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Abstract
We present an algorithm for constructing a depth-first search tree in planar digraphs; the
algorithm can be implemented in the complexity classAC1(UL∩co-UL), which is contained in
AC2. Prior to this (for more than a quarter-century), the fastest uniform deterministic parallel
algorithm for this problem had a runtime of O(log10 n) (corresponding to the complexity
class AC10 ⊆ NC11). We also consider the problem of computing depth-first search trees in
other classes of graphs and obtain additional new upper bounds.

Preface

Klaus-Jörn Lange has made fundamental contributions to the study of subclasses of NC
(such as [20, 25]) and he also was one of the first to identify subtleties in the formulation
of unambiguity in the logspace setting [13] and he contributed to our understanding of
unambiguous computation [5, 30–32].

In our contribution to the celebration of Klaus-Jörn Lange’s work, we bring together these
two research threads, in order to give a better understanding of the computational complexity
of constructing depth-first search trees in planar digraphs.

1 Introduction

Depth-first search trees (DFS trees) constitute one of the most useful items in the algorithm
designer’s toolkit, and for this reason, they are a standard part of the undergraduate algorithmic
curriculum around the world. When attention shifted to parallel algorithms in the 1980s, the
question arose of whether NC algorithms for DFS trees exist. An early negative result was
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that the problem of constructing the lexicographically least DFS tree in a given digraph is
complete forP [34]. But soon thereafter significant advancesweremade in developing parallel
algorithms for DFS trees, culminating in the RNC7 algorithm of Aggarwal, Anderson, and
Kao [1]. This remains the fastest parallel algorithm for the problem of constructing DFS
trees in general graphs, in the probabilistic setting, or in the setting of non-uniform circuit
complexity. It remains unknown if this problem lies in (deterministic) NC (and we do not
solve that problem here).

More is known for various restricted classes of graphs. For directed acyclic graphs (DAGs),
the lexicographically least DFS tree from a given vertex can be computed in AC1 [16]. (See
also [9, 17, 19, 22, 23, 33].) For undirected planar graphs, an AC1 algorithm for DFS trees
was presented by Hagerup [21]. For more general planar directed graphs, Kao and Klein
presented an AC10 algorithm. Kao subsequently presented an AC5 algorithm for DFS in
strongly connected planar digraphs [27]. In stating the complexity results for this prior work
in terms of complexity classes (such as AC1,AC10), we are ignoring an aspect that was of
particular interest to the authors of this earlier work: minimizing the number of processors.
This is because our focus is on classifying the complexity of constructing DFS trees in
terms of complexity classes. Thus, if we reduce the complexity of a problem from AC10 to
AC2, then we view this as a significant advance, even if the AC2 algorithm uses many more
processors (so long as the number of processors remains bounded by a polynomial). Indeed,
our algorithms rely on the logspace algorithm for undirected reachability [35], which does
not directly translate into a processor-efficient algorithm. We suspect that our approach can
be modified to yield a more processor-efficient AC3 algorithm, but we leave that for others
to investigate.

1.1 Our contributions

First, we observe that, given a DAG G, computation of a DFS tree in G logspace-reduces to
the problem of reachability in G. Thus, for general DAGs, computation of a DFS tree lies
in NL, and for planar DAGs, the problem lies in UL ∩ co-UL [12, 38]. For classes of graphs
where the reachability problem lies in L, so does the computation of DFS trees. One such
class of graphs is planar DAGs with a single source (see [2], where this class of graphs is
called SMPDs, for Single-source,Multiple-sink, Planar DAGs).

For undirected planar graphs, it was shown in [4] that the approach of Hagerup’s AC1 DFS
algorithm [21] can be adapted in order to show that construction of a DFS tree in a planar
undirected graph logspace-reduces to computing the distance between two nodes in a planar
digraph. Since this latter problem lies in UL ∩ co-UL (see Theorem 1), so does the problem
of DFS for planar undirected graphs.

Our main contribution in the current paper is to show that a more sophisticated application
of the ideas in [21] leads to an AC1(UL ∩ co-UL) algorithm for construction of DFS trees in
planar directed graphs. (That is, we show DFS trees can be constructed by unbounded fan-in
log-depth circuits that have oracle gates for a set in UL∩ co-UL.)1 Since UL ⊆ NL ⊆ SAC1 ⊆
AC1, the AC1(UL ∩ co-UL) algorithm can be implemented in AC2. Thus this is a significant
improvement over the best previous parallel algorithm for this problem: the AC10 algorithm
of [28], which has stood for 28 years.

1 An earlier version of this work claimed a stronger upper bound, but there was an error in one of the lemmas
in that version [3].
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2 Preliminaries

We assume that the reader is familiar with depth-first search trees (DFS trees), but we provide
a few reminders here, to establish the conventions that we will follow.

Given any node r in a directed graph G, a depth-first traversal of G starting at r is a
traversal of all of the nodes reachable in G from r obtained by starting with r as the only
node on a stack, and repeating the following steps until the stack is empty: (1) Pop a node
v off the stack and ignore it if it has already been visited. (2) Otherwise mark it as visited,
and push all unvisited out-neighbors of v onto the stack. Different depth-first traversals of G
result if the out-neighbors of v are placed onto the stack in different orders. Each depth-first
traversal gives rise to a depth-first search tree (namely, the directed tree rooted at r where
the children of each node v are the out-neighbors x of v having the property that when x is
first marked visited, x has no in-neighbor other than v that has been marked as visited). Of
course, given a depth-first search tree T , it is possible to traverse T in an order that is not a
depth-first traversal of G. Thus, it is more correct to say that we are constructing a depth-first
traversal of G, but we follow the established convention by abusing notation and referring
to depth-first search trees (DFS trees) and depth-first traversals interchangeably throughout
the paper.

In this paper, a DFS tree is always a directed rooted tree as detailed above. On the other
hand, when we call a digraph a tree (as opposed to a DFS tree), we mean only that the
underlying undirected graph forms a connected acyclic graph. Similarly, if the underlying
undirected graph is acyclic, the directed graph is said to be a forest, and when we refer to the
k-connected components of G, we are referring to the subgraphs of G corresponding to the
k-connected components of the underlying undirected graph.

A graph embedded in the plane with no edge crossings is called a plane graph. A graph is
planar if it can be so embedded in the plane. Any (directed) cycle C in a plane graph divides
the plane into two connected regions: the interior and the exterior. Any vertex not on C that
is embedded in the interior region is said to be enclosed by C . We shall have opportunity to
speak of colored graphs; when we say that v is immediately enclosed by the colored cycle
C , it means that v is enclosed by C and there is no other colored cycle C ′ enclosing v whose
interior is a subset of the interior of C . A subgraph H is strictly enclosed by C if no edge of
H lies on C and every edge of H (except possibly its endpoints) is embedded in the interior
of C .

We further assume that the reader is familiarwith the standard complexity classes L,NL and
P (see, e.g., the text [8]).Wewill alsomake frequent reference to the logspace-uniform circuit
complexity classes NCk and ACk . NCk is the class of problems for which there is a logspace-
uniform family of circuits {Cn} consisting of AND, OR, and NOT gates, where the AND and
OR gates have fan-in two and each circuitCn has depth O(logk n). (The logspace-uniformity
condition implies that each Cn has only nO(1) gates.) ACk is defined similarly, although the
AND and OR gates are allowed unbounded fan-in. An equivalent characterization of ACk

is in terms of concurrent-read concurrent-write PRAMs with running time O(logk n), using
nO(1) processors. For more background on these circuit complexity classes, see, e.g., the text
[41].

A non-deterministic Turingmachine is said to be unambiguous if, on every input x , there is
at most one accepting computation path. If we consider logspace-bounded non-deterministic
Turing machines, then unambiguous machines yield the class UL. A set A is in co-UL if and
only if its complement lies in UL.
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The construction of DFS trees is most naturally viewed as a function that takes a graph
G and a vertex v as input and produces as output an encoding of a DFS tree in G rooted at
v. But the complexity classes mentioned above are all defined as sets of languages, instead
of as sets of functions. Since our goal is to place DFS tree construction into the appropriate
complexity classes, it is necessary to discuss how the complexity of functions fits into the
framework of complexity classes.

When C is one of {L, P}, it is fairly obvious what is meant by “ f is computable in C”;
the classes of logspace-computable functions and polynomial-time-computable functions
should be familiar to the reader. However, the reader might be less clear as to what is meant
by “ f is computable in NL.” As it turns out, essentially all of the reasonable possibilities are
equivalent. Let us denote by FNL the class of functions that are computable in NL; it is shown
in [24] each of the three following conditions is equivalent to “ f ∈ FNL.”

1. f is computed by a logspace machine with an oracle from NL.
2. f is computed by a logspace-uniformNC1 circuit family with oracle gates for a language

in NL.
3. f (x) has length bounded by a polynomial in |x |, and the set {(x, i, b) : the i th bit of f (x)

is b} is in NL.

Rather than use the unfamiliar notation “FNL,” we will abuse notation slightly and refer
to certain functions as being “computable in NL.”

