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Abstract—In this paper, we examine the problem of velocity
estimation for a moving object using distributed measurements.
The system employs a non-cooperative transmitter and multiple
receivers to collect targets echoes. The problem is formulated by
modelling the unknown transmitted waveform as a deterministic
process. The exact maximum likelihood estimator (MLE) is
developed which requires a multi-dimensional search procedure.
To reduce the computational load, an efficient two-step estimator
(TSE) is proposed. The TSE first finds the maximum likelihood
estimates of pairwise differences of the Doppler frequencies
observed by the receivers. Then, the target velocity can be
estimated from the frequency differences in closed-form. We
show that the maximum likelihood estimation of each frequency
difference reduces to a cross-correlation process followed by peak
finding, which can efficiently be implemented by the fast Fourier
transform (FFT). As a result, the TSE is significantly more
efficient than the MLE. Numerical results show the TSE achieves
a similar estimation accuracy as that of the MLE except for very
low signal-to-noise ratio (SNR) scenarios.

Index Terms—Multistatic passive radar, target velocity estima-
tion, maximum likelihood, efficient implementation.

I. INTRODUCTION

Parameter estimation using distributed sensors, which ex-

ploits ambient non-cooperative illuminators of opportunity

(IOs) as transmitters, has attracted significant attention in

recent years [1]–[5]. The available sources include frequency

modulation (FM) radio, television, digital audio/video broad-

casting (DAB/DVB-T), cellular signals, and others [6]–[9].

Besides the wide availability of potential sources, passive

sensing has several advantages compared with active sensing,

including less vulnerability to interference and no additional

radio frequency (RF) pollution to the electromagnetic environ-

ment.

Unlike a monostatic or bistatic sensing system, where only

a single pair of transmitter-receiver is employed, a distributed

configuration enables the system to view the target from

several different angles simultaneously, which offers spatial or

geometric diversity needed to improve the sensing capability

[10]–[14]. In particular, targets often show significant azimuth-

selective backscattering with tens of dB of fluctuation in

their radar cross section (RCS). Therefore, it would be more

challenging for a monostatic or bistatic sensing system to

detect a moving object with an unfavorable geometry. The
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spatial diversity offered by a distributed sensing network with

widely separated antennas was discussed in [10] to solve

the target velocity estimation problem while [15] proposed

a parametric moving target detector for a distributed sensing

network. A multi-target tracking problem using a distributed

sensor network was considered in [16], where by discretizing

the position-velocity space, the problem was turned into a

group sparse problem and a two-step sequential approach

was proposed to track multiple targets. Meanwhile, distributed

detection was examined in [17] by exploiting the correlation

of the transmitted waveform and new detectors were proposed

for distributed sensing network with synchronization errors in

[18].

Motion parameter estimation of ground moving targets has

been extensively studied in the context of conventional active

sensing. Time-frequency analysis was first discussed in [19]

for moving target estimation based on its Doppler signature. A

fast estimation method based on an adjacent cross-correlation

function is proposed in [20], where an iterative process is

employed to remove the range migration and reduce the order

of Doppler frequency migration. In recent years, a number of

studies considered the estimation of target motion parameters

using distributed passive sensor networks [21]–[23]. Specif-

ically, a modified Cramer-Rao lower bound was proposed in

[21] for target parameter estimation using multiple transmitters

and multiple receivers. In [22], the motion parameters were

estimated based on the observed Doppler signatures corre-

sponding to multiple illuminators. Additionally, [23] presented

a maximum likelihood (ML) estimate of the unknown position

and velocity vector of a moving target using a distributed

sensor network. In both [22] and [23], the transmitted signals

are assumed to have been perfectly reconstructed from the

direct path observation after successful demodulation.

In this paper, we assume the transmitted waveform to be

an unknown deterministic process. Following the determin-

istic assumption, we develop the exact maximum likelihood

estimator (MLE) which requires a multi-dimensional search

procedure. Next, we propose an efficient two-step estimator

(TSE) to simplify the computational load by dividing the

observation from different receivers into pairs and find the

ML estimates of pairwise difference of the Doppler frequen-

cies. For each pair of observation, the ML estimation of the

frequency difference turns out to be a cross-correlation process
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Fig. 1. The configuration for a distributed sensor network.

followed by peak finding, which can be efficiently obtained

using a 1-dimensional (1-D) fast Fourier transform (FFT).

Then, the target velocity can be estimated from frequency

differences in closed-form. Numerical results show that the

performance of the computationally efficient TSE is very close

to that of the grid search based MLE, except for very low

signal-to-noise ratio (SNR) scenarios. In addition, the TSE is

faster than the MLE-based technique.

