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Unifying structural descriptors for biological and
bioinspired nanoscale complexes

Minjeong Cha®"2", Emine Sumeyra Turali Emre ®23", Xiongye Xiao?, Ji-Young Kim?3, Paul Bogdan?,
J. Scott VanEpps?>¢78, Angela Violi**'° and Nicholas A. Kotov®12356X

Biomimetic nanoparticles are known to serve as nanoscale adjuvants, enzyme mimics and amyloid fibrillation inhibitors. Their
further development requires better understanding of their interactions with proteins. The abundant knowledge about protein-
protein interactions can serve as a guide for designing protein-nanoparticle assemblies, but the chemical and biological inputs
used in computational packages for protein-protein interactions are not applicable to inorganic nanoparticles. Analysing chem-
ical, geometrical and graph-theoretical descriptors for protein complexes, we found that geometrical and graph-theoretical
descriptors are uniformly applicable to biological and inorganic nanostructures and can predict interaction sites in protein pairs
with accuracy >80% and classification probability ~90%. We extended the machine-learning algorithms trained on protein-
protein interactions to inorganic nanoparticles and found a nearly exact match between experimental and predicted interaction
sites with proteins. These findings can be extended to other organic and inorganic nanoparticles to predict their assemblies

with biomolecules and other chemical structures forming lock-and-key complexes.

nteractions between proteins are conceptually described as lock-

and-key complexes', reflected in multiple successful protein-

protein interactions (PPI) algorithms, such as PRISM, PSIVER
and MaSIF**. These and other computational packages predict
protein complex formation and interaction sites by assessing the
pairwise similarity of a potential ‘key’ with many other ‘keys. A
similar concept can be applied to nanoparticle (NP)-protein inter-
actions, but its realization requires a massive library of X-ray dif-
fraction data for NP-protein pairs comparable to the Protein Data
Bank (PDB), which is currently unavailable. Other PPI algorithms,
such as SPPIDER and Pre-PPI, combine the geometrical descrip-
tion of docking molecules with structural relations at the organism
level, exemplified by protein networks from evolutionary homol-
ogy and genomics™. Importantly, these PPI software packages’!
also assume that the interacting molecules are linear polymers
from amino acids (AAs). Such descriptors are natural for proteins
but make it impossible to extend these algorithms to bioinspired
inorganic NPs, even though they may carry some AAs as surface
ligands'~". The simplified molecular-input line-entry system can
annotate the structure of nonpeptide biomolecules' but is, again,
inapplicable to biomimetic NPs, even those based on carbon atoms,
while many NPs exhibiting strong specific biological activity are
entirely inorganic'>'®. Unifying structural description of proteins
and NPs is possible at the atomistic molecular dynamics (MD) level
that represents the state of the art in predictions of NP-protein inter-
actions'’~". However, the interaction time probed by typical atomis-
tic MD methods is mainly limited to hundreds of nanoseconds'’~*'.
Even with the dedicated Anton2 supercomputer, the interaction
time can only reach up to 2 ps (ref. ??), while the time required for
the formation of protein-protein and NP-protein complexes may

exceed minutes or sometimes hours*>**. While being significant for
complexes between macromolecules, the weak multicentre interac-
tions exemplified by dipole-dipole forces and collective hydrogen
bonds are difficult to implement without drastic time restrictions.
The complexity of the energy landscape for nanoscale interactions
may also lead to entrapment of MD simulations in metastable states
before the formation of a fully equilibrated complex.

Here, we analyse the role of different structural features con-
tributing to the formation of protein-protein complexes with the
goal of identifying structural descriptors that could be uniformly
applicable to complexes between proteins and NPs. Identifying such
descriptors would enable one to extend the knowledge gained from
the vast PPI datasets and existing algorithms to NP-protein pairs
encountered in diverse biomedical contexts, from drug delivery to
the environmental effects of NPs.

