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Abstract—The explosion of “big data” applications imposes
severe challenges of speed and scalability on traditional com-
puter systems. As the performance of traditional Von Neumann
machines is greatly hindered by the increasing performance
gap between CPU and memory (“known as the memory wall”),
neuromorphic computing systems have gained considerable at-
tention. The biology-plausible computing paradigm carries out
computing by emulating the charging/discharging process of
neuron and synapse potential. The unique spike domain infor-
mation encoding enables asynchronous event driven computation
and communication, and hence has the potential for very high
energy efficiency. This survey reviews computing models and
hardware platforms of existing neuromorphic computing systems.
Neuron and synapse models are first introduced, followed by
the discussion on how they will affect hardware design. Case
studies of several representative hardware platforms, including
their architecture and software ecosystems, are further presented.
Lastly we present several future research directions.

Index Terms—Neuromorphic computing, spiking neural net-
works, bio-inspired computing, machine learning.

I. INTRODUCTION

The ever-increasing scale and computation complexity of
machine intelligence have been posing challenges on the
traditional Von Neumann architecture and demanding for
higher performance per watt efficiency from energy limited
systems such as edge devices, Internet-of-Things (IOT), and
cyber physical systems (CPS). This motivates a new paradigm
of massively parallel and distributed computing inspired by
biological neural systems, namely neuromorphic computing.
By learning from the biological and physical characteristics
of the neocortex system, researchers in neuromorphic com-
puting incorporate a brain-inspired computing model, a non-
conventional architecture, and novel device technology to pro-
vide energy efficient solutions to real-life machine intelligence
problems.

The concept of neuromorphic computing was first proposed
by Carver Mead in the 1980s [1]–[4]. The early works in
this area focused on emulating the analog behavior of neural
systems. It is observed that biological systems achieve many
orders of magnitude higher efficiency than digital systems
when performing certain cognitive tasks. [1] and [4] credit
such advantage to the fundamental differences between digital
circuits and biological systems. The early works in neuromor-
phic computing tried to bridge the gap between the lower-
level physical details of biological systems and the higher-
level computational functionality. [2], [5] claim that, due to

their adaptability, neuromorphic systems are more resilient to
noise and component failure and have the potential to be more
energy efficient.

The early efforts of neuromorphic computing include [1]–
[4], [6]–[9]. Those works mainly focus on modeling realistic
biological systems using analog circuits. [7] developed a
silicon retina and a sensorimotor system. [8] designed an elec-
tronic cochlea using CMOS which shares the same principle
as biological cochlea. [1] proposed a chip that is structurally
similar to retinas of higher animals. [10] developed a floating-
gate silicon MOS transistor to emulate synapse and realized a
learning rule on the synapse array.

The implementation of neuromorphic computing has shifted
to the digital domain in recent decades for better noise
resilience and higher scalability. The research focus has
also extended from single neuron implementation to network
and inter-neuron communication architectures. In addition
to digital systems, emerging materials and devices such as
memristors, phase changing materials, photonic circuits are
also being investigated for hybrid solutions of neuromorphic
computing. Spiking neural network (SNN) is often studied
together with neuromorphic computing as the underlying
computational model. Sometimes the two terms are even
interchangeable. SNNs have more biologically plausible fea-
tures than conventional artificial neural networks (ANNs) [11].
Similar to the biological neural system, SNN is inherently
a dynamic and stateful network. The most distinct property
of SNN is that the information is represented, transmitted
and processed as discrete spike events, also referred to as
action potentials [12]. Spikes are electrical pulses in biological
neural systems. In SNN mathematical models, spikes are
usually represented by Dirac Delta functions. Although a spike
enables low power information transmission and processing,
the non-differentiable Dirac Delta function also imposes a
major challenge in SNN training, hindering the application
of gradient descent algorithms [13]. In addition, unlike ANN,
in which inter-neuron connections pass information lossless
with a linear scaling controlled by the weight coefficients,
connections/synapses of SNN may consist of multiple state
variables and parameters. This feature makes the SNN more
powerful in processing spatial/temporal sequences, but also
increases the complexity of its implementation.