The remainder of the paper is organized as follows. Section

II describes the system model and formulates the problem

of interest. Section III presents the proposed MLE and TSE

estimators for target velocity estimation. Numerical results and

discussions are included in Section IV. Finally, Section V

concludes this work.

Notation: Throughout the paper, scalars are denoted by

non-boldface type, vectors (matrices) are denoted by boldface

lower (upper) case letters, and all vectors are column vectors.

Superscripts (·)T , (·)∗, and (·)H denote transpose, complex

conjugate, and complex conjugate transpose, respectively. [·]m
denotes the m-th element of a vector. � stands for the

Hadamard products. ‖ · ‖ is the Frobenius norm, and tr{·}
denotes the trace of a matrix.

II. SIGNAL MODEL

A distributed sensor network geometry is shown in Fig. 1. It

consists of a non-cooperative transmitter and several receive

(RX) antennas which collect echoes from a moving object

that is illuminated by the transmitter. The RXs are stationary

and their locations are assumed known. For simplicity, we

assume the target, transmitter, and RXs are located on a two-

dimensional (2-D) plane. An extension to the more general

three-dimensional (3-D) case is possible. Let yi ∈ C
N×1

denotes the N observed signal samples at the i-th receiver.

Then, the digitized received signal model can be expressed

as:

yi = γiA
(

fi(v)
)

x+ ni, i = 1, · · · , I, (1)

where γi is an unknown parameter that integrates the chan-

nel coefficient and target amplitude associated with the i-th
receiver; fi(v) is the Doppler frequency observed by the i-th
receiver with respect to (w.r.t.) a moving target with velocity

v � (vx, vy); A(x) is a diagonal matrix with diagonal entries

[A(x)]p,p = ej2π(p−1)Tsx, where Ts = 1/fs denotes the

sampling interval; x is the deterministic unknown transmitted

waveform; ni is a zero-mean white Gaussian noise with

covariance matrices σ2
i I. The relationship between the target

velocity v and its Doppler frequency can be obtained by

using the geometry depicted in Fig. 1. The normalized bistatic

Doppler frequency is given by

fi(v) =
Ts

λ

d

dt
(Rt +Rr,i), i = 1, · · · , I, (2)

where λ denotes the wavelength of the carrier signal, Rt is

the distance between the transmitter and the target, and Rr,i is

the distance between the i-th receiver and the target. The two

ranges can be expressed as

Rt = −(vx cos(θt − π) + vy cos(3π/2− θt))dt, (3)

and

Rr,i = −(vx cos(π − θi)− vy cos(θi − π/2))dt, (4)

where θt is the azimuth angle of the transmitter, θi is the

azimuth angle of the i-th receiver, vx = |v| cos θ, and vy =
|v| sin θ. θ is the unknown moving direction of the target.

Substituting (3) and (4) back into (2), we have the normalized

Doppler frequency fi(v) given by

fi(v) =
Ts

λ
(vx cos θt + vy sin θt + vx cos θi + vy sin θi). (5)

For simplicity, we will henceforth sometimes write the matrix

A
(

fi(v)
)

as A(fi). The problem of interest is to estimate the

velocity of the moving target from the observations yi.

III. PROPOSED METHODS

In this section, we first develop the exact maximum like-

lihood estimator for the target velocity using observations

from all receivers. Next, a computationally efficient two-step

estimator is introduced to reduce the computational load.

A. Exact MLE

Given observations y = [yT
1 , · · · , yT

I ]
T , the likelihood

function of y is

p(y|θ) = 1

(πσ2)NI
exp

{

− 1

σ2

I
∑

i=1

(

‖yi − γiA(fi)x‖2
)

}

,

(6)

where θ = [γ, v, x, σ2]T and γ = [γ1, · · · , γI ]
T . Then,

the log-likelihood function (LLF) can be written as

log p(y|θ) = −NI log(πσ2)− 1

σ2

I
∑

i=1

‖yi − γiA(fi)x‖2.

(7)
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The ML estimates of the unknown parameters can be obtained

by maximizing the LLF and are given by

max
θ

log p(y|θ). (8)

The maximization can be carried out sequentially w.r.t. each

parameter group, including the amplitudes γ, the target ve-

locity v, the waveform x, and the noise variance σ2. For the

amplitude parameters, the ML estimate can be obtained by

taking the derivatives w.r.t. γ and σ2, and setting them to

zero:
∂ log p(y|θ)

∂γi
= 0. (9)

Solving the above equation leads to the estimate of γi:

γ̂i =
xHA(fi)

Hyi

xHx
. (10)

Substituting (10) back into (7) gives

log p(y|v, x, σ2) = −NI log(πσ2)

− 1

σ2

I
∑

i=1

(

‖yi‖2 −
xHA(fi)

Hyiy
H
i A(fi)x

xHx

)

.
(11)

The ML estimate of σ2 can be obtained by setting
∂ log p(y|v, x, σ2)

∂σ2 = 0, and subsequently, the estimate is given

by

σ̂2 =
1

NI

(

I
∑

i=1

(

‖yi‖2 −
xHA(fi)

Hyiy
H
i A(fi)x

xHx

)

)

. (12)

Substituting (12) back into (11) and ignoring the constant

terms that are not related to the unknown parameter v and

x, we have

logp(y|v, x) = −NI log
(

I
∑

i=1

(

‖yi‖2

− xHA(fi)
Hyiy

H
i A(fi)x

xHx

)

)

.