Results

Distance matrices of protein complexes. A protein complex (Fig.
la) can be represented as a distance matrix D, (d,;) where 1 <i <N,
and 1 < k < Ny with a set of matrix elements d, representing the dis-
tance in angstroms between pairs of a-carbon (C,) in AA residues
from proteins A and B (Fig. 1b)*. The darkest areas of the matrix
(yellow boxes) indicate the AAs in macromolecules A and B that
are the closest to each other. The level of proximity of A, and B, in
D,; (d;;) will be used to distinguish interacting and noninteracting
residue pairs in machine-learning (ML) algorithms (Supplementary
Fig. 1). The proteins are less likely to form a lock-and-key com-
plex when the predicted probabilities of interacting AA residue
pairs within 7 A from each other are low (<0.5). If this mathemati-
cal approach is successful for protein complex, it can, perhaps, be
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Fig. 1| The concept of the distance matrix of a protein complex and the introduction of descriptors. a, An example of two interacting proteins, chain A
and B of PDB ID TMA9 (vitamin D binding protein and a-actin). b, The distance matrix (in A) of a protein complex (PDB ID TMA9), where the yellow box
represents the interaction fingerprints between two different proteins. The darkest areas of the matrix (yellow boxes) indicate the AAs in macromolecules
A and B that are the closest to each other. ¢, Feature list of chemical (CH) descriptors. d-f, Example feature visualization of electrostatic charge of the
carbon atom (d), hydrophobicity (e) and molecular weight (f). g, Feature list of geometrical (GE) descriptors. h-j, Example feature visualization of
minimum inaccessible radius (R;,,..) (h), pocketness (Pocket) (i) and Osipov-Pickup-Dunmur (OPD) chirality index (j). k, Feature list of graph-theoretical
(GT) descriptors. I-n, Example feature visualization of Ollivier-Ricci curvature (ORC) (1), Gaussian network models (GNM) modes (m) and multifractal

dimension (MFD) (n).

extended to nanoscale assemblies from abiological nanostructures
because it relies on structural coding based on the three-dimen-
sional (3D) geometry of the macromolecules.

Contributing descriptors. The chemical (CH), geometrical
(GE) and graph-theoretical (GT) descriptors are computed and
embedded into each of A; and B, to form characteristic feature
matrices that comprehensively characterize the interacting mac-
romolecules from different physicochemical perspectives. The
CH descriptors include the electrostatic charge (C-charges)®,
hydrophobicity (Hp), molecular weight (MW), polarity and
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atomic compositions (C-count) of the biomolecules (Fig. lc-f
and Supplementary Figs. 8-10).

The GE descriptors include Cartesian (local distances and
shapes), topological (global organization) and asymmetry (chirality)
characteristics of the interacting subunits at the nanoscale. The GE
descriptors also include the minimum inaccessible radius (R,,,..), the
accessible shell volume (Shell) and the pocketness (Pocket)* (Fig. 1g-i
and Supplementary Fig. 11). Chirality is calculated for the vicinity of
each AA residue as the Osipov-Pickup-Dunmur (OPD, Fig. 1j) indi-
ces”. These GE measures assesses the compatibility of the protein
geometries to each other at nanometre and subnanometre scales.
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We found that the areas of positive OPD values in proteins are dis-
tinctly associated with a-helices (Supplementary Fig. 12).

The proteins and their assemblies can also be represented as
a graph, G(n, e), constructed by taking individual AA residues
as nodes (n) while the edges (e) between the nodes are assigned
depending on the distance matrix for a single-folded protein,
D, (d;). GT descriptors enable structural encoding of protein
complexes without reliance on the AA sequence in the macromol-
ecule. Furthermore, GT descriptors add classifiers that depict the
shape complexity, chemical connectedness and molecular deform-
ability of these structures (Fig. 1k-n). GT descriptors utilize well-
developed applied-mathematics methods that enable acceleration
of the computations while reducing the computational resources
required”*’. For GT descriptors, three parameters were calculated:
(1) Gaussian network models (GNMs) representing macromol-
ecules as elastic networks to describe their flexibility*"** (Fig. 1m
and Supplementary Fig. 15), (2) the Ollivier-Ricci curvature (ORC)
and Forman-Ricci curvature (FRC) describing the macromolecules
in terms of Riemannian geometry to identify the segments subject
to conformational changes (Fig. 11 and Supplementary Fig. 14)
and (3) the node-based multifractal dimension (MFD) describing
the molecules as fractals to account for the hierarchical organiza-
tion of macromolecules essential for their interactions (Fig. 1n and
Supplementary Fig. 13).