The proof of the equivalence above relies on the fact that NL is closed under complement.
Thus, it is far less clear what it should mean to say that a function is “computable in UL”
since it remains an open question if UL is closed under complement (although it is widely
conjectured that UL = NL) [7, 36]). However, the proof from [24] carries over immediately
to the class UL ∩ co-UL. That is, the following conditions are equivalent:

1. f is computed by a logspace machine with an oracle from UL ∩ co-UL.
2. f is computed by a logspace-uniformNC1 circuit family with oracle gates for a language

in UL ∩ co-UL.
3. f (x) has length bounded by a polynomial in |x |, and the set {(x, i, b) : the i th bit of f (x)

is b} is in UL ∩ co-UL.

Thus, if any of those conditions hold, we will say that “ f is computable in UL ∩ co-UL.”
The important fact that the composition of two logspace-computable functions is also

logspace-computable (see, e.g., [8]) carries over with an identical proof to the functions
computable in LC for any oracle C . Thus, the class of functions computable in UL∩ co-UL is
also closed under composition. We make implicit use of this fact frequently when presenting
our algorithms. For example, we may say that a colored labeling of a graph G is computable
in UL ∩ co-UL, and that, given such a colored labeling, a decomposition of the graph into
layers is also computable in logspace, and furthermore, that—given such a decomposition of
G into layers—an additional coloring of the smaller graphs is computable in UL∩co-UL, etc.
The reader need not worry that a logspace-bounded machine does not have adequate space
to store these intermediate representations; the fact that the final result is also computable in
UL∩ co-UL follows from closure under composition. In effect, the bits of these intermediate
representations are re-computed each time we need to refer to them.

The following theorem, due to [39], gives an important example of a function that is
computable in UL ∩ co-UL.

Theorem 1 [39] The function that takes as input a directed planar graph G and two vertices
x and y and produces as output the length of the shortest path from x to y lies in UL∩ co-UL.
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Proof Thierauf and Wagner [39, Section 4] show that the techniques of [2, 12, 36] can be
combined to show that distance in planar graphs can be computed in UL∩co-UL, by reducing
the computation of distance to the planar reachability problem.

More precisely, Thierauf and Wagner observe that, given a planar graph G, the argument
in [2] shows how to produce a grid graph G ′ with certain edges labeled as “distinguished,”
with the property that every path p between two vertices in G can be associated with a
unique path p′ in G ′, where furthermore the length of the path p is equal to the number of
“distinguished” edges in p′. (Essentially, edges in G are mapped to paths in G ′, and some
of the edges in G ′ are marked as corresponding to “real” edges in G.) They then show that
a modification of the weight function from [12] has the property that, given the weight of
a path in G ′, one can easily determine the number of “distinguished” edges in the path and
thereby determine the distance between two vertices in G. ��

Finally, we will consider ACk circuits augmented with oracle gates for an oracle in UL ∩
co-UL, which we denote by ACk(UL ∩ co-UL).

3 DFS in DAGs logspace-reduces to reachability

In this section, we observe that constructing the lexicographically least DFS tree in a (not-
necessarily planar) DAG G can be done in logspace given an oracle for reachability in G.
But first, let us define what we mean by the lexicographically least DFS tree in G:

Definition 2 Let G be a DAG, with some ordering on the neighbors of each vertex. (For
example, with adjacency lists, we can consider the ordering in which the neighbors are
presented in the list. But we will also need to consider different orderings.) For any such
ordering, the lexicographic-least DFS traversal of G is the traversal done by Algorithm 1.

Input: (G, v)

Output: Sequence of edges in DFS tree
visited[v] ← 1
visited[w] ← 0 for all w 	= v

for every out neighbor w of v, in the given order do
if visited[w] = 0 then

print(v, w)

DFS(G, w)

end
end

Algorithm 1: Static DFS routine

That is, the lexicographically leastDFS tree ismerely aDFS tree, butwith the (very natural)
condition that the children of every vertex are explored in the given order. Importantly, when
we apply this procedure as part of our algorithm for DFS in planar graphs, the ordering on the
neighbors of v will be determined dynamically. (Note that in the algorithm that defines the
lexicographically least DFS traversal, no reference is made to the ordering of the neighbors
of v until it is visited; thus, it causes no problems if this ordering is not determined until
that time.) Also, we will need to apply our algorithm to directed acyclic multigraphs (i.e.,
graphs with parallel edges between vertices) where there is a logspace-computable function
f (v, e) that computes the ordering of the neighbors of vertex v, assuming that v is entered
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using edge e—where e can also be “null” if v is the root of the traversal. (That is, if the DFS
tree visits vertex v from vertex x , and there are several parallel edges from x to v, then the
ordering of the neighbors of v may be different, depending on which edge is followed from
x to v.) 2

As is observed in [16], the unique path from s to another vertex v in the lexicographically
least DFS tree in G rooted at s is the lexicographically least path in G from s to v.3

Now consider the following simple algorithm for constructing the lexicographically least
path in a DAG G from s to v, shown in Algorithm 2:

Input: (G, s, v, f )
Output: Lexicographically least path from s to v under f
current ← s; e ← null;
while (current 	= v) do

child ← first child of current (in the order given by f (current, e))
while (RE ACH(child, v) 	= T RUE) do

child ← next child of current (in the order given by f (current, e))
end
e ← a selected edge from current to child; output e
current ← child;

end
Algorithm 2: DAG DFS routine

The correctness of this algorithm is essentially shown by the proof of Theorem 11 of [16].
The algorithm for computing the lexicographically least DFS tree rooted at s can thus be

presented as the composition of two functions g and h, where g(G, s) = (G, s, L), where L
is a list, containing the lexicographically least path from s to each vertex v. Note that the set
of edges in the DFS tree in G rooted at s is exactly the set of edges that occur in the list L in
g(G, s) = (G, s, L). Then, h(G, s, L) is just the result of removing from G each edge that
does not appear in L . The function h is computable in logspace, whereas g is computable in
logspace with an oracle for reachability in G.

As discussed in Sect. 2, a DFS tree is not only a list of edges; one must also know the
order in which to explore the children of a node. Given a node v with children x and y,
in order to determine whether x should be visited prior to y, one can simply compute the
lexicographically least path from s to x and from s to y, and compare.

2 Let us give additional motivation for having a dynamically computed ordering on the neighbors of v. We
will be considering a DAG whose vertices consist of strongly connected components (SCCs) of the original
graph G. We will have already pre-computed several DFS trees of each SCC: one rooted at each node in the
SCC. Our final DFS tree will consist of (a) one DFS tree for each SCC (where the root of the DFS tree for
SCC C is some node rC ∈ C) along with (b) a selected edge (vD, rC ) connecting any two SCCs D and C
that are adjacent in the DFS tree of the DAG. But of course, to fully specify the DFS tree, we also need to
have an ordering on the neighbors of each vertex. In practice, we will be using the (precomputed) DFS tree of
D (rooted at rD) to determine the order of neighbors of vertex D in the DAG (whose vertices are SCCs). The
“lexicographically least” property of our DFS tree of the DAG depends only on the ordering of the neighbors
(and not on the selection of the specific edge between vertices in the directed acyclic multigraph).
3 In case amore detailed definition is necessary, here is what is meant by “the lexicographically least path from
s to v.” Let p and p′ be two paths from s to v. If p is shorter than p′, then p precedes p′ in the lexicographic
ordering. If p and p′ have the same length and are not equal, then they each start with s and agree up through
some vertex x , and first differ at the next vertex. Let us say that p has the edge (x, w) and p′ has the edge
(x, w′) The vertex x is entered via some edge e (where if x = s, then e is the null edge). The neighbors of x are
ordered according to f (x, e). Ifw precedesw′ in the ordering f (x, e), then p precedes p′ in the lexicographic
ordering.
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Since reachability in DAGs is a canonical complete problem for NL, we obtain the fol-
lowing corollary:

Corollary 3 Construction of lexicographically least DFS trees for DAGs lies in NL.

Similarly, since reachability in planar directed (not-necessarily acyclic) graphs lies in
UL ∩ co-UL [12, 38], we obtain:

Corollary 4 Construction of lexicographically least DFS trees for planar DAGs lies in UL ∩
co-UL.

A planar DAG G is said to be an SMPD if it contains at most one vertex of in-degree zero.
Reachability in SMPDs is known to lie in L [2].

Corollary 5 Construction of lexicographically least DFS trees for SMPDs lies in L.

4 Overview of the algorithm

The main algorithmic insight that led us to the algorithm in this paper was a generalization
of the layering algorithm that Hagerup developed for undirected graphs [21]. We show that
this approach can be modified to yield a useful decomposition of directed graphs, where
the layers of the graph have a restricted structure that can be exploited. More specifically,
the strongly connected components of each layer are what we call meshes; we exploit the
properties of meshes to construct paths (which will end up being paths in the DFS trees we
construct) whose removal partitions the graph into significantly smaller strongly connected
components.

