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Delay Compensation for Distributed MIMO Radar
With Non-Orthogonal Wavetorms
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Abstract—Distributed multi-input multi-output (MIMO) radar
with non-orthogonal waveforms has become a critical problem
because waveform orthogonality may be lost as waveforms experi-
ence distinct delays and Doppler across different transmit-receive
propagation paths. In such cases, the widely used matched filter
(MF) cannot perfectly separate the waveforms, and it outputs the
filtered echo of the desired waveform (auto term) as well as multiple
undesired waveform residuals (cross terms). In this paper, a trans-
mit delay compensation scheme is proposed by employing a set of
transmit delay compensation variables to control the cross terms
so that they can be utilized to enhance target detection. Specifically,
the probability of detection is maximized by optimizing the delay
parameters. To solve the resulting nonconvex problem, an optimum
solution based on multi-dimensional search and a computationally
efficient suboptimal method are proposed. Simulation results show
that the proposed delay compensation approach can substantially
improve the target detection performance.

Index Terms—Distributed MIMO radar,
detection, transmit delay compensation,
waveforms.
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1. INTRODUCTION

N RECENT years, distributed multi-input multi-output
I (MIMO) radar, an architecture that employs widely separated
antennas to form the transmit and receive apertures, has received
significant attention [1]-[4]. Widely separated antennas allows
one to capture the spatial diversity of the target’s radar cross
section (RCS), which can be employed to enhance target detec-
tion [5]. Among extensive MIMO radar related studies, some
recent works considered system optimization via space-time
code design [6], antenna placement [7], power allocation [8],
waveform design [9], and joint transmit and receive design [10],
[11]. The exploitation of signal/clutter structures for target de-
tection was investigated in [12]—[17]. In addition, [18] and [19]
examined the synchronization effect on target localization, and
respectively, signal detection in MIMO radar. Meanwhile, [20]
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derived the Cramer-Rao bound for MIMO radar target localiza-
tion with phase errors, while the exploitation of signal sparsity
was investigated in [21], [22].

Most existing MIMO radar works assume the transmitters
(TXs) emit multiple orthogonal probing waveforms with zero
cross-correlation, which are separated by a set of matched
filters (MFs) at the receivers (RXs). Assuming the waveforms
are orthogonal and thus perfectly separable at the RXs, only
the filtered echo of the desired waveform (auto term) is
present at each MF output, but not the undesired waveform
residuals (cross terms). However, in practice, maintaining
waveform orthogonality at the RXs across all time delays and
Doppler frequencies is impossible [23]. The effects of cross
terms induced by non-orthogonal waveforms were examined
in [24]-[27] for direction-of-arrival (DOA) estimation and
in [28]-[30] for target detection. These studies model the cross
terms as either deterministic [28], [29] or random quantities
with some covariance matrices [24], [25], [30].

Interestingly, it was shown in [28] that the waveform cross
terms may behave as friend or foe in target detection, depending
on how the cross terms are added with the auto terms, which
is affected by the phase, delay, and frequency offsets among
different TX-RX propagation paths. In order to benefit from
cross terms for target detection, we propose herein a transmit
delay compensation scheme that tries to align the cross and
auto terms at the MF outputs. Specifically, we introduce a set
of transmit delay compensation variables at the TXs to control
the amplitude and phase of cross terms so that they can add
with the auto terms constructively. The design criterion is based
on maximizing the probability of detection with respect to
(w.r.t.) the delay compensation variables. The resulting non-
convex problem is solved through both an optimum method
based on multi-dimensional search and a computationally effi-
cient suboptimal algorithm. Our numerical results show that the
proposed delay compensation scheme significantly outperforms
the conventional approach without delay compensation when
the MIMO waveforms are non-orthogonal or are not perfectly
separated at the RXs.

II. SIGNAL MODEL

We consider a distributed MIMO radar consisting of M
widely separated transmit antennas (TXs) and N receive anten-
nas (RXs) with M non-orthogonal waveforms. The waveforms
may arrive at the RXs asynchronously since the distances asso-
ciated with different TX-RX propagation paths are different. At
the TXs, pulsed transmission is employed to help determine
if there is a moving target in an area of interest. During a
coherent processing interval (CPI), each TX emits a succession
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of K pulses. At the RX, the received signal is down-converted,
matched-filtered, and sampled at the pulse rate. The K x 1
noise-free output at the n-th RX, matched to the m-th waveform,
can be expressed as [28]:

Zn = aSpXmnhmn,m=1,...,M,n=1,...,N, (1)

where o denotes the target amplitude, S,, € C** the Doppler
steering matrix, X ,n,, € CM*M the diagonal ambiguity function

matrix, and h,,,, € CM~1 the channel vector. Specifically, S,,,
Xmmn»> and h,,,, are given by [28]

Sn = [S(fln)v"'7s(an)]a (2)
[‘%mn]mm = Xmm(Tmn — Tmn» fﬁzn - fmn)a (3)
[Emn]m _ gmne_]Qﬂ—chﬁLn 6]27Tf1nn(7—77L'7L_T'I7Ln)’ 4)

where

® f..n denotes the normalized target Doppler frequency,
S(fmn) € CE*! the Doppler steering vector at f,,, and
fe the carrier frequency.

