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A search for pairs of Higgs bosons produced via gluon and vector boson fusion is presented, focusing on
the four b quark final state. The data sample consists of proton-proton collisions at a center-of-mass energy
of 13 TeV, collected with the CMS detector at the LHC, and corresponds to an integrated luminosity of
138 fb−1. No deviation from the background-only hypothesis is observed. A 95% confidence level upper
limit on the Higgs boson pair production cross section is observed at 3.9 times the standard model
prediction for an expected value of 7.8. Constraints are also set on the modifiers of the Higgs field self-
coupling, κλ, and of the coupling of two Higgs bosons to two vector bosons, κ2V. The observed (expected)
allowed intervals at the 95% confidence level are −2.3 < κλ < 9.4 (−5.0 < κλ < 12.0) and −0.1 < κ2V <
2.2 (−0.4 < κ2V < 2.5). These are the most stringent observed constraints to date on the HH production
cross section and on the κ2V coupling.
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The discovery of the Higgs boson (H) by the ATLAS and
CMS Collaborations [1–3] proves the existence of a
fundamental scalar sector of the standard model of particle
physics (SM), but the experimental confirmation of the
Brout-Englert-Higgs mechanism [4–6] requires the deter-
mination of the shape of the postulated scalar potential.
This shape is governed by a parameter λ that drives the
strength of the Higgs boson self-couplings and can thus be
determined experimentally with a measurement of Higgs
boson pair (HH) production.
At the CERN Large Hadron Collider (LHC), at the

energy of
ffiffiffi
s

p ¼ 13 TeV, the dominant HH production
mode in the SM is through the gluon fusion mechanism
(ggF), with a cross section of 31.1þ2.1

−7.2 fb [7–14], followed
by the vector boson fusion process (VBF), with a cross
section of 1.726� 0.036 fb [15] and characterized by the
presence of two additional hadronic jets, j, giving a bb̄bb̄jj
final state. Variations of the Higgs boson self-coupling
with respect to the SM prediction are parametrized by the
modifier κλ ¼ λ=λSM and affect the ggF and VBF produc-
tion modes. The VBF production mode also depends on
the strength of the interaction of pairs of vector bosons V
(¼ W, Z) with a single (VVH) and a pair (VVHH) of
Higgs bosons, whose values with respect to the SM
prediction are parametrized by the modifiers κV and
κ2 V, respectively. Departures from the relation κ2 V ¼ κ2V

predicted in the Brout-Englert-Higgs mechanism are pos-
sible in models of physics beyond the SM where the Higgs
boson is a composite state emerging from the presence of
new strong dynamics at the TeV scale [16].
The ATLAS and CMS Collaborations have searched for

ggF HH production with a dataset corresponding to an
integrated luminosity of about 36 fb−1 in a variety of final
states [17–26], whose combinations [27,28] set an observed
(expected) upper limit at the 95% confidence level (CL) on
the SM production cross section of 7 (10) and 22 (13) times
theoretical prediction, respectively. Updated searches have
been performed with an integrated luminosity of about
140 fb−1 [29–31], and the most stringent observed limits
are from the ATLAS search in the bb̄γγ final state and
correspond to 4.2 times the SM prediction, with a value of
κλ between −1.5 and 6.7 at the 95% CL The VBF HH
production process has been studied in the bb̄bb̄ [32]
and bb̄γγ [30] final states by the ATLAS and CMS
Collaborations, respectively, and the most stringent
observed constraints at the 95% CL correspond to −0.43 <
κ2 V < 2.56 from bb̄bb̄ and 225 times the SM cross section
prediction from bb̄γγ.
This Letter reports on searches for both the ggF and VBF

