 0 2 4 6 108

8

6

4

2

0
0 2 4 6 108

10

8

6

4

2

0
0 2 4 6 108

Fig. 2 | Analysis of descriptors. a, Descriptor correlations for all AA residues in a protein complex (PDB ID 1MA9). b, Descriptor correlation for interface 
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molecular structures. c–e, The correlation distribution of Rinacc (c), ORC (d) and OPD indices (e) values from each protein forming a complex depending 
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the GE + GT versus all the descriptors, both the precision and recall 
tended to increase for the former, that is, smaller, set of descriptors. 
Such an effect is related to the ‘curse of dimensionality’ when selec-
tion of the most important uncorrelated features from a larger pool 
of descriptors increases the accuracy of ML algorithms.

ML predictions for complexes of proteins with NPs. The exclu-
sion of CH components enables the direct application of the ML 
algorithms trained on PPI to biomimetic NPs whose structure can 
be enumerated by the same parameters. The atomic structure of 
NPs is coarse-grained to match the scale of AA residues in proteins. 
Considering the number of atoms per AA (10 in glycine, 28 in tryp-
tophan) and the relative abundance of different residues, 13 atoms 
are grouped into a single ‘residue’ in the coarse-grained representa-
tion of carbon nanostructures to obtain DNP (di,j) (Supplementary 
Section 3.3.5). The G(n, e) of NPs are constructed by taking coarse-
grained groups of atoms as nodes and connecting an edge when 
di,j is less than 7 Å. Utilizing the GE and GT descriptors, we tested 
the performance of the ML algorithms to predict protein–NP 
complexes. We focused primarily on carbon-based nanomaterials, 
namely graphene quantum dots (GQDs), spherical carbon NPs and 
single-walled carbon nanotubes (SWNTs) (Supplementary Section 
3.3.5) but other types of NP can be coarse-grained in the similar 
way. Our focus on nanocarbons was also based on the rapid devel-
opment of this diverse class of biocompatible nanomaterials for 

biomedical applications, such as drug carriers38, antibacterials39, 
antivirals40 and high-sensitivity bioanalysis41,42. However, research 
progress in this area is slowed down by difficulties in predicting the 
enzymatic degradation of nanocarbons43, the protein coronas44–46 
around them and other types of biochemical processes in the  
complex milieu of biomolecules.

The ML predictions were compared against experimental and 
supporting MD simulations from literature19,47,48. For the simplest 
example, we tested the docking of carboxylated GQDs to phenol-
soluble modulin-α (PSM-α) peptide (PDB ID 5KHB). The pre-
diction results match well with the MD simulation by displaying 
GQD docking near the N-terminus of the peptides19 (Fig. 5a). Also, 
we found that predicted interaction sites in the complex between 
hydroxylated GQDs and a monomer of human islet amyloid poly-
peptide (hIAPP, PDB idID 2L86) (Fig. 5b) match the experimental 
observations established independently from (1) comprehensive 
liquid chromatography with tandem mass spectrometry (LC–MS/
MS) evaluation by Faridi et al.47 and (2) quenching of the nanostruc-
ture autofluorescence in a dose-dependent manner by Wang et al.48. 
However, the interaction sites change drastically when hIAPP fibril 
is formed (PDB IS 6ZRF) (Fig. 5c). Then, GQDs are bound onto 
the amyloid’s surface, which was again accurately identified in the 
DNN models using only GT + GE descriptors (Fig. 5c). ML predic-
tions for the complex between short-cut carbon nanotube (CNT, 
17 Å length) and human myeloperoxidase (hMPO, PDB ID 1CXP) 
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pointed to two interaction sites that were nearly identical to those 
established by Kagan et al.43 using MD simulations. Specifically, the 
tyrosine residues (nos. 293 and 313) and arginine residues (nos. 307 
and 294) correctly emerged (Fig. 5d,e) as specific AAs in hMPO 
closely interacting with CNTs.