The high-level structure of the algorithm is thus:

1. Construct a planar embedding of G.
2. Partition the graph G into layers (each of which is surrounded by a directed cycle).
3. Identify one such cycle C that has properties that will allow us to partition the graph into

smaller weakly connected components.
4. Depending on which properties C satisfies, create a path p from the exterior face either

to a vertex on C or to one of the meshes that reside in the layer just inside C . Removal
of p partitions G into weakly connected components, where each strongly connected
component therein is smaller than G by a constant factor.

5. Let the vertices on this path p be v1, v2, . . . , vk . The DFS tree will start with the path p
and append DFS trees for subgraphs G1,G2, . . . ,Gk to this path, where Gi consists of
all of the vertices that are reachable from vi that are not reachable from v j for any j > i .
(This is obviously a tree, and it will follow that it is a DFS tree.) Further, decompose each
Gi into aDAGof strongly connected components. Build aDFS tree of that DAG, and then
work on building DFS trees of the remaining (smaller) strongly connected components.

6. Each of the steps above can be accomplished in UL ∩ co-UL, which means that there is
an AC0 circuit with oracle gates from UL ∩ co-UL that takes G as input and produces
the list of much smaller graphs G1, . . . ,Gk , as well as the path p that forms the spine
of the DFS tree. We now recursively apply this procedure (in parallel) to each of these
smaller graphs. The construction is complete after O(log n) phases, yielding the desired
AC1(UL ∩ co-UL) circuit family.

In the exposition below, we first layer the graph in terms of clockwise cycles (which
we will henceforth call red cycles), and obtain a decomposition of the original graph into
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smaller pieces. We then apply a nested layering in terms of counterclockwise cycles (which
we will henceforth call blue cycles); ultimately we decompose the graph into units that are
structured as a DAG, which we can then process using the tools from Sect. 3. The more
detailed presentation follows.

4.1 Degree reduction and expansion

Definition 6 (of Exp�(G) and Exp�(G)) LetG be a plane digraph. The “expanded” digraph
Exp�(G) (respectively, Exp�(G)) is formed by replacing each vertex v of total degree
d(v) > 3 by a clockwise (respectively, counterclockwise) cycle Cv on d(v) vertices, where
the d(v) edges incident on v now connect to the d(v) vertices on Cv (so that each of those
vertices now has degree 3), respecting the cyclic ordering of edges around v.

We will also find it useful to refer to the process of converting Exp�(G) (or Exp�(G))
back to G, by contracting each expanded cycle Cv back to v.

Exp�(G) and Exp�(G) each have maximum degree bounded by 3, i.e., they are subcubic.
Next, we define the clockwise (and counterclockwise) dual for such a graph and also a notion
of distance.

Recall that for an undirected plane graph H , the dual (multigraph) H∗ is formed by
placing, for every edge e ∈ E(H), a dual edge e∗ between the face(s) on either side of e (see
Section 4.6 from [18] for more details). Faces f of H and the vertices f ∗ of H∗ correspond
to each other as do vertices v of H and faces v∗ of H∗. There is also a well-studied notion
of duality for directed plane graphs. The graph that is called the dual of a directed graph in
sources such as [10, 11, 26, 29] corresponds to the edges of weight one in what we define
below as the clockwise dual of G; for technical reasons we also include additional edges (in
the reverse direction) of weight zero, and we also make use of a counterclockwise dual:

Definition 7 (of Duals G� and G�) Let G be a plane digraph. Then, the clockwise dual G�

(respectively, counterclockwise dual G�) is a weighted bidirected version of the undirected
dual of the underlying undirected graph ofG. If e is an edge inG with faces f and g to the left
and right, respectively (in the direction of travel on e), then there is an edgewith weight one in
G� that is oriented from f ∗ to g∗ (thus corresponding to rotating e 90 degrees in a clockwise
direction). The edge in the other direction, from g∗ to f ∗, receives weight zero. (The weights
in G� are the opposite, with the weight one edge resulting from a counterclockwise rotation,
and the other direction having weight zero.). We inherit the definition of dual vertices and
faces from the underlying undirected dual.

Definition 8 LetG be a plane subcubic graph, and let f and g be faces ofG. Define d�( f , g)
to be the weight of the minimal-weight path from f ∗ to g∗ in G�. We define d�( f , g)
similarly.

Definition 9 For a plane subcubic digraph G, let f0 be the external face. Define the type
type�( f ) (respectively, type�( f )) of a face to be the singleton set {d�( f0, f )} (respectively,
{d�( f0, f )}). Generalize this to edges e by defining type�(e) (respectively, type�(e)) as
the set consisting of the union of the type� (respectively, type�) of the two faces adjacent
to e. Also, for a vertex v, define type�(v) (respectively, type�(v)) to be the union, over all
faces f incident on v, of type�( f ) (respectively, type�( f )).

It is easy to see by definition of the duals that the types of adjacent faces can differ by
at most one, and hence, no vertex can be adjacent to faces with three distinct types. We
formalize this in the lemma below:
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Lemma 10 In every subcubic graph G, the cardinality |type�(x)|, |type�(x)| where x is a
face, edge or a vertex is at least one and at most 2 and in the latter case consists of consecutive
non-negative integers.

Further, if v ∈ V (G) is such that |type�(v)| = 2, then there exist unique u, w ∈ V (G),
such that (u, v), (v,w) ∈ E(G) and |type�(u, v)| = |type�(v,w)| = 2.

Proof We first observe that if ( f1, f2) is a dual edge with weight 1, then by the triangle
inequality we have, d�( f0, f1) ≤ d�( f0, f2) ≤ d�( f0, f1)+1. Now, since each vertex v ∈
V (G) of a subcubic graph is incident on at most 3 faces the only case in which |type�(v)| >

2 corresponds to three distinct faces f1, f2, f3 being incident on a vertex. But here the
undirected dual edges form a triangle such that in the directed dual the edges with weight 1
are oriented either as a cycle or acyclically. In the former case by three applications of the
above inequality, we get that d�( f0, f1) ≤ d�( f0, f2) ≤ d�( f0, f3) ≤ d�( f0, f1), hence
all 3 distances are the same. Therefore, |type�(v)| = 1.

In the latter case, suppose the edges of weight 1 are ( f1, f2), ( f2, f3), ( f1, f3), then by
the above inequality again we get: d�( f0, f1) ≤ d�( f0, f2), d�( f0, f3) ≤ d�( f0, f1) +
1. Thus, both d�( f0, f2), d�( f0, f3) are sandwiched between two consecutive values
d�( f0, f1), d�( f0, f1) + 1. Hence, d�( f0, f1), d�( f0, f2), d�( f0, f3) must take at
most two distinct values, and thus |type�(v)| ≤ 2. Moreover, either type�( f1) 	=
type�( f2) = type�( f3) or type�( f1) = type�( f2) 	= type�( f3). Let e1, e2, e3 be such
that, e1� = ( f2, f3), e2� = ( f1, f3), e3� = ( f1, f2). Then, the two cases correspond to
|type�(e1)| = |type�(e2)| = 2, |type�(e3)| = 1 and to |type�(e1)| = 1, |type�(e2)| =
|type�(e3)| = 2, respectively. Noticing that e1, e3 are both incoming or both outgoing edges
of v completes the proof for the clockwise case. The proof for the counterclockwise case is
formally identical. ��
Definition 11 For a plane subcubic graph G as above, define red(G) to be a colored version
of G, where vertices and edges with a type of cardinality two in G� are colored red, and all
other vertices and edges are white. Similarly, define blue(G) to be the colored version of G,
where vertices and edges with a type of cardinality two in G� are colored blue, and all other
vertices and edges are white.

We will see later how to apply both the duals in G to get red and blue layerings of a given
input graph.

We enumerate some properties of red(G) and blue(G), where G is subcubic:

Lemma 12 1. Red vertices and edges in red(G) form disjoint clockwise cycles.
2. No clockwise cycle in red(G) consists of only white edges (and hence white vertices).
Similar properties hold for blue(G).

Proof 1. Firstly, note that a red edge must have red endpoints, as they are adjacent to the
same faces that the edge between them is adjacent to. It is immediate from Lemma 10
that if v is a red vertex, it has exactly one red incoming edge and one red outgoing edge,
proving that they form disjoint cycles. Now consider a red cycleC . The type of each edge
of C must be the same, since if there are two consecutive edges in C of different types,
it would make the common vertex adjacent to at least three vertices of different types
contradicting Lemma 10. This means that the distance in G� of each face bordering the
“outside” of C from the external face is one less than the distance of each face bordering
the “inside” ofC . But in any counterclockwise cycle, the distance inG� from the external
face to both sides of C are the same (by the way distances are defined in G�). Thus, C
is clockwise.
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2. Suppose C is a clockwise cycle. Consider the shortest path in G� from the external face
to a face enclosed by C . From the Jordan curve theorem (Theorem 4.1.1 [18]), it must
cross the cycle C . The edge dual to the crossing must be red. ��
The definitions above, which apply only to subcubic plane graphs, can now be extended

to a general plane graph G, by considering the subcubic graphs Exp�(G) (and Exp�(G)).
But first, we must make a simple observation about red(Exp�(G)) (respectively, about
blue(Exp�(G))).