HH production mechanisms in the bb̄bb̄ decay channel. In
the SM, this decay mode is characterized by a combined
branching fraction of 0.339� 0.008 for mH ¼ 125 GeV
[33]. The analysis uses a sample of proton-proton collision
(pp) events at

ffiffiffi
s

p ¼ 13 TeV recorded between 2016 and
2018 with the CMS detector, corresponding to an inte-
grated luminosity of 138 fb−1.
The CMS apparatus [34] is a multipurpose, nearly

hermetic detector, designed to trigger on [35,36] and
identify electrons, muons, photons, and hadrons [37–41].
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A global event reconstruction “particle-flow” (PF) algo-
rithm [42] combines the information provided by the all-
silicon inner tracker and by the crystal electromagnetic and
brass-scintillator hadron calorimeters, operating inside a
3.8 T superconducting solenoid, with data from gas-
ionization muon detectors embedded in the solenoid iron
return yoke, to build τ leptons, jets, missing transverse
momentum, and other physics objects [43–45].
Hadronic jets are clustered from the PF objects using the

anti-kT algorithm [46,47] with a distance parameter of 0.4.
Jet energy corrections are derived from simulation studies
and corrected with in situ measurements to match the
energy scale in data and in simulation [44]. Jets originating
from b quarks are identified using as a discriminant the
output of a deep neural network algorithm (DEEPJET)
[48,49], trained using as input information the properties
of the PF constituents of the jets and of the secondary
vertices associated with them. For the jets in this search,
two working points (WPs) of the DEEPJET discriminant are
considered: the medium WP, which yields a b jet identi-
fication efficiency of 75% with a corresponding misidenti-
fication rate of light flavor and gluon (charm) jets of about 1
(10)%, and the tight WP, which corresponds to a b jet
identification efficiency of 58% and to a misidentification
rate of about 0.1(2)%.
Signal processes from ggF HH production are simulated

at next-to-leading order (NLO) accuracy in quantum
chromodynamics (QCD) with POWHEG2.0 [50–52], and
samples for VBF HH production are generated at
leading order (LO) accuracy in QCD using
MADGRAPH5_aMC@NLO2.6.5 [53] for various combinations
of couplings. The distributions are scaled by functions of the
couplings defined according to the known dependence of
the theoretical cross section [54] and added together to
model arbitrary coupling combinations, and the total pre-
dictions are normalized to the corresponding next-to-NLO
(NNLO) cross section [13] for ggF and by the ratio of the
next-to-NNLO [15] to LO SM cross sections for VBF.
Although not used to model the background, simulated
samples for the QCD multijet, tt̄, and ZZ backgrounds are
used for the optimization of the analysis. For all simulations,
the generators are interfaced with PYTHIA8.226 (2016) and
8.230 (2017–2018) [55], and the CMS detector response is
modeled with GEANT4 [56]. The simulated events are
weighted to match the distribution of additional pp inter-
actions (pileup) within the same or nearby bunch crossings,
relative to the collision of interest, to the one observed in
data. See Supplemental Material [57] for further details on
the simulated samples.
The trigger selection for events collected in 2016

requires the presence of four jets with transverse momen-
tum pT > 45 GeV or of two jets with pT > 30 GeV and
two jets with pT > 90 GeV. For 2017 (2018) data, the
presence of four jets above the pT thresholds of 40, 45, 60,
and 75 GeV is required together withHT > 300ð330Þ GeV,

respectively, where HT denotes the scalar sum of the trans-
verse momentum of the jets reconstructed in the event. As a
consequence of the change in jet trigger thresholds, data
collected in 2017 and 2018 are analyzed separately from
those collected in 2016.
Offline, events are required to contain at least four jets

with pseudorapidity jηj < 2.4ð2.5Þ and pT > 30ð40Þ GeV
for the 2016 (2017–2018) data, respectively. Jets are
required to satisfy the tight WP of the PF jet identification
algorithm [58,59], corresponding to an efficiency larger
than 99%. If their pT is below 50 GeV, the medium WP of
the pileup discriminant [58] is also required, for a signal jet
efficiency of about 90%. If more than four jets satisfy these
criteria, the four objects with the largest DEEPJET output are
selected. The pT of these four jets are corrected with a
multivariate regression method developed for b jets that
improves the determination of the momentum by up to
15% and simultaneously estimates the per jet resolution
achieved [60]. After the application of this method, the
resolution on the dijet invariant mass for H → bb̄ events
reconstructed in this analysis ranges between 11% and
14%. At least three of the selected jets are required to
satisfy the medium WP of the DEEPJET discriminant.