The contributions from specific groups and interactions that 
are stronger than others for particular pairs of NPs and proteins 
can also be found. These interactions are determined by both the 
chemical composition and the nanoscale geometry of the interact-
ing species, which is captured well by the combination of GE and 

Table 1 | Comparison of ML algorithms depending on the training of different descriptors subsets

All CH GE GT GE + GT CH + GE CH + GT

Logistic 
regression

Accuracy 0.553 ± 0.005 0.551 ± 0.009 0.553 ± 0.009 0.671 ± 0.009 0.551 ± 0.010 0.551 ± 0.010 0.684 ± 0.008

AUC 0.565 ± 0.010 0.573 ± 0.009 0.563 ± 0.011 0.730 ± 0.008 0.562 ± 0.013 0.562 ± 0.010 0.743 ± 0.006

F1 score 0.592 ± 0.007 0.553 ± 0.011 0.592 ± 0.009 0.648 ± 0.009 0.587 ± 0.009 0.589 ± 0.012 0.667 ± 0.009

Gaussian naïve 
Bayes

Accuracy 0.578 ± 0.010 0.537 ± 0.007 0.574 ± 0.008 0.615 ± 0.010 0.576 ± 0.007 0.575 ± 0.008 0.652 ± 0.009

AUC 0.633 ± 0.010 0.559 ± 0.008 0.628 ± 0.012 0.711 ± 0.007 0.630 ± 0.005 0.627 ± 0.010 0.709 ± 0.006

F1 score 0.668 ± 0.010 0.480 ± 0.014 0.665 ± 0.007 0.670 ± 0.006 0.666 ± 0.007 0.666 ± 0.006 0.668 ± 0.010

SVM Accuracy 0.607 ± 0.012 0.552 ± 0.008 0.606 ± 0.013 0.663 ± 0.014 0.606 ± 0.011 0.605 ± 0.012 0.674 ± 0.010

AUC 0.656 ± 0.012 0.576 ± 0.013 0.652 ± 0.015 0.719 ± 0.015 0.652 ± 0.009 0.650 ± 0.014 0.741 ± 0.007

F1 score 0.655 ± 0.010 0.523 ± 0.012 0.655 ± 0.010 0.589 ± 0.016 0.657 ± 0.008 0.656 ± 0.008 0.607 ± 0.012

RF Accuracy 0.822 ± 0.009 0.561 ± 0.009 0.769 ± 0.010 0.804 ± 0.005 0.810 ± 0.008 0.802 ± 0.008 0.812 ± 0.006

AUC 0.920 ± 0.006 0.583 ± 0.012 0.869 ± 0.008 0.889 ± 0.004 0.907 ± 0.006 0.899 ± 0.005 0.905 ± 0.004

F1 score 0.803 ± 0.011 0.545 ± 0.011 0.737 ± 0.012 0.789 ± 0.005 0.789 ± 0.010 0.778 ± 0.010 0.797 ± 0.006

XGB Accuracy 0.829 ± 0.009 0.559 ± 0.010 0.780 ± 0.011 0.804 ± 0.007 0.815 ± 0.010 0.798 ± 0.010 0.815 ± 0.006

AUC 0.913 ± 0.006 0.583 ± 0.013 0.862 ± 0.007 0.879 ± 0.006 0.899 ± 0.006 0.885 ± 0.007 0.895 ± 0.005

F1 score 0.817 ± 0.010 0.542 ± 0.011 0.763 ± 0.014 0.794 ± 0.007 0.803 ± 0.012 0.784 ± 0.014 0.804 ± 0.006

DNN Accuracy 0.840 ± 0.007 0.574 ± 0.008 0.770 ± 0.012 0.808 ± 0.010 0.823 ± 0.006 0.791 ± 0.009 0.806 ± 0.005

AUC 0.908 ± 0.007 0.590 ± 0.011 0.838 ± 0.013 0.877 ± 0.007 0.891 ± 0.007 0.857 ± 0.008 0.876 ± 0.004

F1 score 0.830 ± 0.010 0.548 ± 0.028 0.756 ± 0.012 0.800 ± 0.012 0.811 ± 0.008 0.768 ± 0.010 0794 ± 0.008

