
1

A Survey on Neuromorphic Computing: Models
and Hardware

Amar Shrestha1, Haowen Fang1, Zaidao Mei1, Daniel Patrick Rider1, Qing Wu2 ,Qinru Qiu1
1Department of Electrical Engineering and Computer Science, Syracuse University, Syracuse, NY

2US Air Force Research Laboratory, Rome, NY, USA
Email: 1{amshrest, hfang02, zmei05, dprider, qiqiu}@syr.edu, 2 qing.wu.2@us.af.mil

Abstract—The explosion of “big data” applications imposes
severe challenges of speed and scalability on traditional com-
puter systems. As the performance of traditional Von Neumann
machines is greatly hindered by the increasing performance
gap between CPU and memory (“known as the memory wall”),
neuromorphic computing systems have gained considerable at-
tention. The biology-plausible computing paradigm carries out
computing by emulating the charging/discharging process of
neuron and synapse potential. The unique spike domain infor-
mation encoding enables asynchronous event driven computation
and communication, and hence has the potential for very high
energy efficiency. This survey reviews computing models and
hardware platforms of existing neuromorphic computing systems.
Neuron and synapse models are first introduced, followed by
the discussion on how they will affect hardware design. Case
studies of several representative hardware platforms, including
their architecture and software ecosystems, are further presented.
Lastly we present several future research directions.

Index Terms—Neuromorphic computing, spiking neural net-
works, bio-inspired computing, machine learning.

I. INTRODUCTION

The ever-increasing scale and computation complexity of
machine intelligence have been posing challenges on the
traditional Von Neumann architecture and demanding for
higher performance per watt efficiency from energy limited
systems such as edge devices, Internet-of-Things (IOT), and
cyber physical systems (CPS). This motivates a new paradigm
of massively parallel and distributed computing inspired by
biological neural systems, namely neuromorphic computing.
By learning from the biological and physical characteristics
of the neocortex system, researchers in neuromorphic com-
puting incorporate a brain-inspired computing model, a non-
conventional architecture, and novel device technology to pro-
vide energy efficient solutions to real-life machine intelligence
problems.

The concept of neuromorphic computing was first proposed
by Carver Mead in the 1980s [1]–[4]. The early works in
this area focused on emulating the analog behavior of neural
systems. It is observed that biological systems achieve many
orders of magnitude higher efficiency than digital systems
when performing certain cognitive tasks. [1] and [4] credit
such advantage to the fundamental differences between digital
circuits and biological systems. The early works in neuromor-
phic computing tried to bridge the gap between the lower-
level physical details of biological systems and the higher-
level computational functionality. [2], [5] claim that, due to

their adaptability, neuromorphic systems are more resilient to
noise and component failure and have the potential to be more
energy efficient.

The early efforts of neuromorphic computing include [1]–
[4], [6]–[9]. Those works mainly focus on modeling realistic
biological systems using analog circuits. [7] developed a
silicon retina and a sensorimotor system. [8] designed an elec-
tronic cochlea using CMOS which shares the same principle
as biological cochlea. [1] proposed a chip that is structurally
similar to retinas of higher animals. [10] developed a floating-
gate silicon MOS transistor to emulate synapse and realized a
learning rule on the synapse array.

The implementation of neuromorphic computing has shifted
to the digital domain in recent decades for better noise
resilience and higher scalability. The research focus has
also extended from single neuron implementation to network
and inter-neuron communication architectures. In addition
to digital systems, emerging materials and devices such as
memristors, phase changing materials, photonic circuits are
also being investigated for hybrid solutions of neuromorphic
computing. Spiking neural network (SNN) is often studied
together with neuromorphic computing as the underlying
computational model. Sometimes the two terms are even
interchangeable. SNNs have more biologically plausible fea-
tures than conventional artificial neural networks (ANNs) [11].
Similar to the biological neural system, SNN is inherently
a dynamic and stateful network. The most distinct property
of SNN is that the information is represented, transmitted
and processed as discrete spike events, also referred to as
action potentials [12]. Spikes are electrical pulses in biological
neural systems. In SNN mathematical models, spikes are
usually represented by Dirac Delta functions. Although a spike
enables low power information transmission and processing,
the non-differentiable Dirac Delta function also imposes a
major challenge in SNN training, hindering the application
of gradient descent algorithms [13]. In addition, unlike ANN,
in which inter-neuron connections pass information lossless
with a linear scaling controlled by the weight coefficients,
connections/synapses of SNN may consist of multiple state
variables and parameters. This feature makes the SNN more
powerful in processing spatial/temporal sequences, but also
increases the complexity of its implementation.

It is noteworthy that the boundary between SNN and ANN
is not always clear. Though most SNN models use spikes,
there are also rate-based SNN models, in which the output

2

Fig. 1: Different aspects in neuromorphic computing.

of a neuron is no longer discrete spikes, but real-valued
instantaneous spike rates. Such models can be interpreted as
ANNs [14]. There are also models [15], [16] and hardware
[17] that fuse SNN and ANN together. In this work, the name
SNN is used to refer to the models that generate spikes as
their outputs.

While the inferencing and learning of conventional ANNs
are generally formulated as matrix-vector multiplications,
there is no unified model for SNNs. Different models for spik-
ing neurons and synapses represent their biological counterpart
at different levels of details, which impacts the flexibility,
complexity, and efficiency of hardware/software implementa-
tions. Based on their applications, we can divide neuromorphic
computing into two categories, systems for computational
neuroscience and systems for machine intelligence. Although
their boundary is not always clear, the former usually focuses
on models with more biophysical details and tries to reproduce
their physiological features such as network oscillations. The
latter focuses more on mathematically abstract models and
their information representation and retrieval abilities. In Fig-
ure 1, we divide neuromorphic computing systems into 8 main
categories based on their computational model, implementa-
tion, and applications. In this paper we will limit ourselves to
the digital or mixed signal implementation of spiking neural
networks for machine intelligence applications. Compared to
earlier survey [18], which comprehensively discusses various
aspects of neuromorphic computing, including history, model,
algorithm, hardware design, device and applications, this work
focuses more on the algorithm-hardware codesign. For exam-
ple, we will discuss the implications that neuron models and
learning algorithms may impose on hardware design, how the
hardware architecture limits software and algorithm, and the
design trade-offs between algorithm and hardware.

The rest of the survey is organized as the following. Section
II reviews neuron and synapse models, network topologies,
information encoding schemes and learning algorithms. Their
impact on hardware implementation will be discussed in
Section III, followed by a detailed discussion of the hardware
and software ecosystems of several selected neuromorphic
computing systems in Section IV. The outlook of future

research directions will be given in Section V.

II. NEUROMORPHIC COMPUTING MODELS

Biological neurons communicate with each other by gen-
erating and propagating electrical pulses called spikes [19],
[20]. At the high abstraction level, all spiking models share
the following common properties: (1) they process information
coming from many inputs and produce single or multiple
spikes; (2) the probability of spike generation is increased by
excitatory inputs and decreased by inhibitory inputs; (3) at
least one state variable is used to characterize their dynamics
and the model is supposed to generate one or more spikes
when the internal variables of the model reach a certain state.
Neurons connect and communicate with one another through
specialized junctions called synapses [21], [22]. Similar to the
neuron models, synapse models also vary in the complexity
and biological plausibility.

The details of some popular spiking neuron models and
synapse models are reviewed in Sections II-A and II-B.
Different spike coding techniques are reviewed in Section II-C.
In Section II-D, we discuss various network architectures and
in Section II-E we show how learning is accomplished in the
networks of spiking neurons.

A. Neuron Models in Ordinary Differential Equations (ODE)

The existing neuron models can be categorized into two
groups, conductance-based models and spike-based models.
The former includes the Hodgkin–Huxley (HH) model [23],
the Fitz-Hugh-Nagumo (FHN) model [24] and the Morris-
Lecar [25] model, while the latter includes the Izhikevich
model [26], the Integrate and Fire (IF) model and the Leaky-
Integrate and Fire (LIF) [27] model.

Conductance-based models are based on an equivalent cir-
cuit representation of a cell membrane, as first put forth
by Hodgkin and Huxley [23]. These models apply a set of
nonlinear differential equations to provide a biophysical inter-
pretation of an excitable cell in which current flows across the
membrane due to the charging of the membrane capacitance
(Ic) and the movement of ions across ion channels (Iion),
such that the total membrane current Im(t) is the sum of the
capacitive current and the ionic current Im(t) = Ic + Iion.
The membrane potential Vm of the cell with capacitance Cm

is related to the capacitance current based on the following
equation

Ic = Cm
dVm
dt

(1)

The ion current Iion is a function of the difference of the
Vm and the ion potential, whose conduction is time varying
and modeled by a set of differential equations. Based on the
model, positive surges (i.e. spikes) are formed on the mem-
brane potential at constant or time varying input current. The
conductance-base models consider neuron input, output, and
state as continuous-time continuous-valued variables; hence
they have a high computational complexity. Due to their high
fidelity to the biological neuron, the conductance-based models
are more widely used in computational neuroscience.

3

The spike-based model simplifies the neuron input and
output into spikes. A sequence of the spike events, i.e. a spike
train, can be described as the following

S(t) =
∑
f

δ(t− tf), (2)

where f = 1, 2, · · · is the label of the spike and δ(.) is a
Dirac function with δ(t) 6= 0 for t = 0 and

∫∞
−∞ δ(t)dt = 1.

The basic assumption underlying most spiking neuron models
is that it is the timing of spikes rather than the specific shape
of spikes that carries neural information [28].

Among the spike-based models, the Integrate-and-Fire (IF)
model, and Leaky Integrate-and-Fire (LIF) model [28] are the
most widely used. Both models abstract biological neurons
as point dynamical systems. The dynamics of the LIF unit is
described by the following formula:

C
du(t)

dt
= − 1

R
u(t) + (io(t) +

∑
wjij(t)) (3)

where u(t) is the membrane potential, C is the membrane
capacitance, R is the input resistance, io(t) is the external
current driving the neural state, ij(t) is the input current from
the j-th synaptic input, and wj represents the strength of the
j-th synapse. Both io(t) and ij(t) are functions of spike trains,
as given in Equation 2. When R→∞, formula 3 is reduced
to an IF model. In both IF and LIF models, a neuron is
supposed to fire a spike, whenever the membrane potential
u reaches a certain value υ referred to as the firing threshold.
Immediately after the spike, the neuron state is reset to a new
value ures < υ and holds at that level for the time interval
representing the refractory period.

The majority of the neuromorphic systems utilize IF and
LIF neurons as they are easier to implement and are com-
putationally efficient. The LIF model has been extended with
one or more adaptation variables to account for different firing
patterns. A well-known model is the Izhikevich model, which
can produce firing patterns experimentally verified on neocor-
tical and thalamic neurons [26]. However, it is not clear what
roles the different firing patterns are playing in learning and
cognition, and those additional adaptation variables increase
the model complexity. Therefore, they are less used in machine
intelligence applications.

B. Neuron Dynamics in Spike Response Model (SRM)

The aforementioned IF and LIF models are over-simplified
by considering the synaptic connection as a time-invariant
device with a constant efficacy w and assume that the mem-
brane potential reset as an instantaneous procedure. A more
realistic neuron model considers the dynamics in the neuron
and synapse behavior.

The arrival of a presynaptic spike triggers the synaptic
electric current flowing into the biological neuron [20]. It
causes a change in the membrane potential of the synapse,
which is referred to as post-synaptic potential (PSP). In a
general form, the time course of jth PSP can be described
as the convolution of the presynaptic spike train Sj(t) and a

Fig. 2: Exponential, Alpha and dual exponential Kernels.

Fig. 3: Spike response model.

kernel function Kj(t) scaled by a weight coefficient wj as the
following:

PSP j(t) = wj

∫ ∞
0

Sj(t− s)Kj(s)ds

= wj

∑
tj

′<t

Kj(t− tj
′
), (4)

where tj
′

is the time of spikes on the input Sj(t). K(t)
can be an exponential, a dual exponential or an alpha kernel
defined by following equations:

K(t) = e−
t
τ (5)

K(t) =
t

τ
e−

t
τ (6)

K(t) = V0(e−
t
τm − e−

t
τs) (7)

Their spike responses are illustrated in Figure 2.
The reset of the membrane potential is no longer instanta-

neous. Instead, it is modeled as a negative potential induced
by the output spike train So(t) going through a kernel function
h(t),

R(t) =

∫ ∞
0

So(t− s)h(s)ds =
∑
to

′<t

h(t− to
′
), (8)

where to
′

is the time of spikes on the output spike train.
Usually h(t) is a kernel given in Equation 5.

The way to interpret the neuron dynamics is as a convolution
of the impulse response of a filter with the input spike train as

4

Fig. 4: Neuron modeled by digital filters [29].
.

in Equations 4 and 8, and is referred to as the Spike Response
Model (SRM).

The membrane potential is the combined effect of PSP (t)
and R(t) as shown in Figure 3. Using SRM representation, it
can be represented as an integral over the past input and kernel
responses. A typical SRM model is defined as the following
[12]:

Vm(t) =

N∑
j=1

wj

∑
t
′
j<t

K(t− t
′

j)− Vth
∑
t′o

h(t− t
′

o) (9)

where Vm(t) is the membrane potential, K(t) and h(t) are
two convolution kernels associated to synaptic dynamics and
membrane potential reset events. When Vm(t) exceeds the
threshold Vth, the neuron generates a spike output whose time
is indicated by the spike time t

′

o.

By using a kernel K(t) with arbitrary shape, the SRM
model provides complicated dynamics and rich temporal infor-
mation. The simplified LIF model in Equation 3 is a special
case of the SRM model, where the K(t) and h(t) are two
low-pass filters. The SRM model shows that the membrane
potential is a function based on not only the current but also
the past input spikes, which explains the neuron’s ability to
respond to temporal patterns.

The kernels in the SRM model can be implemented as
discretized digital filters. Using the Z-transform [30], [31],
they can be represented as a Linear Constant-Coefficient
Difference (LCCD) equation in the following form:

y [t] =
P∑

p=1

αpy[t− p] +

Q∑
q=1

βqx[t− p], (10)

where y[t] and x[t] are the output and input of the kernel
and P and Q are the feedback and feedforward orders. Using
this implementation, a neuron in the SRM model can be
represented as a network of IIR filters, as shown in Figure
4. This architecture was adopted in [32]–[34] for the digital
implementation of SRM neurons.

C. Neural coding and spike timing

Neural coding is an essential part of the SNN. It refers
to the way in which information is represented by discrete
spikes. Neural coding is tightly coupled with the neuron model
and determines the performance of the SNN and hardware
implementation.

Exactly how the brain and sensory system encode infor-
mation is not fully understood yet. Rate coding and temporal
coding are two commonly used information coding in neu-
romorphic computing. Rate coding represents a value by the
number of spikes in a unit time. It agrees with the observation
that the sensory nerves’ spike frequency increases as the
stimulus intensity increases. Rate coding has been widely
adopted. For example, most SNN models and neuromorphic
hardware for image classification use rate coding, where the
pixel value is represented by the number of spikes in unit
time [13], [35]–[37]. However, rate coding has its limitations.
First of all, it introduces latency. The firing rate cannot be
determined accurately until a sufficiently large number of
spikes have been received. While a typical neuron firing rate is
between 1 and 200 Hz, in realistic biological neural networks,
there is not enough time to integrate spikes to get the spike
count. For example, a fly can respond to a visual object after
one or two spikes are received [12]. Secondly, rate coding
is not energy efficient. It represents large values using high
spike frequency, which increases the switching activities in
computing hardware, and may even pose challenges to neuro-
morphic chip design [38]–[40]. Without extended latency or
escalated spiking frequency, rate coding will suffer from high
quantization error. When spikes are generated as stochastic
events, there will be sampling errors too.

Temporal coding takes spike timing into account [41]–[43]
such that the temporal structure of a spike train can convey
information. Two spike-trains with the same spike count could
represent distinct information, as shown by [44], and produce
significantly different postsynaptic current. When considering
the spike timing, the information capacity of a spike train is
significantly increased [45]. However, temporal coding is still
not well understood. There are many hypotheses, which lead to
different variations of temporal coding schemes. For example,
[46] shows that the spatial structure of an image is encoded
by retinal ganglia using the relative timing of first spikes,
referred to as latency coding. Latency coding assumes that
the first spike carries the most significant information, while
the subsequent spikes are less important. The latency coding
is also known as Time-to-first-spike (TTFS) coding [12]. It is
noteworthy that there are some subtle differences between the
latency coding observed in a biological system and the TTFS
in the context of neuromorphic computing. The latter utilizes at
most one spike per neuron to encode information by applying
a long refractory period or a strong inhibition [47], [48], while
there is no such restriction in biological systems. [49] proposes
reverse coding, which assumes that a stronger stimulus is
encoded by a later spike time. This can be interpreted as
a variation of TTFS. Training algorithms and neuromorphic
hardware have been designed specifically for TTFS cod-
ing [47]–[50]. TTFS usually allows more efficient hardware

5

because it substantially reduces spike numbers, hence the
communication workload is less. Furthermore, neurons using
TTFS do not have to accumulate multiple spikes to produce
output, hence the computation latency is also reduced. As
another variation of temporal coding, phase coding considers
the entire spike train. Information is represented by the relative
spike timing with respect to periodical background oscillation
[12].

[51] and [52] suggest that different coding schemes may
co-exist in the nervous system, and the brain uses different
coding for different tasks. The variety and task specialization
of coding schemes can also be seen in existing research in
SNN. For example, [53], [54] encode image as spatial spike
patterns. [55], [56] proposed to convert audio signals into time-
varying spike patterns.

The choice of neural coding scheme is closely related to the
decision on SNN training algorithms, neuron models and even
the hardware architecture. For example, to recognize different
temporal spike patterns, [57] employs LIF neuron with dual-
exponential synapse defined in Equation 7. Every individual
input spike builds up a time-varying PSP, which represents
certain characteristics; [50] designs a dedicated single-spiking
MAC circuit to support TTFS.

To utilize the information embedded in spike timing, neu-
ron models with certain temporal dynamics, as discussed in
Section II-B, must be used. For example, [33], [57]–[59] use
SRM or its variants to learn spike timings. However, these
models are not readily supported by some of the existing
neuromorphic hardware. For example, TrueNorth uses a sim-
plified LIF model, where a neuron’s membrane potential is
the accumulation of weighted input spikes with a constant
leakage. While this architecture provides extremely high neu-
ron/synapse density and energy efficiency, it is not suitable
to implement the aforementioned models of temporal coding.
A few other neuromorphic systems have memory allocated to
each synapse to store the temporal dynamics. For example,
Loihi allows a synapse to have three different state variables,
which can be configured as traces. [34] reported an FPGA
based SNN where each neuron core has a dedicated memory
bank for the post-synaptic potential.

D. Network Topologies

Given the models of neurons and synapses, a spiking
neural network can be constructed. Based on the network
topology, we divide the SNNs into three categories, feedfor-
ward, recurrent and bio-inspired networks. Feedforward and
recurrent networks are inspired by ANNs as shown in Figure
5 whereas the bio-inspired networks mimic the structure of
various biological neural motifs.

1) ANN-inspired: Feedforward network is the simplest
form of neural networks where the information moves in only
one direction, from the input layer, through the hidden layers
and to the output layer.

The recurrent SNN can be further divided into two cate-
gories, recurrent with synchronization and recurrent without
synchronization. Recurrent structure is widely used in ANNs
to detect temporal patterns in input sequences or generate

Fig. 5: ANN-inspired topologies.

Fig. 6: Confabulation network.

temporally correlated outputs. In these ANNs, the hidden state
of the network induced by previous input loops back to be
processed with the current input to generate new hidden states
and outputs. The synchronization between the hidden state of
the previous cycle and the input of the current cycle is difficult
to achieve in SNN, due to the inherent asynchronous and even
driven nature of the SNN neurons. Because the input and
hidden state variables are represented by a sequence of spike
trains, special store-and-release neurons must be used to gate
and release the spike sequences in order to synchronize them
[60], [61]. It was not until recently that some works presented
techniques on translating recurrent networks to SNNs [60],
[61] or introducing dynamics into the neuron and synapse
models to implement a form of recurrence [62]. We refer to
these networks as recurrent SNNs with synchronization.

A large set of neural networks use the recurrent structure
to stabilize signals and suppress noises. No synchronization
among neurons is attempted in these networks. The feed-

6

(a)

(b) Winner-Take-All network

Fig. 7: Bio-inspired topologies.

back and the input eventually reach a dynamic equilibrium,
which defines the network state. For example, Echo State
Network (ESN), also referred to as reservoir network, is a
variation of recurrent networks which consists of a hidden
layer (reservoir), containing neurons randomly connected to
each other with fixed weights, and connected to the output
layer which feeds back to the reservoir with plastic weights
[63]–[69] as shown in Figure 5(c). In a reservoir network,
the output layer is used to classify the state of the network.
Learning takes place only in the output layer, which consists
of conventional (i.e. non-spiking) neurons. Another example
is the spiking confabulation network. Cogent confabulation is
a connection-based cognitive model that captures correlations
among features at the symbolic level, as shown in Figure 6. It
describes the basic dimensions of the observation using a set
of features referred to as lexicons. The attributes of a given
feature are referred to as the symbols, which are analogous
to neurons in the biological nervous system. Their pairwise
conditional probabilities are referred to as the knowledge links.
When implemented with Bayesian spiking neurons as in [70],
[71], the neurons interact with each other and the equilibrium
state of the spiking rates infers the likelihood of the symbols
represented by each neuron.