Events are rejected if they contain an electron or a muon
with pT > 15 and 10 GeV, respectively, and jηj < 2.4,
where these objects must satisfy identification discrimi-
nants and criteria that include isolation and impact param-
eter with respect to the primary interaction vertex. This
selection suppresses background events containing leptonic
top quark decays.
The two Higgs boson candidates are formed by pairing

the four jets. There are three possible pairings of jets, and in
each the two Higgs boson candidates, denoted as H1 and
H2, are defined by the relation pTðH1Þ > pTðH2Þ. The
ðH1; H2Þ pairings are ordered according to the increasing
value of a distance parameter d ¼ jmH1

− kmH2
j=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p
.

The constant k is the ratio of the expected peak positions of
the reconstructed Higgs boson masses for events that are
correctly paired, k ¼ c1=c2 ¼ ð125 GeVÞ=ð120 GeVÞ ¼
1.04. Its value differs from 1 because of the residual jet
momentum dependence of the multivariate energy regres-
sion that more strongly impacts the softer H candidate. If
the difference in the distance parameter of the first and
second pairing, Δd, is larger than 30 GeV, corresponding to
about 2 times the resolution on the Higgs boson mass, the
pairing with the smallest d is chosen. Conversely, if
Δd ≤ 30 GeV, the experimental resolution limits the
capability to identify the correct pairing based on the
invariant masses, and a choice is made between the first
and second pairing as the one that maximizes the pT of the
two Higgs boson candidates in the four-jet center-of-mass
reference frame. This procedure results in a correct jet
pairing of about 96% of the selected events in a ggF SM
HH sample, and amounts to 82%–96% (91–98)% for the
different couplings studied in ggF (VBF) signal events.

PHYSICAL REVIEW LETTERS 129, 081802 (2022)

081802-2



The two non-b jets in the VBF production events are
selected with pT > 25 GeV and jηj < 4.7, and they must
satisfy the tight WP of the jet identification algorithm
and the medium WP of the pileup discriminant if
pT < 50 GeV. For the 2017 data, affected by large noise
in the end caps of the electromagnetic calorimeter (ECAL),
jets in the region 2.6 < jηj < 3.1 are additionally required
to satisfy the tight WP of the pileup discriminant to mitigate
the noise effects. The two VBF jet candidates j1 and j2 are
chosen as the highest pT jet and the second-highest pT jet
that has an opposite η sign with respect to the former.
Events that do not contain such a VBF jet pair are

assigned to the ggF category. About 26%–28% of ggF
events contain additional jets that satisfy the above require-
ments on the VBF jet candidates, and in order to correctly
classify them, a boosted decision tree (BDT) discriminant is
trained to separate ggF and VBF HH signal events. The
discriminant uses pTðH1Þ, pTðH2Þ, pTðj1Þ, pTðj2Þ, the
invariant mass and absolute value of pseudorapidity of the jj
system, the angular separation ΔR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔηÞ2 þ ðΔϕÞ2