Lemma 13 Let v ∈ V (G) be a vertex of degree more than 3. Let Cv be the corresponding
expanded cycle in Exp�(G). Suppose at least one edge of Cv is white in red(Exp�(G)). Then,
there is a unique red cycle C that shares edges with Cv .

Proof First we note that Cv does not contain anything inside it since it is an expanded cycle.
By Lemma 12, we know that Cv has at least one red edge. Suppose it shares one or more
edges with a red cycle R1. Since both cycles are clockwise and Cv has nothing inside, the
cycle R1 must encloseCv . Now suppose there is another red cycle R2 that shares one or more
edges with Cv . Then, R2 must also enclose Cv . But two cycles cannot enclose a cycle while
sharing edges with it without touching each other, which contradicts the above lemma that
all red cycles in a subcubic graph are vertex disjoint. ��

The last two lemmas allow us to consistently contract the red cycles in red(Exp�(G)), in
order to obtain a colored version of G which we call Col�(G). We make this more precise
in the following:

Definition 14 The colored graph Col�(G) (respectively, Col�(G)) is obtained by labeling
a vertex v ∈ V (G) having degree more than 3 as red iff the cycle Cv in red(Exp�(G)) has
at least one red edge and at least one white edge. Otherwise, the color of v is white.4 All
the edges of G, and all of the vertices of G having degree ≤ 3 inherit their colors from
red(Exp�(G)). The coloring of Col�(G) is similar.

We can now characterize the colorings in the graph Col�(G):

Lemma 15 The following hold:

1. A red cycle in Col�(G) is not connected via a red edge to any vertex in its interior.5

2. Every 2-connected component of the red subgraph of Col�(G) is a simple clockwise
cycle.

Proof Both parts of the lemma follow, if we can establish that the red subgraph of Col�(G)

consists of a collection of connected components, each of which is a remnant of exactly
one red cycle in red(Exp�(G)), where furthermore, each connected component consists of
a collection of red cycles that intersect at cut vertices (as illustrated in Fig. 5). Recall that
Col�(G) results from taking the subcubic graph Exp�(G) and contracting each cycle Cv

where v is a vertex in G of degree > 3. The red subgraph of red(Exp�(G)) consists of
disjoint cycles, by Lemma 12. Contracting any cycle Cv in red(Exp�(G)) does not increase

4 This may seem counterintuitive. If Cv is not entirely red, then v participates in some red cycle containing
edges not in Cv . Whereas if Cv is all red, then v is not connected to other red parts of G, and thus we color it
white.
5 The interior of a cycle is the subgraph of G induced on the vertices that are embedded inside C , but not on
C .
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Fig. 1 An example of a directed
graph G

Fig. 2 The graph Exp�(G)

the number of red connected components. Thus, each red connected component of Col�(G)

is a remnant of exactly one red cycle in Exp�(G). If Cv contains all red vertices, then v is
white in Col�(G) and thus is not part of any red subgraph. If Cv contains both red and white
vertices, then Cv consists of alternating red subpaths and white subpaths, and by Lemma 13
the red subpaths are all part of the same cycle; let us call it R. On contracting Cv , R is
transformed into a collection of clockwise red cycles (let’s call them R1, R2, . . .) sharing a
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Fig. 3 The graph red(Exp�(G)), along with types of the faces

Fig. 4 The graph Col�(G).
Notice that vertex v5 was
expanded into a red cycle, Cv5 ,
but is a white vertex in Col�(G)

because all of its edges were red
in red(Exp�(G))

common cut-vertex v. Furthermore, for any other Cx that contains edges from R, after Cv

is contracted, Cx now shares edges with exactly one of the cycles Ri . (This is because Cx is
embedded inside R. If it is possible to start at a vertex in Cv ∩ R, and travel to Cx and then
back to Cv , it follows that Cx is embedded in the closed region between R and Cv . When Cv

is contracted, that segment of R becomes one of the cycles Ri , and Cx is embedded inside
it.) Thus, when Cx is contracted, Ri in turn is transformed into a collection of cycles with x
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as a cut vertex. Inductively, this establishes the claim that, in turn, completes the proof of the
lemma. ��

Although the above lemmas have been proved for the clockwise dual, they also hold for
counterclockwise dual with red replaced by blue.

4.2 Layering the colored graphs

Definition 16 Let x ∈ V (Col�(G))∪E(Col�(G)). Let ��(x)be onemore than theminimum
integer that occurs in type�(x ′), for each x ′ ∈ V (Exp�(G))∪E(Exp�(G)) that is contracted
to x . Further let Lk(Col�(G)) = {x ∈ V (Col�(G))∪ E(Col�(G)) : ��(x) = k}. Similarly,
define ��(x) and Lk(Col�(G)). We call Lk(Col�(G)) the kth layer of the graph.

See Fig. 6 for an example. It is easy to see the following from Lemma 15:

Proposition 17 For every x ∈ V (Col�(G)) ∪ E(Col�(G)) the quantity ��(x) is one more
than the number of red cycles that strictly enclose x in Col�(G). All the vertices and edges
of a red cycle of Col�(G) lie in the same layer Lk+1(Col�(G)) for the enclosure depth k of
the cycle.

We had already noted above that the red subgraph of G had simple clockwise cycles as its
2-connected components. We note a few more lemmas about the structure of a layer of G:

Lemma 18 We have:

1. A red cycle in a layerLk+1(Col�(G)) does not contain any vertex/edge of the same layer
inside it.

2. Any clockwise cycle in a layer consists of only red vertices and edges.

Dually, a blue cycle in a layer does not contain any vertex or edge of the same layer inside
it.

Remark 19 Notice that the conclusion in the second part of the lemma fails to hold if we
allow cycles spanning more than one layer.

Proof The first part is a direct consequence of Proposition 17. For the second part, we mimic
the proof of the second part of Lemma 12. Consider a clockwise cycle C ⊆ Lk+1(Col�(G))

that contains awhite edge e. Every face adjacent toC from the outsidemust have type� = {k}
because C is contained in layer k + 1. Then, the type� of the faces on either side of e is the
same and therefore must be {k}. Let f be a face enclosed by C that has type�( f ) = {k}.
Thus, it must be adjacent to a face of type� = {k − 1}. But this contradicts that every face
inside and adjacent to C must have type� = {k′} for k′ ≥ k. ��

The lemmas above show that the strongly connected components of the red subgraph of a
layer consist of red cycles touching each other without nesting, in a tree like structure. This
prompts the following definition:

Definition 20 For a red cycle R ⊆ Lk(Col�(G)) we denote by GR , the graph induced by
vertices of Lk+1(Col�(G)) enclosed by R.

Now we combine Definitions 14 and 16:
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Fig. 5 An example of contracting expanded cycles. The figure on right shows the graph G after contracting
the expanded cycles C1, C2, C3 in red(Exp�(G))

Definition 21 Each vertex or edge x ∈ V (G) ∪ E(G) gets a red layer number k + 1 if it
belongs to Lk+1(Col�(G)) and a blue layer number l + 1, if it belongs to Ll+1(Col�(GR))

where R ⊆ Lk(Col�(G)) is the red cycle immediately enclosing x . In this case, we say that
x belongs to sublayer Lk+1,l+1(Col(G)).

Moreover, this defines the colored graph Col(G) by giving x the color red if it is red in
Col�(G), and also giving x the color blue if it is blue in Col�(GR). (Notice it could be both
red and blue). The vertex x is white if it is white in both Col�(GR) and Col�(GR).

By Proposition 17, we can also say that a sublayer Lk+1,l+1(Col(G)) thus consists of
edges/vertices that are strictly enclosed inside k red cycles and inside l blue cycles that are
contained inside the red cycle that immediately encloses them.

We now present some observations and lemmas regarding the structure of a sublayer.
Since every edge/vertex in Lk+1,l+1(Col(G)) has the same red and blue layer number, it

is clear that there can be no nesting of colored cycles. Also we have:

Lemma 22 Every clockwise cycle in a sublayer Lk+1,l+1(Col(G)) consists of all red edges
and vertices and any every counterclockwise cycle in the sublayer consists of all blue vertices
and edges. (Some edges/vertices of the cycle can be both red as well as blue)

Proof This is a direct consequence of Lemma 18 applied to the sublayer Lk+1,l+1(Col(G)),
which is a (counterclockwise) layer in graph GR for some red cycle R. ��

Thus, we can refer to clockwise cycles and counterclockwise cycles as red and blue cycles,
respectively.

Definition 23 For a red or blue colored cycle C of layer Lk,l(Col(G)), we denote by GC

the graph induced by vertices of Lk′,l ′(Col(G)) enclosed by C , where {k′, l ′} is {k + 1, 1} or
{k, l + 1} according to whether C is a red or a blue cycle, respectively.

Note that:

Proposition 24 Two cycles of the same color in Lk+1,l+1(G) cannot share an edge.