A large number of SNNs are arranged to follow biological
neural architectures. For example, simultaneous localization
and mapping (SLAM) [72] networks get inspiration from the
navigation system in the hippocampus and entorhinal cortex

(a)

(b)

Fig. 8: (a) STDP and (b) its profile.

of rats, where different types of spatially-tuned neurons were
found: the head-direction cells are sensitive to the heading
direction of the animal, place cells are active each time the
animal visits a particular part of the environment, and grid
cells presumably perform path integration [73]. As another
example, Winner-Take-All (WTA) networks containing recur-
rent connectivity between inhibitory and excitatory neurons
are common models to explain decision-making and action
selection in the cortex [74], [75]. They are widely used for
unsupervised learning and feature selection in SNNs [76],
[77]. Figures 7a and 7b illustrate the structure of the two
aforementioned networks.

The hierarchies in the sensory cortex are of particular
interests to research in sensor signal processing. The mam-
malian olfactory system contains three major hierarchical
levels including the epithelium where the stimulus enters
the nervous system, the olfactory bulb (OB) where the first
transformation happens, and the piriform cortex (PC) which
integrates and stores the information relevant for odor recog-
nition [78], [79]. Such hierarchical network structures have
been used for recognition and decision-making tasks in SNNs
[80]–[82]. Medial Superior Olive (MSO) in the mammalian
auditory pathway is responsible for sound localization. They
are organized spatially as a place map of location [83],
[84] and at a higher level these subgroups are subsequently
also organized into frequency selective clusters. These MSO
systems inspired [85], [86] to utilize SNNs for sound classifi-
cation and localization. Attractor networks, whose activity tend
towards dynamic stability, have been posited to help explain
eye control, working memory, head direction, locomotion and
olfaction [87] and thus have been utilized for such control
tasks in SNNs [88]–[90].

E. Learning

The ability of synaptic connections to change their efficacy
is referred to as synaptic plasticity. This is thought to be

7

the basic mechanism underlying learning and memory in
biological neural networks [91]. Various forms of synaptic
plasticity co-exist. Some are determined only by the history
of presynaptic stimulation, independently of the postsynaptic
responses [92]–[94]. Others depend on the temporal order of
pre- and postsynaptic activities [92], [95], [96].

In general, synaptic potentiation (i.e. the increase of synap-
tic efficacy) is observed when presynaptic spikes precede
postsynaptic spikes, as it indicates a causal relationship. The
reversed order of spikes induces synaptic depression (i.e. the
decrease of synaptic efficacy). This phenomenon is called
Spike-Timing-Dependent-Plasticity (STDP). It can be used for
unsupervised learning. A popular choice for the STDP rule
[97] for potentiation ∆w+ and depression ∆w− is given as:

∆w+ = +A+ exp (−∆t/τ+) for ∆t > 0
∆w− = −A− exp (+∆t/τ−) for ∆t < 0

(11)

where τ+ and τ− determine the ranges of pre- to postsy-
naptic interspike intervals over which synaptic strengthening
and weakening occur. A+ and A− determine the maximum
amounts of synaptic modification, and ∆t is the time of the
postsynaptic spike minus the time of the presynaptic spike.

A wide range of SNN algorithms that can learn temporal
spike patterns employ more biologically realistic LIF neuron
models with alpha or dual-exponential synapse [57], [77],
[98]–[100] as shown in Section II-B. In these models, the
PSP decays exponentially over time, hence, can be utilized as
a metric to reflect temporal dependency. This type of neuron
does not simply accumulate weighted spikes as membrane po-
tential, instead, it integrates weighted time varying PSP, hence
exhibiting complex temporal dynamic behavior. Various STDP
learning rules have been proposed that update the weight
based on different traces. Traces are decaying state variables
reflecting the temporal history of input and output spikes. They
correspond to the ion concentrations in a biological neuron.
The PSP is an example of a trace variable. A pairwise STDP
rule using traces [101] is given as:

∆w = A+x(t)Sx(t)−A−y(t)Sy(t) (12)

where x(t) and y(t) are the pre- and postsynaptic traces.
Sx(t) =

∑
x δ(t− tx) and Sy(t) =

∑
y δ(t− ty) are the pre-

and postsynaptic spike trains. Thus, from Equation 12 and Fig-
ure 8a, the weight is increased at the moment of postsynaptic
firing by an amount that depends on the value of the trace x(t)
left by the presynaptic spike. Similarly, the weight is depressed
at the moment of presynaptic spikes by an amount proportional
to the trace y(t) left by previous postsynaptic spikes. This has
been shown to fit the experimental data as shown in Figure 8b
and [95], and has been studied in [12], [102], [103].

The most straightforward way to implement supervised
learning is to use Hebbian Learning [77], [104]. Supervision
is introduced in Hebbian learning by an additional ’teaching’
signal that reinforces the postsynaptic neuron to fire at the
target times and to remain silent at other times. The ’teaching’
signal is usually transmitted to the neuron in a form of synaptic
currents or as intracellularly injected currents.

Another approach is to utilize a supervised learning algo-

rithm for ANNs called backpropagation. Backpropagation, a
gradient-based optimization algorithm, is a standard training
technique for ANNs. However, it cannot be directly applied to
the in-hardware learning of an SNN running on a neuromor-
phic processor due to several reasons; (1) spiking neuron’s
activities are not differentiable, (2) the connections between
neurons in SNNs are unidirectional such that a backward path
must be added explicitly with constantly updated weights dur-
ing learning, (3) errors in ANNs are propagated as real values
and (4) weight update of a synapse is not solely dependent on
locally available information as required in a neuromorphic
hardware [105]. There have been various approaches to adopt
the backpropagation algorithm to train deep SNNs directly
[13], [33], [36], [106]–[108]. One category of approaches
keeps track of the membrane potential at spike times and
back-propagate errors based on that. SpikeProp [109] is the
first attempt to train an SNN using such an approach. But
SpikeProp is limited to single-spike learning. A similar cate-
gory of approaches [110] [13] treats the discontinuities during
spike times as noise and smoothens the membrane potential to
essentially make it continuous. These approaches utilize spike-
rate to compute the loss and membrane potential to compute
the error derivative, and hence create a discrepancy. [106]
proposed an event-driven random backpropagation (eRBP)
algorithm simplifying the backpropagation chain path. But
this work requires multicompartmental neurons to enable error
to locally modulate plasticity. In [107], a supervised learning
method was proposed (BP-STDP) where the backpropagation
update rules were converted to temporally local STDP rules
for multilayer SNNs. Recently, Error-Modulated STDP (EM-
STDP) [108], [111] was proposed to approximate backpropa-
gation in the spike domain for neuromorphic implementation.
This work applies the same type of integrate and fire (IF)
neuron in the forward and backward path, and enhances
the biological plausibility of backpropagation algorithm by
introducing a weight update rule that resembles the rate-based
STDP using only the locally available information. Its learning
capability has been demonstrated on the Loihi processor [111].

III. NEUROMORPHIC SYSTEM DESIGN CONSIDERATIONS

To design a neuromorphic processor, a complete ecosystem
including both software and hardware needs to be considered.
This does not only include the hardware implementation
of neurons and synapses, and their communication network,
but also simulators and compilers for design validation and
optimization.

A. Neuron and Synapse Implementations

A bottom-up approach is generally adopted in neuromor-
phic hardware design. Neurons and synapses are the building
blocks, whose implementations are designed first. These build-
ing blocks are connected by a communication network to form
a system architecture. Different implementations and hardware
architectures are selected for neuron and synapse models with
different degrees of complexity. The leaky integrate and fire
(LIF) model in Equation 3 has been a popular choice for
hardware implementation [105], [112]–[114] since it is simple

8

but still retains some temporal dynamics. Complex neuron
and synapse behavior specified in Equation 9 requires specific
hardware to efficiently compute their evolution through time.
The LIF can be reduced into an IF model, which can be
implemented cost effectively using an adder, a comparator,
and a memory [11], for input integration, threshold detection
and membrane potential storage, respectively.

To achieve higher degree of fidelity to biological models,
ionic channels and other bio-realistic components have been
implemented [113], [115], [116]. [117] implements advanced
reconfigurable units based on the work of Izhikevich [26]
or bio-realistic ion channels [116] interaction in fully digital
designs. The SpiNNaker [118] can be used to evaluate detailed
biological neuron and synapse models at a high computation
cost. These implementations of highly bio-plausible neurons
and synapses provide insights of the brain function from the
neuroscience point of view. They usually are not used for
machine intelligent applications.

B. Implementation Choices
Based on their implementation choices, neuromorphic sys-

tems can be categorized into three categories, (1) digital, (2)
analog, or (3) mixed signal platform.

Digital neuromorphic systems can further be divided into
CPU based, Application Specific Integrated Circuit (ASIC)
based and FPGA based implementations. An example of
CPU based implementation is SpiNNaker. SpiNNaker is an
ARM based, fully digital massively parallel system. It is com-
posed of thousands of ARM cores and a custom interconnect
communication scheme optimized for spike-based network
communication. The processing unit itself is general purpose
and not customized for neuromorphic functions [40], [118]–
[133].

IBM’s TrueNorth [114], [117], [134]–[139] and Intel’s Loihi
[105] are well known examples of fully custom ASIC imple-
mentation of neuromorphic systems. Some other examples of
ASIC based neuromorphic systems include [63], [64], [140]–
[155].

Most ASICs are subject to limitations of specific neuron
models and algorithms. Therefore, FPGA has also drawn
much attention for its flexibility. FPGA has been widely used
for exploring various aspects of neuromorphic hardware and
algorithms research. Most of these works adopt a multi-core
architecture [34], [156]–[159]. Due to the limited resource
of a single FPGA, there are also works utilizing multiple
FPGAs [160]–[162]. FPGA’s flexibility also lends it for ex-
ploration into various in-hardware training algorithms. Some
examples are: a modified STDP rule that uses shift operation
to replace the exponential operation to reduce logic resource
consumption [157]; competitive Hebbian learning on chip with
biologically plausible Izhikevich neurons on FPGA [163]; a
hardware friendly STDP rule which allows low bit precision
in a liquid state machine (LSM) on FPGA [164]; STDP
for convolutional SNN on FPGA [165]; and an STDP rule
that uses only 1-bit synaptic weights to reduce computing,
communication, and memory overhead [166].

For different biological neuron behaviors, such as conser-
vation of charge, amplification, thresholding and integration,

the analog circuit analogies can be found [2]. Such similarity
makes analog integrated circuits and neuromorphic systems
well suited for each other. The original neuromorphic defini-
tion by Carver Mead referred to analog circuits that operated
in subthreshold mode [2]. Many analog neuromorphic systems
also operate in this region typically for power efficiency [90],
[167]–[176]. There are a large variety of other neuromorphic
analog implementations [90], [177]–[209].

Similar to digital FPGAs, there are field programmable
analog arrays (FPAAs) enabling programmability for analog
neuromorphic systems [210]–[214]. Some custom FPAAs are
developed specifically for neuromorphic systems, including
the field programmable neural array (FPNA) [215] and the
NeuroFPAA [216]. While many of the digital neuromorphic
systems adopt asynchronous and event driven methods for
energy efficiency, analog neuromorphic systems do sometimes
employ clocks for synchronization.

Mixed analog and digital implementation is usually the
solution to overcome some inherent limitations of analog im-
plementation. In many analog neuromorphic systems, synaptic
weights are stored in digital memory for reliability and longer
duration [217]–[220]. In some analog neuromorphic systems,
digital communication is utilized either within the chip, or
among neuromorphic chips [221]. These communications are
usually in the form of digital spikes. Using digital compo-
nents for programmability or learning mechanisms is also
common [222]–[225]. Two major projects within the mixed
analog/digital family are Neurogrid and BrainScaleS.

C. Architecture

In this section, we discuss three different architecture
choices, their pros and cons, as well as implications on
hardware design. These three choices are von Neumann ar-
chitecture, ideal architecture for neuromorphic computing and
practical mult-core architecture.

von Neumann Architecture Von Neumann architecture is
the foundation of modern general-purpose computers. It is
shown in Figure 9a . A typical von Neumann architecture
consists of following components: a central processing unit
(CPU), memories, and input/output (I/O) devices. Devices
are connected through bus systems. Data and program are
stored in external memory, and fetched by CPU sequentially.
Such architecture sufferers from the well-known von Neumann
bottleneck, i.e. the system performance is bounded by the
data exchange speed between CPU and the external memory.
Though von Neumann architecture provides high flexibility, it
is not suitable for neuromorphic computing because it cannot
provide the massive concurrency and parallelism featured in
the biological neural systems.

Ideal Architecture In a biological system, each neuron
and synapse has its own state, which can be characterized
by a set of parameters and variables in software/algorithm
models. These parameters/variable are not shared among dif-
ferent neurons or synapses, and they are updated locally
and concurrently. The inter-neuron communication is also a
parallel process through massive number of synapses. Based
on above observations, an ideal architecture should support

9

(a) (b) (c)

Fig. 9: (a) Von Neumann Architecture (b) Ideal Neuromorphic Architecture (c) Practical Neuromorphic Core.

TABLE I: Trade-offs of different architectures.

Architecture Scability Cost performance
Von Neumann ++ ++ —
Ideal - – +++
Practical ++ + ++

1) Local and dedicated data storage; 2) Massive concurrency;
and 3) High connection density.

Based on above requirements, an ideal architecture of
digital neuromorphic hardware is presented in Figure 9b
where each processing unit and its local memory are used to
represent a single neuron, and the local Arithmetic/logic unit
(ALU) is responsible for updating neuron status. The close-to-
memory computing reduces data retrieving latency, while the
distributed memory enables parallel computation. This ideal
architecture maximizes the number of synaptic operations
per second (SynOps/s), which is an important measure of
neuromorphic hardware performance.

Practical Architecture The aforementioned ideal neuro-
morphic architecture, that maintains one processing unit for
each neuron, is not scalable when the size of the neural
network increases. The large circuit overhead arising from
an ALU assigned to each neuron and hardwiring the neurons
to each other for large-scale SNNs is highly impractical. A
practical solution is to group a number of neurons in a core, as
shown in Figure 9c. These neurons have their own local data,
but share the same data path to update neuron and synapse
status. Compared to the ideal neuromorphic architecture, this
reduces the effective circuit area per neuron significantly. The
cores also enable sharing of common parameters among the
neurons for a more efficient usage of memory. However, as the
same ALU is utilized to update the neurons and synapse status
associated with a core, usually time-multiplexing is utilized.
This reduces the parallelism, as the ALU can only be accessed
by one neuron at a time. Additionally, this also introduces
spiking delays (or delay in neuron update) that can cause
errors in the neuronal encoding. Trade-offs of above three
architectures are shown in Table I.

D. Communication

Neuromorphic systems support both intra-chip and inter-
chip communication. Both types of communications are imple-
mented using address event representation (AER). [226]–[228]
apply AER to on-chip inter-neuron packet based communi-
cations. Vainbrand and Ginosaur studied different network-
on-chip architectures for neural networks, including mesh,
shared bus, tree, and point-to-point. They found network-on-
chip multicast to have the highest performance [229]. Ring-
based communication structure has been tested successfully
[230], [231] for on-chip neuron communications. Buses were
also utilized for some on-chip communication systems [232],
[233]. This asynchronous bundled data design style is well
suited for SNNs that fundamentally feature a high degree of
sparseness in their activity across both space and time. [234]–
[239] also apply AER to inter-chip communications, where the
chip ID is encoded as part of the packet address. AER have
been implemented through custom PCI boards to optimize
performance [240], [241] or utilizing FPGAs [242]–[244].

E. Supporting Software and Ecosystems

Supporting software tools are important components in
the ecosystem of neuromorphic processors. Those usually
consists of tools for mapping, programming and simulation.
The mapping tools partition an SNN into clusters and map
clusters to processing units on the neuromorphic hardware
[132], [245]–[250]. The goal is to minimize the inter-core
communication that considers the hardware constraints such
as the number of input/output channels, the amount of local
memories, etc. Programming tools enable users to explicitly
describe a particular neuromorphic architecture [251]–[255]
by setting different parameters and topology configurations,
or by utilizing custom training methods. Software simulators
[131], [249], [253], [256]–[259] are used to emulate the
neuromorphic hardware and enable the user base in developing
and testing of network topologies, training algorithms, neuron
parameters, etc., when the hardware has not been widely
deployed.

10

IV. CASE STUDIES OF SOME LARGE-SCALE
NEUROMORPHIC SYSTEMS

In this section, we will discuss several representative sys-
tems as examples to showcase the main components discussed
in previous section. They are: neuromorphic super computing
platform (SpiNNaker), digital ASIC (TrueNorth), digital ASIC
with on-chip learning (Loihi), analog and mixed-signal de-
sign (BrainScaleS), and ANN-SNN hybrid design (Tianjic).
A quick summary of the neuron and synapse models that
they support, their implementation choices, architecture and
software support is provided in Table II.

A. Digital ASIC: TrueNorth

TrueNorth is a brain-inspired digital chip with an intercon-
nected network of 64x64 neurosynaptic cores, where each core
has 256 incoming axons, a 256x256 synapse crossbar, and
256 neurons [138] as shown in Figure 10a. In total, there
are 1 million spiking neurons and 256 million synapses in a
TrueNorth chip. Binary synapses, with programmable weights,
gate the information flow from axons to neurons. Each axon
fans out to all neurons in a core in parallel, thus, providing a
256-fold reduction in communication volume in comparison to
a point-to-point approach. TrueNorth implements these intra-
core connections through SRAM crossbar memory whereas
inter-core connections are implemented through spike-based
message-passing network. Programmability of TrueNorth in
terms of neuron parameters, synaptic crossbar connections,
and inter-core connectivity allows a wide range of structures,
dynamics, and behaviors.

1) Neuron and Synapse Implementation: TrueNorth’s neu-
ron model is based on the classic leaky integrate-and-fire
neuron (LIF) with five basic operations: synaptic integration,
leak integration, threshold comparison, spike generation, and
membrane potential reset. The membrane potential Vj(t) of
the neuron j is updated according to these five operations as
summarized in Equations 13, 14 and 15.

Synaptic integration:

Vj(t) = Vj(t− 1) +

N−1∑
i=0

Si(t)xi (13)

Leak integration:

Vj(t) = Vj(t)− λj (14)

Membrane potential reset:

If Vj(t) ≥ αj , spike and Vj(t) = Rj (15)

For each of the neurons, membrane potential is the accumu-
lated sum of the product of spike input to the synapse Si(t)
at the current timestep and the signed synaptic weight xi.
Following integration, the LIF neuron model subtracts the leak
value λj from the membrane potential every timestep. This
linear leak operation serves as a constant bias on the neural
dynamics. The neuron fires a spike and resets its membrane
potential to Rj (typically, Rj is zero), when the membrane
potential of the LIF neuron at the current timestep Vj(t) is
greater than or equal to the neuron threshold voltage αj .

(a)

(b)

Fig. 10: Truenorth architecture (a) Functional view (b) A
corelet [138].

This LIF neuron model is augmented by configurable and
reproducible stochasticity [117]. Each individual neuron can
be configured to have stochastic synaptic input, leak, and
threshold to enable rich dynamics across population and time.
The neuron model allows for four leak modes that bias
the internal state dynamics in four different ways so that
neurons can have radically different responses to identical
inputs. The leaks can be either positive or negative to let the
membrane potential to diverge from or converge towards a
resting potential. The neuron model also provides two types
of threshold; deterministic and stochastic, so that neurons
can fire at different patterns even with the same accumulated
membrane potential. It has six reset modes to determine the
membrane potential after firing, enabling a rich finite-state
transition behavior. To reduce complexity, it adopts fixed-point
arithmetic and the neuron model uses only simple addition and
multiplexing arithmetic/logic units instead of complex function
units such as multiplication, division, and exponentiation.

The synapses themselves are binary (1: connected, 0:
disconnected). Each synapse connected to a neuron in the
crossbar is allocated a choice of four 8-bit signed weights.
The synapses of TrueNorth neurons are non-plastic, i.e. the
synaptic weight cannot be modified during the runtime.

Exploiting the provided configurability, users can use
TrueNorth neurons to implement a wide variety of computa-
tional functions, including arithmetic, control, data generation,
logic, memory, classic neuron behaviors, signal processing,
and probabilistic computations. The programmable leakage
and threshold give neurons the capacity to support a variety of

11

neural codes including rate, population, binary, and time-to-
spike coding. Rich and diverse array of complex computations
and behaviors can also be synthesized by composing multiple
neurons together. For example, the 20 behaviors of the Izhike-
vich dynamical neuron model can be qualitatively replicated,
using a small number of elementary neurons.

A TrueNorth chip, built in Samsung’s 28-nm process
technology, occupies 4.3 cm2 area and contains 5.4 billion
transistors. Each core has 104,448 bits of local memory to
store synapse states, neuron states and parameters , destination
addresses, and axonal delays. In total, the TrueNorth has 428
million bits of on-chip memory. Addititionally, TrueNorth’s
power density is 20 mW per cm2 which is highly efficient in
comparison to typical CPU’s 50 to 100 w per cm2.