p
,

where ϕ is the azimuthal angle, between the two H
candidates and between each H and VBF jet, the absolute
value of the polar angles with respect to the beam direction
of the two VBF jets in the center-of-mass frame of the six
selected jets and the product of the two Higgs boson
centralities exp ½−ð½ηðH1Þ − ηavg�=ΔηÞ2 − ð½ηðH2Þ − ηavg�=
ΔηÞ2�, where Δη ¼ ηðj1Þ − ηðj2Þ and ηavg ¼ ½ηðj1Þ þ
ηðj2Þ�=2. The discriminant is trained to separate the SM
ggF HH signal from the κ2 V ¼ 2 VBF signal, in order to
optimize both the sensitivity to the anomalous κ2 V cou-
pling hypotheses and the correct classification of SM ggF
signal events. The value κ2 V ¼ 2 is chosen because it is
representative of the event kinematics in the presence of
anomalous couplings, characterized by the large invariant
mass of the jj andHH systems. These signals are associated
with a large increase of the total cross section that would
make them detectable with the available dataset. A thresh-
old on the BDT output is chosen to assign events to either
the ggF or VBF category. It results in the correct assignment
of about 97% of all ggF HH signal events to the ggF
category and of about 60% (80)% of SM (κ2 V ¼ 2) VBF
HH events that contain the additional jets to the VBF
category.
Events classified as ggF or VBF signal are further

divided into subcategories to optimize the sensitivity of
the search for anomalous coupling hypotheses. Events in
the ggF category are divided into a low- and high-mass
category if the reconstructed invariant mass of the HH
system, mHH, is below or above 450 GeV, where the
boundary is defined according to the kinematic properties
of the signal. The latter category efficiently collects SM ggF
HH events, while the former increases the acceptance to
signals with anomalous κλ values. Events in the VBF
category are instead divided into a “SM-like” and an
“anomalous κ2 V-like” category depending on the value

of the discriminant trained to separate ggF and VBF.
The categorization thresholds were chosen to maximize
the expected sensitivity to VBF HH signals, and result in
the assignment of about 25%–30% of the VBF κ2 V ¼ 2
events to the anomalous κ2 V-like category and 95% of SM
VBF events to the SM-like category.
The large multijet background that originates from QCD

and tt̄ hadronic processes is estimated from the data using
background-dominated regions. Analysis signal (ASR) and
control (ACR) regions are defined by requiring χ < 25 GeV
and 25 ≤ χ < 50 GeV, respectively, where χ is the distance
from the expected peak position of the two Higgs boson
candidates’ invariant masses and is defined as χ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmH1

− c1Þ2 þ ðmH2
− c2Þ2

q
, where c1 and c2 are as

defined for the pairing of the four jets. Both ASR and
ACR are divided into a four b jet (4b) and three b jet (3b)
region by requiring the b jet candidate with the lowest
DEEPJET output to satisfy or fail the medium WP of the
discriminant, respectively. There are between 5.5 and 11
times more events in the 3b region than in the 4b region,
depending on the topological category and data taking year
considered. The overall efficiency for both ggF and VBF
signal events to be selected in the A4b

SR region ranges from
0.3% to 3% depending on the couplings considered and is
minimal for the SM VBF production and for the ggF
production with κλ ≈ 5 due to the interference effects in the
HH production that result in low momenta of the Higgs
bosons. The signal acceptance is mostly limited by the
trigger acceptance and the jet b tagging efficiency.
Background events in the A4b

SR region are modeled from
events in the A3b

SR region. The former represents the
sensitive region of the analysis, while the latter provides
a sample enriched in multijet background events with
similar kinematic properties. Events in A4b

SR were analyzed
only after all the methods were defined and validated. The
normalization is determined by scaling the observed
number of events in A3b

SR by a transfer factor computed
as the ratio of the number of events in the A4b

CR and A3b
CR

regions. Variations of the transfer factor depending on the
position in the ðmH1

; mH2
Þ plane are accounted for by

measuring it as a function of mk, defined as the projection
of the point in the plane on the linemH1

¼ ðc1=c2ÞmH2
that

is used for the H candidate reconstruction. Higher values
of mk are correlated with a higher average pT of the
selected jets.
Differences in the distributions of several variables

between the 3b and the 4b regions are addressed with
the BDT-based reweighting method described in Ref. [61],
which uses a dedicated metric to identify the phase space
regions with the largest differences in the distributions and
compute an event weight to correct for them. This method
accurately models multiple variables and their correlations,
while minimizing issues related to the statistical uncertain-
ties arising from the limited number of events in the two
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regions. The BDT is trained in the A4b
CR and A3b

CR regions,
and applied to events in A3b

SR to model A4b
SR.