(13)

Then, the ML estimate of v and x are obtained by maximizing:

max
v, x

xH
(
∑I

i=1 A(fi)
Hyiy

H
i A(fi)

)

x

xHx
, (14)

which means that maximization w.r.t. x is equivalent to

maximizing the Rayleigh quotient with some v. The max-

imum of the cost function is the largest eigenvalue of
∑I

i=1 A(fi)
Hyiy

H
i A(fi) and the corresponding eigenvector

is the ML estimate of the transmitted waveform x̂. Hence, the

ML estimate of v is given by

v̂ = arg max
v

λmax

(

I
∑

i=1

A
(

fi(v)
)H

yiy
H
i A

(

fi(v)
)

)

, (15)

where λmax(·) denotes the largest eigenvalue of a matrix. Since

there is no known closed-form solution to (15), we consider

a 2-D search of vx and vy for the target velocity estimation.

In practice, we often employ a two-step search to obtain the

ML estimate: divide the uncertain velocity interval into equally

spaced points to carry out a coarse grid search to provide an

initial estimate and then use a refined local search around the

initial estimate.

B. Efficient TSE

Given the observations described by y = [yT
1 , · · · ,yT

I ]
T ,

we need to use a brute force search over the 2-D parameter

space to obtain the ML estimate of the velocity, which is

computationally prohibitive. Next, we propose an efficient TSE

to simplify the computational load by dividing the receivers

into pairs and obtain estimates of the pairwise differences

of the Doppler frequencies observed by the receivers. For

simplicity, we consider the case with I = 3 receivers.We

divide the observations into 3 groups yA = [yT
1 ,y

T
2 ]

T ,

yB = [yT
1 ,y

T
3 ]

T , and yC = [yT
2 ,y

T
3 ]

T . For each observation

group [yT
i ,y

T
j ]

T , i, j = 1, 2, 3, and i �= j, it is clear that the

ML estimate of fi and fj are given by

{f̂i, f̂j} = arg max
fi, fj

λmax

(

Φ
)

, (16)

where

Φ = A(fi)
Hyiy

H
i A(fi) +A(fj)

Hyjy
H
j A(fj). (17)

Since Φ is the addition of two rank-one Hermitian matrices,

it has at most two non-zero eigenvalues λ1 and λ2, assuming

λ1 ≥ λ2. Based on the property of the trace of a matrix and

the fact that A(fi) and A(fj) are both unitary matrix, we

have:
tr(Φ) = λ1 + λ2 = ‖yi‖2 + ‖yj‖2
tr(Φ2) = λ2

1 + λ2
2,

(18)

where the second equality can be easily verified with the

eigendecomposition of Φ. Meanwhile, we have

Φ2 = A(fi)
Hyiy

H
i A(fi)A(fi)

Hyiy
H
i A(fi)

+A(fi)
Hyiy

H
i A(fi)A(fj)

Hyjy
H
j A(fj)

+A(fj)
Hyjy

H
j A(fj)A(fi)

Hyiy
H
i A(fi)

+A(fj)
Hyjy

H
j A(fj)A(fj)

Hyjy
H
j A(fj),

(19)

which leads to

tr(Φ2) = ‖yi‖4 + 2|yH
i A(fi)A(fj)

Hyj |2 + ‖yj‖4. (20)

Then, combining (18) and (20) gives:

λ1λ2 =
1

2

(

(

tr(Φ)
)2 − tr(Φ2)

)

= ‖yi‖2‖yj‖2

− |yH
i A(fi)A(fj)

Hyj |2,
(21)

which can be further summarized as
{

λ1 + λ2 = ‖yi‖2 + ‖yj‖2,
λ1λ2 = ‖yi‖2‖yj‖2 − |yH

i A(fi)A(fj)
Hyj |2. (22)

Thus, λ1 and λ2 are the roots of a quadratic equation:

λ2 − (‖yi‖2 + ‖yj‖2)λ+ ‖yi‖2‖yj‖2

− |yH
i A(fi)A(fj)

Hyj |2 = 0,
(23)

and its discriminant is given by

Δ =
(

‖yi‖2 − ‖yj‖2)2 + 4|yH
i A(fi)A(fj)

Hyj |2 ≥ 0. (24)
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Finally, the largest eigenvalue of Φ is given by

λmax

(

Φ
)

=
‖yi‖2 + ‖yj‖2 +

√
Δ

2
. (25)

Note that only the cross-term |yH
i A(fi)A(fj)

Hyj |2 in the

Δ function is related to the unknown parameters {fi, fj}.