The accuracy, AUC and F1 score are obtained from the mean of tenfold cross-validated logistic regression, Gaussian naïve Bayes, SVM, RF, XGB and DNN model. The s.d. is measured as an error. The columns 
indicate types of descriptor subsets. ‘All’ stands for the combined CH, GE and GT descriptor sets, while ‘+’ indicates the combination of two sets of descriptors.
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6NQN B

Fig. 4 | Prediction of protein–protein complexes with the DNN model trained on the GE + GT descriptors. a–f, The ground-truth interface (a,c,e) and 
the complex interface predicted by the DNN model trained on GE + GT (b,d,f) of the SARS-CoV-2 dimer protein (PDB ID 6WZO, AB) (a,b), fluorescent 
protein Dronpa with the β-barrel structures (PDB ID 6NQN, AB) (c,d) and bacterial tryptophan synthase having triose-phosphate isomerase (TIM) barrel 
structure (PDB ID 1C29, AB) (e,f), with A and B highlighted in red and blue, respectively. The dashed ellipses indicate that the main interaction interfaces 
of protein chain A and B for both ground truths and predicted ones.
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GT descriptors that account for attractive interactions while mini-
mizing the frustration from molecular reconfiguration. Taking a 
specific example of the GQD and hIAPP complex, the edges and 
surface of GQD are hydroxylated, which results in local curvature 
that can provide a specific fit to the geometry of the protein, capable 
of forming hydrogen bonds with –OH groups. The GE + GT struc-
tural descriptors point to the sites on the GQD that form hydrogen 
bonds with hIAPP. A similar mechanism can also be traced in the 
interactions between CNT and hMPO.

While localization of potential interaction sites is essential for NP 
adjuvants, enzyme mimics, amyloid fibrillation inhibitors and anti-
biotic and antiviral agents15,19,39,40, the assessment of the relative pro-
pensity of several proteins to interact with NPs of different shapes 
is also important for nanoscale contrast agents and drug delivery 
agents. Thus, we also tested the ability of DNN to predict the relative 
protein abundance in the protein corona around SWNTs as studied 
by Pinals et al.44 and spherical carbon NPs as studied by Monopoli et 
al.45 and Visalakshan et al.46. We found that albumin displays a lower 
tendency to adsorb on SWNTs than apolipoprotein, histidine-rich 
glycoprotein or galectin-3-binding protein (Supplementary Figs. 24 
and 25). Also, the spherical carbon NPs showed a lower probability 
of forming a nanoscale complex with all four proteins than three 

different types of SWNTs. Both findings match recent experimen-
tal results for similar nanocarbons established using multiple cen-
trifugation cycles followed by mass spectroscopy, small-angle X-ray  
scattering and isothermal titration calorimetry (Fig. 5f)44–46.

These findings becomes particularly useful for the analysis of 
protein interactions with entirely or predominantly inorganic NPs 
made from gold49, ZnO16 and silica46 that can acquire a variety of 
shapes46. Thus, we tested ML with pyramidal ZnO NPs (3 nm in the 
base, 3 nm height) that are known to form a reversible one-on-one 
complex with β-galactosidase (Supplementary Fig. 27)16. The coarse-
graining protocol for these NPs was based on the crystal surface 
atoms. Taking into account the mean size of AAs (3.5–4 Å) and the 
ionic bond length of ZnO (1.89 Å), two atoms were grouped to pro-
duce distance matrices and G(n, e) (Supplementary Section 3.3.5). 
As a result, we found that the interaction sites responsible for the 
formation of the complex between ZnO NPs and β-galactosidase are 
located at the apex and edge of the nanopyramids (Supplementary 
Fig. 28), which coincides perfectly with experimental data16.