Trainings of this BDT are performed separately for each
ggF and VBF category. All trainings use as inputs the
following ten variables: pT of the four b jets, mHH, the
invariant masses and pT of the H1 and H2 candidates, and
the absolute value of their pseudorapidity difference
(jΔηðH1; H2Þj). In the ggF category, ten additional varia-
bles are used: the magnitude of the scalar (

P
pT) and

vector (pTðHHÞ) sums of the pT of the four b jets, the
angular ΔR separations between the two jets that constitute
H1 and H2 [ΔRH1ðbbÞ, ΔRH2ðbbÞ], the minimal ΔR
(ΔRmin) and the maximal jΔηj (jΔηjmax) between all the
possible b jet pairs, the absolute value of the angle with
respect to the beam line of one Higgs boson in the four-jet
reference frame (jcos θ�j) and of one jet of H1 in the H1

candidate reference frame (jcos θH1

b j), the sum of the
resolution estimators of the three b-tagged jets with the
best DEEPJET value (

P
Re), and the number of these three

jets that satisfy the tight DEEPJET WP (NT
b ). In the VBF

category, four additional variables are used: the absolute
value of the ϕ separation between the two Higgs bosons,
the VBF jets invariant mass and absolute value of the η
separation, and the output of the production mode BDT
discriminant. These variables are chosen as those that best
represent the kinematic properties of the events in the 3b
and the 4b regions and that provide separation between
signal and background and are used in subsequent steps of
the analysis.
The training parameters are optimized with a two-step

procedure. First, a Kolmogorov-Smirnov distance test is
used to ensure that the distributions of the BDT input
variables in the target A4b

CR region are compatible with the
ones in the reweighted A3b

CR region. Once that is verified, a
BDT is trained to separate the A4b

CR and reweighted A3b
CR

data, thus testing also the correlations of variables. All the
training configurations that are chosen are required to have
an area of 0.5 under the receiver operating curve of the
discriminant, corresponding to no separation.
The procedure is validated by applying it to a signal-

depleted region, defined by shifting the signal and control
regions according to the definition of χ, using as values of
the center position c1 ¼ 179 and c2 ¼ 172 GeV. The
center of this validation region is chosen to be along the
mH1

¼ 1.04mH2
line used in the reconstruction of the H

candidates to provide an accurate proxy of the analysis
region. In analogy to the analysis regions, signal and
control validation regions, VSR and VCR, are defined as
χ < 25 GeV and 25 ≤ χ < 50 GeV, respectively. After
training and applying the reweighting BDT in these regions
and computing the normalization transfer factors, the data
in V4b

SR were found to be compatible within uncertainties
with the predicted background, validating the modeling
method. The agreement is quantified with a goodness-of-fit

test based on a saturated model [62] performed on the
observables used in the analysis. For a fit under the
background-only hypothesis, a p value of 53% is observed,
ranging between 12% and 83% for the individual
categories.
The impact on the estimated background from the

presence of signal events in the A3b
SR region due to jets

failing the b tagging requirement is estimated by generating
pseudodata in A4b

SR according to the modeled background
plus simulated HH signal, and fitting them under a
different background hypothesis that includes the contri-
bution from signal events in A3b

SR weighted as done for
background events. This study is repeated for signal yields
up to five times larger than the expected sensitivity of this
search, and in all cases a signal yield compatible with the
true one is observed. We conclude that signal events in A3b

SR
do not have any significant impact on the background
model and on the results.
For the background model, systematic uncertainties are

considered for the limited number of events in the A3b
SR.