The very high energy efficiency of the TrueNorth pro-
cessor does not only come from the low-cost hardware and
simplified function, but also from its mixed synchronous-
asynchronous neuron architecture, which reduces the neuron
switching activities by 99%.The average firing frequency of
TrueNorth neurons is approximately 20 Hz, which is close to
the frequency of the Beta Wave associated to normal waking
consciousness. This activity is very sparse compared to the
speed of modern silicon. Joined with extensive power-gating,
event-driven computing and asynchronous communication, the
sparse activity significantly improves the energy efficiency.

2) Architecture and Communication: Multiple neurosynap-
tic cores are connected using distributed on- and off-chip
connectivity to construct complex networks. There is no global
clock other than a 1-kHz global synchronization signal, which
discretizes the neuron dynamics into 1-ms time steps and en-
sures one-to-one equivalence between software and hardware.

A two-dimensional mesh network of routers form the back-
bone for interconnecting the 64x64 core array. Each of the
routers have five ports (north, south, east, west, and local) and
communicates spike event between cores in a time-multiplexed
manner. With this mesh network, a neuron can talk to an axon
on any core. When a neuron spikes in a core, it looks up an
axonal delay (4 bits) and the destination address (8-bit absolute
address for the target axon and two 9-bit relative addresses
representing core hops in each dimension to the target core)
in the local memory and encodes it in a packet. This packet is
injected into the mesh, where it hops from core to core - first
in the x dimension then in the y dimension (deadlock-free
dimension-order routing). The asynchronous router delivers
spikes at 0.3fJ per bit per µm. A merge-split structure is
used at the four edges of the mesh to serialize exiting spikes
and deserialize entering spikes. This enables scaling the two-
dimensional mesh across chip boundaries as tiles, similar to
the mammalian neocortex.

The architecture is efficient because neurons that form a
cluster can be mapped to the same neuron core and com-
municate using local connections. The remaining inter-core
connection is sparse, which reduces the communication cost.
Additionally, each spike event addresses a pool of neurons on
a target core, reducing the number of long-range spike events.
The tile based architecture also increases the fault tolerance,
as the system usability is not disrupted by occasional defects
at the core and chip level. Also, the architecture is flexible

as each neuron is individually configurable, each synapse
can be turned on or off individually, and the neurons and
synapses support programmed stochastic behavior. Thus, the
neuron model [117] supports a wide variety of computational
functions and biologically relevant spiking behaviors. One
of the limitations of the architecture is that, to reduce the
hardware cost, each column in the crossbar supports only 4
different synaptic weights, ranked from 1-4; and all synaptic
connections in the same row must select the weight in the
same rank in the corresponding column.

3) Supporting Software/Software Ecosystem: A TrueNorth
program is a complete specification on the connectivity and
configurations of a network of neurosynaptic cores, along
with its external inputs and outputs. The “corelet”, abstraction
is used to represent a TrueNorth program by only exposing
external inputs and outputs while encapsulating all other
details of the network of neurosynaptic cores as shown in
Fig. 10b. The object-oriented Corelet Language is developed
by IBM for creating, composing, and decomposing corelets.
As part of the TrueNorth ecosystem, a Corelet Library that
provides a repository of reusable corelets macros, and an end-
to-end Corelet Laboratory that is a programming environment
integrated with the TrueNorth architectural simulator are also
provided [258]. In 2016, IBM released the Eedn deep learning
framework [36] to facilitate the training and mapping of deep
spiking neural network on the TrueNorth system.

Eedn-trained CNNs have matched state-of-the-art accuracy
on benchmarks that previously required floating-point preci-
sion and unconstrained connectivity, while achieving through-
put of 1,200-2,600 classifications on CIFAR dataset per second
and power consumption of only 25-275 mW [36] on 2000
to 4000 cores. TrueNorth systems have been applied to real
time handwritten character recognition and confabulation [70],
anomaly detection [260], optical flow [261], unconstrained
optimization [262], decoding EEG [263], medical image seg-
mentation [264], etc.

B. ASIC with on-chip Learning: Loihi

Loihi [105] is a digital neuromorphic chip recently de-
veloped by Intel. Loihi is fabricated in Intel’s 14-nm pro-
cess. A Loihi chip contains 128-neuromorphic cores totaling
130,000 artificial current-based (CUBA) leaky-integrate-and-
fire neurons and 130 million synapses. It also provides a
programmable microcode learning engine for on-chip SNN
training. A Loihi chip consists of 3 Lakemont cores, which
help with implementing advanced learning rules and managing
the neuromorphic cores. The Loihi design supports scaling up
to 4,096 on-chip cores and 16,384 chips.

1) Neuron and Synapse Implementation: Loihi adopts a
variation of the CUBA LIF model that has two internal
state variables, the synaptic response current ui(t) and the
membrane potential vi(t). The synaptic response current is
given by the sum of filtered input spike trains and a constant
bias current:

ui(t) =
∑
j 6=i

wi,j(αu ∗ Sj)(t) + bi (16)

12

where wij is the synaptic weight from neuron j to i,
αu(t) = τ−1

u exp (−t/τu)H(t) is the synaptic filter impulse
response parameterized by the time constant τu with H(t) the
unit step function, Sj(t) is the input spike train, “*” indicates
the convolution operation, and bi is a constant bias. As shown
in Eq. 16, the same kernel αu(t) is used by all synapses
of the postsynaptic neuron u. The synaptic current is further
integrated into the membrane potential based on Eq. 17, and
the neuron spikes when its membrane potential passes its firing
threshold θi.

vi(t+ 1) = − 1

τv
vi(t) + ui(t)− θiSi(t) (17)

where Si(t) is the output spike of the neuron. As shown
in Eq. 17, the integration is leaky, as captured by the time
constant τv . vi is initialized with a value less than θi, and is
reset by θi after a spiking event occurs.

Each synapse in Loihi is configured by a 5-tuple:
(i, j, weight, delay, tag), where i, j are the source and des-
tination neuron indices of the synapse, and weight, delay
and tag are integer-valued properties of the synapse. Synap-
tic delays enable advanced temporal codes by delaying the
accumulation of an incoming spike, while tags are useful
as an additional scratch variable within the learning engine.
Each synapse also associates with multiple presynaptic traces,
and whereas compartment with postsynaptic traces. They use
different exponential smoothing parameters with decay α and
impulse magnitude δ and are evaluated as follows:

x [t] = α · x [t− 1] + δ · S [t] (18)

where x[t] is the trace variable and S[t] is the incoming
spike train. The traces are used by the learning engine as input
variables for synaptic adaptation. Loihi supports in-hardware
adaptation for all three synaptic variables, weight, delay and
tag. The locality constraint is satisfied during the procedure.
The weight (delay, tag) can only be accessed and modified
by the postsynaptic neuron, based only on locally available
information, such as the spike trains from the presynaptic
(source) and postsynaptic (destination) neurons. The functional
form of adaptation rules is described in sum-of-products form
in terms of microcode operations associated with the synapse:

z = z +

Np∑
i=1

Ai

ni∏
j=1

(xi,j + Ci,j) (19)

where z is the transformed synaptic variable
(weight, delay or tag), xi,j refers to some selected input
traces available to the learning engine, and Ci,j and Ai are
microcode-specified signed constants [105]. Based on Eq. 19,
the learning engine supports simple pairwise STDP rules and
also much more complicated rules such as triplet STDP [265],
[266], reinforcement learning with synaptic tag assignments
[267], and complex rules that reference both rate averaged
and spike-timing traces.

2) Architecture and Implementation: The Loihi processor is
a digital and functionally deterministic neuromorphic chip. It
was implemented in an asynchronous bundled data design style

allowing for event-driven communication through spikes with
maximal activity gating during idle periods. It was fabricated
in Intel’s 14nm FinFET process. The chip has a die area of 60
mm2 containing 2.07 billion transistors and consists of 128
neuromorphic cores and three x86 cores. Loihi includes a total
of 16MB of synaptic memory. It boasts a maximum synaptic
density of 2.1 million unique synaptic variables per mm2 with
its densest 1-bit synapse format and maximum neuron density
of 2,184 per mm2. After adjusting for the benefit from the
advanced technology, this comes to a 2× reduction in the
neuron density in comparison to TrueNorth, which can be
interpreted as the cost of Loihi’s greatly expanded feature set.

Each neuromorphic core in Loihi implements 1,024 prim-
itive spiking neural units called compartments, which can
be grouped into sets of trees constituting neurons. The ar-
chitecture memory for the storage of configuration and state
variables for the compartments and the associated connectivity
(fan-in and fan-out) are shared in a core. Every algorithmic
timestep, the state variables are updated in a time-multiplexed,
pipelined manner. When a neuron’s activation exceeds the
threshold, it generates a spike message that is routed to the
fan-out compartment in one or multiple destination cores.

An asynchronous network-on-chip (NoC) forms the back-
bone for communication between the cores. All communica-
tion between cores occurs in the form of packetized messages.
The different types of communication messages include core
management and x86-to-x86 messaging, spike messages, and
barrier messages for time synchronization between cores. The
NoC distributes the communication messages according to the
dimension-order routing. The NoC itself only supports unicast
distributions. To multicast spikes, the output process of each
core iterates over a list of destination cores for a firing neuron’s
fan-out connections and sends one spike per core.

The host CPU, the on-chip x86 processors and the neural
cores can communicate with each other using any type of
messages. For off-chip communication over a second-level
network, messages may be hierarchically encapsulated. The
mesh protocol allows for scaling to 4096 on-chip cores and
up to 16,384 chips.

3) Supporting Software/Software Ecosystem: Loihi pro-
vides a Python-based API that can be used to specify complex
SNN topologies and to program custom learning rules. It
also provides a compiler and runtime library for building and
executing SNNs on Loihi. The API utilizes core primitives:
neuronal compartments and synaptic connections as means of
defining SNN topology, synaptic traces and a neuron model
to describe SNN dynamics, and synaptic learning rules. Thus,
enabling the programmers to implement SNNs in an intuitive
way without requiring intimate knowledge of its architectural
details. The compiler takes an SNN implementation and
produces a binary byte stream in three steps: preprocessing,
resource allocation, and code generation. Due to the support of
more complex neuron and synapse models, the application of
Loihi is more diversified. It has been applied to accelerate the
process of Locally Competitive Algorithm for LASSO [105],
Neural Engineering Framework (NEF) [52], Stochastic SNNs
for solving Constraint Satisfaction Problems [268], Parallel
graph search [269] and Random diffusion walkers [270]. It

13

has also been used to implement biological inspired systems
such as Olfaction-inspired rapid learning [271]. Dynamic
Neural Fields [272], SLAM [72], Evolutionary search [273]
are fields to which Loihi is being applied. It has also been used
to implement deep SNN for conventional machine learning
applications such as classification or prediction. For these
applications, Nengo is used to convert a DNN to SNN [274],
[275].

C. Analog/Mixed-signal System: BrainScaleS

Analog/mixed-signal design has always played an impor-
tant role in neuromorphic computing due to its analogue to
biological systems. After modeling the neurons and synapses
using circuits consisting of resistors, and capacitors/inductors,
basic operations of neural computation such as conservation
of charge, amplification, exponentiation, integration, thresh-
olding, etc., can be naturally emulated [4]. Such analog/mixed-
signal design has the potential to achieve higher speedup
and energy efficiency than digital systems. Some represen-
tative analog/mixed-signal neuromorphic computing systems
are: BrainScaleS, BrainDrop, NeuroGrid, DYNAP-SEL etc.
Though these systems differ in various aspects, they share the
same design philosophy. They all use analog circuits to imple-
ment neuron and synapse models for efficient computation and
implement control, on-chip communication, I/O, data storage
using digital circuits. They also adopt multi-core architecture
and NoC for parallelism and scalability. In this section, we
take BrainScaleS as an example to introduce neuromorphic
computing hardware using analog/mixed-signal design.

BrainScaleS is a part of Human Brain Project’s (HBP)
neuromorphic computing platform. HBP is a brain research
initiative supported by the European Union, aimed at facili-
tating research of human brain related areas, such as neuro-
science, medical research, cognitive science as well as brain-
inspired computing technologies [276], [277]. HBP neuromor-
phic computing platform offers two complementary systems:
BrainScaleS and SpiNNaker. BrainScaleS implements neuron
and synapse models using analog circuits, enabling low power
and high speed at the cost of flexibility. SpiNNaker, which
will be discussed in Section IV-D, on the other hand, is
based on general purpose ARM processors, providing flexible
functionalities.

1) SNN models: BrainScales implements an exponential
integrate and fire model (AdExp) [278], [279] as below:

−Cm
dV

dt
= gl(V − El)− glδth exp (

V − Vth
δth

)

+ ge(t)(V − Ee) + gi(t)(V − Ei) + wt (20)

− τw
dw

dt
= w − a(V − El) (21)

w ← w + b upon generating a spike (22)

Where Cm, gl, El, Ee and Ei are the membrane capacity,
leakage conductance, leakage, excitatory and inhibitory rever-
sal potentials respectively [280]. ge(t) and gi(t) represent the

total excitatory and inhibitory synaptic conductance. Vth is
the threshold, when V > Vth, the AdExp neuron potential
can develop to infinity rapidly, δth determines sharpness of
the procedure. Equation 21 depicts the evolution of adaption
current. w is increased by b, which is called spike triggered
adaption, upon generating a spike. τw is a time constant
and a is subthreshold adaptation efficacy. By ignoring the
exponential term and the adaption, the AdExp models can be
simplified to the common leaky integrate and fire model. More
details about how the neuron model is implemented can be
found in [279].

2) Hardware Platform: The full BrainScaleS-1 system
(NM-PM-1) consists of 20 neuromorphic wafer modules and
peripheral devices such as support infrastructure for power,
communication and analog readout. An additional computer
cluster is used to control the wafer modules [281].

The underlying building block of the BrainScaleS system
is the High Input Count Analog Neural Network chip (HI-
CANN), which is an uncut 20 cm wafer scale chip fabri-
cated by 180 nm CMOS technology [280]. HICANN adopts
mixed signal design. Computations of neurons and synapses
are carried out by analog circuits; weight storage, control
and communication are implemented by digital circuits. By
emulating the neuron and synapse differential equations with
analog circuits, power consumption can be reduced by several
orders of magnitude, compared with solving the differential
equations numerically using digital processors [282].

3) System Architecture : In order to address the high
communication throughput required by massive simulation and
high acceleration factor, HICANN adopts a unique technique,
namely wafer-scale integration. The wafer is not cut into
individual chips, but all the chips on the wafer are directly
interconnected to provide high connection density [283]. A
wafer consists of 56 reticles, each of which consist of 8
analog network chips (ANC) [283]. The major component of
ANC is Analog Neural Network Core (ANNCORE), which
contains 128k synapses and 512 membrane circuits/ dendrite
membrane (DenMem) circuits [283]. Each DenMem circuit
is connected to 224 synapses. Multiple DenMem circuits can
be grouped together to build a neuron, such that neurons can
have a variable number of synapses [280]. Up to 64 DemMem
circuits can be grouped together, resulting in a single neuron
with 14336 synapses. Each synapse has a 4-bit weight stored
in SRAM. Synapse current is generated by DAC.

The fault tolerant nature of biological neural network is pre-
served by HICANN, and hierarchical programmable topology
enables the replacement of individual defect neurons or an
entire neuron core.

The communication in BrainScales has a hierarchical ar-
chitecture. The Layer-1 communication is carried out by a
continuous-time serial bus system that enables inter wafer
communication between ANCs across the entire wafer. The
521 wires of the Layer-1 bus form 256 differential lanes
connected directly to the ANCs. Since the signal has to travel
along horizon and vertical buses across the wafer, repeaters
are required for signal and timing restoration. Repeaters are
placed at the boundaries of each chip. Each repeater consists
of a receiver, timing restoration circuit and driver [283]. The

14

packet-based inter-wafer or wafer-to-host communication (i.e.
Layer-2) is implemented by dynamic routing chips connected
to the wafer surface [178].

4) Supporting Software/Software Ecosystem: BrainScaleS
supports PyNN as programming interface. A user can specify
the parameters of neurons and define connections and network
topology by Python [284], [285]. The existing packages in the
PyNN ecosystem can also be used with BrainScales [286].

D. Neuromorphic Super Computing Platform: SpiNNaker

The spiking neural network architecture (SpiNNaker)
project is a massively parallel computer system based on
general purpose ARM processor, aimed at providing high
performance and flexible simulators for neuroscience exper-
iments. Its goal is to simulate up to a billion neurons in real
time [122].

1) Hardware Platform: The basic building block of the
system is the SpiNNaker chip. A SpiNNaker chip is a cus-
tom designed multiprocessor system-on-chip, consisting 18
identical ARM968E-S 32-bit processors clocked at 200 MHz
[128]. Each core has 32-kB instruction memory and 64-kB
data memory. An off-die 128 MB SDRAM is stacked on the
chip [118]. The chip adopts a Globally Asynchronous Locally
Synchronous (GALS) architecture. Each core resides in its
own clock domain [287].

SpiNNaker chips are mounted on a printed circuit board
(PCB), forming a 48-node hexagonal array. A full system can
have up to 1200 such boards, resulting in 57K nodes, 1M
ARM cores and 7 T bytes of RAM in the entire system [122],
[128].

SpiNNaker consists of two different types of networks at
different hierarchies. The first one at the lower level is the
system NoC, which handles communication inside a chip. The
system NoC uses AMBA5 AXI interfaces [287]. It connects
the ARM cores and several slave devices, such as system
controller, Ethernet media-independent interface controller,
off-chip SDRAM etc. [128].

The second is the communication NoC, which is a packet
switching fabric responsible for system-wide communications.
It transmits packets from one processor to any other processor,
which doesn’t have to be in the same chip. The Router has
six full-duplex links connecting to adjacent chips of directions
(North, Northeast, East, South, Southwest, West) to form a 2-D
triangular toroidal mesh. In addition, the system configuration
and information are also transmitted by communication NoC
[128], [287].

2) Neuron Models: SpiNNaker is based on a general pur-
pose CPU, it has higher flexibility than BrainScaleS. The
project provides a C-based event-driven programming model:
SpiNNaker Application Run-Time Kernel (ARK) and Appli-
cation Programming Interface (API). The programming model
enables modelling of arbitrary neuron and synapse dynamics
[132].

Users can write C functions (also called “callbacks”) to
define a particular task, and then register the function to
scheduler specific events, so that the function can be triggered
by the event. The events can be arrival of a packet, the

completion of a DMA transfer, timer etc. [118], [132]. For
example, [132] implemented the Izhikevich neuron model and
three different synapse models, i.e. current-based instanta-
neous spike response model, current- and conductance-based
models with first-order response. [288] implemented a leaky
integrate and fire model. [289] Implemented stochastic neuron
models on SpiNNaker, and [290] provided implementation of
current-based leaky integrate and fire neurons and Izhikevich
neurons.

3) Supporting Software/Software Ecosystem: SpiNNaker
has a relatively well-developed software ecosystem compared
with other neuromorphic systems. In addition to the basic
SpiNNaker API, [248] introduced the PArtitioning and Con-
figuration MANager (PACMAN), which is an intermediate
translation layer that decouples the model from SpiNNaker
hardware, such that arbitrary neuron and synapse dynamics,
and arbitrary network topologies can be implemented on the
SpiNNaker system. Various frontend programming libraries
are built upon PACMAN to support SpiNNaker including
PyNN [291], Nengo [292], NEST [293], Brian [294], [295],
sPyNNaker [290] etc.

E. ANN-SNN Hybrid Design: Tianjic

Tianjic [296] is a 28 nm reconfigurable chip designed
by Tsinghua University. It provides a hybrid and synergistic
platform for both the Spiking Neural Network model and the
Artificial Neural Network Model. The Tianjic chip contains
around 40,000 neurons and 10 million synapses. Tianjic’s
flexible reconfiguration enable this chip to implement most
neural networks (fully connected, convolutional, pooling, spik-
ing, etc.) from the same basic topological layer.

1) SNN models: Tianjic supports various neural network
algorithms, for the neuromorphic approach, it adopts the
Spiking Neural Network (SNN) model. The axon block in
the FCore is to memorize the historical spikes or ANN inputs
and feed them through connected synapses according to its
configuration mode. After receiving signals from synapses,
the dendrites block performs either integration (SNN mode)
or MAC (multiplication and accumulation) operation (ANN
mode). The shared dendrites then deliver the results to soma
block. As shown in Equation 23, in SNN mode, the Tianjic
chip adopts the leaky Integrate-and-fire (LIF) model, where
V (t) denotes the membrane potential in the soma unit. The
soma part receives voltage VΣ coming from dendrites, here
Vr1 is the reset voltage and τ is the time constant.

τ
dVi(t)

dt
= − [Vi(t)− Vr1] + VΣ (23)

2) Hardware Platform: The Tianjic chip is fabricated with
28 nm high performance low power (HLP) process, and it
occupies 3.8 × 3.8 mm2 die area. One Tianjic chip consists
of 156 Fcores. For each Fcore, Tianjic chip supports 32 weight
indices and 256 fan-ins/fan-outs (N), and the static random-
access memory (SRAM) of each Fcores is around 22 KB. Un-
like Lohi and TrueNorth, the Tianjic chip adopts synchronous
circuits and its clock frequency is 300 MHz. The average
power consumption for control, audio and base applications is

15

400 mW under 0.9 V working voltage. Generally, the Tianjic
chip requires 5,050 clock periods to complete a round of
computations and communications.

