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Abstract—In this paper, we examine the problem of velocity
estimation for a moving object using distributed measurements.
The system employs a non-cooperative transmitter and multiple
receivers to collect targets echoes. The problem is formulated by
modelling the unknown transmitted waveform as a deterministic
process. The exact maximum likelihood estimator (MLE) is
developed which requires a multi-dimensional search procedure.
To reduce the computational load, an efficient two-step estimator
(TSE) is proposed. The TSE first finds the maximum likelihood
estimates of pairwise differences of the Doppler frequencies
observed by the receivers. Then, the target velocity can be
estimated from the frequency differences in closed-form. We
show that the maximum likelihood estimation of each frequency
difference reduces to a cross-correlation process followed by peak
finding, which can efficiently be implemented by the fast Fourier
transform (FFT). As a result, the TSE is significantly more
efficient than the MLE. Numerical results show the TSE achieves
a similar estimation accuracy as that of the MLE except for very
low signal-to-noise ratio (SNR) scenarios.

Index Terms—Maultistatic passive radar, target velocity estima-
tion, maximum likelihood, efficient implementation.

I. INTRODUCTION

Parameter estimation using distributed sensors, which ex-
ploits ambient non-cooperative illuminators of opportunity
(IOs) as transmitters, has attracted significant attention in
recent years [1]-[5]. The available sources include frequency
modulation (FM) radio, television, digital audio/video broad-
casting (DAB/DVB-T), cellular signals, and others [6]-[9].
Besides the wide availability of potential sources, passive
sensing has several advantages compared with active sensing,
including less vulnerability to interference and no additional
radio frequency (RF) pollution to the electromagnetic environ-
ment.

Unlike a monostatic or bistatic sensing system, where only
a single pair of transmitter-receiver is employed, a distributed
configuration enables the system to view the target from
several different angles simultaneously, which offers spatial or
geometric diversity needed to improve the sensing capability
[10]-[14]. In particular, targets often show significant azimuth-
selective backscattering with tens of dB of fluctuation in
their radar cross section (RCS). Therefore, it would be more
challenging for a monostatic or bistatic sensing system to
detect a moving object with an unfavorable geometry. The
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spatial diversity offered by a distributed sensing network with
widely separated antennas was discussed in [10] to solve
the target velocity estimation problem while [15] proposed
a parametric moving target detector for a distributed sensing
network. A multi-target tracking problem using a distributed
sensor network was considered in [16], where by discretizing
the position-velocity space, the problem was turned into a
group sparse problem and a two-step sequential approach
was proposed to track multiple targets. Meanwhile, distributed
detection was examined in [17] by exploiting the correlation
of the transmitted waveform and new detectors were proposed
for distributed sensing network with synchronization errors in
[18].

Motion parameter estimation of ground moving targets has
been extensively studied in the context of conventional active
sensing. Time-frequency analysis was first discussed in [19]
for moving target estimation based on its Doppler signature. A
fast estimation method based on an adjacent cross-correlation
function is proposed in [20], where an iterative process is
employed to remove the range migration and reduce the order
of Doppler frequency migration. In recent years, a number of
studies considered the estimation of target motion parameters
using distributed passive sensor networks [21]-[23]. Specif-
ically, a modified Cramer-Rao lower bound was proposed in
[21] for target parameter estimation using multiple transmitters
and multiple receivers. In [22], the motion parameters were
estimated based on the observed Doppler signatures corre-
sponding to multiple illuminators. Additionally, [23] presented
a maximum likelihood (ML) estimate of the unknown position
and velocity vector of a moving target using a distributed
sensor network. In both [22] and [23], the transmitted signals
are assumed to have been perfectly reconstructed from the
direct path observation after successful demodulation.

In this paper, we assume the transmitted waveform to be
an unknown deterministic process. Following the determin-
istic assumption, we develop the exact maximum likelihood
estimator (MLE) which requires a multi-dimensional search
procedure. Next, we propose an efficient two-step estimator
(TSE) to simplify the computational load by dividing the
observation from different receivers into pairs and find the
ML estimates of pairwise difference of the Doppler frequen-
cies. For each pair of observation, the ML estimation of the
frequency difference turns out to be a cross-correlation process
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Fig. 1. The configuration for a distributed sensor network.

followed by peak finding, which can be efficiently obtained
using a l-dimensional (1-D) fast Fourier transform (FFT).
Then, the target velocity can be estimated from frequency
differences in closed-form. Numerical results show that the
performance of the computationally efficient TSE is very close
to that of the grid search based MLE, except for very low
signal-to-noise ratio (SNR) scenarios. In addition, the TSE is
faster than the MLE-based technique.