® ¢..n and 7,,, are the pathloss (nonnegative) channel coef-
ficient and propagation delay, respectively.

* Xomm (s f) = [ am(V)qs (v — p)e?>™¥dy  denotes  the
cross ambiguity function (CAF) between two different
radar waveforms ¢, (t) and ¢ (¢).

Note that the diagonal ambiguity function matrix X, in (3)
consists of M components, i.e., one auto term (m = m) and
M — 1crossterms (m # m). To see this, consider the case when
M = 3and N = 1. The RX implements 3 matched filters (MFs),
each matched to one transmitted waveform. The output of the
first MF matched to the first (desired) waveform is given by [cf.
(1) form =1andn = 1]:

X11 = 04[5\2'11]11[}711]15(]011) + a[211]22[1~111]25(f21)

+a[-’?11]33[1~111]35(f31), 5)

where the first term is the auto term from the desired waveform,
and the second and third are the cross terms from the other
two undesired waveforms. It was shown in [28] that the cross
terms may benefit or harm the radar performance, depending on
how they interact with the auto term. The problem of interest
for this work is to introduce and design suitable transmit delay
parameters to exploit cross terms for target detection.

III. PROPOSED APPROACH

In this section, we first introduce transmit delays to the signal
model in (1). Then, a design criterion based on the probability
of detection of an energy detector is presented, followed by our
proposed solutions. It is noted that the proposed scheme requires
the knowledge of the location or delay associated with the target,
which is available when the radar operates in a tracking mode.

A. Transmit Delay Compensation

The additive relation shown in (1) and (3) shows that the
propagation delays 7,,,, associated with different TX-RX paths
affect if the auto and cross terms add constructively or de-
structively. Thus, we can introduce an additional delay A,,, for
each TX so that the cross terms at the MF output can add up
constructively. Since only the relative propagation delay among
different TX-RX paths matters, without loss of generality, we

IEEE SIGNAL PROCESSING LETTERS, VOL. 29, 2022

let the first TX be the reference, i.e., A; = 0. Then, the problem
is to design the rest M — 1 delay variables, {A,, }M_,.

For notational distinction, X,,, and h,,, in (1) are now
represented by X, and h,,, to signify the use of the delay
compensation at the TXs:

[an]ﬁzr_n = Xmm(Tmn + Am — Tmn — Aﬁu fﬁzn - fmn)7

(6)
[hmn] e gmne_]wac(TﬁLn"rAﬁL)6.727Tf'rnn(T'rn.n"rA'rn_TﬁLn_AﬁL).
(7

In turn, the noise-free received signal in (1) is now written as
an(Am) = aSnanhm'ru (8)

where the k-th element of x,,,,, (4A,,,) can be expressed as [28]
an(k‘, Am) = agmneﬂﬂ'knfmn Xmm (07 0)
X 67]27ch(7nzn,+A'm) _|_ Z a€77lne]27rkT<fﬁ,n
m#Em
X Xmﬁz(Tmn + Am — Tian — Aﬁlv fﬁ“mu - fmn)
X e*J27ch(Tﬁm+Afn)ejzﬂfmn(Tmn*FAm*Tﬁm*Afn)
k=0,...,K—1. )

Similar to (5), the second term (expressed in a sum) represents
the M — 1 cross terms.

To optimize the transmit delays A,,,, we consider maximizing
the probability of detection of an energy detector. Specifically,
the problem of detecting a target can be formulated as the
following binary hypothesis testing problem:

7'[0 CYmn = Wmn,
Hi ' Ymn = X'rrm(Am) + Win,
m=12,....M,n=1,2,..., N, (10)

where w,,,, is the noise. A simple solution to the above hypoth-
esis testing is the energy detector that non-coherently integrates
the MF output energy [1]:

N M Hy
A H
Tr= Z Z YmnYmn 27,
Ho

n=1m=1

(1)

where  denotes the threshold. The probability of false alarm

and the probability of detection with a non-fluctuating target for

the above detector are given by [28]
I'(KMN)—-T(KMN,~/o?)