These uncertainties are uncorrelated across the individual
bins of the background templates used for the statistical
analysis, and correspond to the propagation of a bin-by-bin
Poisson uncertainty from the A3b

SR to the A4b
SR region. The

uncertainty in the estimation of the transfer factor from the
3b to the 4b region is computed from the statistical
uncertainty in A3b

CR and A4b
CR and is 1%–2% for the ggF

categories, 2%–3% for the SM-like VBF category and
18%–32% for the anomalous κ2 V-like VBF category. An
uncertainty is also considered for the limited number of
events in the validation region, in some cases lower than the
number of events in the analysis region. It is large (30%–
33%) for the anomalous κ2 V-like VBF category while it is
about 2%–3% and below 1% for the other VBF category
and the ggF categories, respectively, and represents the
inherent limitation on the capability to validate the perfor-
mance of the background model. For analysis categories
where the agreement between the observed and predicted
background yields in the validation region differs by more
than 1 standard deviation, an additional uncertainty is
included and ranges between 1.5% and 4.7%, depending
on the category and year. Finally, the uncertainty in the
performance of the reweighting method to interpolate the
kinematics from ACR into ASR is estimated by performing
alternative trainings in two regions of ACR. The two regions
are defined by requiring the product of m⊥ and mk to be
either positive or negative, where m⊥ is defined as the
projection of the point in the ðmH1

; mH2
Þ plane onto the axis

perpendicular to the one corresponding to mk previously
defined. The two regions correspond to four quadrants in
the ðmH1

; mH2
Þ plane, and allow for tests of the capability

of the reweighting method to model ASR, starting from
events with kinematic properties that are either similar
(m⊥mk < 0) or that are harder or softer (m⊥mk > 0)
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compared to ASR, thus testing the capability of the model to
interpolate across different learning domains. The alter-
native background templates obtained from trainings in
these regions represent the uncertainty on the shape of the
predicted background distribution. All the uncertainties are
independent between the 2016 and 2017–2018 background
models. The dominant uncertainties in this search are those
associated to the background modeling, and in particular
the bin-by-bin and the normalization uncertainties due to
the limited number of events in A3b

SR, A
3b
CR, and A4b

CR.
The effects of the imperfect modeling of the detector

response and the inaccurate simulation of signal processes
are accounted for as systematic uncertainties. The most
important sources of systematic uncertainty are the total
integrated luminosity, the jet energy scale and resolution,
the efficiency of the trigger and of the b-tagging require-
ments, the modeling of the pileup distribution, the HH →
bb̄bb̄ branching fraction, and the parameters used for the
generators. A specific uncertainty on the parton shower is
considered for the VBF production mode. Uncertainties on
the theoretically determined HH cross section are consid-
ered only when quoting a limit on the HH signal strength
(μ), defined as the ratio of the value of the cross section
limit relative to the theoretical cross section expectation in

the SM (σHH=σSMHH). These uncertainties are negligible in
comparison to the background uncertainties. See
Supplemental Material [57] for more details.
A multivariate BDT discriminant is trained with the

XGBOOST software [63] in the two ggF subcategories to
separate the signal from the weighted A3b

SR background
events. The discriminant uses as inputs pTðH1Þ, pTðH2Þ,
mH1

, mH2
, jΔηðH1; H2Þj, mHH, pTðHHÞ, ΔRH1ðbbÞ,

ΔRH2ðbbÞ, ΔRmin, jΔηjmax,
P

pT , NT
b ,

P
Re, jcos θ�j,

and jcos θH1

b j. For each subcategory, a separate training is
performed to separate the SM ggF HH signal from the
weighted A3b