It is noteworthy that the boundary between SNN and ANN
is not always clear. Though most SNN models use spikes,
there are also rate-based SNN models, in which the output
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Fig. 1: Different aspects in neuromorphic computing.

of a neuron is no longer discrete spikes, but real-valued
instantaneous spike rates. Such models can be interpreted as
ANNs [14]. There are also models [15], [16] and hardware
[17] that fuse SNN and ANN together. In this work, the name
SNN is used to refer to the models that generate spikes as
their outputs.

While the inferencing and learning of conventional ANNs
are generally formulated as matrix-vector multiplications,
there is no unified model for SNNs. Different models for spik-
ing neurons and synapses represent their biological counterpart
at different levels of details, which impacts the flexibility,
complexity, and efficiency of hardware/software implementa-
tions. Based on their applications, we can divide neuromorphic
computing into two categories, systems for computational
neuroscience and systems for machine intelligence. Although
their boundary is not always clear, the former usually focuses
on models with more biophysical details and tries to reproduce
their physiological features such as network oscillations. The
latter focuses more on mathematically abstract models and
their information representation and retrieval abilities. In Fig-
ure 1, we divide neuromorphic computing systems into 8 main
categories based on their computational model, implementa-
tion, and applications. In this paper we will limit ourselves to
the digital or mixed signal implementation of spiking neural
networks for machine intelligence applications. Compared to
earlier survey [18], which comprehensively discusses various
aspects of neuromorphic computing, including history, model,
algorithm, hardware design, device and applications, this work
focuses more on the algorithm-hardware codesign. For exam-
ple, we will discuss the implications that neuron models and
learning algorithms may impose on hardware design, how the
hardware architecture limits software and algorithm, and the
design trade-offs between algorithm and hardware.

The rest of the survey is organized as the following. Section
II reviews neuron and synapse models, network topologies,
information encoding schemes and learning algorithms. Their
impact on hardware implementation will be discussed in
Section III, followed by a detailed discussion of the hardware
and software ecosystems of several selected neuromorphic
computing systems in Section IV. The outlook of future

research directions will be given in Section V.

II. NEUROMORPHIC COMPUTING MODELS

Biological neurons communicate with each other by gen-
erating and propagating electrical pulses called spikes [19],
[20]. At the high abstraction level, all spiking models share
the following common properties: (1) they process information
coming from many inputs and produce single or multiple
spikes; (2) the probability of spike generation is increased by
excitatory inputs and decreased by inhibitory inputs; (3) at
least one state variable is used to characterize their dynamics
and the model is supposed to generate one or more spikes
when the internal variables of the model reach a certain state.
Neurons connect and communicate with one another through
specialized junctions called synapses [21], [22]. Similar to the
neuron models, synapse models also vary in the complexity
and biological plausibility.

The details of some popular spiking neuron models and
synapse models are reviewed in Sections II-A and II-B.
Different spike coding techniques are reviewed in Section II-C.
In Section II-D, we discuss various network architectures and
in Section II-E we show how learning is accomplished in the
networks of spiking neurons.

A. Neuron Models in Ordinary Differential Equations (ODE)

The existing neuron models can be categorized into two
groups, conductance-based models and spike-based models.
The former includes the Hodgkin–Huxley (HH) model [23],
the Fitz-Hugh-Nagumo (FHN) model [24] and the Morris-
Lecar [25] model, while the latter includes the Izhikevich
model [26], the Integrate and Fire (IF) model and the Leaky-
Integrate and Fire (LIF) [27] model.