3) Architecture: As discussed in the previous section, Tian-
jic embraces a 2D mesh many-core architecture to achieve
massive parallelism. At the coarse-grained level, developers
are able to assign some Fcores to ANN mode and other
Fcores to SNN mode concurrently. While at the Fcore block
(fine-grained) level, the independently reconfigurable axon and
soma enable Tianjic to implement neuromorphic and artificial
neural networks. Tianjic chip also supports transition mode
between ANN and SNN, that is, when axon and soma are
set to different modes, FCore can process the ANN’s input
in axon block to SNN’s output in soma block or receive the
SNN’s inputs from the axon block and convert them to the
ANN’s outputs in the soma block. This unique transition mode
is hybrid mode.

There are two chunks of Axon memory. When the Axon
is assigned to ANN mode, the two chunks are served as a
ping pong buffer for ANN’s input. In SNN mode, these two
chunks are merged to store the temporal spike patterns in a
time window. As for the dendrite block, the processing neurons
are divided into groups, each group has 24-bit accumulators
to support the vector-matrix multiplication (VMM) that can
be used in both ANN and SNN modes. The dataflow in the
soma block is different in ANN mode and SNN mode: In
ANN mode, data flows in ‘bias, activation function, output
transmission’ fashion, and the biased activation value is 25-
bit; The dataflow changes to ‘potential leakage, spike gener-
ation, output transmission’ fashion in SNN mode, where the
membrane potential is also 25-bit.

4) Communication: The routing packet format is the same
for both SNN and ANN interFcore transmission, which con-
sists of control, address, and data segments. The post synaptic
axon parses received ANN or SNN signals from soma and
renders them to the routing blocks. In ANN mode, the data
segment transmits as 8-bit activation while in SNN mode it
transmits as nothing (itself is a spike or none). The 1KB
routing LUT consisting of address and control segments will
route the packet to one of the 5 communication channels: local,
eastern, western, southern, and northern.

Tianjic chip adopts conventional P2P [114]routing scheme
and adjacent multicast (AMC) routing scheme. The reconfig-
urable routing table allows each Fcore to connect with any
other neuron.

5) Supporting Software/Software Ecosystem: Tianjic’s soft-
ware tool chain supports the deployment of various SNN
and ANN models. To reduce the latency of the application,
Tianjic developed several software techniques, including but
not limited to unified abstraction for programming and an
automatic compiler for mapping hardware. The software tool
chain also supports direct training and indirect training for
neural networks. The direct training deploys a spatiotemporal
back-propagation algorithm to train the network on chip. The
indirect training uses a trained ANN and converts it to SNN.

6) Applications: Tianjic has been tested for several com-
puter vision tasks, such as MNIST detection. To demonstrate
that one Tianjic chip can handle complex biological plausible

neural networks in parallel, The Tianjic team designed an
unmanned bicycle experiment. The experiment requires the
chip to handle obstacle avoidance, real-time object detection,
voice recognition and decision-making with different neural
networks. For example, SNN is utilized for voice recognition,
CNN is used for object detection and CANN [297] is used for
target tracking.

In addition to the aforementioned systems, many other
large-scale neuromorphic computing platforms have been
playing an important role in machine intelligence and com-
putational neuroscience. Table III provides a more compre-
hensive comparison of the technology and performance of the
large-scale neuromorphic systems that are currently active.

V. OUTLOOK

The function and behavior of biological neural systems
inspire the third generation of neural networks, i.e. Spik-
ing Neural Networks (SNN). While moving from biological
system to software simulation deprives the energy efficiency
that the brain promises due to the inherent limitations of the
Von Neumann architecture in general purpose computers, this
challenge has been tackled by the emerging neuromorphic
hardware. In this work, we discussed the various aspects of
neuromorphic systems, such as the computing models and
their design considerations, as well as hardware platform
and communication systems. We have also discussed various
neuromorphic systems, which have provided not only solid
foundations for SNN hardware implementation, but also excit-
ing computing platforms for a variety of research fields helping
to push forward the frontier of computational neuroscience
and machine intelligence. However, there are still many areas
waiting to be explored. The research needs in neuromorphic
computing can be categorized into three areas 1) algorithm and
computational model. 2) hardware architecture. 3) emerging
device technologies.

A. Challenges in Model and Algorithm Design

On the algorithmic level, in-hardware learning is still a
major road block.

The capability of incrementally augmenting its knowledge
base during run time and adapting itself to the changing
environment is crucial to an intelligent system. In digital
neuromorphic hardware, the memory capacity not only limits
the network size, but also the size of the neuron/synapse
state variables and the data precision. This restricts the com-
plexity of learning rules that can be implemented on the
hardware. While advances have been made in approximating
the backpropagation algorithm in SNNs in recent years [111],
the quality of learning suffers from low precision of data
and weight representations. How to improve the accuracy of
supervised learning under limited precision of weight and
neuron activities is one of the problems that need to be solved
with high urgency.

Alongside further investigating the traditional backpropa-
gation algorithms, application developers should look beyond
them so as to potentially revolutionize online learning. It
is widely accepted that the biological learning rules, such

16

TABLE II: Design choices in the large-scale neuromorphic systems.

Neuron Synapse Implementation
Choice Architecture Software Support

TrueNorth Classic LIF

Binary with
a choice
of four

8-bit weights

Digital
256x256 crossbar

per core,
64x64 core array

Matlab-based
object-oriented

Corelet language

Loihi CUBA LIF

Variable precision
weight, allows

PSP with
exponential
kernel filter

Digital
No crossbar,

1048 neurons per core,
128 cores

Python-based
API NxSDK,
also supported

by Nengo

SpiNNaker Any Any
Digital,

Multiprocessor
SOC

-

SpiNNaker API,
PyNN, Nengo,
NEST, Brian,
sPyNNaker

BrainScaleS Exponential IF
(AdExp) - Analog/

Mixed signal

A wafer with 56x8 ANC
containing ANNCORE,

each of which has
128k synapse and

512 membrane circuits

PyNN

Tianjic Classic LIF - Digital

2D mesh many-core
with 156 Fcores,

each with 32 wieght index
and 256 fan-ins/fan-outs

-

TABLE III: Comparison of the large-scale neuromorphic systems.

Neuromorphic TrueNorth SpiNNaker Loihi BrainScaleS Neurogrid Braindrop Dynap-SEL TianjicChip
Implementation Digital Digital Digital Analog Analog Analog Mixed-signal Digital

Technology 28 nm ARM968 14 nm 180 nm 180 nm 28 nm 180 nm 28 nm130 nm
CMOS CMOS CMOS CMOS CMOS CMOS CMOS CMOS

transistors 5.4 B 100 M 2.07 B 15 M 23 M
Neurons 256 ∼1k max 1024 8 to 512 65k 4096 1024 16per Core
Synapses 256x256 ∼1M ∼16k ∼130k 100M 64k 64k 22kper Core

Cores 4,096 16 128 352 16 16 4 156per Chip
Chip Area 430 102 60 50 168 43.79 14.44(mm2)

Energy/SOP 26 10000 23.6 100 100 0.38 17 0.95(pJ)

NoC
2D mesh 2D mesh 2D mesh Hierarchical Tree Tree Hierarchical Hierarchical
unicast multicast unicast multicast Multicast 2D mesh 2D mesh

multicast multicast
Packet Size 32 40 + 30 12 20(bits) optional 32

Time Discretized Discretized Discretized Discretized Real time Real time Real time Real time
Neuron Time Time Time Real time Real time Real time Real time Real time
Update Multiplexed Multiplexed Multiplexed

Bio-Plausibility Low Medium Medium High High High High Low
Simulation 1x to 21x Real-time >Real-time 104x Real-time 70 MHz Real-time 300 MHz

Time real-time but variable to 105x clock
On-Chip No Yes Yes Yes No Yes Yes NoLearning

17

as STDP, is unsupervised and local. How to achieve useful
machine intelligence using the unsupervised local learning is
another area to be explored. This may require novel network
architectures that provide local feedback or reward signals
during the learning process. Since unsupervised learning in
general leads to associative memories, a study on the applica-
tion development and learning capacity of associative memory
is worthwhile.

Finally, like all online learning algorithms, the online learn-
ing of SNN will also suffer from catastrophic forgetting and
slow convergence. The low data precision in SNN deprives
us the flexibility of controlling the weights precisely. Hence,
techniques such as meta learning, which carefully move the
synaptic weights to a specific combination that works for
multiple input domains, may not be applicable for SNN. New
techniques to improve the quality of online learning must be
studied.

B. Challenges in Architectural Design

At the architecture level, the challenges come from off-
chip memory access latency, on-chip memory capacity, highly
diverse SNN models, reconfigurability, massive connection,
neuron density and network parallelism. The architectural
design has to balance these divergent and tightly coupled
aspects. The higher degree of flexibility and reconfigurability
comes at the cost of additional hardware cost. For example,
Loihi suffers a 2× reduction in the neuron density compared
with TrueNorth after process normalization [105]. SpiNNaker
achieves even higher flexibility as it adopts general purpose
ARM core and off-chip storage. To mitigate the memory
access latency, SpiNNaker stacks the SDRAM on the chip.
Digital designs such as Loihi, TrueNorth, and SpiNNaker
all work at the speed comparable to a biological system,
while BrainScaleS adopts an analogue design, and it achieves
10, 000× speedup over biological speed [298]. These design
trade-offs are made to serve specific purposes. Loihi and
TrueNorth are mainly designed for machine learning appli-
cations, hence use relatively simple models. SpiNNaker is
designed as a super computing system for various biological
research, hence it uses an ARM core rather than a model-
specific core to guarantee flexibility.

Although cost, flexibility, performance, and energy dissi-
pation are always contradictory goals during the hardware
design, a better architecture can push the design point for
a more efficient trade-off. Optimized resource allocation and
scheduling that maps neurons to physical cores while main-
taining workload balance and minimum communication will
further help to improve the performance and lower the energy
dissipation.

C. Emerging Devices

At the device level, the emerging technologies in nano
devices and materials provide a potential for extremely small,
ultra-fast and extremely low-lower neuromorphic hardware if
they are successfully married with suitable algorithms. These
works share similar ideas as analog/mixed-signal design, i.e.,

using the physical process to naturally and efficiently emulate
neuron and synapse dynamics.

In his work [299], Chua hypothesized the existence of the
missing element, memristor, defined by relation between flux-
linkage φ and charge q [300]:

dφ = M(q)dq (24)

where M(q) is a function of the amount of charge q flowed
through it. Such a memristor behaves like a non-linear resistor
with memory [299].

The synaptic weights in biological systems can be adjusted
by the ionic flow. This is analogous to the resistance of
the memristor, which can be adjusted by the charge or flux,
hence [301] demonstrated that the synapse function can be
implemented by a memristor. Furthermore, it showed that
STDP can be achieved by a hybrid system, which consists
of CMOS neurons and memristive synapses. Since then, the
memristor has attracted attentions as a promising implemen-
tation technique for neuromorphic systems [302]–[307] [217],
[308]–[311]. Most of these works adopt a memristor cross-
bar as it is capable of providing a high density connection
and efficient implementation of matrix-vector multiplication
[303], [312], [313] and can be used as an accelerator for
neuromorphic computing [310], [314]–[316]. How to realize
synaptic plasticity has also drawn a lot of interest [307], [317]–
[323]. [318] built a single layer perceptron and implemented
in situ training by the delta rule. [324] realized triplet STDP
learning rule on memristors. [306] also demonstrated the
feasibility of implementing ReLU neuron, convolution layer,
fully connected layer and unsupervised synaptic weight update
on memristor arrays.

A Photonic device is another promising direction for their
ultra-fast operation speed and virtually unlimited bandwidth
[325]–[336]. Recent works show that it is feasible to im-
plement synapses and neurons by photonic devices. [325]
implemented synapses in the optical domain via a photonic
integrated-circuit based on phase-change materials (PCMs)
cells. Because the PCM can be adjusted by optical pulses, the
PCM cell serves as non-volatile photonic memories. Synaptic
plasticity is also demonstrated [325]. [326] realized a scalable
all-optical spiking neural network circuit. A network of four
input neurons, three hidden-layer neurons and two output
neurons were built upon the proposed circuit. The network
demonstrated capability of pattern recognition in the optical
domain. [330] implemented a neuromorphic photonic network
to solve an ordinary differential equation system called a
Lorenz attractor, and it achieved 294 × speedup compared to
a CPU baseline. Though photonic neuromorphic computing is
still far from practical, it has the potential to exceed electronic
devices’ performance by many orders of magnitude [337].

While the neuromorphic systems implemented using afore-
mentioned emerging device technologies have demonstrated
great potentials, they also face significant challenges. How
to improve their scalability, flexibility and reliability will
continue to be the research direction in the future.

18

VI. CONCLUSIONS

As a bio-inspired computing paradigm, neuromorphic com-
puting has great potentials in accelerating computational neu-
roscience, and enabling energy efficient solutions for machine
intelligence. Due to its unique way of encoding and processing
information, it is also believed to be particularly promising
for sensor and control-based applications that interact with
the physical environment. In this survey, we reviewed dif-
ferent computation models, learning algorithms, information
coding schemes, and hardware architectures of neuromorphic
computing. With more and more research efforts in academia
and industry, we anticipate that breakthroughs in more reliable
learning algorithms and more efficient implementations will be
seen in the near future.

ACKNOWLEDGMENT

This work is partially supported by the National Science
Foundation I/UCRC ASIC (Alternative Sustainable and Intel-
ligent Computing) Center (CNS-1822165).

The work was received and approved for public release by
AFRL on August 24th, 2021, case number AFRL-2021-2820.
Any Opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of AFRL or its contractors.

REFERENCES

[1] C. A. Mead and M. A. Mahowald, “A silicon model of early visual
processing,” Neural networks, vol. 1, pp. 91–97, 1988.

[2] C. Mead, “Neuromorphic electronic systems,” Proceedings of the IEEE,
vol. 78, pp. 1629–1636, 1990.

[3] C. Mead and M. Ismail, Analog VLSI implementation of neural systems.
Springer Science & Business Media, 2012, vol. 80.

[4] R. Douglas, M. Mahowald, and C. Mead, “Neuromorphic analogue
VLSI,” Annual review of neuroscience, vol. 18, pp. 255–281, 1995.

[5] C. Mead, Analog VLSI and Neural Systems. Addison-Wesley Longman
Publishing Co., Inc., 1989.

[6] P. E. Hasler, C. Diorio, B. A. Minch, and C. Mead, “Single transistor
learning synapses,” in Advances in neural information processing
systems. Advances in neural information processing systems, 1995,
pp. 817–824.

[7] M. A. C. Maher, S. P. Deweerth, M. A. Mahowald, and C. A. Mead,
“Implementing neural architectures using analog VLSI circuits,” IEEE
transactions on circuits and systems, vol. 36, pp. 643–652, 1989.

[8] R. F. Lyon and C. Mead, “An analog electronic cochlea,” IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol. 36,
pp. 1119–1134, 1988.

[9] A. G. Andreou, K. A. Boahen, P. O. Pouliquen, A. Pavasovic, R. E.
Jenkins, and K. Strohbehn, “Current-mode subthreshold MOS circuits
for analog VLSI neural systems,” IEEE Transactions on neural net-
works, vol. 2, pp. 205–213, 1991.

[10] C. Diorio, P. Hasler, A. Minch, and C. A. Mead, “A single-transistor
silicon synapse,” IEEE transactions on Electron Devices, vol. 43, pp.
1972–1980, 1996.

[11] W. Maass, “Networks of spiking neurons: the third generation of neural
network models,” Neural networks, vol. 10, pp. 1659–1671, 1997.

[12] W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski, Neuronal
dynamics: From single neurons to networks and models of cognition.
Cambridge University Press, 2014.

[13] J. H. Lee, T. Delbruck, and M. Pfeiffer, “Training deep spiking neural
networks using backpropagation,” Frontiers in neuroscience, vol. 10,
p. 508, 2016.

[14] E. Hunsberger and C. Eliasmith, “Spiking deep networks with lif
neurons,” arXiv preprint arXiv:1510.08829, 2015.

[15] Q. Xu, Y. Qi, H. Yu, J. Shen, H. Tang, and G. Pan, “CSNN: An
Augmented Spiking based Framework with Perceptron-Inception.” in
IJCAI. IJCAI, 2018, pp. 1646–1652.

[16] W. Wang, S. Hao, Y. Wei, S. Xiao, J. Feng, and N. Sebe, “Temporal
Spiking Recurrent Neural Network for Action Recognition,” IEEE
Access, vol. 7, pp. 117 165–117 175, 2019.

[17] L. Shi, J. Pei, N. Deng, D. Wang, L. Deng, Y. Wang, Y. Zhang, F. Chen,
M. Zhao, S. Song et al., “Development of a neuromorphic computing
system,” in 2015 IEEE International Electron Devices Meeting (IEDM).
2015 IEEE International Electron Devices Meeting (IEDM), 2015, pp.
4–3.

[18] C. D. Schuman, T. E. Potok, R. M. Patton, J. D. Birdwell, M. E. Dean,
G. S. Rose, and J. S. Plank, “A survey of neuromorphic computing and
neural networks in hardware,” arXiv preprint arXiv:1705.06963, 2017.

[19] S. M. Schuetze, “The discovery of the action potential,” Trends in
Neurosciences, vol. 6, pp. 164–168, 1983.

[20] E. R. Kandel, J. H. Schwartz, T. M. Jessell, D. of Biochemistry,
M. B. T. Jessell, S. Siegelbaum, and A. J. Hudspeth, Principles of
neural science. McGraw-hill New York, 2000, vol. 4.

[21] C. S. Sherrington, “The central nervous system,” A text book of
Physiology, vol. 929, 1897.

[22] M. R. Bennett, “The early history of the synapse: from plato to
sherrington,” Brain research bulletin, vol. 50, pp. 95–118, 1999.

[23] A. L. Hodgkin and A. F. Huxley, “A quantitative description of
membrane current and its application to conduction and excitation in
nerve,” The Journal of physiology, vol. 117, pp. 500–544, 1952.

[24] R. FitzHugh, “Impulses and physiological states in theoretical models
of nerve membrane,” Biophysical journal, vol. 1, p. 445, 1961.

[25] C. Morris and H. Lecar, “Voltage oscillations in the barnacle giant
muscle fiber,” Biophysical journal, vol. 35, pp. 193–213, 1981.

[26] E. M. Izhikevich, “Simple model of spiking neurons,” IEEE Transac-
tions on neural networks, vol. 14, pp. 1569–1572, 2003.

[27] A. N. Burkitt, “A review of the integrate-and-fire neuron model: I.
Homogeneous synaptic input,” Biological cybernetics, vol. 95, pp. 1–
19, 2006.

[28] W. Gerstner and W. M. Kistler, Spiking neuron models: Single neurons,
populations, plasticity. Cambridge university press, 2002.

[29] H. Fang, Z. Mei, A. Shrestha, Z. Zhao, Y. Li, and Q. Qiu, “Encoding,
model, and architecture: Systematic optimization for spiking neural
network in FPGAs,” in 2020 IEEE/ACM International Conference On
Computer Aided Design (ICCAD). IEEE, 2020, pp. 1–9.

[30] R. Brette, M. Rudolph, T. Carnevale, M. Hines, D. Beeman, J. M.
Bower, M. Diesmann, A. Morrison, P. H. Goodman, F. C. Harris et al.,
“Simulation of networks of spiking neurons: a review of tools and
strategies,” Journal of computational neuroscience, vol. 23, no. 3, pp.
349–398, 2007.

[31] J. Köhn and F. Wörgötter, “Employing the z-transform to optimize the
calculation of the synaptic conductance of NMDA and other synaptic
channels in network simulations,” Neural Computation, vol. 10, no. 7,
pp. 1639–1651, 1998.

[32] S. Johnston, G. Prasad, L. Maguire, and M. McGinnity, “Comparative
investigation into classical and spiking neuron implementations on
FPGAs,” in International Conference on Artificial Neural Networks.
Springer, 2005, pp. 269–274.

[33] H. Fang, A. Shrestha, Z. Zhao, and Q. Qiu, “Exploiting Neuron and
Synapse Filter Dynamics in Spatial Temporal Learning of Deep Spiking
Neural Network,” arXiv preprint arXiv:2003.02944, 2020.

[34] H. Fang, A. Shrestha, Z. Zhao, Y. Li, and Q. Qiu, “An event-driven
neuromorphic system with biologically plausible temporal dynamics,”
in 38th IEEE/ACM International Conference on Computer-Aided De-
sign, ICCAD 2019. 38th IEEE/ACM International Conference on
Computer-Aided Design, ICCAD 2019, 2019, p. 8942083.

[35] Y. Cao, Y. Chen, and D. Khosla, “Spiking deep convolutional neural
networks for energy-efficient object recognition,” International Journal
of Computer Vision, vol. 113, pp. 54–66, 2015.

[36] S. K. Esser, P. A. Merolla, J. V. Arthur, A. S. Cassidy, R. Appuswamy,
A. Andreopoulos, D. J. Berg, J. L. McKinstry, T. Melano, D. R. Barch
et al., “Convolutional networks for fast, energy-efficient neuromorphic
computing. 2016,” Preprint on ArXiv. http://arxiv. org/abs/1603.08270.
Accessed, vol. 27, 2016.