Descriptor correlations in protein-protein complexes. We anal-
ysed cross-correlations between the CH, GE and GT descriptors to
understand their (1) independent inputs into the formation of pro-
tein complexes and (2) enumeration of suitability of non-protein-
aceous macromolecules for descriptors of similar complexes with
NPs. Apart from some a priori expected correlations between FRC
and ORC, Shell versus R, ... and MW and C-count, the correlation
between different components of the descriptors is small (Fig. 2a,b).
Notably, the correlations between the descriptors for the molecules
overall (Fig. 2a) and interfaces are quite different (Fig. 2b). This fact
highlights (1) the mutual structural adaptation of the macromol-
ecule at the interface and (2) the significance of descriptors such as
R, Shell, Pocket, OPD, ORC and MFD characterizing the geom-
etry and dynamics of the interfaces. In view of the lock-and-key
concept, one can also ask whether a specific value of descriptors
in one protein requires a particular value of the same feature on
the counterpart forming the complex, which will be informative in
predictions of preferred interaction sites***'. The contour plots in
Fig. 2c—e present the distribution of R,,., ORC and OPD for AA
pairs at different distances from each other. The plots for distances
of <7 A and 7-10 A represent AAs located in close proximity of PPL
The distinct maxima on these plots, especially for AAs located at
distances of 7-10 A, vividly indicate that all these structural descrip-
tors indeed require specific values when the macromolecules try to
fit each other. As such, the local chirality in the neighbourhood of
AAs located directly across the interface (<7 A) tends to be small,
indicating that highly mirror-asymmetric ‘holes’ have greater dif-
ficulty in finding a fitting ‘key, which shifts to mutually positive
OPD values of about 0.3x 107 for AAs separated by 7-10A. The
three maxima observed in the contour plots for R, for distances
of 10-20 A clearly indicate the long-range correlation between GE
features required for complex formation (see Supplementary Figs.
16 and 17 for additional descriptors).

ML algorithms for protein-protein complexes. CH, GE and GT
descriptors calculated for each AA residue of the constituents in
the protein complexes served as inputs for ML algorithms, while
the distance matrix D, (d;;) was the output (Figs. 1 and 3a and
Supplementary Sections 1.1-1.4). We trained different ML algo-
rithms, namely logistic regression, Gaussian naive Bayes, support
vector machine (SVM), random forest (RF), XGBoost (XGB) and
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deep neural network (DNN), using seven independent datasets: all
descriptors, CH only, GE only, GT only, CH+GE, CH+GT and
GE + GT. Among the sets with a single descriptor type, the GT-only
set performed best versus the CH-only or GE-only sets, with an
area under the receiver operating characteristic curve (ROC-AUC)
of 87.7+ 0.7%, accuracy as high as 80.8+1% and an F1 score of
80.0 + 1.2% with the tenfold cross-validated DNN model. The same
characteristics were 83.8+1.3%, 77.0+1.2% and 75.6+1.2% for
the GE descriptors and 59.0+1.1%, 57.4+0.8% and 54.8 +2.8%
for the CH descriptors, respectively. It was unexpected that, when
adding the CH descriptors to the GE descriptors for training the
high-performance DNN model, the ROC-AUC and accuracy
increased by only 1.9% and 2.1%, respectively. With the addition of
the CH descriptors to the GT descriptors, the ROC-AUC and accu-
racy scores decreased by 0.1% and 0.2%, respectively (Fig. 3b,c and
Table 1). The other ML algorithms, such as RF and XGB (Table 1
and Supplementary Fig. 18), performed similarly to the DNN and
maintained the same trends in terms of ROC-AUC, accuracy and
F1 score (Supplementary Section 3.2.1).

The feature ablation study suggests that the GT descriptors
make the most significant contribution to the predictive power of
ML algorithms. Despite the absence of a strong direct correlation
between the CH and other descriptors, it is apparent that GT and
GE descriptors contain adequate information to predict the forma-
tion of protein complexes. This finding is quite surprising because
electrostatic, van der Waals and hydrogen-bonding interactions are
expected to be most relevant to PPI, being dependent on C-charges,
MW, C-count and Hp. However, CH descriptors are strongly cor-
related amongst themselves (Fig. 2a), which indicates that train-
ing of ML algorithms using all of them as classifiers increases the
laboriousness of the process but not the accuracy of the predictions.
The unexpectedly low impact on the ML algorithm performance of
adding the CH to the GT or GE descriptors is observed because GE
and topological parameters of the macromolecules emerge from the
multiplicity of weak and strong chemical interactions, which cre-
ates a path for partial embedding of chemical information into GE
and GT features. Another important factor is the scale of GE and
GT descriptors, which matches the dimensions of the protein—pro-
tein interface covering the area of several square nanometres, while
the scale of CH features is commensurate with the size of single
AA residues.