This is since neither is enclosed by the other as they belong to the same layer, and as they
also have the same orientation. Cycles of different colors can share edges but we note:
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(a) (c)

(b) (d)

(e) (f)

Fig. 6 a is a graph G. b is the graph Col�(G). We omit the cycle expansion and contraction procedure here.
c Shows Col(G), which we get from G after applying blue labelings to each red layer we obtained in the
previous figure. The vertices and edges colored purple are those that are red as well as blue. d Represents the
sublayer L1,1. The dashed edges and empty vertices are not part of the layer. e Represents the sublayer L2,1.
f Represents the sublayer L3,1

Lemma 25 Two cycles of a sublayer Lk+1,l+1(Col(G)) can only share one contiguous seg-
ment of edges.

Proof Let a red cycle R and a blue cycle B in a sublayer share two different contiguous
segments of edges, from x to u and from v to y, where the path R(u, v) in R and the path
B(u, v) in B share no edges. Notice that the graph (R\R(u, v))∪ B(u, v) is also a clockwise
cycle that encloses the edges of R(u, v), contradicting the first part of Lemma 18. ��
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We consider the strongly connected components of a sublayer and note the following
lemmas regarding them:

Lemma 26 The trivial strongly connected components of a sublayer (those that consist of a
single vertex) are white vertices. Let H be a non-trivial strongly connected component of a
sublayer, and let o be the external face of H. Then,

1. Every vertex/edge in H is blue or red (possibly both).
2. The boundary of every face of H, except possibly o, is a directed cycle.
3. Every face of H other than o has at least one edge adjacent to o.

Proof 1. In a non-trivial strongly connected graph every vertex and edge lies on a cycle and
therefore by Lemma 22 must be colored red or blue (or both).

2. Suppose there is a face f the boundary of which is not a directed cycle. Look at a
directed dual (say clockwise) of H . This dual must be a DAG since the primal is strongly
connected. The vertex f ∗ in the dual corresponding to face f of H has in-degree at least
one and out-degree at least one since it has boundary edges of both orientations, hence
the edges adjacent to f ∗ do not form a directed cut of the dual.
Let o∗ denote the dual vertex corresponding to the outer face o of H . In order to prove
the claim, it is sufficient to show the existence of a directed cut C∗ that separates f ∗
and o∗, since it would imply by cut cycle duality that there is a directed cycle C in H
that encloses the face f w.r.t the outer face. Since the boundary of f is not a directed
cycle, this means that C must strictly enclose at least one edge of the boundary of f ,
contradicting Lemma 18. To see that the cut exists, consider a topological sort ordering
of the dual (it is a DAG). Let the number of a dual vertex v∗ in the ordering be denoted
by n(v∗). W.l.o.g, let n( f ∗) < n(o∗). Consider the partition of the dual vertices:

A = {v∗ | n(v∗) ≤ n( f ∗)}, B = {v∗ | n(v∗) > n( f ∗)}
By definition of topological sort, all edges across this partition must be directed from A
to B; hence, it is a directed cut, and therefore, it must also contain a subset which is a
minimal directed cut. But clearly the minimal cut is not the set of edges adjacent to f ∗
since it has both out and in-degree at least one, hence proving the claim. Hence, every
face in H must be a directed (hence colored) cycle (by Lemma 22).

3. We observed from the proof above that no vertex in the dual of H , except possibly the
vertex o∗ corresponding to the outer face of H , can have both in-degree and out-degree
more than zero (i.e., every dual vertex except o∗ is a source or a sink). Therefore, if any
dual vertex f ∗ has a directed path to o∗ or vice versa, then the path must be an edge and
we are done. Suppose there is no directed path from f ∗ to o∗ and w.l.o.g. let f ∗ be a
source. Consider the trivial directed cut C1:

A = { f ∗}, B = V (H)\A
This is a cut since there are no edges from B to A, and this cut clearly corresponds to the
directed cycle which is the boundary of face f in H .
Now consider the cut C2:

A′ = {v∗ | v∗ is reachable from f ∗}, B ′ = V (H)\A′

Clearly, this is a f ∗-o∗ cut with no edge from a vertex in A′ to a vertex in B ′ and o∗ ∈ B ′.
But this f ∗-o∗ cut is different from C1 since f ∗ is a source vertex and hence A′ has at
least one more vertex than just f ∗. Hence, this corresponds to a directed cycle in H that
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strictly encloses at least some edge of f , and we again get a contradiction of Lemma 18.
��

The strongly connected components of a sublayer hence consist of intersecting red and
blue facial cycles, with every face having at least one boundary edge adjacent to the outer
face of the component.

Definition 27 We call the strongly connected components of a sublayer Lk,l meshes.

5 Mesh properties

Definition 28 Given a subgraph H of G embedded in the plane, we define the closure of H ,
denoted by ˜H , to be the induced graph on the vertices of H together with the vertices of G
that lie in the interior of faces of H (except for the outer face of H ).

For convenience, we call a face of a graph that is not the outer face an internal face.
From Lemmas 22 and 26, we have a bijection: every face of a mesh, except possibly its

outer face, is a directed cycle, and every directed cycle in a mesh is the boundary of a face
of the mesh.

Definition 29 Let 0 < α < 1. An α separator of a digraph H that is a subgraph of a digraph
G is a set of vertices of H whose removal from H separates ˜H into subgraphs, where no
strongly connected component has size greater than α|G|. An (α, r) path separator is a
sequence of vertices 〈v1, . . . , vn〉, that is an α separator and also is a directed path. Here,
r = v1 is called the root of the path separator. We will have occasion to omit either or both
of α, r when they are clear from the context.

Definition 30 LetG be a graph and let M be a mesh in a sublayer ofG. For an internal face f
of M , we define its weight, denoted byw( f ), to be |V ( ˜f )|. Letw(H)where H is a subgraph
of M be defined as |V ( ˜H)|.
Definition 31 For a mesh M , we call a vertex that is adjacent to the outer face of M an
external vertex, and a vertex that is not adjacent to the outer face an internal vertex. We call
vertices of degree more than two junction vertices.

If p = 〈v1, v2, . . . , vk〉 is a directed path, for k ≥ 1, such that v2, . . . , vk−1 are all vertices
of degree two, but v1, vk have degree more than two 6, then we call p a segment. We call vk
the out junction neighbor of v1 and v1 the in junction neighbor of vk .

We call a segment with all edges adjacent to the outer face an external segment, and a
segment with no edge adjacent to the outer face an internal segment. If the end points of
an internal segment are both internal vertices also, we call the segment an i-i-segment.

The rest of this section is devoted to a proof of the following, which asserts that we can
construct a path separator in a mesh, assuming that no internal face of the mesh is too large.

Lemma 32 Suppose w( f ) < w(G)/12 holds for every internal face f of a mesh M that is
a subgraph of G. Then, from any external vertex r of M, we can find (in UL ∩ co-UL) an 11

12
path separator of M, starting at r .

6 Notice that here we explicitly allow k = 1 so that v1 = vk .
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Fig. 7 An example of a mesh

Fig. 8 An example of a path separator. The vertex v is a central node, and the green path is a separator

The high level idea is that using a clique sum decomposition of 2, 3-cliques (see Fig. 12)
we find a “central” vertex v in the mesh M , such that we can find a path from the external
vertex r to v, and then extend the path around one of the faces adjacent to v to get the path
separator (all faces are directed cycles by Lemma 26). Because every face touches the outer
face and the weight of every face is small by the hypothesis of the lemma, we can always
find a face adjacent to v to encircle such that removing the path leaves no large (weakly)
connected component.

The vertices of M with degree two (in-degree 1 and out-degree 1 because M is strongly
connected) are not important since they can be seen as just “subdivision” vertices. Now we
will look at the structure of a mesh around an internal junction vertex, and the way the rest
of the mesh is attached to that structure. Also, we state here that we will abuse the notion of
3-connected components by ignoring the non-junction vertices for convenience.

Lemma 33 If v is an internal junction vertex of a mesh and e1, . . . , ek are the edges adjacent
to v in the cyclic order of embedding, then the edges alternate in directions, i.e., if e1 is
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outgoing from v, then e2 is incoming to v and e3 is outgoing and so on. Consequently, v has
even degree (at least 4).

Proof Let ei , ei+1 be two edges adjacent to v, that are also adjacent in the cyclic order of the
drawing. Since they are adjacent in the drawing, they must enclose between them, a region,
and hence a face, which is not the outer face. But, by Lemma 26, the boundary of every
non-outer face in a mesh is a directed cycle, hence v, ei , ei+1 lie on a directed cycle, with
both edges adjacent to v. Hence one of them must be an out edge from v, and the other
incident toward v. ��
Definition 34 Let v be an internal junction vertex of degree 2d in a mesh M , and let its
junction neighbors be (u1, w1, u2, w2, . . . , ud , wd) in clockwise order starting from edge
〈u1, v〉(the wi ’s are out neighbors, and ui ’s the in neighbors, since junction neighbors alter-
nate).

Every adjacent pair of edges incident to v borders a face that is not the outer face. Let
fu,v,w denote the face bordered by v and the junction neighbors u and w of v which are
adjacent in cyclic order around v. The boundary of fu,v,w can be written as three disjoint
parts (except for endpoints), segment(u, v) + segment(v,w) + petalw,u , where the third
part denotes a simple path from w to u along the face boundary. We will use the notation
petalw,u to denote the corresponding boundary for any face fu,v,w adjacent to v. We define
flower(v) as

⋃{vertices on the boundary of faces adjacent to v} (see Fig. 9).