[37] S. K. Esser, R. Appuswamy, P. Merolla, J. V. Arthur, and D. S. Modha,
“Backpropagation for energy-efficient neuromorphic computing,” in
Advances in neural information processing systems. Advances in
neural information processing systems, 2015, pp. 1117–1125.

[38] S. Carrillo, J. Harkin, L. McDaid, S. Pande, S. Cawley, B. McGinley,
and F. Morgan, “Advancing interconnect density for spiking neural net-
work hardware implementations using traffic-aware adaptive network-
on-chip routers,” Neural networks, vol. 33, pp. 42–57, 2012.

19

[39] G. Liu, P. Camilleri, S. Furber, and J. Garside, “Network traffic
exploration on a many-core computing platform: SpiNNaker real-time
traffic visualiser,” in 2015 11th Conference on Ph.D. Research in
Microelectronics and Electronics (PRIME), 2015, pp. 228–231.

[40] J. Navaridas, L. A. Plana, J. Miguel-Alonso, M. Luján, and S. B.
Furber, “Spinnaker: impact of traffic locality, causality and burstiness
on the performance of the interconnection network,” in Proceedings
of the 7th ACM international conference on Computing frontiers.
Proceedings of the 7th ACM international conference on Computing
frontiers, 2010, pp. 11–20.

[41] P. Reinagel and R. C. Reid, “Temporal coding of visual information in
the thalamus,” Journal of Neuroscience, vol. 20, pp. 5392–5400, 2000.

[42] F. Theunissen and J. P. Miller, “Temporal encoding in nervous systems:
a rigorous definition,” Journal of computational neuroscience, vol. 2,
pp. 149–162, 1995.

[43] R. C. Decharms and A. Zador, “Neural representation and the cortical
code,” Annual review of neuroscience, vol. 23, pp. 613–647, 2000.

[44] B. Tripp and C. Eliasmith, “Neural populations can induce reliable
postsynaptic currents without observable spike rate changes or precise
spike timing,” Cerebral Cortex, vol. 17, pp. 1830–1840, 2007.

[45] A. Borst and F. E. Theunissen, “Information theory and neural coding,”
Nature neuroscience, vol. 2, pp. 947–957, 1999.

[46] T. Gollisch and M. Meister, “Rapid neural coding in the retina with
relative spike latencies,” science, vol. 319, pp. 1108–1111, 2008.

[47] H. Mostafa, “Supervised learning based on temporal coding in spiking
neural networks,” IEEE transactions on neural networks and learning
systems, vol. 29, no. 7, pp. 3227–3235, 2017.

[48] S. Park, S. Kim, B. Na, and S. Yoon, “T2FSNN: deep spiking neural
networks with time-to-first-spike coding,” in 2020 57th ACM/IEEE
Design Automation Conference (DAC). IEEE, 2020, pp. 1–6.

[49] L. Zhang, S. Zhou, T. Zhi, Z. Du, and Y. Chen, “Tdsnn: From deep
neural networks to deep spike neural networks with temporal-coding,”
in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 33, no. 01, 2019, pp. 1319–1326.

[50] Z. Li, B. Yan et al., “Resipe: Reram-based single-spiking processing-
in-memory engine,” in 2020 57th ACM/IEEE Design Automation
Conference (DAC). IEEE, 2020, pp. 1–6.

[51] A. Zador, “Impact of synaptic unreliability on the information trans-
mitted by spiking neurons,” Journal of neurophysiology, vol. 79, pp.
1219–1229, 1998.

[52] C. Eliasmith and C. H. Anderson, Neural engineering: Computation,
representation, and dynamics in neurobiological systems. MIT press,
2004.

[53] Y. Zheng, S. Li, R. Yan, H. Tang, and K. C. Tan, “Sparse temporal
encoding of visual features for robust object recognition by spiking
neurons,” IEEE transactions on neural networks and learning systems,
vol. 29, pp. 5823–5833, 2018.

[54] Z. Pan, J. Wu, M. Zhang, H. Li, and Y. Chua, “Neural Population
Coding for Effective Temporal Classification,” in 2019 International
Joint Conference on Neural Networks (IJCNN). 2019 International
Joint Conference on Neural Networks (IJCNN), 2019, pp. 1–8.

[55] R. Xiao, R. Yan, H. Tang, and K. C. Tan, “A spiking neural network
model for sound recognition,” in International Conference on Cognitive
Systems and Signal Processing. International Conference on Cognitive
Systems and Signal Processing, 2016, pp. 584–594.

[56] J. Wu, Y. Chua, and H. Li, “A biologically plausible speech recognition
framework based on spiking neural networks,” in 2018 International
Joint Conference on Neural Networks (IJCNN). 2018 International
Joint Conference on Neural Networks (IJCNN), 2018, pp. 1–8.

[57] R. Gütig and H. Sompolinsky, “The tempotron: a neuron that learns
spike timing–based decisions,” Nature neuroscience, vol. 9, pp. 420–
428, 2006.

[58] R. Florian, “The chronotron: a neuron that learns to fire temporally-
precise spike patterns,” Nature Precedings, pp. 1–1, 2010.

[59] S. B. Shrestha and G. Orchard, “Slayer: spike layer error reassignment
in time,” in Proceedings of the 32nd International Conference on
Neural Information Processing Systems, 2018, pp. 1419–1428.

[60] A. Shrestha, K. Ahmed, Y. Wang, D. P. Widemann, A. T. Moody, Van,
C. E. Brian, and Q. Qiu, “A spike-based long short-term memory on a
neurosynaptic processor,” in 2017 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD). 2017 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2017, pp. 631–637.

[61] A. Shrestha, K. Ahmed, Y. Wang, D. P. Widemann, A. T. Moody,
B. C. Van Essen, and Q. Qiu, “Modular Spiking Neural Circuits for
Mapping Long Short-Term Memory on a Neurosynaptic Processor,”
IEEE Journal on Emerging and Selected Topics in Circuits and
Systems, vol. 8, no. 4, pp. 782–795, 2018.

[62] G. Bellec, D. Salaj, A. Subramoney, R. Legenstein, and W. Maass,
“Long short-term memory and learning-to-learn in networks of spiking
neurons,” in Advances in Neural Information Processing Systems.
Advances in Neural Information Processing Systems, 2018, pp. 787–
797.

[63] A. Polepalli, N. Soures, and D. Kudithipudi, “Digital neuromorphic
design of a liquid state machine for real-time processing,” in 2016 IEEE
International Conference on Rebooting Computing (ICRC). 2016
IEEE International Conference on Rebooting Computing (ICRC), 2016,
pp. 1–8.

[64] A. Polepalli, N. Soures, and D. Kudithipudi, “Reconfigurable Digital
Design of a Liquid State Machine for Spatio-Temporal Data,” in
Proceedings of the 3rd ACM International Conference on Nanoscale
Computing and Communication, 2016, p. 15.

[65] D. Kudithipudi, Q. Saleh, C. Merkel, J. Thesing, and B. Wysocki,
“Design and analysis of a neuromemristive reservoir computing archi-
tecture for biosignal processing,” Frontiers in neuroscience, vol. 9, p.
502, 2016.

[66] B. Schrauwen, M. D’Haene, D. Verstraeten, and J. V. Campenhout,
“Compact hardware liquid state machines on FPGA for real-time
speech recognition,” Neural networks, vol. 21, pp. 511–523, 2008.

[67] Q. Wang, Y. Li, and P. Li, “Liquid state machine based pattern
recognition on FPGA with firing-activity dependent power gating and
approximate computing,” in 2016 IEEE International Symposium on
Circuits and Systems (ISCAS). 2016 IEEE International Symposium
on Circuits and Systems (ISCAS), 2016, pp. 361–364.

[68] Y. Yi, Y. Liao, B. Wang, X. Fu, F. Shen, H. Hou, and L. Liu, “Fpga
based spike-time dependent encoder and reservoir design in neuro-
morphic computing processors,” Microprocessors and Microsystems,
vol. 46, pp. 175–183, 2016.

[69] A. Zhang, W. Zhu, and J. Li, “Spiking echo state Convolutional Neural
Network for Robust Time Series Classification,” IEEE Access, vol. 7,
pp. 4927–4935, 2018.

[70] K. Ahmed, A. Shrestha, Q. Qiu, and Q. Wu, “Probabilistic inference
using stochastic spiking neural networks on a neurosynaptic processor,”
in 2016 International Joint Conference on Neural Networks (IJCNN).
IEEE, 2016, pp. 4286–4293.

[71] K. Ahmed, A. Shrestha, and Q. Qiu, “Simulation of bayesian learning
and inference on distributed stochastic spiking neural networks,” in
2016 International Joint Conference on Neural Networks (IJCNN).
IEEE, 2016, pp. 1044–1051.

[72] R. Kreiser, A. Renner, Y. Sandamirskaya, and P. Pienroj, “Pose
estimation and map formation with spiking neural networks: towards
neuromorphic slam,” in 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2018, pp. 2159–
2166.

[73] K. Hardcastle, S. Ganguli, and L. M. Giocomo, “Cell types for our
sense of location: where we are and where we are going,” Nature
neuroscience, vol. 20, p. 1474, 2017.

[74] T. Kohonen, “Self-organized formation of topologically correct feature
maps,” Biological cybernetics, vol. 43, pp. 59–69, 1982.

[75] G. J. Goodhill, “Contributions of theoretical modeling to the under-
standing of neural map development,” Neuron, vol. 56, pp. 301–311,
2007.

[76] K. Ahmed, A. Shrestha, Y. Wang, and Q. Qiu, “System Design for In-
Hardware STDP Learning and Spiking Based Probablistic Inference,”
in 2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI),
2016, pp. 272–277.

[77] A. Shrestha, K. Ahmed, Y. Wang, and Q. Qiu, “Stable spike-timing
dependent plasticity rule for multilayer unsupervised and supervised
learning,” in 2017 International Joint Conference on Neural Networks
(IJCNN), 2017, pp. 1999–2006.

[78] J. A. Gottfried, “Central mechanisms of odour object perception,”
Nature Reviews Neuroscience, vol. 11, pp. 628–641, 2010.

[79] D. A. Wilson and R. M. Sullivan, “Cortical processing of odor objects,”
Neuron, vol. 72, pp. 506–519, 2011.

[80] B. A. Kaplan and A. Lansner, “A spiking neural network model of
self-organized pattern recognition in the early mammalian olfactory
system,” Frontiers in neural circuits, vol. 8, p. 5, 2014.

[81] H.-Y. Hsieh and K.-T. Tang, “VLSI implementation of a bio-inspired
olfactory spiking neural network,” IEEE transactions on neural net-
works and learning systems, vol. 23, pp. 1065–1073, 2012.

[82] B.-Z. Li, S. H. Pun, W. Feng, M. I. Vai, A. Klug, and T. C. Lei, “A
Spiking Neural Network Model Mimicking the Olfactory Cortex for
Handwritten Digit Recognition,” in 2019 9th International IEEE/EMBS
Conference on Neural Engineering (NER), 2019, pp. 1167–1170.

20

[83] B. Grothe, “New roles for synaptic inhibition in sound localization,”
Nature Reviews Neuroscience, vol. 4, pp. 540–550, 2003.

[84] R. Shi and T. Horiuchi, “A VLSI model of the bat lateral superior olive
for azimuthal echolocation,” in 2004 IEEE International Symposium on
Circuits and Systems, vol. 4, 2004, pp. IV–900.

[85] J. Wu, Y. Chua, M. Zhang, H. Li, and K. C. Tan, “A spiking
neural network framework for robust sound classification,” Frontiers
in neuroscience, vol. 12, p. 836, 2018.

[86] B. Glackin, J. A. Wall, T. M. McGinnity, L. P. Maguire, and L. J.
McDaid, “A spiking neural network model of the medial superior
olive using spike timing dependent plasticity for sound localization,”
Frontiers in computational neuroscience, vol. 4, p. 18, 2010.

[87] C. Eliasmith, M. B. Westover, and C. H. Anderson, “A general frame-
work for neurobiological modeling: An application to the vestibular
system,” Neurocomputing, vol. 44, pp. 1071–1076, 2002.

[88] C. Eliasmith, “A unified approach to building and controlling spiking
attractor networks,” Neural computation, vol. 17, pp. 1276–1314, 2005.

[89] E. P. Frady and F. T. Sommer, “Robust computation with rhythmic
spike patterns,” Proceedings of the National Academy of Sciences, vol.
116, pp. 18 050–18 059, 2019.

[90] M. Giulioni, P. Camilleri, M. Mattia, V. Dante, J. Braun, and P. D.
Giudice, “Robust working memory in an asynchronously spiking neural
network realized with neuromorphic VLSI,” Frontiers in neuroscience,
vol. 5, p. 149, 2012.

[91] M. Baudry, “Synaptic plasticity and learning and memory: 15 years of
progress,” Neurobiology of learning and memory, vol. 70, pp. 113–118,
1998.

[92] A. Citri and R. C. Malenka, “Synaptic plasticity: multiple forms,
functions, and mechanisms,” Neuropsychopharmacology, vol. 33, pp.
18–41, 2008.

[93] P. J. Sjöström, G. G. Turrigiano, and S. B. Nelson, “Neocortical
LTD via coincident activation of presynaptic NMDA and cannabinoid
receptors,” Neuron, vol. 39, pp. 641–654, 2003.

[94] R. A. Nicoll and D. Schmitz, “Synaptic plasticity at hippocampal mossy
fibre synapses,” Nature Reviews Neuroscience, vol. 6, pp. 863–876,
2005.

[95] G.-q. Bi and M.-m. Poo, “Synaptic modifications in cultured hip-
pocampal neurons: dependence on spike timing, synaptic strength, and
postsynaptic cell type,” Journal of neuroscience, vol. 18, pp. 10 464–
10 472, 1998.

[96] H. Markram, J. Lübke, M. Frotscher, and B. Sakmann, “Regulation
of synaptic efficacy by coincidence of postsynaptic APs and EPSPs,”
Science, vol. 275, pp. 213–215, 1997.

[97] S. Song, K. D. Miller, and L. F. Abbott, “Competitive hebbian
learning through spike-timing-dependent synaptic plasticity,” Nature
neuroscience, vol. 3, pp. 919–926, 2000.

[98] Q. Yu, H. Li, and K. C. Tan, “Spike timing or rate? Neurons learn
to make decisions for both through threshold-driven plasticity,” IEEE
transactions on cybernetics, vol. 49, pp. 2178–2189, 2018.

[99] R. V. Florian, “Tempotron-like learning with resume,” in International
Conference on Artificial Neural Networks. International Conference
on Artificial Neural Networks, 2008, pp. 368–375.

[100] A. Mohemmed, S. Schliebs, S. Matsuda, and N. Kasabov, “Span: Spike
pattern association neuron for learning spatio-temporal spike patterns,”
International journal of neural systems, vol. 22, p. 1250012, 2012.

[101] R. Echeveste and C. Gros, “Two-trace model for spike-timing-
dependent synaptic plasticity,” Neural computation, vol. 27, pp. 672–
698, 2015.

[102] R. Kempter, W. Gerstner, and J. L. Van Hemmen, “Hebbian learning
and spiking neurons,” Physical Review E, vol. 59, no. 4, p. 4498, 1999.

[103] J. Rubin, D. D. Lee, and H. Sompolinsky, “Equilibrium properties
of temporally asymmetric Hebbian plasticity,” Physical review letters,
vol. 86, no. 2, p. 364, 2001.

[104] F. Ponulak and A. Kasiński, “Supervised learning in spiking neural
networks with resume: sequence learning, classification, and spike
shifting,” Neural computation, vol. 22, no. 2, pp. 467–510, 2010.

[105] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday,
G. Dimou, P. Joshi, N. Imam, S. Jain et al., “Loihi: A neuromorphic
manycore processor with on-chip learning,” IEEE Micro, vol. 38, pp.
82–99, 2018.

[106] E. O. Neftci, C. Augustine, S. Paul, and G. Detorakis, “Event-
driven random back-propagation: Enabling neuromorphic deep learning
machines,” Frontiers in neuroscience, vol. 11, p. 324, 2017.

[107] A. Tavanaei and A. Maida, “BP-STDP: Approximating backpropaga-
tion using spike timing dependent plasticity,” Neurocomputing, vol.
330, pp. 39–47, 2019.

[108] A. Shrestha, H. Fang, Q. Wu, and Q. Qiu, “Approximating back-
propagation for a biologically plausible local learning rule in spiking
neural networks,” in Proceedings of the International Conference on
Neuromorphic Systems. Proceedings of the International Conference
on Neuromorphic Systems, 2019, pp. 1–8.

[109] S. M. Bohte, J. N. Kok, and J. A. La Poutré, “Spikeprop: backpropa-
gation for networks of spiking neurons.” in ESANN, vol. 48. Bruges,
2000, pp. 419–424.

[110] Y. Wu, L. Deng, G. Li, J. Zhu, and L. Shi, “Spatio-temporal back-
propagation for training high-performance spiking neural networks,”
Frontiers in neuroscience, vol. 12, p. 331, 2018.

[111] A. Shrestha, H. Fang, D. P. Rider, Z. Mei, and Q. Qiu, “In-Hardware
Learning of Multilayer Spiking Neural Networks on a Neuromorphic
Processor,” in Design Automation Conference (DAC). Design Au-
tomation Conference (DAC), 2021.

[112] S. A. Aamir, Y. Stradmann, P. Müller, C. Pehle, A. Hartel, A. Grübl,
J. Schemmel, and K. Meier, “An accelerated LIF neuronal network
array for a large-scale mixed-signal neuromorphic architecture,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 65, pp.
4299–4312, 2018.

[113] B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R. Chan-
drasekaran, J.-M. Bussat, R. Alvarez-Icaza, J. V. Arthur, P. A. Merolla,
and K. Boahen, “Neurogrid: A mixed-analog-digital multichip system
for large-scale neural simulations,” Proceedings of the IEEE, vol. 102,
pp. 699–716, 2014.

[114] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura et al., “A
million spiking-neuron integrated circuit with a scalable communica-
tion network and interface,” Science, vol. 345, pp. 668–673, 2014.

[115] N. Qiao, H. Mostafa, F. Corradi, M. Osswald, F. Stefanini, D. Sum-
islawska, and G. Indiveri, “A reconfigurable on-line learning spiking
neuromorphic processor comprising 256 neurons and 128k synapses,”
Frontiers in neuroscience, vol. 9, p. 141, 2015.

[116] S. Yang, J. Wang, B. Deng, C. Liu, H. Li, C. Fietkiewicz, and K. A.
Loparo, “Real-time neuromorphic system for large-scale conductance-
based spiking neural networks,” IEEE transactions on cybernetics,
vol. 49, pp. 2490–2503, 2018.

[117] A. S. Cassidy, P. Merolla, J. V. Arthur, S. K. Esser, B. Jackson,
R. Alvarez-Icaza, P. Datta, J. Sawada, T. M. Wong, V. Feldman et al.,
“Cognitive computing building block: A versatile and efficient digital
neuron model for neurosynaptic cores,” in The 2013 International Joint
Conference on Neural Networks (IJCNN). The 2013 International Joint
Conference on Neural Networks (IJCNN), 2013, pp. 1–10.

[118] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, “The spinnaker
project,” Proceedings of the IEEE, vol. 102, pp. 652–665, 2014.

[119] R. Araújo, N. Waniek, and J. Conradt, “Development of a dynamically
extendable spinnaker chip computing module,” in International Con-
ference on Artificial Neural Networks. International Conference on
Artificial Neural Networks, 2014, pp. 821–828.

[120] P. U. Diehl and M. Cook, “Efficient implementation of stdp rules
on spinnaker neuromorphic hardware,” in 2014 International Joint
Conference on Neural Networks (IJCNN). 2014 International Joint
Conference on Neural Networks (IJCNN), 2014, pp. 4288–4295.

[121] S. Furber and A. Brown, “Biologically-inspired massively-parallel
architectures-computing beyond a million processors,” in 2009 Ninth
International Conference on Application of Concurrency to System
Design. 2009 Ninth International Conference on Application of
Concurrency to System Design, 2009, pp. 3–12.

[122] S. B. Furber, D. R. Lester, L. A. Plana, J. D. Garside, E. Painkras,
S. Temple, and A. D. Brown, “Overview of the spinnaker system
architecture,” IEEE Transactions on Computers, vol. 62, pp. 2454–
2467, 2012.

[123] S. Furber, “To build a brain,” IEEE spectrum, vol. 49, pp. 44–49, 2012.
[124] X. Jin, S. B. Furber, and J. V. Woods, “Efficient modelling of spiking

neural networks on a scalable chip multiprocessor,” in 2008 IEEE
International Joint Conference on Neural Networks (IEEE World
Congress on Computational Intelligence). 2008 IEEE International
Joint Conference on Neural Networks (IEEE World Congress on
Computational Intelligence), 2008, pp. 2812–2819.

[125] J. C. Knight, P. J. Tully, B. A. Kaplan, A. Lansner, and S. B. Furber,
“Large-scale simulations of plastic neural networks on neuromorphic
hardware,” Frontiers in neuroanatomy, vol. 10, p. 37, 2016.

[126] J. C. Knight and S. B. Furber, “Synapse-centric mapping of cortical
models to the SpiNNaker neuromorphic architecture,” Frontiers in
neuroscience, vol. 10, p. 420, 2016.