The remainder of the paper is organized as follows. Section
IT describes the system model and formulates the problem
of interest. Section III presents the proposed MLE and TSE
estimators for target velocity estimation. Numerical results and
discussions are included in Section IV. Finally, Section V
concludes this work.

Notation: Throughout the paper, scalars are denoted by
non-boldface type, vectors (matrices) are denoted by boldface
lower (upper) case letters, and all vectors are column vectors.
Superscripts ()T, (-)*, and (-)¥ denote transpose, complex
conjugate, and complex conjugate transpose, respectively. [-],,
denotes the m-th element of a vector. ® stands for the
Hadamard products. || - || is the Frobenius norm, and tr{-}
denotes the trace of a matrix.

II. SIGNAL MODEL

A distributed sensor network geometry is shown in Fig. 1. It
consists of a non-cooperative transmitter and several receive
(RX) antennas which collect echoes from a moving object
that is illuminated by the transmitter. The RXs are stationary
and their locations are assumed known. For simplicity, we
assume the target, transmitter, and RXs are located on a two-
dimensional (2-D) plane. An extension to the more general
three-dimensional (3-D) case is possible. Let y, € CcNx1
denotes the IV observed signal samples at the ¢-th receiver.
Then, the digitized received signal model can be expressed
as:

A(fi(v))x—i—ni, 1=1, ---, I, (D

where ~; is an unknown parameter that integrates the chan-
nel coefficient and target amplitude associated with the i-th
receiver; f;(v) is the Doppler frequency observed by the i-th
receiver with respect to (w.r.t.) a moving target with velocity
v £ (vg,vy); A(z) is a diagonal matrix with diagonal entries
[A(2)],, = &2~ UTe where T, = 1/f, denotes the
sampling interval; x is the deterministic unknown transmitted
waveform; n; is a zero-mean white Gaussian noise with
covariance matrices o21. The relationship between the target
velocity v and its Doppler frequency can be obtained by
using the geometry depicted in Fig. 1. The normalized bistatic
Doppler frequency is given by

T, d
V) =T g

where A denotes the wavelength of the carrier signal, Ry is
the distance between the transmitter and the target, and R, ; is
the distance between the i-th receiver and the target. The two
ranges can be expressed as

(Rt+er) 2217 "'317 (2)

Ry = —(vg cos(0y — m) + v, cos(3m/2 — 0;))dt,  (3)
and

R:; = —(vy cos(m — 0;) —

—m/2))dt, ()

where 6; is the azimuth angle of the transmitter, #; is the
azimuth angle of the i-th receiver, v, = |v|cos#, and v, =
|[v|sinf. 6 is the unknown moving direction of the target.
Substituting (3) and (4) back into (2), we have the normalized
Doppler frequency f;(v) given by

vy cos(6;

T,
filv) = f(vx cos 8y + v, sin 0y + v, cos B; + vy siné;). (5)
For simplicity, we will henceforth sometimes write the matrix
A(fi(v)) as A(f;). The problem of interest is to estimate the
velocity of the moving target from the observations y;.

III. PROPOSED METHODS

In this section, we first develop the exact maximum like-
lihood estimator for the target velocity using observations
from all receivers. Next, a computationally efficient two-step
estimator is introduced to reduce the computational load.