We note the following property of petals.

Proposition 35 For all adjacent junction neighbor pairs wi , u j of an internal vertex v,
petalwi ,u j are disjoint, except possibly the end points.

Proof Petals of two faces must be internally disjoint because the corresponding faces share
the vertex v and two faces cannot have a non-contiguous intersection, by Lemma 25. ��

For an internal junction vertex v, the union of the petals around flower(v) thus form an
undirected cycle around v, with at least four alternations in directions. Nowwe define bridges
of the cycle, which (roughly) are components of M we get after removing flower(v), leaving
the points of attachment intact. We use the formal definition of bridges from [40]:

Definition 36 For a subgraph H of M , a vertex of attachment of H is a vertex of H that is
incident with some edge of M not belonging to H . Let J be an undirected cycle of M . We
define a bridge of J in M as a subgraph B of M with the following properties:

1. each vertex of attachment of B is a vertex of J .
2. B is not a subgraph of J .
3. no proper subgraph of B has both the above properties.

We denote by 2-bridge, bridges with exactly two vertices of attachment to the specified
cycle, and by 3-bridge, bridges with three or more vertices of attachment.

Note that for the cycle formed by petals of flower(v), the vertex v along with paths leading
to/ coming from flower(v) also form a bridge, but we call that a trivial bridge and do not take
it into consideration.

Lemma 37 1. The vertices of attachment of a 2-bridge of flower(v) must both lie on one
petal of flower(v).
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2. The vertices of attachment of a 3-bridge of flower(P) can lie on one, or at most two,
adjacent petals. Moreover, in the latter case the junction neighbor of v common to both
petals must be a vertex of attachment of the 3-bridge.

3. For an internal vertex v, and an external vertex r of M, let p = 〈r , . . . , u1, v〉 be a
simple path from r to v, where u1 is an in junction neighbor of v. Let the other junction
neighbors of v be named as in Definition 34 in cyclic order from u1. For j ∈ {i, i + 1},
consider an extended path of p, pwi ,u j = 〈r , . . . , u1, v, wi 〉+ petalwi ,u j +〈u j , . . . , v〉,
excluding the last edge incident to v in the sequence. That is, pwi ,u j goes from r to v, then
to an out junction neighborwi , and then wraps around fu j ,v,wi by taking petalwi ,u j and
then the segment back toward v from u j . If there is a bridge of flower(v) of which u1 is a
point of attachment and which also includes the edge of p incoming to u1, we denote it
by Bin. The set V ( ˜M)\V (pwi ,u j ) can be partitioned into four disconnected parts, called
Vleft , Vright , Vf , and Vrem, such that:

Vleft = ({ ˜fu1,v,w1 ∪ ˜fu2,v,w1 ∪ ˜fu2,v,w2 . . . ∪ ˜fui ,v,wi−1} ∪ { ˜fui ,v,wi if j = i + 1}
∪ {vertices in the closure of bridges attached to the petals of these faces,

excluding Bin}
∪ {the “left” part of Bin (see Fig. 13)})\V (pwi ,u j )

Vright = ({ ˜fui ,v,wi+1 ∪ ˜fui+2,v,wi+1 . . . ∪ ˜fud ,v,wd } ∪ { ˜fui+1,v,wi if j = i}
∪ {vertices in the closure of bridges attached to petals of these faces,

excluding Bin }
∪ {the “right” part of Bin (see Fig. 13) }\V (pwi ,u j )

Vf = ˜fu j ,v,wi \V (pwi ,u j )

Vrem = (
⋃

{vertices in the closure of all bridges that have vertices

of attachment only in petalwi ,u j })\V (pwi ,u j ).

There is no undirected path between any vertex of one of these four sets to any vertex of
another. The path pwi ,ui is therefore a path separator that gives these components.

Proof 1. Let x, y be the two vertices of attachment of the 2-bridge B on flower(v). Since
bridges are connected graphs without the edges of the corresponding cycle (by the third
property of Definition 36), there must be an undirected path, p in the bridge connecting
x, y, without using any edge of flower(v). If x and y were not on the same petal, then this
path along with the other petals in flower(v), must clearly enclose a junction neighbor of
v, sayw (see Fig. 9). Thus,w is not adjacent to the outer face. Now sincew is an internal
junction vertex, and two of its adjacent faces are also adjacent to v, look at another face f
adjacent to w and not adjacent to v. (Internal junction vertices have at least four adjacent
faces.) The boundary of this face cannot touch B since that would make it a part of
B and consequently w would be a vertex of attachment of B to flower(v). Therefore
the boundary of f is enclosed within the paths p and the part of flower(v) that is also
enclosed by p. Therefore f has no external edge, contradicting Lemma 26.

2. Let x1, x2, . . . , xk be the vertices of attachment of the bridge B on flower(v), in the
cyclic order of boundary of flower(v). Clearly, if the vertices of attachment lie on more
than two petals of v, then at least one petal will be completely enclosed by B, which is
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Fig. 9 A vertex v and flower(v). B is a bridge with two points of attachment x, y on two different petals of
flower(v). On the right are drawn the bridge B itself, and its closed version B◦. The only way the boundary
of fw′,w,y can have an external edge is if it touches B, making w a point of attachment of B also

not possible since every petal must have at least one external edge. Let us say they lie
on two adjacent petals, and the junction neighbor common to both of them is w. By the
same argument as above, w must have an edge other than those of adjacent petals of v,
that connect it to B. Therefore, w must be a vertex of attachment of B to flower(v).

3. First we note that petalwi ,u j will have an external vertex in it since the boundary of every
face has at least one external vertex (Lemma 26), and segments (u j , v) and (v,wi ) are
internal. Let z be an external vertex on petalwi ,u j . The path p starts at external vertex
r , comes to u1, v, wi , and reaches external vertex z on its way back to v. It will clearly
divide ˜M into at least two parts by the Jordan curve theorem. Since pwi ,u j is just a wrap
around the face fu j ,v,wi after z, it is clear that removing p puts all of the vertices of
˜fu,v,w in one disconnected region, while w1, u2, . . . , wi−1 and everything connected to
them lie in another region, which we call Vleft , and wi+1, ui+2, . . . , wd and everything
connected to them lie in yet another (Vright). ��
We introduce another notation for an extension of a bridge:

Definition 38 For a bridge B of flower(v), we define B◦ as B along with segments
of flower(v) that lie between consecutive vertices of attachment of B. We call this the
closed bridge of B.

Now we will give definitions/lemmas regarding the “internal structure” of meshes, that
will be useful to define the “center” of a mesh.

Definition 39 For a mesh M , we call its internal-skeleton, denoted by I (M), the induced
subgraph on the vertices of i-i-segments of M (see Fig. 11).

Lemma 40 1. For a mesh M, the graph I (M) is a forest.
2. If H is a 3-connected induced subgraph of M(ignoring subdivision vertices), then I (H)

is a tree.

Proof 1. Suppose there were an undirected cycle in M of all internal segments, then this
cyclemust enclose a facewhose boundaries are also all internal segments. This contradicts
Lemma 26 as it states that every face must have at least one external edge, and hence
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an external segment. Hence there can be no cycle (directed or undirected) consisting of
all internal segments, and consequently, no cycle (directed or undirected) of all internal
vertices.

2. Let H be a 3-connected induced subgraph of M . By definition, I (H) is obtained from M
by removing all external edges and external non-junction vertices. Suppose I (H) is not
a tree, and hence consists of two or more disconnected trees. Let T1 and T2 be any two
trees in I (H). Let x be a vertex in T1 and y be a vertex in T2. Since H is 3-connected,
there must be at least three disjoint paths (undirected) between x and y. Clearly in a plane
graph, if there are three disjoint paths between two vertices, one of the paths must be
strictly enclosed in the closed region formed by other two. Therefore there must a path
between x and y that is strictly enclosed inside the boundary of H , and hence does not
contain any edge or vertex adjacent to the outer face of H . Hence x and y cannot become
disconnected after removing external edges and external non-junction vertices leading
to a contradiction that I (H) is disconnected. Therefore, I (H) must be a tree. ��
We will next give a procedure to define a “center” of a mesh.

Definition 41 For a mesh M , let TM denote the tree obtained by the 1, 2-clique sum decom-
position of M . The nodes of TM are of two types, clique nodes (cut vertices or separating
pairs), and piece nodes, which are either 3-connected parts or cycles. Every piece node is
adjacent to a clique node and vice versa. (See [15, Section 3] for background about this
decomposition in the special case when the graph is 2-connected. For general planar graphs,
we can first identify the cut vertices and find the block cut tree. For every clique node of a
cut vertex v that is attached to a piece node of block B containing a 3-connected separating
pair, we replace the block B by its triconnected decomposition tree, TB , and attach the clique
node of v to a piece node of the triconnected block of TB that contains v).

Proposition 42 The tree TM defined above is a tree decomposition.