Substituting (25) back into (16), the ML estimate of {fi, fj}
in (16) can be rewritten as

{

f̂i, f̂j
}

= arg max
fi,fj

|yH
i A(fi)A(fj)

Hyj |, (26)

which can be simplified as
{

f̂i, f̂j
}

= arg max
fi,fj

|yH
i A(fi − fj)yj |. (27)

We notice that the cost function in (27) has the form of a

one-dimensional (1-D) inverse FFT (IFFT):

yH
i A(fi − fj)yj =

1

N

N
∑

n=1

[g]ne
j2π(n−1)(fi−fj), (28)

where

g = Ny∗
i � yj . (29)

To reduce the computation load, we consider the fast FFT-

based implementation method in [24] to find the optimum

(f̂i − f̂j), instead of using the brute force 2-D search method

to solve (27). For more details about the 1-D FFT fast

implementation please refer to [24, Section III-C]. Thus, the

MLE reduces to identifying the peak of the magnitude of the

1-D IFFT of g. An estimate of fi − fj can be obtained based

on its relationship to the 1-D IFFT grid u:

f̂i − f̂j =
u− 1

Nc

, (30)

where Nc is the 1-D IFFT size. After obtaining estimates for

the difference of the Doppler frequency, using the definition

of fi in (2), we have the following relationship between the

estimates of the target Doppler f and target velocity v:

f̂i − f̂j =
Ts

λ

(

v̂x(cos θi − cos θj)+ v̂y(sin θi − sin θj)
)

. (31)

Although there is only one equation for the two unknown

variable vx and vy , we can use a different group observation

(choose from yA, yB, and yC) to obtain another equation, and

then jointly solve the two equations for the target velocity, i.e.,
{

Ts

λ

(

v̂x(cos θ1 − cos θ2) + v̂y(sin θ1 − sin θ2)
)

= f̂1 − f̂2,
Ts

λ

(

v̂x(cos θ1 − cos θ3) + v̂y(sin θ1 − sin θ3)
)

= f̂1 − f̂3.
(32)

IV. NUMERICAL SIMULATIONS

In this section, computer simulations are carried out to

demonstrate the performance of the maximum likelihood esti-

mator and the two-step estimator. The SNR at the i-th receiver

is defined as SNRi =
NP |γi|

2

σ2

i

, where P is the average power

of the transmitted waveform. The distributed sensor network

considered here has one transmitted signal source and three

receivers. Specifically, the transmitter is located at θt = 5π/4

and the receivers are located at θ1 = 5π/6, θ2 = 13π/8,

and θ3 = π/10, respectively. The other parameters in the

simulation are set as follow: the carrier frequency is fc = 1
GHz, the total number of signal samples is N = 100, the

target velocity is |v| = 30 m/s and the moving direction is

θ = π/3, the IFFT size for the fast implementation of (28)

is Nc = 1024, and 500 Monte Carlo trials are carried out to

obtain the root-mean-square error (RMSE).

Fig. 2 shows the RMSE for the target velocity vx and vy
versus SNR1 with different combinations of SNR2 and SNR3,

which corresponds to various scenarios for target velocity es-

timation. It is observed that the RMSE of the computationally

efficient TSE is very close to that of the grid search-based

MLE for both estimates at high SNR1 (SNR1 ≥ −5 dB).

-20 -10 0 10 20 30 40
10-4

10-2

100

102

(a)

-20 -10 0 10 20 30 40
10-3

10-2

10-1

100

101

102

(b)
Fig. 2. RMSEs of the MLE and the TSE versus SNR1 with different
combination of SNR2 and SNR3. (a) vx and (b) vy .

V. CONCLUSIONS

In this paper, we have examined the target velocity esti-

mation problem for a distributed sensor network by treating

the transmitted waveform as a deterministic process. An exact

MLE, which requires a multi-dimensional search procedure,

has been developed. To address the computational burden of
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the MLE, we have introduced an efficient TSE by dividing

the observations from different receivers into pairs and obtain

the ML estimates of frequency differences separately. For

each pair of observation, the ML estimate can be efficiently

obtained with a fast implementation using a 1-D FFT. As

a result, the TSE is significantly more efficient than the

MLE. Numerical results show that the performance of the

computationally efficient TSE is similar to that of the grid

search-based MLE.
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