A. Exact MLE

Given observations y = [y7,

function of y is

-, ¥H7, the likelihood
A(f)xI) |

(6)
T Then,

1 1 &
P(10) = oy b { - 72 2 (I -

where 6 = [77 v, X, UQ]T and Y= [713 ] 7]]
the log-likelihood function (LLF) can be written as

—NIlog(mT 2 Z ”yz '71 fL)XH2

)

log p(y16) =
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The ML estimates of the unknown parameters can be obtained
by maximizing the LLF and are given by

max  logp(y|6). (8)
The maximization can be carried out sequentially w.r.t. each
parameter group, including the amplitudes -y, the target ve-
locity v, the waveform x, and the noise variance 2. For the
amplitude parameters, the ML estimate can be obtained by
taking the derivatives w.rt. v and o2, and setting them to
Zero:

dlo 0
gapv('yl ) _o. ©)
Solving the above equation leads to the estimate of ~;:
o XHA(fi)HYi 10
T X 1o

Substituting (10) back into (7) gives
log p(y|v, x, 02) = —NIlog(ra?)
I
1 <A (f) yiyl A
—EZ(H%HQ— - :
i=1

xHx
The ML estlmate of 0% can be obtained by setting
dlogp(ylv, %,

503 ) = = 0, and subsequently, the estimate is given
by

Y

(fi)x>'

I

~ 1 xH
o = = (3 (Iyill* -

i=1

A(fi)HYiyzHA

xHx

(fz)x)) (12)

Substituting (12) back into (11) and ignoring the constant
terms that are not related to the unknown parameter v and
x, we have

I
logp(y|v, x) = —NIlog Z(HYiHQ
i= (13)

1

~xTA(f) yiy P A(Si )X))

xHx '

Then, the ML estimate of v and x are obtained by maximizing:
I

T(im A Ty A(fi)x

max
v, X xHx ’

(14)

which means that maximization w.r.t. x is equivalent to
maximizing the Rayleigh quotient with some v. The max-
imum of the cost function is the largest eigenvalue of
S A(f)PysyFA(f;) and the corresponding eigenvector
is the ML estimate of the transmitted waveform %. Hence, the
ML estimate of v is given by

I
vV = arg rn‘z?ux)\m,(zA(fi(v))Hyiyf‘*’A(fi(v)))7 (15)
i=1

where Apmax (+) denotes the largest eigenvalue of a matrix. Since
there is no known closed-form solution to (15), we consider
a 2-D search of v, and v, for the target velocity estimation.
In practice, we often employ a two-step search to obtain the
ML estimate: divide the uncertain velocity interval into equally

spaced points to carry out a coarse grid search to provide an
initial estimate and then use a refined local search around the
initial estimate.

B. Efficient TSE

Given the observations described by y = [y7, -, yT]|T,
we need to use a brute force search over the 2-D parameter
space to obtain the ML estimate of the velocity, which is
computationally prohibitive. Next, we propose an efficient TSE
to simplify the computational load by dividing the receivers
into pairs and obtain estimates of the pairwise differences
of the Doppler frequencies observed by the receivers. For
simplicity, we consider the case with I = 3 receivers.We
divide the observations into 3 groups ya = [y?,y4]7,
ye = [y¥,y3]7, and yc = [yd,y2]T. For each observation
group [y{,y]", i,j=1,2,3, and i # j, it is clear that the
ML estimate of f; and f; are given by

{fi7 fg} = arg ;na;( )\max(q));

i Ji

(16)

where

P :A(fz) Yiyi A(f1)+A(f]) ny] A(fj)

Since ® is the addition of two rank-one Hermitian matrices,
it has at most two non-zero eigenvalues A\; and Ay, assuming
A1 > Aso. Based on the property of the trace of a matrix and
the fact that A(f;) and A(f;) are both unitary matrix, we
have:

a7

tI‘(‘I’) = )\1 =+ A2 =
tr(®%) = A7 + A3,

where the second equality can be easily verified with the
eigendecomposition of ®. Meanwhile, we have

A(f) Ty A(fOAS) Tyiyi A(f)
JFA(fz)HYzyz A(fi)A(f )HYJYJ (fj)

A Tyy i AA) T yiyi Afi)
"‘A(fJ)HYJyJHA(fJ) ( J)HYJYJHA(fJ)
which leads to

tr(®%) = [lyill* + 2|y A)AS) Ty P + llys "

Then, combining (18) and (20) gives:

S (@)~ 1x(8) = il
— ly"A(f)A)  ysl,
which can be further summarized as

{M+M=MV+&W

2 12
Il + ;| s

19)

(20)

A1
1A2 = @1

22
Mo = llyillZlys 12 = lyH AR Ay 2. P

Thus, A\; and )\, are the roots of a quadratic equation:

— (lyall® + lly; 12X + llysl P lly; 117
— lyFA(f)Af) 517 =0,

and its discriminant is given by

— lly;11%)% + 4ly/

(23)

= (Ilysll? A(f)A(f) Ty P > 0. 29
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Finally, the largest eigenvalue of ® is given by

el # Dy l? + VA

> .
Note that only the cross-term |y A(f;)A(f;)"y;|? in the
A function is related to the unknown parameters {f;, f;}.
Substituting (25) back into (16), the ML estimate of {f;, f;}
in (16) can be rewritten as

Amax () (25)

{fi.f;} = arg max i A)A) y5l, (@26)
which can be simplified as
{fiafj} = arg max |y; A(f; — f;)y;]- (27)

fisfi
We notice that the cost function in (27) has the form of a
one-dimensional (1-D) inverse FFT (IFFT):

1 N

i A(fi = fi)yi = 5 D lglae V0 28)
n=1
where
g= Ny, Oy;. (29)

To reduce the computation load, we consider the fast FFT-
based implementation method in [24] to find the optimum
(fi — fj), instead of using the brute force 2-D search method
to solve (27). For more details about the 1-D FFT fast
implementation please refer to [24, Section III-C]. Thus, the
MLE reduces to identifying the peak of the magnitude of the
1-D IFFT of g. An estimate of f; — f; can be obtained based
on its relationship to the 1-D IFFT grid w:

s 2 u—1

f i f Jj — Nc )
where [V, is the 1-D IFFT size. After obtaining estimates for
the difference of the Doppler frequency, using the definition
of f; in (2), we have the following relationship between the
estimates of the target Doppler f and target velocity v:

R . .
fi—fi= X(ﬁw(cosﬂ —cos0;)+ vy (sin6; —51n9j)). 31)

(30)

Although there is only one equation for the two unknown
variable v, and v,, we can use a different group observation
(choose from ya, y5, and yc¢) to obtain another equation, and
then jointly solve the two equations for the target velocity, i.e.,

%(f)m(cos 01 — cosby) + 0y (sinhy — sin 92)) = fl — fg,
%(ﬁz(cos 01 — cosb3) + by (sinf; —sinfs)) = f1 — fs.
(32)

IV. NUMERICAL SIMULATIONS

In this section, computer simulations are carried out to
demonstrate the performance of the maximum likelihood esti-
mator and the two-step estimator. The SNR at the ¢-th receiver
is defined as SNR; = %, where P is the average power
of the transmitted waveform. The distributed sensor network
considered here has one transmitted signal source and three

receivers. Specifically, the transmitter is located at 6; = 57 /4

and the receivers are located at §; = 57/6, 05 = 137/8,
and 03 = 7/10, respectively. The other parameters in the
simulation are set as follow: the carrier frequency is f, =1
GHz, the total number of signal samples is N = 100, the
target velocity is |v| = 30 m/s and the moving direction is
0 = m/3, the IFFT size for the fast implementation of (28)
is N, = 1024, and 500 Monte Carlo trials are carried out to
obtain the root-mean-square error (RMSE).

Fig.2 shows the RMSE for the target velocity v, and v,
versus SNR; with different combinations of SNRy and SNRj3,
which corresponds to various scenarios for target velocity es-
timation. It is observed that the RMSE of the computationally
efficient TSE is very close to that of the grid search-based
MLE for both estimates at high SNR; (SNR; > —5 dB).
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Fig. 2. RMSEs of the MLE and the TSE versus SNR; with different

combination of SNR2 and SNR3. (a) v, and (b) vy,.

V. CONCLUSIONS

In this paper, we have examined the target velocity esti-
mation problem for a distributed sensor network by treating
the transmitted waveform as a deterministic process. An exact
MLE, which requires a multi-dimensional search procedure,
has been developed. To address the computational burden of
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the

MLE, we have introduced an efficient TSE by dividing

the observations from different receivers into pairs and obtain

the

ML estimates of frequency differences separately. For

each pair of observation, the ML estimate can be efficiently
obtained with a fast implementation using a 1-D FFT. As
a result, the TSE is significantly more efficient than the
MLE. Numerical results show that the performance of the
computationally efficient TSE is similar to that of the grid
search-based MLE.
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