Proof It is easy to see that every vertex, as well as every edge of the graph occurs in at least
one piece node. To see the coherence property, we observe that the only vertices that occur in
more than one node are those that are part of a 3-connected separating pair or a cut vertex. If
v is such a node and is not a cut vertex then it occurs in a subtree of the biconnected block it
belonged to after the block cut decomposition(since the triconnected decomposition is a tree
decomposition). If it is a cut vertex, then in our construction, we have joined the subtrees in
the triconnected decomposition trees to the clique node of v, which again gives a subtree. ��

We will now use a modified version of the tree vertex separator theorem, to show that
vertices of one of the nodes of TM form a 1

2 -separator of M . We use the following fact from
the proof of [14, Lemma 7.19].

Proposition 43 Let TG be a tree decomposition of a graph G. The vertices of one of the bags
of TG from a 1

2 separator of G.

Now we define the center of a mesh.

Definition 44 Consider the 1
2 separator node of TM as described in Proposition 43. If it is a

separating pair, a cut vertex, or a face cycle, we call that subgraph the center of M .
If it is a 3-connected node P , look at its internal skeleton I (P). We construct a new graph

I ′(P)which is isomorphic to I (P) but has edges directed differently. Let u, v be two adjacent
internal junction vertices of M . To give direction to a segment(u, v) in I ′(P), we consider
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the unique bridge B of flower(u) that contains v as a point of attachment; we denote the
closed bridge of B by B◦

u(v). B◦
v(u) is defined analogously.We orient (u, v) in the direction of

the heavier of B◦
u(v) and B◦

v(u) (breaking ties arbitrarily), where the weights of B◦
u(v), B◦

v(u)

are | ˜B◦
u(v)| and | ˜B◦

v(u)|, respectively.
The center of M is defined to be flower(v) in this case, where v is the sink node of I ′(P).

We show why I ′(P) cannot have more than one sink.

Lemma 45 The tree I ′(P) defined above will have exactly one sink vertex.

Notice, while the underlying undirected graph of I ′(P) is a tree, a sink is defined with
respect to the orientations specified in the previous definition.

Proof Suppose I ′(P)has two junction vertices x and y that are sinks. They cannot be adjacent,
so consider the unique undirected path in I ′(P) between x and y. There must be a source
z on the path. Let neighbors of z be x ′, y′, lying on the path from x to z and from z to y,
respectively.

Let B◦
z (x

′) and B◦
z (y

′) denote the bridges of flower(z)with points of attachments x ′ and y′,
respectively. Then, by the orientations of the edges we have: |˜B◦

z (x
′)| ≥ |˜B◦

x ′(z)| which gives
|˜B◦

z (x
′)| > |˜B◦

z (y
′)| since B◦

z (y
′) is clearly a proper subgraph of B◦

x ′(z) and |˜B◦
z (y

′)| ≥ |˜B◦
y′(z)|

which gives |˜B◦
z (y

′)| > |˜B◦
z (x

′)| which is clearly a contradiction. ��
Lemma 46 If the center of M is flower(v), and w is an out neighbor of v, then w(B◦

v(w)) ≤
1
2 (w( ˜M − w(Vrem(w, u)))), where u is either of the two in neighbors of v that are adjacent
to w around flower(v), and Vrem(w, u) denotes bridges with all vertices of attachment in
petalw,u.

Proof Since the center is flower(v), we have that w(B◦
v(w)) ≤ w(B◦

w(v)). But Vrem(u, w)

has empty intersection with each of B◦
v(w) and B◦

w(v). Thus, w(B◦
v(w)) + w(B◦

w(v)) ≤
w( ˜M) − w(Vrem(u, w)). The lemma follows. ��
Lemma 47 1. If the center of M is not of the form flower(v)where v is an internal node of a

3-connected component, then removing it from ˜M disconnects ˜M into weakly connected
components, each with weight less than 1

2w( ˜M).
2. If the center of M is flower(v) for an internal node v of a 3-connected component P,

then on removing flower(v) from ˜M, no weakly connected component has weight more
than 1

2w( ˜M).

Proof 1. This follows from the vertex separator lemma for trees with weighted vertices.
2. This follows from the v being the sink node of I ′(P). ��
Lemma 48 For every possible path pwi ,u j around v as defined in Lemma 37, Vrem consists

of a disjoint union of weakly connected components, each of which has weight ≤ 1
2 (w(M)).

Proof A (weakly connected) component of Vrem is a bridge, attached to petalwi ,ui or to
petalwi ,ui+1 via its vertices of attachment. In the clique sum decomposition, these vertices
of attachment will always contain a 1 or 2 separating clique, since if a bridge is attached to a
petal via three or more nodes, the first and the last vertices of attachment form a separating
pair that separates the bridge from flower(v). Hence it is a branch remaining in TM after
removing the 3-connected piece node that is central in TM . Since every branch after removal
of the central piece of TM has weight ≤ 1

2 (w(M)), every (weakly) connected component of
Vrem has weight ≤ 1

2 (w(M)). ��
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Fig. 10 An example of a mesh

Fig. 11 The internal skeleton of
the mesh. One of its components
is a single node

For a path pwi ,u j (where j ∈ {i, i + 1}) we sometimes use the notation Vrem(wi , u j ) to
specify the petal where the bridges of Vrem are attached.

5.1 Mesh separator algorithm

Now we give the algorithm to find an (α, r) path separator in a mesh M(G), with r ∈ V (M),
assuming the hypothesis of Lemma 32. Recall from Definition 29 an (α, r) path separator is
a directed path starting at (the “root”) r that is also an α separator.

1. Find the decomposition tree, TM of M with 2-cliques and 1-cliques as the separating sets.
2. Find the center of the mesh M . It will either be a cut vertex, a separating pair, a cycle,

or flower(v) for some internal vertex v.
3. If it is a cut vertex, we just find a path from the root r to it. If it is a separating pair (u, v),

both the vertices must lie on a same face, which is a directed cycle. In both this case, and
also the case in which the center is a cycle, find a path from the root to any vertex of the
face that touches it the first time, and then extend the path by encircling the cycle.

4. If it is flower(v) for some internal vertex v, find a path p = 〈r , . . . , u1, v〉 to v. Let the
junction neighbors of v in clockwise order starting from (u1, v), be w1, u2, w2, . . . , wd ,
with thew’s being out junction neighbors and the u’s being in junction neighbors. Starting
clockwise from segment 〈u, v〉, find the first index i and j ∈ {i, i + 1} s.t. after remov-
ing the extended path pwi ,u j , (defined in Lemma 37) the remaining strongly connected

components are smaller than 11
12w(G).
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Fig. 12 The tree decomposition of themesh using 1,2-clique sums. The nodes encircled red are clique separator
nodes

Fig. 13 An example of a path separator. The vertex v is a central node, and the green path is a separator

The algorithm above can clearly be implemented in logspace with an oracle for planar
reachability, and thus, it can be implemented in UL ∩ co-UL.

It remains to show that the “first i” mentioned in the final step actually exists.

Lemma 49 If the center of M is flower(v) for some internal vertex v, then there will always
exist an adjacent face fui ,v,wi s.t. the path pwi ,ui is an

11
12 -separator.

Proof We have the following two cases:

1. For some i and j ∈ {i, i + 1}, w(Vrem(wi , u j )) ≥ 1
2w(M).
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Then, by Lemma 48, pwi ,u j separates Vrem(wi , u j ) from the rest of the graph, and also

every weakly connected component in Vrem(wi , u j ) has weight≤ 1
2w(M). Hence, every

weakly connected component in M after removing pwi ,u j has weight ≤ 1
2w(M).

2. For every pwi ,u j ,w(Vrem(wi , u j )) ≤ 1
2w(M).

We know that for any index i and j ∈ {i, i + 1}, if f = fu j ,v,wi , then w( f ) ≤ w(G)/12
by the hypothesis of Lemma 32. Starting clockwise from pu1,w1 , at first Vle f t is small,
and on shifting from pwi ,ui to pwi ,ui+1 or from pwi ,ui+1 to pwi+1,ui+1 , the increase in Vle f t

is bounded above by w( f ) + w(Vrem(wi , u j )) + w( ˜B◦
v(wi )). Recall that

a. w( f ) ≤ w(G)/12 (by the hypothesis of Lemma 32).
b. w(Vrem(wi , u j )) ≤ 1

2w(M) (by hypothesis for this case).

c. w( ˜B◦
v(wi )) ≤ 1

2 (w(M) − w(Vrem(wi , u j ))) (by Lemma 46).

Thus, the addition toVle f t in each iteration is≤ 1
12w(G)+w(Vrem(wi , u j ))+ 1

2 (w(M))−
1
2 (w(Vrem(wi , u j )))), which is equal to 1

12w(G) + 1
2w(Vrem(wi , ui )) + 1

2 (w(M)) ≤
1
12wG + 3

4w(M). Thus we can stop the first time w(Vle f t ) is greater than w(G)/12. So,
we have w(Vle f t ) ≤ 2

12w(G) + 3
4w(M) ≤ 11

12w(G), and w(Vright ) ≤ 11
12w(M), and

w( f ) ≤ 1
12w(M), and w(Vrem) ≤ 1

2w(M). Thus, we have an upper bound of 11
12w(G)

on all the disconnected components. Hence, pxi ,wi is a
11
12 path separator. ��

6 Path separator in a planar digraph

Having seen how to construct a path separator in a mesh, we now show how to use that to
construct an ( 1112 , r) path separator in any planar digraph.