[127] X. Lagorce, E. Stromatias, F. Galluppi, L. A. Plana, S.-C. Liu, S. B.
Furber, and R. B. Benosman, “Breaking the millisecond barrier on

21

SpiNNaker: implementing asynchronous event-based plastic models
with microsecond resolution,” Frontiers in neuroscience, vol. 9, p. 206,
2015.

[128] E. Painkras, L. A. Plana, J. Garside, S. Temple, F. Galluppi, C. Pat-
terson, D. R. Lester, A. D. Brown, and S. B. Furber, “Spinnaker:
A 1-w 18-core system-on-chip for massively-parallel neural network
simulation,” IEEE Journal of Solid-State Circuits, vol. 48, pp. 1943–
1953, 2013.

[129] E. Painkras, L. A. Plana, J. Garside, S. Temple, S. Davidson, J. Pepper,
D. Clark, C. Patterson, and S. Furber, “Spinnaker: A multi-core system-
on-chip for massively-parallel neural net simulation,” in Proceedings of
the IEEE 2012 Custom Integrated Circuits Conference. Proceedings
of the IEEE 2012 Custom Integrated Circuits Conference, 2012, pp.
1–4.

[130] L. A. Plana, D. Clark, S. Davidson, S. Furber, J. Garside, E. Painkras,
J. Pepper, S. Temple, and J. Bainbridge, “SpiNNaker: design and
implementation of a GALS multicore system-on-chip,” ACM Journal
on Emerging Technologies in Computing Systems (JETC), vol. 7, pp.
1–18, 2011.

[131] A. D. Rast, X. Jin, F. Galluppi, L. A. Plana, C. Patterson, and S. Furber,
“Scalable event-driven native parallel processing: the SpiNNaker neu-
romimetic system,” in Proceedings of the 7th ACM international
conference on Computing frontiers. Proceedings of the 7th ACM
international conference on Computing frontiers, 2010, pp. 21–30.

[132] T. Sharp, L. A. Plana, F. Galluppi, and S. Furber, “Event-driven simula-
tion of arbitrary spiking neural networks on Spinnaker,” in International
conference on neural information processing. International conference
on neural information processing, 2011, pp. 424–430.

[133] E. Stromatias, D. Neil, F. Galluppi, M. Pfeiffer, S.-C. Liu, and
S. Furber, “Scalable energy-efficient, low-latency implementations of
trained spiking deep belief networks on spinnaker,” in 2015 Inter-
national Joint Conference on Neural Networks (IJCNN). 2015
International Joint Conference on Neural Networks (IJCNN), 2015,
pp. 1–8.

[134] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur,
P. Merolla, N. Imam, Y. Nakamura, P. Datta, G.-J. Nam et al.,
“Truenorth: Design and tool flow of a 65 mw 1 million neuron
programmable neurosynaptic chip,” IEEE transactions on computer-
aided design of integrated circuits and systems, vol. 34, pp. 1537–1557,
2015.

[135] J. V. Arthur, P. A. Merolla, F. Akopyan, R. Alvarez, A. Cassidy,
S. Chandra, S. K. Esser, N. Imam, W. Risk, D. B. D. Rubin,
R. Manohar, and D. S. Modha, “Building block of a programmable
neuromorphic substrate: A digital neurosynaptic core,” in The 2012
International Joint Conference on Neural Networks (IJCNN), 2012,
pp. 1–8.

[136] A. S. Cassidy, R. Alvarez-Icaza, F. Akopyan, J. Sawada, J. V. Arthur,
P. A. Merolla, P. Datta, M. G. Tallada, B. Taba, A. Andreopoulos et al.,
“Real-time scalable cortical computing at 46 giga-synaptic OPS/watt
with˜ 100× speedup in time-to-solution and˜ 100,000× reduction in
energy-to-solution,” in SC14: Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and
Analysis. SC’14: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2014, pp.
27–38.

[137] N. Imam, F. Akopyan, J. Arthur, P. Merolla, R. Manohar, and D. S.
Modha, “A digital neurosynaptic core using event-driven qdi circuits,”
in 2012 IEEE 18th International Symposium on Asynchronous Circuits
and Systems. 2012 IEEE 18th International Symposium on Asyn-
chronous Circuits and Systems, 2012, pp. 25–32.

[138] P. Merolla, J. Arthur, F. Akopyan, N. Imam, R. Manohar, and D. S.
Modha, “A digital neurosynaptic core using embedded crossbar mem-
ory with 45pj per spike in 45nm,” in 2011 IEEE custom integrated
circuits conference (CICC). 2011 IEEE custom integrated circuits
conference (CICC), 2011, pp. 1–4.

[139] J.-s. Seo, B. Brezzo, Y. Liu, B. D. Parker, S. K. Esser, R. K. Montoye,
B. Rajendran, J. A. Tierno, L. Chang, D. S. Modha et al., “A 45nm
cmos neuromorphic chip with a scalable architecture for learning
in networks of spiking neurons,” in 2011 IEEE Custom Integrated
Circuits Conference (CICC). 2011 IEEE Custom Integrated Circuits
Conference (CICC), 2011, pp. 1–4.

[140] A. Banerjee, S. Kar, S. Roy, A. Bhaduri, and A. Basu, “A current-
mode spiking neural classifier with lumped dendritic nonlinearity,” in
2015 IEEE International Symposium on Circuits and Systems (ISCAS).
2015 IEEE International Symposium on Circuits and Systems (ISCAS),
2015, pp. 714–717.

[141] M. Ambroise, T. Levi, Y. Bornat, and S. Saighi, “Biorealistic spiking
neural network on FPGA,” in 2013 47th Annual Conference on Infor-
mation Sciences and Systems (CISS). 2013 47th Annual Conference
on Information Sciences and Systems (CISS), 2013, p. 1–6.

[142] M. Hu, H. Li, Y. Chen, Q. Wu, G. S. Rose, and R. W. Linderman,
“Memristor crossbar-based neuromorphic computing system: A case
study,” IEEE transactions on neural networks and learning systems,
vol. 25, pp. 1864–1878, 2014.

[143] M. E. Dean and C. Daffron, “A VLSI design for neuromorphic
computing,” in 2016 IEEE Computer Society Annual Symposium on
VLSI (ISVLSI). 2016 IEEE Computer Society Annual Symposium on
VLSI (ISVLSI), 2016, pp. 87–92.

[144] J. K. Kim, P. Knag, T. Chen, and Z. Zhang, “A 640m pixel/s 3.65 mw
sparse event-driven neuromorphic object recognition processor with on-
chip learning,” in 2015 Symposium on VLSI Circuits (VLSI Circuits),
2015, pp. C50–C51.

[145] A. Nere, U. Olcese, D. Balduzzi, and G. Tononi, “A neuromorphic
architecture for object recognition and motion anticipation using burst-
STDP,” PloS one, vol. 7, 2012.

[146] A. Nere, A. Hashmi, M. Lipasti, and G. Tononi, “Bridging the
semantic gap: Emulating biological neuronal behaviors with simple
digital neurons,” in 2013 IEEE 19th International Symposium on
High Performance Computer Architecture (HPCA). 2013 IEEE 19th
International Symposium on High Performance Computer Architecture
(HPCA), 2013, pp. 472–483.

[147] J.-s. Seo and M. Seok, “Digital CMOS neuromorphic processor design
featuring unsupervised online learning,” in 2015 IFIP/IEEE Interna-
tional Conference on Very Large Scale Integration (VLSI-SoC), 2015,
pp. 49–51.

[148] J. Shen, D. Ma, Z. Gu, M. Zhang, X. Zhu, X. Xu, Q. Xu, Y. Shen,
and G. Pan, “Darwin: a neuromorphic hardware co-processor based on
spiking neural networks,” Science China Information Sciences, vol. 59,
pp. 1–5, 2016.

[149] R. M. Wang, T. J. Hamilton, J. C. Tapson, and A. van Schaik, “A neu-
romorphic implementation of multiple spike-timing synaptic plasticity
rules for large-scale neural networks,” Frontiers in neuroscience, vol. 9,
p. 180, 2015.

[150] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay,
“Neurocube: A programmable digital neuromorphic architecture with
high-density 3D memory,” ACM SIGARCH Computer Architecture
News, vol. 44, pp. 380–392, 2016.

[151] E. O. Neftci, B. U. Pedroni, S. Joshi, M. Al-Shedivat, and G. Cauwen-
berghs, “Stochastic synapses enable efficient brain-inspired learning
machines,” Frontiers in neuroscience, vol. 10, p. 241, 2016.

[152] E. Neftci, “Stochastic neuromorphic learning machines for weakly la-
beled data,” in 2016 IEEE 34th International Conference on Computer
Design (ICCD), 2016, pp. 670–673.

[153] P. Knag, C. Liu, and Z. Zhang, “A 1.40 mm 2 141mw 898GOPS sparse
neuromorphic processor in 40nm CMOS,” in 2016 IEEE symposium
on VLSI circuits (VLSI-circuits). 2016 IEEE symposium on VLSI
circuits (VLSI-circuits), 2016, pp. 1–2.

[154] B. U. Pedroni, S. Das, J. V. Arthur, P. A. Merolla, B. L. Jackson,
D. S. Modha, K. Kreutz-Delgado, and G. Cauwenberghs, “Mapping
generative models onto a network of digital spiking neurons,” IEEE
transactions on biomedical circuits and systems, vol. 10, pp. 837–854,
2016.

[155] S. Das, B. U. Pedroni, P. Merolla, J. Arthur, A. S. Cassidy, B. L.
Jackson, D. Modha, G. Cauwenberghs, and K. Kreutz-Delgado, “Gibbs
sampling with low-power spiking digital neurons,” in 2015 IEEE
International Symposium on Circuits and Systems (ISCAS). 2015 IEEE
International Symposium on Circuits and Systems (ISCAS), 2015, pp.
2704–2707.

[156] L. Wan, Y. Luo, S. Song, J. Harkin, and J. Liu, “Efficient neuron
architecture for FPGA-based spiking neural networks,” in 2016 27th
Irish Signals and Systems Conference (ISSC). 2016 27th Irish Signals
and Systems Conference (ISSC), 2016, pp. 1–6.

[157] H. Fang, A. Shrestha, D. Ma, and Q. Qiu, “Scalable NoC-based
neuromorphic hardware learning and inference,” in 2018 International
Joint Conference on Neural Networks (IJCNN). 2018 International
Joint Conference on Neural Networks (IJCNN), 2018, pp. 1–8.

[158] D. Neil and S.-C. Liu, “Minitaur, an event-driven FPGA-based spiking
network accelerator,” IEEE Transactions on Very Large Scale Integra-
tion VLSI Systems, vol. 22, pp. 2621–2628, 2014.

[159] A. S. Cassidy, J. Georgiou, and A. G. Andreou, “Design of silicon
brains in the nano-CMOS era: Spiking neurons, learning synapses and
neural architecture optimization,” Neural Networks, vol. 45, pp. 4–26,
2013.

22

[160] K. Cheung, S. R. Schultz, and W. Luk, “Neuroflow: a general pur-
pose spiking neural network simulation platform using customizable
processors,” Frontiers in neuroscience, vol. 9, p. 516, 2016.

[161] A. Sripad, G. Sanchez, M. Zapata, V. Pirrone, T. Dorta, S. Cambria,
A. Marti, K. Krishnamourthy, and J. Madrenas, “Snava—a real-time
multi-FPGA multi-model spiking neural network simulation architec-
ture,” Neural Networks, vol. 97, pp. 28–45, 2018.

[162] S. Yang, Q. Wu, and R. Li, “A case for spiking neural network
simulation based on configurable multiple-FPGA systems,” Cognitive
neurodynamics, vol. 5, p. 301, 2011.

[163] M. Heidarpur, A. Ahmadi, M. Ahmadi, and M. R. Azghadi, “CORDIC-
SNN: On-FPGA STDP learning with Izhikevich neurons,” IEEE Trans-
actions on Circuits and Systems I: Regular Papers, vol. 66, pp. 2651–
2661, 2019.

[164] Y. Liu, S. S. Yenamachintala, and P. Li, “Energy-efficient FPGA
spiking neural accelerators with supervised and unsupervised spike-
timing-dependent-plasticity,” ACM Journal on Emerging Technologies
in Computing Systems (JETC), vol. 15, pp. 1–19, 2019.

[165] A. Yousefzadeh, T. Masquelier, T. Serrano-Gotarredona, and
B. Linares-Barranco, “Hardware implementation of convolutional
STDP for on-line visual feature learning,” in 2017 IEEE International
Symposium on Circuits and Systems (ISCAS). 2017 IEEE International
Symposium on Circuits and Systems (ISCAS), 2017, pp. 1–4.

[166] A. Yousefzadeh, E. Stromatias, M. Soto, T. Serrano-Gotarredona, and
B. Linares-Barranco, “On practical issues for stochastic STDP hard-
ware with 1-bit synaptic weights,” Frontiers in neuroscience, vol. 12,
p. 665, 2018.

[167] C. Bartolozzi, O. Nikolayeva, and G. Indiveri, “Implementing home-
ostatic plasticity in VLSI networks of spiking neurons,” in 2008 15th
IEEE International Conference on Electronics, Circuits and Systems.
2008 15th IEEE International Conference on Electronics, Circuits and
Systems, 2008, pp. 682–685.

[168] J. Schreiter, U. Ramacher, A. Heittmann, D. Matolini, and R. Schuffny,
“Analog implementation for networks of integrate-and-fire neurons
with adaptive local connectivity,” in Proceedings of the 12th IEEE
Workshop on Neural Networks for Signal Processing. Proceedings of
the 12th IEEE Workshop on Neural Networks for Signal Processing,
2002, pp. 657–666.

[169] F. L. M. Huayaney, S. Nease, and E. Chicca, “Learning in silicon
beyond STDP: a neuromorphic implementation of multi-factor synaptic
plasticity with calcium-based dynamics,” IEEE Transactions on Cir-
cuits and Systems I: Regular Papers, vol. 63, pp. 2189–2199, 2016.

[170] Y. Meng, K. Zhou, J. J. C. Monzon, and C.-S. Poon, “Iono-
neuromorphic implementation of spike-timing-dependent synaptic plas-
ticity,” in 2011 Annual international conference of the IEEE engi-
neering in medicine and biology society. 2011 Annual international
conference of the IEEE engineering in medicine and biology society,
2011, pp. 7274–7277.

[171] L. Alvado, J. Tomas, S. R.-L. Masson, and V. Douence, “Design of
an analogue ASIC using subthreshold CMOS transistors to model bio-
logical neurons,” in Proceedings of the IEEE 2001 Custom Integrated
Circuits Conference, 2001, pp. 97–100.

[172] C. Bartolozzi, S. Mitra, and G. Indiveri, “An ultra low power current-
mode filter for neuromorphic systems and biomedical signal process-
ing,” in 2006 IEEE Biomedical Circuits and Systems Conference. 2006
IEEE Biomedical Circuits and Systems Conference, 2006, pp. 130–133.

[173] J. Georgiou, E. M. Drakakis, C. Toumazou, and P. Premanoj, “An
analogue micropower log-domain silicon circuit for the Hodgkin and
Huxley nerve axon,” in ISCAS99. Proceedings of the 1999 IEEE
International Symposium on Circuits and Systems VLSI, vol. 2, 1999,
pp. 286–289.

[174] K. Nakada, T. Asai, T. Hirose, and Y. Amemiya, “Analog CMOS
implementation of a neuromorphic oscillator with current-mode low-
pass filters,” in 2005 IEEE International Symposium on Circuits and
Systems. 2005 IEEE International Symposium on Circuits and
Systems, 2005, pp. 1923–1926.

[175] K. I. Papadimitriou, S.-C. Liu, G. Indiveri, and E. M. Drakakis,
“Neuromorphic log-domain silicon synapse circuits obey bernoulli
dynamics: a unifying tutorial analysis,” Frontiers in neuroscience,
vol. 8, p. 428, 2015.

[176] T. Yu and G. Cauwenberghs, “Analog VLSI biophysical neurons
and synapses with programmable membrane channel kinetics,” IEEE
Transactions on Biomedical circuits and Systems, vol. 4, pp. 139–148,
2010.

[177] J. Binas, G. Indiveri, and M. Pfeiffer, “Spiking analog VLSI neuron
assemblies as constraint satisfaction problem solvers,” in 2016 IEEE
International Symposium on Circuits and Systems (ISCAS). 2016 IEEE

International Symposium on Circuits and Systems (ISCAS), 2016, pp.
2094–2097.

[178] C.-H. Chien, S.-C. Liu, and A. Steimer, “A neuromorphic VLSI circuit
for spike-based random sampling,” IEEE Transactions on Emerging
Topics in Computing, vol. 6, pp. 135–144, 2015.

[179] J. Fieres, J. Schemmel, and K. Meier, “Realizing biological spiking
network models in a configurable wafer-scale hardware system,” in
2008 IEEE International Joint Conference on Neural Networks (IEEE
World Congress on Computational Intelligence). 2008 IEEE Interna-
tional Joint Conference on Neural Networks (IEEE World Congress on
Computational Intelligence), 2008, pp. 969–976.

[180] D. H. Goldberg, G. Cauwenberghs, and A. G. Andreou, “Analog VLSI
spiking neural network with address domain probabilistic synapses,”
in ISCAS 2001. The 2001 IEEE International Symposium on Circuits
and Systems, vol. 3. ISCAS 2001. The 2001 IEEE International
Symposium on Circuits and Systems, 2001, pp. 241–244.

[181] F. Grassia, T. Lévi, J. Tomas, S. Renaud, and S. Saı̈ghi, “A neu-
romimetic spiking neural network for simulating cortical circuits,” in
2011 45th Annual Conference on Information Sciences and Systems.
IEEE, 2011, pp. 1–6.

[182] E. Neftci, J. Binas, U. Rutishauser, E. Chicca, G. Indiveri, and R. J.
Douglas, “Synthesizing cognition in neuromorphic electronic systems,”
Proceedings of the National Academy of Sciences, vol. 110, pp. E3468–
E3476, 2013.

[183] D. Querlioz and V. Trauchessec, “Stochastic resonance in an ana-
log current-mode neuromorphic circuit,” in 2013 IEEE International
Symposium on Circuits and Systems (ISCAS2013). 2013 IEEE
International Symposium on Circuits and Systems (ISCAS2013), 2013,
pp. 1596–1599.

[184] S. Renaud, J. Tomas, Y. Bornat, A. Daouzli, and S. Saı̈ghi, “Neu-
romimetic ICs with analog cores: an alternative for simulating spiking
neural networks,” in 2007 IEEE international symposium on circuits
and systems. IEEE, 2007, pp. 3355–3358.

[185] A. Utagawa, T. Asai, T. Hirose, and Y. Amemiya, “An inhibitory
neural-network circuit exhibiting noise shaping with subthreshold MOS
neuron circuits,” IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, vol. 90, pp. 2108–2115,
2007.

[186] Y. Wang and S.-C. Liu, “Programmable synaptic weights for an a VLSI
network of spiking neurons,” in 2006 IEEE International Symposium
on Circuits and Systems, 2006, p. 4.

[187] Y. Wang and S.-C. Liu, “Input evoked nonlinearities in silicon dendritic
circuits,” in 2009 IEEE International Symposium on Circuits and
Systems. 2009 IEEE International Symposium on Circuits and
Systems, 2009, pp. 2894–2897.

[188] L. Zhang, Q. Lai, and Y. Chen, “Configurable neural phase shifter
with spike-timing-dependent plasticity,” IEEE Electron Device Letters,
vol. 31, pp. 716–718, 2010.

[189] C. Zhao, J. Li, L. Liu, L. S. Koutha, J. Liu, and Y. Yi, “Novel spike
based reservoir node design with high performance spike delay loop,”
in Proceedings of the 3rd ACM International Conference on Nanoscale
Computing and Communication. Proceedings of the 3rd ACM Interna-
tional Conference on Nanoscale Computing and Communication, 2016,
pp. 1–5.

[190] A. Ghani, T. M. McGinnity, L. P. Maguire, and J. Harkin, “Area
efficient architecture for large scale implementation of biologically
plausible spiking neural networks on reconfigurable hardware,” in
2006 International Conference on Field Programmable Logic and
Applications. 2006 International Conference on Field Programmable
Logic and Applications, 2006, pp. 1–2.

[191] M. Giulioni, X. Lagorce, F. Galluppi, and R. B. Benosman, “Event-
based computation of motion flow on a neuromorphic analog neural
platform,” Frontiers in neuroscience, vol. 10, p. 35, 2016.

[192] M. Giulioni, F. Corradi, V. Dante, and P. D. Giudice, “Real time un-
supervised learning of visual stimuli in neuromorphic VLSI systems,”
Scientific reports, vol. 5, p. 14730, 2015.

[193] P. Camilleri, M. Giulioni, V. Dante, D. Badoni, G. Indiveri,
B. Michaelis, J. Braun, and P. D. Giudice, “A neuromorphic a VLSI
network chip with configurable plastic synapses,” in 7th International
Conference on Hybrid Intelligent Systems (HIS 2007). 7th Interna-
tional Conference on Hybrid Intelligent Systems (HIS 2007), 2007, pp.
296–301.

[194] M. Giulioni, P. Camilleri, V. Dante, D. Badoni, G. Indiveri, J. Braun,
and P. D. Giudice, “A VLSI network of spiking neurons with plastic
fully configurable “stop-learning” synapses,” in 2008 15th IEEE Inter-
national Conference on Electronics, Circuits and Systems. 2008 15th

23

IEEE International Conference on Electronics, Circuits and Systems,
2008, pp. 678–681.