Discussion
Despite the complexity of intermolecular interactions between 
nanoscale structures, GE + GT descriptors adequately predict the 
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Fig. 5 | The prediction of complexes between protein and nanocarbons. a, Carboxylated GQD and PSM-α assembly. b, Hydroxylated GQD and hIAPP 
assembly. c, Hydroxylated GQD and hIAPP fibril assembly. d,e, The carboxylated CNT and hMPO assembly (d) and a view rotated by 180° (e), showing the 
second binding sites. The blue and green highlights in a–e indicate the predicted interaction sites in NPs and proteins, respectively. Yellow and gray surfaces 
are non-interacting sites. f, Probability of protein binding sites on the different carbon macromolecules, spherical carbon crystal and three different SWNTs.
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formation of complexes and interaction sites for proteins. The same 
descriptors can be applied directly to NPs. The fact that ML algo-
rithms trained on protein–protein complexes accurately predict the 
structure of protein–NP complexes provides direct and incontro-
vertible evidence of the biomimetic nature of water-soluble inor-
ganic NPs known to display a variety of biological functions16,19,43–46,48.

The chemistry of nanocarbons and other inorganic NPs can be 
very different from that of proteins. While the dynamics of their 
complexes with proteins tends to be challenging to model, the devel-
oped ML algorithms can streamline their molecular design for spe-
cific biomedical or biomanufacturing applications. The nanoscale 
species’ rigidity level can be described by the GNM parameters 
(Supplementary Fig. 26), which can be calculated rapidly and 
accurately. Analysis of GNM modes can be instrumental for (1) 
engineering of molecular rigidity across the spectrum of different 
nanoscale species and (2) predicting interaction sites at different 
temperatures. Both tasks can be accomplished by adding physics-
based descriptions of thermal motion for various chemical bonds 
using Boltzmann distributions, which will provide complementary 
descriptors for biological and abiological nanoscale species.

From a fundamental perspective, these findings extend the 
boundaries of understanding of the structural requirements for 
forming lock-and-key interfaces between nanoscale entities and 
integrate the concepts of topology, Riemannian geometry and mul-
tifractality to establish commonalities between them. From a practi-
cal perspective, these findings offer a toolbox for the rapid design of 
abiological nanostructures with specific shapes and surface chemis-
tries for biomedical and other applications.

While the traditional CH descriptors provide limited input to 
the accuracy of the prediction of protein–protein and protein–NP 
complexes, we expect that subsequent development of unified CH 
descriptors inclusive of nonadditivity and collective effects between 
proteins50,51 and NPs52 using, for instance, MD or density functional 
theory calculations calculated locally will also improve the accuracy 
of such predictions of interaction sites and affinity constants.

Methods
The atomic coordinates of proteins were acquired from the RCSB protein data bank 
(https://www.rcsb.org/), and the coordinates for the NPs were modelled by using 
BIOVIA Materials Studio.

Training database formation. The curated database formed the input of the 
training dataset, while distance matrices formed the output (Supplementary Fig. 1).  
The final PPI training set comprised 464 uniquely interacting protein pairs 
(Supplementary Fig. 4) and 27,859,297 pairs of AA residues in total.

Computation of descriptors. The following descriptors were computed 
and embedded into each Ai and Bk to form characteristic feature matrices 
(Supplementary Section 2).

CH descriptors. The probability of AA residues in proteins interacting can be 
related to their electrostatic charge, hydrophobicity, molecular weight, polarity 
and atomic composition (Supplementary Figs. 8–10). These chemical parameters 
determine the repulsive/attractive forces between the macromolecules and are 
used in nearly all current PPI algorithms4,53. The atomic contribution of continuum 
electrostatic charges per residue is computed using the Chemistry at Harvard 
Macromolecular Mechanics (CHARMM) force field26. In addition to the previously 
used coarse description of residue charge as −1, 0 or 1, we used a more accurate 
representation of electrostatic interactions wherein the charge contribution 
per atom in the residue was considered. Hydrophobicity indices of residue are 
measured by the Kyte–Doolittle scale54. We note that CH descriptors do not 
account for nonadditivity and interdependence of electrostatic, hydrophobic or van 
der Waals interactions on the surface of biomolecules50,51.