1. Given a graph G, first embed the graph so that the root r lies on the outer face. Through
the root, draw a virtual directed cycle C0 that encloses the entire graph, and orient it, say
clockwise. Find the layering described in Sect. 4 and output it on a transducer. Cycle C0

will be colored red and will be in the sublayer L0,0.
2. In the laminar family of red/blue cycles, find the cycle C s.t. w(C) is more than |G|/12,

but no colored cycle C ′ in the interior of C has the same property. Such a cycle will
clearly exist (it could be the virtual cycle C0). Let the sublayer of C be Lk,l .

3. Find a path p from the root r to any vertex rC of the cycle C such that no other vertex
of C is in the path. As seen above in Lemma 26, the graph in the interior of C and
belonging to the immediately next sublayer (Lk+1,l if C is clockwise and Lk,l+1 if C is
counter-clockwise) is a DAG of meshes. There are two cases possible:

a. The graph ˜C has no strongly connected components of weight larger than |G|/12.
In this case, we simply extend the path p from rC by encircling the cycle C till the
last vertex and stop.

b. The graph ˜C has a strongly connected component of weight more than |G|/12. In
this case, we extend p from rC by encircling C till the last vertex u on C that can
reach any such component MC . Then extend the path from u to any vertex of MC

and apply the mesh separator lemma (Lemma 32) to obtain the desired separator.
(Observe that MC satisfies the hypothesis of Lemma 32.)

Lemma 50 The path p obtained by the above procedure is an 11
12 separator.

Proof We look at the two cases from step 3 in the algorithm:
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Fig. 14 The cycle C is a cycle
satisfying the property stated in
step 2 of the algorithm. The mesh
M in the next sublayer is heavy,
so we find a path from the last
vertex on C that can reach M (in
this case y), and then apply the
algorithm of previous section on
M

1. In this case, it is clear that the interior and exterior of cycle C are disconnected by p.
The exterior of C has size ≤ 11

12 |G| (by definition of C), and in its interior every strongly
connected component has weight at most |G|/12. Thus, this satisfies the definition of an
11
12 separator.

2. We took the last edge in C from rC that can reach the mesh MC , and extended the
path to MC . Thus, after removing p, one weakly connected component consists of the
exterior of G, along with (possibly) some vertices in the interior of C that cannot reach
any “large” mesh in the interior. Since MC has weight greater than 1

12 |G|, no strongly
connected component embedded outside of MC can have weight more than 11

12 |G|. Also,
after removing path p, Lemma 32 guarantees that no other strongly connected component
will have weight more than 11

12 |G|. Thus, this is an 11
12 separator.

Hence, overall we can guarantee an 11
12 path separator in G. ��

7 Building a DFS tree using path separators

Given a graph G, one can determine in logspace if G is planar, and then compute a planar
embedding [6, 35]. Thus, it will suffice to give a give a recursive divide and conquer algorithm
for DFS, assuming that G is presented embedded in the plane, and that we are given a root
vertex r on the outer face.

A single phase of the algorithm starts with G and r , and creates a sequence of subgraphs,
each of size at most 11

12 the size of G. The algorithm then computes DFS trees for each of
those graphs (recursively), and the results of (some of) the graphs are sewn together to obtain
a DFS tree for G. Each phase can be computed in AC0(UL ∩ co-UL), and hence, the entire
algorithm can be implemented in AC1(UL ∩ co-UL).

We now describe a single phase in more detail.

1. Given a planar drawing ofG and a root vertex on the outer face r , find an 11
12 path separator

p = 〈r , v1, v2, . . . , vk〉, as described in Sect. 6. Path p is included in the DFS tree.
2. Let R(v) denote the set of vertices of G reachable from v. Now for every vertex vi in p

compute in parallel: R′(vi ) = R(v)\(⋃k
j=i+1 R(v j )) Our DFS will correspond to first

traveling along p to vk , doing DFS on R(vk), and then while backtracking on p, do DFS
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on R′(vi ) for i from k − 1 downto 1. Given G, the encodings of p and R′(vi ) can all be
computed in AC0(UL ∩ co-UL).

3. For any vi , R′(vi ) can be written as a DAG of SCCs (strongly connected components),
where each SCC is smaller than 11

12 |G|. In AC0(UL ∩ co-UL), we can compute this DAG
and we can compute an encoding of the tuple (i, M, v) where M is an SCC in R′(vi )
and v is a vertex in M . Recursively, in parallel, we compute a DFS tree of M for each
tuple (i, M, v), using v as the root. Now we need to show how to sew together (some
of) these DFS trees, to form a DFS tree for G with root r . Namely, for each i , for each
M ∈ R′(vi ), we will select exactly one v such that the DFS tree for G will incorporate
the DFS tree computed for (i, M, v), as described next.

4. Given a triple (i, M, v), let x0, x1, . . . , xs be the order in which the vertices of M appear
in a DFS traversal where the root x0 = v. If v is such that the DFS tree for (i, M, v)

is incorporated into the DFS tree that we are constructing for G, then our DFS will
correspond to first following the edges from x0 that lead to other SCCs in R′(vi ). (No
vertex reachable in this way can reach any x j , or else that vertex would also be in M .)
And then we will move on to x1 and repeat the process, etc. Thus, let R′′

i,M,v(x j ) =
((R(x j ) ∩ R′(vi ))\M)\(⋃k< j R(xk)).
Our DFS tree for G is composed by using Algorithm 2 of Sect. 3, on the multigraph that
has a vertex for each SCC in the DAG of SCCs that makes up any R′′

i,M ′,v(x j ). Crucially,
the ordering on the edges that leave any node M ′′ in this multigraph is determined by the
order in which the vertices of M ′′ are visited in the DFS tree of M ′′.
Let us see in more detail how to use the DFS trees that we computed for each (i, M, v),
by considering how to process the DAG of SCCs in some R′′

i,M ′,v(x j ). Every SCC in
this DAG is reachable from x j . We will be using Algorithm 2 from Sect. 3 to compute
the lexicographically least path from x j to any SCC M ′′ in R′′

i,M ′,v(x j ). We can use any
ordering for the edges that leave x j (such as the order in which the edges are presented).
For the other SCCs in the DAG, the ordering must be chosen more carefully. Let us say
that the first edge that leaves x j that lies on some path to a node in M ′′ is (x j , y); this
edge will be in our DFS tree for G. The node y is in some SCC N in R′′

i,M ′,v(x j ). A DFS
tree Ti,N ,y was computed for (i, N , y); the order in which the nodes of Ti,N ,y are visited
imposes an order on the edges that leave N in the acyclic multigraph. That is the order
that is used, in applying Algorithm 2.
More generally, when executing the while loop in Algorithm 2, if the variable current
currently is set to some SCC M1, and M2 is the first SCC adjacent to M1 (using the
ordering on the edges of M1) that lies on a path to M ′′, and this is because there is an
edge (w, z) where w is the first node in the traversal of M1 that is adjacent to any node
of M2, then on the next pass through the while loop, the ordering on the edges leaving
M2 is determined by the traversal order of the DFS tree that was computed for (i, M2, z).
Let us denote this node z by vM2 ; the edge (w, vM2) will be in the DFS tree for G.

5. The final DFS tree for G thus consists of the path p = 〈r , v1, v2, . . . , vk〉 along with the
DFS trees that were computed for each (i, M, vM ) (for the unique vertex vM identified
in the preceding step).

8 Conclusions and open problems

Although we give an improved upper bound for the problem of finding DFS trees in planar
digraphs, we do not completely resolve the question of this problem’s complexity. Computing
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DFS trees in planar graphs is clearly at least as hard as the reachability problem in planar
graphs, and we know of no better lower bound for this problem.

In any class of graphs, computing breadth-first search trees is no harder than computing
distance in the graph. Reachability always reduces to the problem of computing distance,
but the complexity of these problems can differ. (Reachability in undirected graphs lies in
logspace [35], whereas computing distance in undirected graphs is complete forNL [37].) For
directed planar graphs, we have noted that both these problems lie inUL∩co-UL (Theorem 1).
Thus, we can also ask whether breadth-first search trees are easier to compute in planar
directed graphs, than DFS trees.

Note that, for undirected planar graphs, both breadth-first and depth-first search trees
reduce to computing distance in directed planar graphs [4].We know of no better lower bound
for computing DFS trees in undirected planar graphs than the corresponding reachability
problem.

Of course, the outstanding open question in this area is to resolve the complexity of
computing DFS trees in general (directed or undirected) graphs. The RNC7 algorithm of [1]
is unlikely to be optimal. It would be of interest to improve the complexity even in terms of
non-uniform circuit complexity classes.
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