[195] M. Giulioni, M. Pannunzi, D. Badoni, V. Dante, and P. D. Giudice,
“Classification of correlated patterns with a configurable analog VLSI
neural network of spiking neurons and self-regulating plastic synapses,”
Neural computation, vol. 21, pp. 3106–3129, 2009.

[196] Q. Sun, F. Schwartz, J. Michel, Y. Herve, and R. D. Molin, “Implemen-
tation study of an analog spiking neural network for assisting cardiac
delay prediction in a cardiac resynchronization therapy device,” IEEE
transactions on neural networks, vol. 22, pp. 858–869, 2011.

[197] P. Hafliger, “Adaptive WTA with an analog VLSI neuromorphic learn-
ing chip,” IEEE transactions on neural networks, vol. 18, pp. 551–572,
2007.

[198] H.-Y. Hsieh and K.-T. Tang, “Hardware friendly probabilistic spiking
neural network with long-term and short-term plasticity,” IEEE transac-
tions on neural networks and learning systems, vol. 24, pp. 2063–2074,
2013.

[199] F. Grassia, L. Buhry, T. Lévi, J. Tomas, A. Destexhe, and S. Saı̈ghi,
“Tunable neuromimetic integrated system for emulating cortical neuron
models,” Frontiers in NEUROSCIENCE, vol. 5, p. 134, 2011.

[200] F. L. M. Huayaney and E. Chicca, “A VLSI implementation of a
calcium-based plasticity learning model,” in 2016 IEEE International
Symposium on Circuits and Systems (ISCAS). 2016 IEEE International
Symposium on Circuits and Systems (ISCAS), 2016, pp. 373–376.

[201] J. Park, M.-W. Kwon, H. Kim, and B.-G. Park, “Neuromorphic system
based on CMOS inverters and Si-based synaptic device,” Journal of
nanoscience and nanotechnology, vol. 16, pp. 4709–4712, 2016.

[202] S. Saighi, J. Tomas, Y. Bornat, B. Belhadj, O. Malot, and S. Re-
naud, “Real-time multi-board architecture for analog spiking neural
networks,” in Proceedings of 2010 IEEE International Symposium
on Circuits and Systems. Proceedings of 2010 IEEE International
Symposium on Circuits and Systems, 2010, pp. 1939–1942.

[203] S. Millner, A. Hartel, J. Schemmel, and K. Meier, “Towards biolog-
ically realistic multi-compartment neuron model emulation in analog
VLSI,” in ESANN. ESANN, 2012.

[204] G. Rovere, Q. Ning, C. Bartolozzi, and G. Indiveri, “Ultra low leakage
synaptic scaling circuits for implementing homeostatic plasticity in
neuromorphic architectures,” in 2014 IEEE International Symposium
on Circuits and Systems (ISCAS). 2014 IEEE International Symposium
on Circuits and Systems (ISCAS), 2014, pp. 2073–2076.

[205] S. Saighi, J. Tomas, Y. Bornat, and S. Renaud, “A conductance-
based silicon neuron with dynamically tunable model parameters,” in
Conference Proceedings. 2nd International IEEE EMBS Conference on
Neural Engineering, 2005. Conference Proceedings. 2nd International
IEEE EMBS Conference on Neural Engineering, 2005., 2005, pp. 285–
288.

[206] S. Saighi, Y. Bornat, J. Tomas, and S. Renaud, “Neuromimetic ICs
and system for parameters extraction in biological neuron models,” in
2006 IEEE International Symposium on Circuits and Systems, 2006,
pp. 4207–4210.

[207] S. Saighi, Y. Bornat, J. Tomas, G. L. Masson, and S. Renaud, “A
library of analog operators based on the hodgkin-huxley formalism for
the design of tunable, real-time, silicon neurons,” IEEE transactions
on biomedical circuits and systems, vol. 5, pp. 3–19, 2010.

[208] T. Yu and G. Cauwenberghs, “Analog VLSI neuromorphic network
with programmable membrane channel kinetics,” in 2009 IEEE Inter-
national Symposium on Circuits and Systems. 2009 IEEE International
Symposium on Circuits and Systems, 2009, pp. 349–352.

[209] T. Yu, T. J. Sejnowski, and G. Cauwenberghs, “Biophysical neural
spiking, bursting, and excitability dynamics in reconfigurable analog
VLSI,” IEEE transactions on biomedical circuits and systems, vol. 5,
pp. 420–429, 2011.

[210] B. Marr and J. Hasler, “Compiling probabilistic, bio-inspired circuits on
a field programmable analog array,” Frontiers in neuroscience, vol. 8,
p. 86, 2014.

[211] B. McGinley, P. Rocke, F. Morgan, and J. Maher, “Reconfigurable
analogue hardware evolution of adaptive spiking neural network con-
trollers,” in Proceedings of the 10th annual conference on Genetic and
evolutionary computation, 2008, pp. 289–290.

[212] P. Rocke, B. McGinley, J. Maher, F. Morgan, and J. Harkin, “In-
vestigating the suitability of FPAAs for evolved hardware spiking
neural networks,” in International Conference on Evolvable Systems.
International Conference on Evolvable Systems, 2008, pp. 118–129.

[213] J. Zhao and Y.-B. Kim, “Circuit implementation of Fitzhugh-Nagumo
neuron model using field programmable analog arrays,” in 2007 50th
Midwest Symposium on Circuits and Systems. 2007 50th Midwest
Symposium on Circuits and Systems, 2007, pp. 772–775.

[214] S. Nease, S. George, P. Hasler, S. Koziol, and S. Brink, “Modeling
and implementation of voltage-mode CMOS dendrites on a reconfig-
urable analog platform,” IEEE transactions on biomedical circuits and
systems, vol. 6, pp. 76–84, 2011.

[215] E. Farquhar, C. Gordon, and P. Hasler, “A field programmable neural
array,” in 2006 IEEE International Symposium on Circuits and Systems,
2006, pp. 4114–4117.

[216] M. Liu, H. Yu, and W. Wang, “Fpaa based on integration of CMOS and
nanojunction devices for neuromorphic applications,” in International
Conference on Nano-Networks. International Conference on Nano-
Networks, 2008, pp. 44–48.

[217] M. R. Azghadi, S. Moradi, and G. Indiveri, “Programmable neu-
romorphic circuits for spike-based neural dynamics,” in 2013 IEEE
11th International New Circuits and Systems Conference (NEWCAS).
2013 IEEE 11th International New Circuits and Systems Conference
(NEWCAS), 2013, pp. 1–4.

[218] F. Corradi, H. You, M. Giulioni, and G. Indiveri, “Decision making and
perceptual bistability in spike-based neuromorphic VLSI systems,” in
2015 IEEE International Symposium on Circuits and Systems (ISCAS).
2015 IEEE International Symposium on Circuits and Systems (ISCAS),
2015, pp. 2708–2711.

[219] M. A. Petrovici, B. Vogginger, P. Müller, O. Breitwieser, M. Lundqvist,
L. Muller, M. Ehrlich, A. Destexhe, A. Lansner, R. Schüffny et al.,
“Characterization and compensation of network-level anomalies in
mixed-signal neuromorphic modeling platforms,” PloS one, vol. 9,
no. 10, p. e108590, 2014.

[220] H. Djahanshahi, M. Ahmadi, G. A. Jullien, and W. C. Miller, “A unified
synapse-neuron building block for hybrid VLSI neural networks,”
in 1996 IEEE International Symposium on Circuits and Systems.
Circuits and Systems Connecting the World. ISCAS 96, vol. 3. 1996
IEEE International Symposium on Circuits and Systems. Circuits and
Systems Connecting the World. ISCAS 96, 1996, pp. 483–486.

[221] S. Mitra, G. Indiveri, and S. Fusi, “Learning to classify complex
patterns using a VLSI network of spiking neurons,” in Advances in
Neural Information Processing Systems, J. Platt, D. Koller, Y. Singer,
and S. Roweis, Eds., vol. 20. Curran Associates, Inc., 2008.

[222] J. V. Arthur and K. Boahen, “Learning in silicon: Timing is everything,”
in Advances in neural information processing systems. Advances in
neural information processing systems, 2006, pp. 75–82.

[223] J. M. Cruz-Albrecht, M. W. Yung, and N. Srinivasa, “Energy-efficient
neuron, synapse and STDP integrated circuits,” IEEE transactions on
biomedical circuits and systems, vol. 6, pp. 246–256, 2012.

[224] S. Hussain, A. Basu, M. Wang, and T. J. Hamilton, “DELTRON:
Neuromorphic architectures for delay based learning,” in 2012 IEEE
Asia Pacific Conference on Circuits and Systems. 2012 IEEE Asia
Pacific Conference on Circuits and Systems, 2012, pp. 304–307.

[225] L. Alvado, S. Saı̈ghi, J. Tomas, and S. Renaud, “An Exponential-Decay
Synapse Integrated Circuit For Bio-inspired Neural Networks.” in In-
ternational Work-Conference on Artificial Neural Networks. Springer,
2003, pp. 670–677.

[226] S. R. Deiss, R. J. Douglas, A. M. Whatley, and W. Maass, “A
pulse-coded communications infrastructure for neuromorphic systems,”
Pulsed neural networks, pp. 157–178, 1999.

[227] F. Sargeni and V. Bonaiuto, “An interconnection architecture for
integrate and fire neuromorphic multi-chip networks,” in 2009 52nd
IEEE International Midwest Symposium on Circuits and Systems. 2009
52nd IEEE International Midwest Symposium on Circuits and Systems,
2009, pp. 877–880.

[228] A. Cassidy, T. Murray, A. G. Andreou, and J. Georgiou, “Evaluating
on-chip interconnects for low operating frequency silicon neuron
arrays,” in 2011 IEEE International Symposium of Circuits and Systems
(ISCAS). 2011 IEEE International Symposium of Circuits and Systems
(ISCAS), 2011, pp. 2437–2440.

[229] D. Vainbrand and R. Ginosar, “Scalable network-on-chip architecture
for configurable neural networks,” Microprocessors and Microsystems,
vol. 35, pp. 152–166, 2011.

[230] S. Pande, F. Morgan, G. Smit, T. Bruintjes, J. Rutgers, B. McGinley,
S. Cawley, J. Harkin, and L. McDaid, “Fixed latency on-chip inter-
connect for hardware spiking neural network architectures,” Parallel
computing, vol. 39, pp. 357–371, 2013.

[231] Y. Suzuki and L. E. Atlas, “A study of regular architectures for digital
implementation of neural networks,” in IEEE International Symposium
on Circuits and Systems,. IEEE International Symposium on Circuits
and Systems,, 1989, pp. 82–85.

[232] A. Mortara and E. A. Vittoz, “A communication architecture tailored
for analog VLSI artificial neural networks: intrinsic performance and

24

limitations,” IEEE Transactions on neural networks, vol. 5, pp. 459–
466, 1994.

[233] A. Mortara, E. A. Vittoz, and P. Venier, “A communication scheme for
analog VLSI perceptive systems,” IEEE Journal of Solid-State Circuits,
vol. 30, pp. 660–669, 1995.

[234] P. Merolla, J. Arthur, R. Alvarez, J.-M. Bussat, and K. Boahen,
“A multicast tree router for multichip neuromorphic systems,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 61, pp.
820–833, 2013.

[235] P. A. Merolla, J. V. Arthur, B. E. Shi, and K. A. Boahen, “Expandable
networks for neuromorphic chips,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 54, pp. 301–311, 2007.

[236] S.-C. Liu, T. Delbruck, G. Indiveri, A. Whatley, and R. Douglas, Event-
based neuromorphic systems. John Wiley & Sons, 2014.

[237] M. Jabłoński, T. Serrano-Gotarredona, and B. Linares-Barranco, “High-
speed serial interfaces for event-driven neuromorphic systems,” in 2015
International Conference on Event-based Control, Communication, and
Signal Processing (EBCCSP). IEEE, 2015, pp. 1–4.

[238] S. Ramakrishnan, R. Wunderlich, J. Hasler, and S. George, “Neuron
array with plastic synapses and programmable dendrites,” IEEE trans-
actions on biomedical circuits and systems, vol. 7, pp. 631–642, 2013.

[239] C. Zamarreño-Ramos, A. Linares-Barranco, T. Serrano-Gotarredona,
and B. Linares-Barranco, “Multicasting mesh AER: A scalable assem-
bly approach for reconfigurable neuromorphic structured AER systems.
Application to ConvNets,” IEEE transactions on biomedical circuits
and systems, vol. 7, pp. 82–102, 2012.

[240] E. Chicca, A. M. Whatley, P. Lichtsteiner, V. Dante, T. Delbruck,
P. D. Giudice, R. J. Douglas, and G. Indiveri, “A multichip pulse-
based neuromorphic infrastructure and its application to a model of
orientation selectivity,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 54, pp. 981–993, 2007.

[241] R. Paz-Vicente, A. Linares-Barranco, D. Cascado, M. Rodriguez,
G. Jimenez, A. Civit, and J. Sevillano, “PCI-AER interface for neuro-
inspired spiking systems,” in 2006 IEEE International Symposium on
Circuits and Systems, 2006, p. 4.

[242] V. Thanasoulis, J. Partzsch, S. Hartmann, C. Mayr, and R. Schüffny,
“Dedicated fpga communication architecture and design for a large-
scale neuromorphic system,” in 2012 19th IEEE International Confer-
ence on Electronics, Circuits, and Systems (ICECS 2012). 2012 19th
IEEE International Conference on Electronics, Circuits, and Systems
(ICECS 2012), 2012, pp. 877–880.

[243] V. Thanasoulis, B. Vogginger, J. Partzsch, and R. Schüffny, “A pulse
communication flow ready for accelerated neuromorphic experiments,”
in 2014 IEEE International Symposium on Circuits and Systems (IS-
CAS). 2014 IEEE International Symposium on Circuits and Systems
(ISCAS), 2014, pp. 265–268.

[244] S. Scholze, H. Eisenreich, S. Höppner, G. Ellguth, S. Henker, M. Ander,
S. Hänzsche, J. Partzsch, C. Mayr, and R. Schüffny, “A 32 GBit/s com-
munication SoC for a waferscale neuromorphic system,” Integration,
vol. 45, pp. 61–75, 2012.

[245] T. Sharp, C. Patterson, and S. Furber, “Distributed configuration of
massively-parallel simulation on Spinnaker neuromorphic hardware,”
in The 2011 International Joint Conference on Neural Networks. The
2011 International Joint Conference on Neural Networks, 2011, pp.
1099–1105.

[246] D. Brüderle, M. A. Petrovici, B. Vogginger, M. Ehrlich, T. Pfeil,
S. Millner, A. Grübl, K. Wendt, E. Müller, M.-O. Schwartz et al.,
“A comprehensive workflow for general-purpose neural modeling with
highly configurable neuromorphic hardware systems,” Biological cy-
bernetics, vol. 104, pp. 263–296, 2011.

[247] F. Galluppi, S. Davies, S. Furber, T. Stewart, and C. Eliasmith,
“Real time on-chip implementation of dynamical systems with spiking
neurons,” in The 2012 International Joint Conference on Neural
Networks (IJCNN). The 2012 International Joint Conference on Neural
Networks (IJCNN), 2012, pp. 1–8.

[248] F. Galluppi, S. Davies, A. Rast, T. Sharp, L. A. Plana, and S. Furber,
“A hierachical configuration system for a massively parallel neural
hardware platform,” in Proceedings of the 9th conference on Computing
Frontiers. Proceedings of the 9th conference on Computing Frontiers,
2012, pp. 183–192.

[249] Y. Ji, Y. Zhang, S. Li, P. Chi, C. Jiang, P. Qu, Y. Xie, and W. Chen,
“NEUTRAMS: Neural network transformation and co-design under
neuromorphic hardware constraints,” in 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). 2016 49th
Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2016, pp. 1–13.

[250] G. Urgese, F. Barchi, E. Macii, and A. Acquaviva, “Optimizing network
traffic for spiking neural network simulations on densely interconnected
many-core neuromorphic platforms,” IEEE Transactions on Emerging
Topics in Computing, vol. 6, pp. 317–329, 2016.

[251] Q. X. Wu, X. Liao, X. Huang, R. Cai, J. Cai, and J. Liu, “Development
of FPGA toolbox for implementation of spiking neural networks,”
in 2015 Fifth International Conference on Communication Systems
and Network Technologies. 2015 Fifth International Conference on
Communication Systems and Network Technologies, 2015, pp. 806–
810.

[252] A. D. Brown, S. B. Furber, J. S. Reeve, J. D. Garside, K. J. Dugan,
L. A. Plana, and S. Temple, “SpiNNaker—programming model,” IEEE
Transactions on Computers, vol. 64, pp. 1769–1782, 2014.

[253] A. Disney, J. Reynolds, C. D. Schuman, A. Klibisz, A. Young, and
J. S. Plank, “Danna: A neuromorphic software ecosystem,” Biologically
Inspired Cognitive Architectures, vol. 17, pp. 49–56, 2016.

[254] N. Kasabov, N. M. Scott, E. Tu, S. Marks, N. Sengupta, E. Capecci,
M. Othman, M. G. Doborjeh, N. Murli, R. Hartono et al., “Evolving
spatio-temporal data machines based on the NeuCube neuromorphic
framework: design methodology and selected applications,” Neural
Networks, vol. 78, pp. 1–14, 2016.

[255] N. Scott, N. Kasabov, and G. Indiveri, “Neucube neuromorphic frame-
work for spatio-temporal brain data and its python implementation,”
in International Conference on Neural Information Processing. In-
ternational Conference on Neural Information Processing, 2013, pp.
78–84.

[256] Y. Ji, Y.-H. Zhang, and W.-M. Zheng, “Modelling spiking neural net-
work from the architecture evaluation perspective,” Journal of computer
science and technology, vol. 31, pp. 50–59, 2016.

[257] M. Plagge, C. D. Carothers, E. Gonsiorowski, and N. Mcglohon,
“Nemo: A massively parallel discrete-event simulation model for
neuromorphic architectures,” ACM Transactions on Modeling and
Computer Simulation (TOMACS), vol. 28, pp. 1–25, 2018.

[258] R. Preissl, T. M. Wong, P. Datta, M. Flickner, R. Singh, S. K. Esser,
W. P. Risk, H. D. Simon, and D. S. Modha, “Compass: A scalable
simulator for an architecture for cognitive computing,” in SC’12:
Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. IEEE, 2012, pp. 1–11.

[259] L. Xia, B. Li, T. Tang, P. Gu, P.-Y. Chen, S. Yu, Y. Cao, Y. Wang,
Y. Xie, and H. Yang, “Mnsim: Simulation platform for memristor-based
neuromorphic computing system,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 37, pp. 1009–
1022, 2017.

[260] Q. Chen, R. Luley, Q. Wu, M. Bishop, R. W. Linderman, and Q. Qiu,
“Anrad: A neuromorphic anomaly detection framework for massive
concurrent data streams,” IEEE transactions on neural networks and
learning systems, vol. 29, no. 5, pp. 1622–1636, 2017.

[261] G. Haessig, A. Cassidy, R. Alvarez, R. Benosman, and G. Orchard,
“Spiking optical flow for event-based sensors using ibm’s truenorth
neurosynaptic system,” IEEE transactions on biomedical circuits and
systems, vol. 12, no. 4, pp. 860–870, 2018.

[262] M. Z. Alom, B. Van Essen, A. T. Moody, D. P. Widemann, and
T. M. Taha, “Quadratic unconstrained binary optimization (QUBO)
on neuromorphic computing system,” in 2017 International Joint
Conference on Neural Networks (IJCNN). IEEE, 2017, pp. 3922–
3929.

[263] E. Nurse, B. S. Mashford, A. J. Yepes, I. Kiral-Kornek, S. Harrer, and
D. R. Freestone, “Decoding eeg and lfp signals using deep learning:
heading truenorth,” in Proceedings of the ACM international conference
on computing frontiers, 2016, pp. 259–266.

[264] S. Moran, B. Gaonkar, W. Whitehead, A. Wolk, L. Macyszyn, and S. S.
Iyer, “Deep learning for medical image segmentation–using the IBM
truenorth neurosynaptic system,” in Medical Imaging 2018: Imaging
Informatics for Healthcare, Research, and Applications, vol. 10579.
International Society for Optics and Photonics, 2018, p. 1057915.

[265] J.-P. Pfister and W. Gerstner, “Triplets of spikes in a model of spike
timing-dependent plasticity,” Journal of Neuroscience, vol. 26, no. 38,
pp. 9673–9682, 2006.

[266] J. Gjorgjieva, C. Clopath, J. Audet, and J.-P. Pfister, “A triplet
spike-timing–dependent plasticity model generalizes the Bienenstock–
Cooper–Munro rule to higher-order spatiotemporal correlations,” Pro-
ceedings of the National Academy of Sciences, vol. 108, no. 48, pp.
19 383–19 388, 2011.

[267] R. V. Florian, “Reinforcement learning through modulation of spike-
timing-dependent synaptic plasticity,” Neural computation, vol. 19,
no. 6, pp. 1468–1502, 2007.