ML predictions for protein-protein complexes. The predictive
capability of the ML algorithm based on different sets of struc-
tural descriptors was compared for several proteins that were not
included in the training set. Furthermore, they were nonhomolo-
gous to those present in the database to test the true ‘learning’
rather than ‘memorization’ capabilities of the algorithms applied.
The tested protein complexes included chains A and B of (1) severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleo-
capsid (PDB ID 6WZ0O)*, (2) fluorescent protein Dronpa (PDB ID
6NQN)* and (3) bacterial tryptophan synthase (PDB ID 1C29)*
(Fig. 4, Supplementary Figs. 19-23 and Supplementary Tables 4-6).
The formation of a complex was based on the AA residues from
each macromolecules being within a distance of 7 A. These residues
defined interfaces between the interacting molecules. For a fair
comparison, the ground-truth data were calculated with the same
assumptions as the ML algorithms (Fig. 4a,c,e and Supplementary
Section 3.3.1). Comparing the outcomes of ML using different
descriptor sets, we confirmed that the GE+GT descriptors pre-
dicted the interaction sites of each protein complex (Fig. 4b,d,f)
with ~80% accuracy with only a few false negatives (Supplementary
Tables 4-6). The false positives were predominantly located in the
vicinity of the true interface sites (Supplementary Table 3), which
reflects the connectivity of the protein globules, perhaps overesti-
mated by GT parameters. When comparing the models trained on
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Fig. 2 | Analysis of descriptors. a, Descriptor correlations for all AA residues in a protein complex (PDB ID TMA9). b, Descriptor correlation for interface
AA residues (contact distance <7 A) in a protein complex (PDB ID TMA9) shown as correlation matrices where the size of the square depicts the
correlation strength and its colour indicates its sign. Pocketness (Pocket) features are expected to correlate with accessible shell volume (Shell) and
minimum inaccessible radius (R,...) because geometries with bumps and protrusions are more accessible than others. There are also positive correlations
between ORC, FRC, GNM modes and MFD with R, .. and Shell, because these GE and GT descriptors tend to have higher values in the convex part of the
molecular structures. c-e, The correlation distribution of R, ,.. (€), ORC (d) and OPD indices (e) values from each protein forming a complex depending
on the distance between AA residues. In each contour plot, the x and y axes indicate the descriptor values of protein A and B, respectively. Four distance
classes describe the physical distance between AA residues in the protein-protein complex. The 7 A and 10 A classes describe the immediate vicinity of
protein-protein interfaces. The values for the OPD indices in e are scaled by division fraction of 1x107.
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Fig. 3 | Construction of distance-based feature matrices for prediction of protein complexes. a, Schematic explanation of feature matrix extraction from
protein complexes. The descriptor vectors are embedded per each AA residue, and the pairwise descriptor sets form the final feature matrix to train the
ML algorithms. b,c, Comparison of the ROC curve (b) and model performance metrics (¢) depending on the descriptor subsets when using the tenfold

cross-validated DNN.

the GE + GT versus all the descriptors, both the precision and recall
tended to increase for the former, that is, smaller, set of descriptors.
Such an effect is related to the ‘curse of dimensionality’ when selec-
tion of the most important uncorrelated features from a larger pool
of descriptors increases the accuracy of ML algorithms.

ML predictions for complexes of proteins with NPs. The exclu-
sion of CH components enables the direct application of the ML
algorithms trained on PPI to biomimetic NPs whose structure can
be enumerated by the same parameters. The atomic structure of
NPs is coarse-grained to match the scale of AA residues in proteins.
Considering the number of atoms per AA (10 in glycine, 28 in tryp-
tophan) and the relative abundance of different residues, 13 atoms
are grouped into a single ‘residue’ in the coarse-grained representa-
tion of carbon nanostructures to obtain Dy, (d;;) (Supplementary
Section 3.3.5). The G(n, e) of NPs are constructed by taking coarse-
grained groups of atoms as nodes and connecting an edge when
d;; is less than 7 A. Utilizing the GE and GT descriptors, we tested
the performance of the ML algorithms to predict protein-NP
complexes. We focused primarily on carbon-based nanomaterials,
namely graphene quantum dots (GQDs), spherical carbon NPs and
single-walled carbon nanotubes (SWNTs) (Supplementary Section
3.3.5) but other types of NP can be coarse-grained in the similar
way. Our focus on nanocarbons was also based on the rapid devel-
opment of this diverse class of biocompatible nanomaterials for
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biomedical applications, such as drug carriers®, antibacterials®,