SR region data. Since the same A3b
SR data are also

used to model the background, this dataset is divided in two
equal-size subsamples. Two trainings are performed on
each half and applied to the other half, and the two partial
background templates are added together. In this way, the
full dataset can be used for the modeling, while the BDT
discriminant is not evaluated on events used for its training.
In the VBF SM-like category, mHH is used as the
discriminating variable, while in the anomalous κ2 V-like
category, a counting experiment is performed because of
the small number of expected background events. The
distributions of these variables are shown in Fig. 1. For the
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FIG. 1. Distributions of the events observed in the A4b
SR signal region for 2016 (top) and 2017–2018 (bottom) data. The two leftmost

columns show the BDT output in the low- and high-mass categories, and the rightmost column shows the mHH distribution in the VBF
SM-like category.
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VBF anomalous κ2 V-like category in the 2016 (2017–
2018) data set, 4 (13) events are observed for a total of
4.0� 1.3 (15.0� 3.4) background and 1.5 (3.5) VBF
κ2 V ¼ 2 signal events expected.
A binned maximum likelihood fit is simultaneously

performed in all analysis categories, where the systematic
uncertainties previously discussed are introduced as nui-
sance parameters. No deviation from a background-
only hypothesis is observed. Results are used to set
95% CL upper limits on the HH production cross section
using the modified frequentist CLs criterion [64,65] with
the profile likelihood ratio modified for upper limits [66]
as the test statistics, and making use of the asymptotic
approximation [67].
Figure 2 shows the 95% CL cross section upper limits as

functions of the κλ and κ2 V values. The value of κλ is
observed (expected) to be in the range −2.3 < κλ < 9.4

(−5.0 < κλ < 12.0) at the 95% CL, while the value of κ2 V
is observed (expected) to be in the range −0.1 < κ2 V < 2.2
(−0.4 < κ2 V < 2.5) at the 95% CL The total HH produc-
tion cross section, defined as the sum of the ggF and VBF
production modes, is observed (expected) to be smaller
than 120 (238) fb, corresponding to 3.9 (7.8) times the SM
prediction, when uncertainties on the theoretical production
cross section are included. The HH VBF production cross
section is observed (expected) to be smaller than 226 (412)
times the SM prediction. The deficit in the observed
number of events localized around the BDT discriminant
values of 0.85–0.9 in the ggF high-mass category in the
2017–2018 dataset, which provides the largest sensitivity to
the signal, results in the observed limit to be below the
expected one. Studies of the background model for the
individual BDT input variables and the absence of deficit in
the 2016 data in the same high-sensitivity region, and in the
other categories suggest that this under fluctuation is of
statistical nature.
The intervals containing 68% and 95% of the expected

signal strength upper limits correspond to [5.5, 12.3] and
[4.0, 18.7] ([291, 598] and [216, 846]) for the ggF (VBF)
production modes, and the observed limit is thus compat-
ible with the expectation within about 2 standard devia-
tions. The sensitivity is mostly limited by the number of
events in the signal and control regions of the analysis.

Tabulated results are available in the HEPData record of
this analysis [68].

In summary, a search for the production of Higgs boson
pairs via gluon and vector boson fusion in the four b quark
decay channel has been presented. The data are found to be
statistically compatible with the background-only hypoth-
esis, and an observed (expected) upper limit at the
95% confidence level is set to 3.9 (7.8) times the SM
prediction for the combined ggF and VBF HH cross
section. The value of the Higgs boson self-coupling,
normalized to the SM expectation, is observed (expected)
to be in the range−2.3 < κλ < 9.4 (−5.0 < κλ < 12.0), and
the value of the coupling of Higgs boson pairs to vector
boson pairs, normalized to the SM expectation, to be in the
range −0.1 < κ2V < 2.2 (−0.4 < κ2V < 2.5). These are the
most stringent observed constraints to date on the HH
production cross sections and on the κ2 V coupling.
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80bUniversità di Pisa, Pisa, Italy

80cScuola Normale Superiore di Pisa, Pisa, Italy
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81bSapienza Università di Roma, Rome, Italy

82aINFN Sezione di Torino, Torino, Italy
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