GE descriptors. The Rinacc descriptor measures the shallowness of the protein 
surface by calculating the minimum inaccessible radius of the circle at AA residue 
point Ai and Bk, in Cα coordinates. The Shell descriptor characterizes the depth of 
a specific AA in the folded protein chain, obtained by quantifying an accessible 
volume of a particular residue point, Ai and Bk. The Pocket descriptor enumerates 
the depth and size of a concavity on the surface of the protein globule. This value 
is inversely proportional to Shell but directly proportional to the pocket radius 
(Supplementary Section 2.2.1). OPD chirality indices28 were calculated per each  

Ai and Bk, considering different distances from AA residue points. Left/right-
handed geometries correspond to negative/positive values of OPD. Being 
conscious of the computational problems emerging for chiral objects with high 
dimensionality, we restrict OPD calculation to a limited group of N-neighbour 
residues around a particular residue (Supplementary Section 2.2.2).

GT descriptors. To produce G(n, e), AA residues were connected with an edge 
when di,j was less than 7 Å (refs. 55,56). This cutoff value was chosen because it is 
larger than the average distance between the AA residues in the single protein 
(3.8 Å)57 and corresponds to the segments interacting by supramolecular 
interactions58,59 (Supplementary Section 2.3 and Supplementary Table 1). In 
GNM, the Gaussian modes are decomposed by eigenvalue and eigenvector 
from the Kirchhoff matrix calculated based on G(n, e) (refs. 31,32). To obtain the 
dominant modes, only the square sum of the first tenth of the modes is considered2 
(Supplementary Section 2.3.3 and Supplementary Fig. 15). The ORC evaluates 
the transport characteristics of the network and, therefore, the stress transfer and 
reconfigurability in relation to the centre of the molecule, while FRC describes the 
same characteristics of the periphery of the graph60,61. Also, we defined the node-
based scalar Ricci curvature as the sum of all edge curvature values on that node60 
(Supplementary Section 2.3.2 and Supplementary Fig. 14). The MFD values are 
estimated by investigating the power-law behaviour between the partition function, 
associated with the qth powers of the node-based probability measure of covering 
the graph with boxes of a specific radius, and the box sizes employed to cover the 
graph62,63 (Supplementary Section 2.3.1 and Supplementary Fig. 13).

ML algorithms. The pairwise AA residue descriptor data are used to 
independently train ML algorithms for seven subsets of {CH, GE, GT} to compare 
the contributions to the prediction scores. The DNN model consists of three fully 
connected layers with 512 neurons, with the rectified linear unit (ReLU) function 
used for activation. After these layers, a dropout layer is added with a rate of 0.5 
to prevent overfitting. Lastly, the SoftMax layer is implemented to compute the 
probability of each class and the model is trained by optimization of the categorical 
cross-entropy loss function. While training, the best model having the minimum 
loss and highest accuracy is saved by the callback function. The performance 
of each ML algorithm is evaluated using tenfold cross-validation. The logistic 
regression, Gaussian naïve Bayes, SVM and RF approaches are implemented using 
the scikit-learn Python package64, while the XGB approach uses the XGBoost 
Python package65.

When we test unknown protein–protein complexes with any ML algorithms, 
the probability of forming a close contact (<7 Å) is computed for every molecule’s 
AA residue pair. We take residue pairs in the top 0.1% by probability as interface 
residues (Supplementary Section 3 and Supplementary Fig. 19). An identical 
criterion was applied for protein–NP complexes when assessing DA (di,j) and to 
obtain DNP (di,j).

Data availability
Our Code Ocean Capsule66 contains all the associated data for PPI training and 
PPI/protein–NP interaction testing. The source data for Figs. 1–5 and Table 1 are 
provided with this paper.

Code availability
All Python codes associated with this study are deposited in the Code Ocean 
capsule66 at https://doi.org/10.24433/CO.7800040.v1.
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