antivirals’’ and high-sensitivity bioanalysis*"*>. However, research
progress in this area is slowed down by difficulties in predicting the
enzymatic degradation of nanocarbons®, the protein coronas*~*
around them and other types of biochemical processes in the
complex milieu of biomolecules.

The ML predictions were compared against experimental and
supporting MD simulations from literature'****. For the simplest
example, we tested the docking of carboxylated GQDs to phenol-
soluble modulin-a (PSM-a) peptide (PDB ID 5KHB). The pre-
diction results match well with the MD simulation by displaying
GQD docking near the N-terminus of the peptides” (Fig. 5a). Also,
we found that predicted interaction sites in the complex between
hydroxylated GQDs and a monomer of human islet amyloid poly-
peptide (hIAPP, PDB idID 2L86) (Fig. 5b) match the experimental
observations established independently from (1) comprehensive
liquid chromatography with tandem mass spectrometry (LC-MS/
MS) evaluation by Faridi et al.”” and (2) quenching of the nanostruc-
ture autofluorescence in a dose-dependent manner by Wang et al.**.
However, the interaction sites change drastically when hIAPP fibril
is formed (PDB IS 6ZRF) (Fig. 5¢). Then, GQDs are bound onto
the amyloid’s surface, which was again accurately identified in the
DNN models using only GT + GE descriptors (Fig. 5¢). ML predic-
tions for the complex between short-cut carbon nanotube (CNT,
17A length) and human myeloperoxidase (hMPO, PDB ID 1CXP)
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Table 1| Comparison of ML algorithms depending on the training of different descriptors subsets

All CH GE GT GE+GT CH+GE CH+GT
Logistic Accuracy  0.553 +0.005 0.551+0.009 0.553+0.009 0.671+0.009 0.551+0.010 0.551+0.010 0.684 + 0.008
regression AUC 0.565+0.010 0.573+0.009 0.563+0.011 0.730+0.008 0.562+0.013 0.562+0.010 0.743 +0.006
Flscore 0592+ 0.007 0.553+0.011 0.592+0.009 0.648+0.009 0.587+0.009 0.589+0.012 0.667 + 0.009
Gaussiannaive  Accuracy 0.578 +0.010 0.537 +0.007 0.574+0.008 0.615+0.010  0.576 +0.007 0.575+0.008 0.652 + 0.009
Bayes AUC 0.633+0.010 0.559 +0.008 0.628 +0.012 0.711+ 0.007 0.630 +£ 0.005 0.627 +0.010 0.709 + 0.006
Flscore  0.668+0.010 0480+ 0014 0665+ 0007 0.670+0.006 0.666+0.007 0.666 +0.006 0.668 + 0.010
SVM Accuracy 0.607 +£0.012 0.552 +0.008 0.606 +0.013 0.663+0.014  0.606 +0.011 0.605+0.012 0.674 + 0.010
AUC 0656 +0.012 0576 +0.013 0.652+0.015 0719+0.015  0.652+0.009 0.650+0.014 0.741+ 0.007
Flscore  0.655+0.010 0.523+0.012 0.655+0.010 0.589+0.016  0.657 +0.008 0.656 + 0.008 0.607 + 0.012
RF Accuracy  0.822+0.009 0.561+0.009 0.769+0.010 0.804+0.005 0.810+0.008 0.802+0.008 0.812 +0.006
AUC 0920 +0.006 0.583+0.012 0.869 +0.008 0.889+0.004 0.907 +0.006 0.899 +0.005 0.905 + 0.004
Flscore  0.803+0.011 0545+0011 0.737+0.012 0789+0.005 0.789+0.010 0778+0.010 0.797 +0.006
XGB Accuracy  0.829 £ 0.009 0.559+0.010 0780+ 0.011 0.804+0.007 0.815+0.010 0.798+0.010 0.815+ 0.006
AUC 0913+ 0.006 0.583+0.013 0.862+0.007 0.879+0.006 0.899 +0.006 0.885+0.007 0.895=+ 0.005
Flscore  0.8177+0.010 0.542+0011 0763+0.014 0794+0.007 0.803+0.012 0784+0.014 0.804+ 0.006
DNN Accuracy  0.840 + 0.007 0.574+0.008 0.770+0.012 0.808+0.010 0.823+0.006 0.791+0.009 0.806 + 0.005
AUC 0.908 + 0.007 0.590+0.011 0.838+0.013 0.877+0.007 0.891+0.007 0.857 +0.008 0.876 + 0.004
Flscore  0.830+0.010 0.548 +£0.028 0.756+0.012 0.800+0.012 0.811+0.008 0.768+0.010 0794 +0.008