25

[268] C. Yakopcic, N. Rahman, T. Atahary, T. M. Taha, and S. Douglass,
“Solving constraint satisfaction problems using the loihi spiking neu-
romorphic processor,” in 2020 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2020, pp. 1079–1084.

[269] E. P. Frady, G. Orchard, D. Florey, N. Imam, R. Liu, J. Mishra,
J. Tse, A. Wild, F. T. Sommer, and M. Davies, “Neuromorphic Nearest
Neighbor Search Using Intel’s Pohoiki Springs,” in Proceedings of the
Neuro-inspired Computational Elements Workshop, 2020, pp. 1–10.

[270] W. Severa, R. Lehoucq, O. Parekh, and J. B. Aimone, “Spiking neural
algorithms for markov process random walk,” in 2018 International
Joint Conference on Neural Networks (IJCNN). IEEE, 2018, pp. 1–8.

[271] N. Imam and T. A. Cleland, “Rapid online learning and robust recall in
a neuromorphic olfactory circuit,” Nature Machine Intelligence, vol. 2,
no. 3, pp. 181–191, 2020.

[272] M. Evanusa, Y. Sandamirskaya et al., “Event-based attention and
tracking on neuromorphic hardware,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops,
2019, pp. 0–0.

[273] C. D. Schuman, J. P. Mitchell, R. M. Patton, T. E. Potok, and
J. S. Plank, “Evolutionary optimization for neuromorphic systems,” in
Proceedings of the Neuro-inspired Computational Elements Workshop,
2020, pp. 1–9.

[274] D. Rasmussen, “Nengodl: Combining deep learning and neuromorphic
modelling methods,” Neuroinformatics, vol. 17, no. 4, pp. 611–628,
2019.

[275] T. DeWolf, P. Jaworski, and C. Eliasmith, “Nengo and low-power ai
hardware for robust, embedded neurorobotics,” Frontiers in Neuro-
robotics, vol. 14, 2020.

[276] K. Amunts, C. Ebell, J. Muller, M. Telefont, A. Knoll, and T. Lippert,
“The human brain project: creating a european research infrastructure
to decode the human brain,” Neuron, vol. 92, pp. 574–581, 2016.

[277] E. DAngelo, G. Danese, G. Florimbi, F. Leporati, A. Majani, S. Masoli,
S. Solinas, and E. Torti, “The human brain project: High performance
computing for brain cells hw/sw simulation and understanding,” in
2015 Euromicro Conference on Digital System Design. 2015 Eu-
romicro Conference on Digital System Design, 2015, pp. 740–747.

[278] R. Brette and W. Gerstner, “Adaptive exponential integrate-and-fire
model as an effective description of neuronal activity,” Journal of
neurophysiology, vol. 94, pp. 3637–3642, 2005.

[279] S. Millner, “Development of a multi-compartment neuron model emu-
lation,” Ph.D. dissertation, 2012.

[280] J. Schemmel, D. Briiderle, A. Griibl, M. Hock, K. Meier, and
S. Millner, “A wafer-scale neuromorphic hardware system for large-
scale neural modeling,” in Proceedings of 2010 IEEE International
Symposium on Circuits and Systems. Proceedings of 2010 IEEE
International Symposium on Circuits and Systems, 2010, pp. 1947–
1950.

[281] E. Müller, S. Schmitt, B. Vogginger, D. Lester, and T. P. A. P.
Davison. (2020, Jan.) HBP Neuromorphic Computing Platform
Guidebook. [Online]. Available: https://electronicvisions.github.io/
hbp-sp9-guidebook/

[282] G. Indiveri, “Neuromorphic VLSI models of selective attention: from
single chip vision sensors to multi-chip systems,” Sensors, vol. 8, pp.
5352–5375, 2008.

[283] J. Schemmel, J. Fieres, and K. Meier, “Wafer-scale integration of
analog neural networks,” in 2008 IEEE International Joint Conference
on Neural Networks (IEEE World Congress on Computational Intelli-
gence). 2008 IEEE International Joint Conference on Neural Networks
(IEEE World Congress on Computational Intelligence), 2008, pp. 431–
438.

[284] D. Brüderle, E. Müller, A. P. Davison, E. Muller, J. Schemmel, and
K. Meier, “Establishing a novel modeling tool: a python-based interface
for a neuromorphic hardware system,” Frontiers in neuroinformatics,
vol. 3, p. 17, 2009.

[285] C. S. Thakur, J. L. Molin, G. Cauwenberghs, G. Indiveri, K. Kumar,
N. Qiao, J. Schemmel, R. Wang, E. Chicca, J. O. Hasler et al., “Large-
scale neuromorphic spiking array processors: A quest to mimic the
brain,” Frontiers in neuroscience, vol. 12, p. 891, 2018.

[286] S. Schmitt, J. Klähn, G. Bellec, A. Grübl, M. Guettler, A. Hartel,
S. Hartmann, D. Husmann, K. Husmann, S. Jeltsch et al., “Neuro-
morphic hardware in the loop: Training a deep spiking network on the
brainscales wafer-scale system,” in 2017 International Joint Conference
on Neural Networks (IJCNN). 2017 International Joint Conference on
Neural Networks (IJCNN), 2017, pp. 2227–2234.

[287] L. A. Plana, S. B. Furber, S. Temple, M. Khan, Y. Shi, J. Wu, and
S. Yang, “A gals infrastructure for a massively parallel multiprocessor,”
IEEE Design & Test of Computers, vol. 24, pp. 454–463, 2007.

[288] J. van Albada, Sacha, A. G. Rowley, J. Senk, M. Hopkins, M. Schmidt,
A. B. Stokes, D. R. Lester, M. Diesmann, and S. B. Furber, “Perfor-
mance comparison of the digital neuromorphic hardware Spinnaker and
the neural network simulation software nest for a full-scale cortical
microcircuit model,” Frontiers in neuroscience, vol. 12, p. 291, 2018.

[289] E. I. Guerra-Hernandez, A. Espinal, P. Batres-Mendoza, C. H.
Garcia-Capulin, R. D. J. Romero-Troncoso, and H. Rostro-Gonzalez,
“A FPGA-based neuromorphic locomotion system for multi-legged
robots,” IEEE Access, vol. 5, pp. 8301–8312, 2017.

[290] O. Rhodes, P. A. Bogdan, C. Brenninkmeijer, S. Davidson, D. Fellows,
A. Gait, D. R. Lester, M. Mikaitis, L. A. Plana, A. G. D. Rowley
et al., “sPyNNaker: a software package for running Pynn simulations
on SpiNNaker,” Frontiers in neuroscience, vol. 12, p. 816, 2018.

[291] A. P. Davison, D. Brüderle, J. M. Eppler, J. Kremkow, E. Muller,
D. Pecevski, L. Perrinet, and P. Yger, “PyNN: a common interface
for neuronal network simulators,” Frontiers in neuroinformatics, vol. 2,
p. 11, 2009.

[292] T. Bekolay, J. Bergstra, E. Hunsberger, T. DeWolf, T. C. Stewart,
D. Rasmussen, X. Choo, A. Voelker, and C. Eliasmith, “Nengo: a
Python tool for building large-scale functional brain models,” Frontiers
in neuroinformatics, vol. 7, p. 48, 2014.

[293] M.-O. Gewaltig and M. Diesmann, “Nest (neural simulation tool),”
Scholarpedia, vol. 2, p. 1430, 2007.

[294] M. Stimberg, R. Brette, and D. F. M. Goodman, “Brian 2, an intuitive
and efficient neural simulator,” Elife, vol. 8, 2019.

[295] M. Stimberg, D. F. M. Goodman, V. Benichoux, and R. Brette,
“Equation-oriented specification of neural models for simulations,”
Frontiers in neuroinformatics, vol. 8, p. 6, 2014.

[296] J. Pei, L. Deng, S. Song, M. Zhao, Y. Zhang, S. Wu, G. Wang, Z. Zou,
Z. Wu, W. He et al., “Towards artificial general intelligence with hybrid
Tianjic chip architecture,” Nature, vol. 572, no. 7767, pp. 106–111,
2019.

[297] Y. Mi, C. C. A. Fung, K. Y. M. Wong, and S. Wu, “Spike frequency
adaptation implements anticipative tracking in continuous attractor
neural networks,” in Advances in Neural Information Processing Sys-
tems, Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Q.
Weinberger, Eds., vol. 27. Curran Associates, Inc., 2014, pp. 505–513.

[298] S. Furber, “Large-scale neuromorphic computing systems,” Journal of
neural engineering, vol. 13, no. 5, p. 051001, 2016.

[299] L. Chua, “Memristor-the missing circuit element,” IEEE Transactions
on circuit theory, vol. 18, pp. 507–519, 1971.

[300] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The
missing memristor found,” nature, vol. 453, pp. 80–83, 2008.

[301] S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu,
“Nanoscale Memristor Device as Synapse in Neuromorphic Systems,”
Nano Letters, vol. 10, pp. 1297–1301, 2010.

[302] R. Islam, H. Li, P.-Y. Chen, W. Wan, H.-Y. Chen, B. Gao, H. Wu, S. Yu,
K. Saraswat, and H.-S. P. Wong, “Device and materials requirements
for neuromorphic computing,” Journal of Physics D, vol. 52, p. 113001,
2019.

[303] P.-Y. Chen, “Design of Resistive Synaptic Devices and Array Architec-
tures for Neuromorphic Computing,” Ph.D. dissertation, Arizona State
University, 2018.

[304] P.-Y. Chen, J.-s. Seo, Y. Cao, and S. Yu, “Compact oscillation neuron
exploiting metal-insulator-transition for neuromorphic computing,” in
2016 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). 2016 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), 2016, pp. 1–6.

[305] Z. Wang, S. Joshi, S. E. Savel’ev, H. Jiang, R. Midya, P. Lin, M. Hu,
N. Ge, J. P. Strachan, Z. Li et al., “Memristors with diffusive dynamics
as synaptic emulators for neuromorphic computing,” Nature materials,
vol. 16, pp. 101–108, 2017.

[306] Z. Wang, S. Joshi, S. Savel’ev, W. Song, R. Midya, Y. Li, M. Rao,
P. Yan, S. Asapu, Y. Zhuo, H. Jiang, P. Lin, C. Li, J. H. Yoon, N. K.
Upadhyay, J. Zhang, M. Hu, J. P. Strachan, M. Barnell, Q. Wu, H. Wu,
R. S. Williams, Q. Xia, and J. J. Yang, “Fully memristive neural
networks for pattern classification with unsupervised learning,” Nature
Electronics, vol. 1, pp. 137–145, 2018.

[307] Z. Q. Wang, H. Y. Xu, X. H. Li, H. Yu, Y. C. Liu, and X. J. Zhu,
“Synaptic learning and memory functions achieved using oxygen ion
migration/diffusion in an amorphous ingazno memristor,” Advanced
Functional Materials, vol. 22, pp. 2759–2765, 2012.

[308] M. R. Azghadi, B. Linares-Barranco, D. Abbott, and P. H. W. Leong,
“A hybrid CMOS-memristor neuromorphic synapse,” IEEE transac-
tions on biomedical circuits and systems, vol. 11, pp. 434–445, 2016.

[309] G. C. Adam, B. D. Hoskins, M. Prezioso, F. Merrikh-Bayat,
B. Chakrabarti, and D. B. Strukov, “3-d memristor crossbars for

https://electronicvisions.github.io/hbp-sp9-guidebook/
https://electronicvisions.github.io/hbp-sp9-guidebook/

26

analog and neuromorphic computing applications,” IEEE Transactions
on Electron Devices, vol. 64, pp. 312–318, 2017.

[310] M. Hu, C. E. Graves, C. Li, Y. Li, N. Ge, E. Montgomery, N. Davila,
H. Jiang, R. S. Williams, J. J. Yang, Q. Xia, and J. P. Strachan,
“Memristor-Based Analog Computation and Neural Network Classi-
fication with a Dot Product Engine,” Advanced Materials, vol. 30, p.
1705914, 2018.

[311] Y. Zhang, Z. Wang, J. Zhu, Y. Yang, M. Rao, W. Song, Y. Zhuo,
X. Zhang, M. Cui, L. Shen, R. Huang, and J. J. Yang, “Brain-
inspired computing with memristors: Challenges in devices, circuits,
and systems,” Applied physics reviews, vol. 7, p. 11308, 2020.

[312] B. Yan, A. M. Mahmoud, J. J. Yang, Q. Wu, Y. Chen, and H. H.
Li, “A neuromorphic ASIC design using one-selector-one-memristor
crossbar,” in 2016 IEEE International Symposium on Circuits and
Systems (ISCAS). 2016 IEEE International Symposium on Circuits
and Systems (ISCAS), 2016, pp. 1390–1393.

[313] L. Chen, J. Li, Y. Chen, Q. Deng, J. Shen, X. Liang, and L. Jiang,
“Accelerator-friendly neural-network training: Learning variations and
defects in RRAM crossbar,” in Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2017. Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2017, 2017, pp. 19–24.

[314] M. Hu, H. Li, Q. Wu, G. S. Rose, and Y. Chen, “Memristor crossbar
based hardware realization of BSB recall function,” in The 2012
International Joint Conference on Neural Networks (IJCNN). The
2012 International Joint Conference on Neural Networks (IJCNN),
2012, pp. 1–7.

[315] M. Hu, J. P. Strachan, Z. Li, E. M. Grafals, N. Davila, C. Graves,
S. Lam, N. Ge, J. J. Yang, and R. S. Williams, “Dot-product engine
for neuromorphic computing: programming 1T1M crossbar to accel-
erate matrix-vector multiplication,” in Proceedings of the 53rd Annual
Design Automation Conference on. Proceedings of the 53rd Annual
Design Automation Conference on, 2016, p. 19.

[316] F. Alibart, E. Zamanidoost, and D. B. Strukov, “Pattern classification by
memristive crossbar circuits using ex situ and in situ training,” Nature
communications, vol. 4, pp. 1–7, 2013.

[317] T. Serrano-Gotarredona, T. Masquelier, T. Prodromakis, G. Indiveri,
and B. Linares-Barranco, “STDP and STDP variations with memristors
for spiking neuromorphic learning systems,” Frontiers in neuroscience,
vol. 7, p. 2, 2013.

[318] M. Prezioso, F. Merrikh-Bayat, B. D. Hoskins, G. C. Adam, K. K.
Likharev, and D. B. Strukov, “Training and operation of an integrated
neuromorphic network based on metal-oxide memristors,” Nature, vol.
521, pp. 61–64, 2015.

[319] X. Zhu, C. Du, Y. Jeong, and W. D. Lu, “Emulation of synaptic
metaplasticity in memristors,” Nanoscale, vol. 9, pp. 45–51, 2017.

[320] C. Zamarreño-Ramos, L. A. Camuñas-Mesa, J. A. Pérez-Carrasco,
T. Masquelier, T. Serrano-Gotarredona, and B. Linares-Barranco, “On
spike-timing-dependent-plasticity, memristive devices, and building a
self-learning visual cortex.” Frontiers in Neuroscience, vol. 5, pp. 26–
26, 2011.

[321] D. Negrov, I. Karandashev, V. Shakirov, Y. Matveyev, W. Dunin-
Barkowski, and A. Zenkevich, “An approximate backpropagation learn-
ing rule for memristor based neural networks using synaptic plasticity,”
Neurocomputing, vol. 237, pp. 193–199, 2017.

[322] R. Guo, Y. Zhou, L. Wu, Z. Wang, Z. Lim, X. Yan, W. Lin, H. Wang,
H. Y. Yoong, S. Chen, Ariando, T. Venkatesan, J. Wang, G. M. Chow,
A. Gruverman, X. Miao, Y. Zhu, and J. Chen, “Control of Synaptic
Plasticity Learning of Ferroelectric Tunnel Memristor by Nanoscale
Interface Engineering,” ACS Applied Materials & Interfaces, vol. 10,
pp. 12 862–12 869, 2018.

[323] Z. I. Mannan, S. P. Adhikari, C. Yang, R. K. Budhathoki, H. Kim, and
L. Chua, “Memristive imitation of synaptic transmission and plasticity,”
IEEE Transactions on Neural Networks, vol. 30, pp. 3458–3470, 2019.

[324] R. Yang, H. Huang, Q. Hong, X. Yin, Z. Tan, T. Shi, Y. Zhou, X. Miao,
X. Wang, S. Mi, C. Jia, and X. Guo, “Synaptic suppression Triplet-
STDP learning rule realized in second-order memristors,” Advanced
Functional Materials, vol. 28, p. 1704455, 2018.

[325] Z. Cheng, C. Rı́os, W. H. P. Pernice, C. D. Wright, and H. Bhaskaran,
“On-chip photonic synapse,” Science Advances, vol. 3, 2017.

[326] J. Feldmann, N. Youngblood, C. D. Wright, H. Bhaskaran, and W. H. P.
Pernice, “All-optical spiking neurosynaptic networks with self-learning
capabilities,” Nature, vol. 569, pp. 208–214, 2019.

[327] A. Hurtado and J. Javaloyes, “Controllable spiking patterns in long-
wavelength vertical cavity surface emitting lasers for neuromorphic
photonics systems,” Applied Physics Letters, vol. 107, p. 241103, 2015.

[328] B. Gholipour, P. Bastock, C. Craig, K. Khan, D. Hewak, and C. Soci,
“Amorphous Metal-Sulphide Microfibers Enable Photonic Synapses for

Brain-Like Computing,” Advanced Optical Materials, vol. 3, pp. 635–
641, 2015.

[329] A. N. Tait, T. F. D. Lima, M. A. Nahmias, H. B. Miller, H. T. Peng,
B. J. Shastri, and P. R. Prucnal, “Silicon Photonic Modulator Neuron,”
Physical review applied, vol. 11, p. 64043, 2019.

[330] A. N. Tait, T. F. D. Lima, E. Zhou, A. X. Wu, M. A. Nahmias, B. J.
Shastri, and P. R. Prucnal, “Neuromorphic photonic networks using
silicon photonic weight banks,” Scientific reports, vol. 7, p. 1–10, 2017.

[331] A. N. Tait, M. A. Nahmias, Y. Tian, B. J. Shastri, and P. R. Pruc-
nal, “Photonic neuromorphic signal processing and computing,” in
Nanophotonic Information Physics. Springer, 2014, pp. 183–222.

[332] M. Lee, W. Lee, S. Choi, J.-W. Jo, J. Kim, S. K. Park, and Y.-H. Kim,
“Brain-inspired Photonic Neuromorphic Devices using Photodynamic
Amorphous Oxide Semiconductors and their Persistent Photoconduc-
tivity,” Advanced Materials, vol. 29, p. 1700951, 2017.

[333] Y. Wang, Z. Lv, J. Chen, Z. Wang, Y. Zhou, L. Zhou, X. Chen, and
S. Han, “Photonic synapses based on inorganic perovskite quantum
dots for neuromorphic computing,” Advanced Materials, vol. 30, p.
1802883, 2018.

[334] A. Katumba, M. Freiberger, F. Laporte, A. Lugnan, S. Sackesyn, C. Ma,
J. Dambre, and P. Bienstman, “Neuromorphic computing based on
silicon photonics and reservoir computing,” IEEE Journal of Selected
Topics in Quantum Electronics, vol. 24, pp. 1–10, 2018.

[335] M. Miscuglio, A. Mehrabian, Z. Hu, S. I. Azzam, J. George, A. V.
Kildishev, M. Pelton, and V. J. Sorger, “All-optical nonlinear activation
function for photonic neural networks [invited],” Optical Materials
Express, vol. 8, pp. 3851–3863, 2018.

[336] I. Chakraborty, G. Saha, A. Sengupta, and K. Roy, “Toward Fast
Neural Computing using All-Photonic Phase Change Spiking Neurons,”
Scientific Reports, vol. 8, p. 12980, 2018.

[337] H.-T. Peng, M. A. Nahmias, T. de Lima, Ferreira, A. N. Tait, and B. J.
Shastri, “Neuromorphic Photonic Integrated Circuits,” IEEE Journal of
Selected Topics in Quantum Electronics, vol. 24, pp. 1–15, 2018.

	Introduction
	Neuromorphic Computing Models
	Neuron Models in Ordinary Differential Equations (ODE)
	Neuron Dynamics in Spike Response Model (SRM)
	Neural coding and spike timing
	Network Topologies
	ANN-inspired

	Learning

	Neuromorphic System Design Considerations
	Neuron and Synapse Implementations
	Implementation Choices
	Architecture
	Communication
	Supporting Software and Ecosystems

	Case Studies of some Large-Scale Neuromorphic Systems
	Digital ASIC: TrueNorth
	Neuron and Synapse Implementation
	Architecture and Communication
	Supporting Software/Software Ecosystem

	ASIC with on-chip Learning: Loihi
	Neuron and Synapse Implementation
	Architecture and Implementation
	Supporting Software/Software Ecosystem

	Analog/Mixed-signal System: BrainScaleS
	SNN models
	Hardware Platform
	System Architecture
	Supporting Software/Software Ecosystem

	Neuromorphic Super Computing Platform: SpiNNaker
	Hardware Platform
	Neuron Models
	Supporting Software/Software Ecosystem

	ANN-SNN Hybrid Design: Tianjic
	SNN models
	Hardware Platform
	Architecture
	Communication
	Supporting Software/Software Ecosystem
	Applications

	Outlook
	Challenges in Model and Algorithm Design
	Challenges in Architectural Design
	Emerging Devices

	Conclusions
	References