P =
f T(KMN) ’

Py =QruN (ﬁ, \/?) ;

where I'(-) and ['(-, -) denote the Gamma[31, p.255] the upper
incomplete Gamma functions[31, p.260], respectively. Q. (a, b)
is the generalized Marcum-Q function[32, p.5]and A is the
noncentrality parameter, which takes the following form:

M N 9
A= Z Z §||an(Am)H2~

m=1n=1

12)

13)

(14)
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Following the monotonicity of the generalized Marcum func-
tion, maximizing the probability of detection is equivalent to
maximizing the noncentrality parameter A. Thus, our transmit
delay design problem can be formulated as:

M N
S (A2

m=1n=1

max
{AWL %:2

(15)

B. Solutions

A direct way to solve (15) is to employ multi-dimensional
search over the parameter space. Specifically, we can enumerate
all possible solutions on a discretized search grid and find the
optimum one for the problem. However, this is doable only when
M is small. The associated computational complexity grows
exponentially with M. To address this issue, we need find an
alternative suboptimal solution.

There are two factors that affect the impact of cross terms on
detection, namely their magnitudes and phases relative to the
phase of the auto term. In general, the magnitudes should be
made as large as possible, so that they can contribute more to
the MF output energy; on the other hand, their phases should
be made as close as possible to the phase of the auto term, so
that they can add up constructively. However, it is impossible to
simultaneously meet these requirements due to limited design
parameters (i.e., M — 1 delays). Our strategy is to focus on the
dominant cross terms associated with the strongest channels,
i.e., the channels associated with the TX that has the shortest
TX-target distances.! Without loss of generality, suppose the
strongest channels are associated with m = 1, i.e., the first TX.
Then, we can approximate the cost function in (15) by focusing
on the cross term generated by the 1st TX and neglect the
effects of the others. Although the approximation is based on
the presence of a dominant channel, numerical results show that
this approach works well even if no dominant channel exists.

Base on the above discussion, we can obtain an approximate
solution to problem (15) by:

M N
DD lzmn (A%,

m=1n=1

(16)

max
{Am}%:Z

where the k-th element of z,,,,,(A,,) is

Zmn(k; Am) — aé'mneJQWkTsfnz71Xmm(O7O)e_j2ﬂfc(7mrz+Arvl)

fm,n)
% 67j277fc(71n)ej27rfmn(Tmn“rAnL*Tln)7 k=0,...,K —1,
17

which is obtained by keeping only the auto term associated with
TXm (channel &,,,) and the dominant cross term associated
with channel &1, in (9). It can be observed from (17) that the
m-th MF output is affected by only the m-th delay A,,. Thus,
the optimization problem in (16) can be decomposed into M — 1
independent subproblems:

rgax ||z,,m(Am)H2,m =2,..., M.

27k T fin
+ O‘flnej kL1 Xml(Tmn + Am — T2n, fln -

(18)

Note that problem (18) can be solved through (M — 1) inde-
pendent one-dimensional searches.

!Note that for a given RX, the waveforms arrive at the RX with the same target-
RX path but different TX-target paths. So the dominant channel is associated
with the TX with the shortest TX-target distance.

Algorithm 1: Proposed Suboptimal Solution for the Design
Problem in (15).

Input: Waveform CAFs and &,,,.
Output: Delay compensation parameters {A,, }M_,
Form =2,..., M do
1) Find the initial delay compensations A, by using (20)
2) Use (21) to obtain an updated delay compensation A,
with phase alignment via local search
end
Return: Delay compensation A,,,.

We next discuss how to further improve the efficiency via a
2-step search approach. Note that without any prior knowledge
about the range of A,,, the one-dimensional search can still be
time consuming. We can lower the complexity by exploiting
further insight into (17) to reduce the search interval and com-
plexity. Specifically, it can be observed from (17) that the delay
A,, affects not only the relative phase between the auto and
cross terms, but also magnitude of the CAF x.,,,1. Note that the
CAF Y1 is complex-valued and can be expressed in magnitude
and phase:

Xml = |Xm1‘ejQM1- (19)

Its magnitude |x,,1| should be made as large as possible to
maximize its contribution to the received energy. Therefore, we
can determine an initial estimate of the delay by maximizing the
CAF:

A, = arg max IXm1(Tmn + Am = Tin, fin = fon)|,

m=2...,M. (20)
Then, we can search in a small interval centered around Am SO
that the phase difference between the auto and cross terms are
minimized. It is easy to see from (17) that the phase difference
can be expressed as (neglecting delay-independent constants)

C_‘)’ml = - 27ch(7-mn + A'm - Tln)
- Hml(Am) - 27Tfmn(7—mn + A'm - Tln)-

which, with 27-phase wrapping, has a periodic pattern. It is
sufficient to cover one 27-period of the phase difference, by
varying A,,, within the range of [A,, — 1/fe, A, + 1/f]. As
shown in [33], the magnitude |x;,1| varies much slower with
respect to (w.r.t.) the delay than the phase 6,,1. Therefore, we
only need search over a small interval around the initial delay
estimate A, to achieve phase alignment, without affecting the
magnitude. A summary of the proposed approach is presented
in Algorithm 1.