The accuracy, AUC and F1 score are obtained from the mean of tenfold cross-validated logistic regression, Gaussian naive Bayes, SVM, RF, XGB and DNN model. The s.d. is measured as an error. The columns

indicate types of descriptor subsets. ‘All" stands for the combined CH, GE and GT descriptor sets, while '+ indicates the combination of two sets of descriptors.

Fig. 4 | Prediction of protein-protein complexes with the DNN model trained on the GE + GT descriptors. a-f, The ground-truth interface (a,c,e) and

the complex interface predicted by the DNN model trained on GE+ GT (b,d,f) of the SARS-CoV-2 dimer protein (PDB ID 6WZO, AB) (a,b), fluorescent
protein Dronpa with the B-barrel structures (PDB ID 6NQN, AB) (c,d) and bacterial tryptophan synthase having triose-phosphate isomerase (TIM) barrel
structure (PDB ID 1C29, AB) (e, f), with A and B highlighted in red and blue, respectively. The dashed ellipses indicate that the main interaction interfaces

of protein chain A and B for both ground truths and predicted ones.

pointed to two interaction sites that were nearly identical to those
established by Kagan et al. using MD simulations. Specifically, the
tyrosine residues (nos. 293 and 313) and arginine residues (nos. 307
and 294) correctly emerged (Fig. 5d,e) as specific AAs in hMPO
closely interacting with CNTs.

The contributions from specific groups and interactions that
are stronger than others for particular pairs of NPs and proteins
can also be found. These interactions are determined by both the
chemical composition and the nanoscale geometry of the interact-
ing species, which is captured well by the combination of GE and
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glycoprotein
(PDB ID 4CCV)

Apolipoprotein

(PDB ID 3K2S) protein

Galectin-3-binding

Albumin
(PDB ID 6HSC)

(PDB ID 6FGB)

Fig. 5 | The prediction of complexes between protein and nanocarbons. a, Carboxylated GQD and PSM-a assembly. b, Hydroxylated GQD and hlAPP

assembly. ¢, Hydroxylated GQD and hIAPP fibril assembly. d,e, The carboxylated CNT and hMPO assembly (d) and a view rotated by 180° (e), showing the
second binding sites. The blue and green highlights in a-e indicate the predicted interaction sites in NPs and proteins, respectively. Yellow and gray surfaces
are non-interacting sites. f, Probability of protein binding sites on the different carbon macromolecules, spherical carbon crystal and three different SWNTs.

GT descriptors that account for attractive interactions while mini-
mizing the frustration from molecular reconfiguration. Taking a
specific example of the GQD and hIAPP complex, the edges and
surface of GQD are hydroxylated, which results in local curvature
that can provide a specific fit to the geometry of the protein, capable
of forming hydrogen bonds with ~-OH groups. The GE + GT struc-
tural descriptors point to the sites on the GQD that form hydrogen
bonds with hIAPP. A similar mechanism can also be traced in the
interactions between CNT and hMPO.

While localization of potential interaction sites is essential for NP
adjuvants, enzyme mimics, amyloid fibrillation inhibitors and anti-
biotic and antiviral agents'>'****, the assessment of the relative pro-
pensity of several proteins to interact with NPs of different shapes
is also important for nanoscale contrast agents and drug delivery
agents. Thus, we also tested the ability of DNN to predict the relative
protein abundance in the protein corona around SWNTs as studied
by Pinals et al.** and spherical carbon NPs as studied by Monopoli et
al.*” and Visalakshan et al.*. We found that albumin displays a lower
tendency to adsorb on SWNTs than apolipoprotein, histidine-rich
glycoprotein or galectin-3-binding protein (Supplementary Figs. 24
and 25). Also, the spherical carbon NPs showed a lower probability
of forming a nanoscale complex with all four proteins than three
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different types of SWNTs. Both findings match recent experimen-
tal results for similar nanocarbons established using multiple cen-
trifugation cycles followed by mass spectroscopy, small-angle X-ray
scattering and isothermal titration calorimetry (Fig. 5f)*-*.

These findings becomes particularly useful for the analysis of
protein interactions with entirely or predominantly inorganic NPs
made from gold”, ZnO'® and silica® that can acquire a variety of
shapes*. Thus, we tested ML with pyramidal ZnO NPs (3 nm in the
base, 3nm height) that are known to form a reversible one-on-one
complex with p-galactosidase (Supplementary Fig. 27)'°. The coarse-
graining protocol for these NPs was based on the crystal surface
atoms. Taking into account the mean size of AAs (3.5-4 A) and the
ionic bond length of ZnO (1.89 A), two atoms were grouped to pro-
duce distance matrices and G(n, e) (Supplementary Section 3.3.5).
As a result, we found that the interaction sites responsible for the
formation of the complex between ZnO NPs and p-galactosidase are
located at the apex and edge of the nanopyramids (Supplementary
Fig. 28), which coincides perfectly with experimental data'®.

Discussion
Despite the complexity of intermolecular interactions between

nanoscale structures, GE4+ GT descriptors adequately predict the
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formation of complexes and interaction sites for proteins. The same
descriptors can be applied directly to NPs. The fact that ML algo-
rithms trained on protein-protein complexes accurately predict the
structure of protein-NP complexes provides direct and incontro-
vertible evidence of the biomimetic nature of water-soluble inor-
ganic NPs known to display a variety of biological functions'®'%*-4645,

The chemistry of nanocarbons and other inorganic NPs can be
very different from that of proteins. While the dynamics of their
complexes with proteins tends to be challenging to model, the devel-
oped ML algorithms can streamline their molecular design for spe-
cific biomedical or biomanufacturing applications. The nanoscale
species’ rigidity level can be described by the GNM parameters
(Supplementary Fig. 26), which can be calculated rapidly and
accurately. Analysis of GNM modes can be instrumental for (1)
engineering of molecular rigidity across the spectrum of different
nanoscale species and (2) predicting interaction sites at different
temperatures. Both tasks can be accomplished by adding physics-
based descriptions of thermal motion for various chemical bonds
using Boltzmann distributions, which will provide complementary
descriptors for biological and abiological nanoscale species.

From a fundamental perspective, these findings extend the
boundaries of understanding of the structural requirements for
forming lock-and-key interfaces between nanoscale entities and
integrate the concepts of topology, Riemannian geometry and mul-
tifractality to establish commonalities between them. From a practi-
cal perspective, these findings offer a toolbox for the rapid design of
abiological nanostructures with specific shapes and surface chemis-
tries for biomedical and other applications.

While the traditional CH descriptors provide limited input to
the accuracy of the prediction of protein-protein and protein-NP
complexes, we expect that subsequent development of unified CH
descriptors inclusive of nonadditivity and collective effects between
proteins®**! and NPs*? using, for instance, MD or density functional
theory calculations calculated locally will also improve the accuracy
of such predictions of interaction sites and affinity constants.

Methods

The atomic coordinates of proteins were acquired from the RCSB protein data bank
(https://www.rcsb.org/), and the coordinates for the NPs were modelled by using
BIOVIA Materials Studio.

Training database formation. The curated database formed the input of the
training dataset, while distance matrices formed the output (Supplementary Fig. 1).
The final PPI training set comprised 464 uniquely interacting protein pairs
(Supplementary Fig. 4) and 27,859,297 pairs of AA residues in total.

Computation of descriptors. The following descriptors were computed
and embedded into each A, and B, to form characteristic feature matrices
(Supplementary Section 2).