21

IV. SIMULATION RESULTS

In this section, numerical simulations are provided to demon-
strate the performance of the proposed transmit delay compen-
sation scheme by evaluating the probability of detection with the
energy detector (11). The delay variables are computed either by
(15), which is referred to as the optimal method, or (18), which is
referred to as the suboptimal method. We compare these delay
compensation methods with the conventional scheme with no
compensation.
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Fig. 1. The instantaneous frequency of the chirp waveforms.

In the simulation, two distributed MIMO radar configurations
with M = 2 or M = 3 are considered. We fix N = 1 RX for
both cases, since transmit compensation only affects the TX-
target propagation delay and is independent of the number of
RXs. However, the value of M does have an impact. Note that
with M = 2 TXs, the suboptimal (18) is identical to the optimal
(15) since there is only one cross term in the MF output and
no approximation is involved. Meanwhile, for M = 3, there are
more than one cross terms in the MF output, (18) yields only
an approximate solution. Since the approximation assumes the
presence of a dominant channel, we consider two scenarios. The
first scenario contains a dominant channel, whereas the channels
of the second scenario have identical strength. In the latter case,
we randomly pick a channel and its associated cross term for
alignment. It turns out, as shown next, the compensation can
still lead to significant performance gain.

The signal-to-noise ratio (SNR) of the (m, n)-th TX-RX pair
is defined as

[Emn |*E{] 02}

SNRmn - 0_2
mn

) (22)
where o2, is the noise variance and set to 1. In addition, a
Swerling I target model is considered with o ~ CN(0, 02) being
randomly generated in the simulation trials. Other simulation
parameters are set as follows: the probability of false alarm is
Pp=10"%and N = 1.

Linear frequency modulation waveforms ¢, (¢) with overlap-
ping instantaneous frequency are employed for testing [33]:

th(t) _ ie‘j(ﬂ'ﬁt2/7'+3ﬂ',8t), 0<t< T

NG (23)
R@(t) = Lej(—ﬂﬁt2/7+57rﬂt), 0<t<r, (24)
T
\%63(2753152/7—-{-3#,80’ 0<t< %7
q3(t) = (25)
\%8_7(—271'[3152/7--}-77@6’15)7 % <t<T,

where 7 and 3 denote the duration and bandwdith, respectively,
of the chirps. The instantaneous frequency of of the chirps is
displayed in Fig. 1. For the case of M = 2, only the first two
waveforms are employed.

Fig. 2 shows the performance when M = 3, where the proba-
bility of detection is obtained by the two compensation schemes
as well as the no compensation one. In Fig. 2(a), the channels
are £11 = 1057 = 10&31, i.e., channel 11 associated with TX 1
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Fig. 3. Probability of detection versus the total SNR for the energy detector
when M = 2: (a) {11 = 10821 (b) £&11 = &o1.

is the dominant channel. It is seen that the suboptimal scheme is
identical to the optimal method. On the other hand, in Fig. 2(b),
we set 117 = £21 = €31, in which case no dominant channel
exists. Itis interesting to see that the suboptimal method exhibits
only a small performance loss relative to the optimal one. Both
results show that the proposed delay compensation schemes
significantly outperform the conventional approach with no
compensation.

The counterpart results for M = 2 are displayed in Figs. 3(a)
and 3(b). As expected, the suboptimal compensation method is
identical to the optimal one. It is observed that the delay com-
pensation yields less performance benefit over the conventional
approach with no compensation, in particular when a dominant
channel is present. This is due to the reduced diversity, as the
weaker channel contributes less to the diversity gain.

V. CONCLUSION

A transmit delay compensation approach was proposed for
distributed MIMO radar with non-orthogonal waveforms. The
approach aims to maximize the probability of detection w.r.t.
the delay parameters. The resulting optimization problem was
solved via both an optimal method based on nonlinear research
as well as a suboptimal two-step method. It was shown that our
delay compensation solutions can achieve improved detection
performance over the conventional approach with no compen-
sation in distributed MIMO radar.
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