CH descriptors. The probability of AA residues in proteins interacting can be
related to their electrostatic charge, hydrophobicity, molecular weight, polarity

and atomic composition (Supplementary Figs. 8-10). These chemical parameters
determine the repulsive/attractive forces between the macromolecules and are
used in nearly all current PPI algorithms**’. The atomic contribution of continuum
electrostatic charges per residue is computed using the Chemistry at Harvard
Macromolecular Mechanics (CHARMM) force field*. In addition to the previously
used coarse description of residue charge as —1, 0 or 1, we used a more accurate
representation of electrostatic interactions wherein the charge contribution

per atom in the residue was considered. Hydrophobicity indices of residue are
measured by the Kyte-Doolittle scale’’. We note that CH descriptors do not
account for nonadditivity and interdependence of electrostatic, hydrophobic or van
der Waals interactions on the surface of biomolecules™*!.

GE descriptors. The R,,,.. descriptor measures the shallowness of the protein
surface by calculating the minimum inaccessible radius of the circle at AA residue
point A, and By, in C, coordinates. The Shell descriptor characterizes the depth of
a specific AA in the folded protein chain, obtained by quantifying an accessible
volume of a particular residue point, A; and B,. The Pocket descriptor enumerates
the depth and size of a concavity on the surface of the protein globule. This value
is inversely proportional to Shell but directly proportional to the pocket radius
(Supplementary Section 2.2.1). OPD chirality indices® were calculated per each
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A, and By, considering different distances from AA residue points. Left/right-
handed geometries correspond to negative/positive values of OPD. Being
conscious of the computational problems emerging for chiral objects with high
dimensionality, we restrict OPD calculation to a limited group of N-neighbour
residues around a particular residue (Supplementary Section 2.2.2).

GT descriptors. To produce G(n, e), AA residues were connected with an edge
when d,; was less than 7 A (refs. %), This cutoff value was chosen because it is
larger than the average distance between the AA residues in the single protein

(3.8 A)” and corresponds to the segments interacting by supramolecular
interactions”™” (Supplementary Section 2.3 and Supplementary Table 1). In

GNM, the Gaussian modes are decomposed by eigenvalue and eigenvector

from the Kirchhoff matrix calculated based on G(n, e) (refs. ***?). To obtain the
dominant modes, only the square sum of the first tenth of the modes is considered?
(Supplementary Section 2.3.3 and Supplementary Fig. 15). The ORC evaluates

the transport characteristics of the network and, therefore, the stress transfer and
reconfigurability in relation to the centre of the molecule, while FRC describes the
same characteristics of the periphery of the graph®*®'. Also, we defined the node-
based scalar Ricci curvature as the sum of all edge curvature values on that node®
(Supplementary Section 2.3.2 and Supplementary Fig. 14). The MFD values are
estimated by investigating the power-law behaviour between the partition function,
associated with the qth powers of the node-based probability measure of covering
the graph with boxes of a specific radius, and the box sizes employed to cover the
graph®>®’ (Supplementary Section 2.3.1 and Supplementary Fig. 13).

ML algorithms. The pairwise AA residue descriptor data are used to
independently train ML algorithms for seven subsets of {CH, GE, GT} to compare
the contributions to the prediction scores. The DNN model consists of three fully
connected layers with 512 neurons, with the rectified linear unit (ReLU) function
used for activation. After these layers, a dropout layer is added with a rate of 0.5

to prevent overfitting. Lastly, the SoftMax layer is implemented to compute the
probability of each class and the model is trained by optimization of the categorical
cross-entropy loss function. While training, the best model having the minimum
loss and highest accuracy is saved by the callback function. The performance

of each ML algorithm is evaluated using tenfold cross-validation. The logistic
regression, Gaussian naive Bayes, SVM and RF approaches are implemented using
the scikit-learn Python package®, while the XGB approach uses the XGBoost
Python package®.

When we test unknown protein—protein complexes with any ML algorithms,
the probability of forming a close contact (<7 A) is computed for every molecule’s
AA residue pair. We take residue pairs in the top 0.1% by probability as interface
residues (Supplementary Section 3 and Supplementary Fig. 19). An identical
criterion was applied for protein-NP complexes when assessing D, (d;;) and to
obtain Dy, (d;)).

Data availability

Our Code Ocean Capsule® contains all the associated data for PPI training and
PPI/protein-NP interaction testing. The source data for Figs. 1-5 and Table 1 are
provided with this paper.

Code availability
All Python codes associated with this study are deposited in the Code Ocean
capsule® at https://doi.org/10.24433/C0.7800040.v1.
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