Conductance-based models are based on an equivalent cir-
cuit representation of a cell membrane, as first put forth
by Hodgkin and Huxley [23]. These models apply a set of
nonlinear differential equations to provide a biophysical inter-
pretation of an excitable cell in which current flows across the
membrane due to the charging of the membrane capacitance
(Ic) and the movement of ions across ion channels (Iion),
such that the total membrane current Im(t) is the sum of the
capacitive current and the ionic current Im(t) = Ic + Iion.
The membrane potential Vm of the cell with capacitance Cm

is related to the capacitance current based on the following
equation

Ic = Cm
dVm
dt

(1)

The ion current Iion is a function of the difference of the
Vm and the ion potential, whose conduction is time varying
and modeled by a set of differential equations. Based on the
model, positive surges (i.e. spikes) are formed on the mem-
brane potential at constant or time varying input current. The
conductance-base models consider neuron input, output, and
state as continuous-time continuous-valued variables; hence
they have a high computational complexity. Due to their high
fidelity to the biological neuron, the conductance-based models
are more widely used in computational neuroscience.



3

The spike-based model simplifies the neuron input and
output into spikes. A sequence of the spike events, i.e. a spike
train, can be described as the following

S(t) =
∑
f

δ(t− tf ), (2)

where f = 1, 2, · · · is the label of the spike and δ(.) is a
Dirac function with δ(t) 6= 0 for t = 0 and

∫∞
−∞ δ(t)dt = 1.

The basic assumption underlying most spiking neuron models
is that it is the timing of spikes rather than the specific shape
of spikes that carries neural information [28].

Among the spike-based models, the Integrate-and-Fire (IF)
model, and Leaky Integrate-and-Fire (LIF) model [28] are the
most widely used. Both models abstract biological neurons
as point dynamical systems. The dynamics of the LIF unit is
described by the following formula:

C
du(t)

dt
= − 1

R
u(t) + (io(t) +

∑
wjij(t)) (3)

where u(t) is the membrane potential, C is the membrane
capacitance, R is the input resistance, io(t) is the external
current driving the neural state, ij(t) is the input current from
the j-th synaptic input, and wj represents the strength of the
j-th synapse. Both io(t) and ij(t) are functions of spike trains,
as given in Equation 2. When R→∞, formula 3 is reduced
to an IF model. In both IF and LIF models, a neuron is
supposed to fire a spike, whenever the membrane potential
u reaches a certain value υ referred to as the firing threshold.
Immediately after the spike, the neuron state is reset to a new
value ures < υ and holds at that level for the time interval
representing the refractory period.

The majority of the neuromorphic systems utilize IF and
LIF neurons as they are easier to implement and are com-
putationally efficient. The LIF model has been extended with
one or more adaptation variables to account for different firing
patterns. A well-known model is the Izhikevich model, which
can produce firing patterns experimentally verified on neocor-
tical and thalamic neurons [26]. However, it is not clear what
roles the different firing patterns are playing in learning and
cognition, and those additional adaptation variables increase
the model complexity. Therefore, they are less used in machine
intelligence applications.

B. Neuron Dynamics in Spike Response Model (SRM)

The aforementioned IF and LIF models are over-simplified
by considering the synaptic connection as a time-invariant
device with a constant efficacy w and assume that the mem-
brane potential reset as an instantaneous procedure. A more
realistic neuron model considers the dynamics in the neuron
and synapse behavior.

The arrival of a presynaptic spike triggers the synaptic
electric current flowing into the biological neuron [20]. It
causes a change in the membrane potential of the synapse,
which is referred to as post-synaptic potential (PSP). In a
general form, the time course of jth PSP can be described
as the convolution of the presynaptic spike train Sj(t) and a

Fig. 2: Exponential, Alpha and dual exponential Kernels.

Fig. 3: Spike response model.

kernel function Kj(t) scaled by a weight coefficient wj as the
following:

PSP j(t) = wj

∫ ∞
0

Sj(t− s)Kj(s)ds

= wj

∑
tj

′<t

Kj(t− tj
′
), (4)

where tj
′

is the time of spikes on the input Sj(t). K(t)
can be an exponential, a dual exponential or an alpha kernel
defined by following equations:

K(t) = e−
t
τ (5)

K(t) =
t

τ
e−

t
τ (6)

K(t) = V0(e−
t
τm − e−

t
τs ) (7)

Their spike responses are illustrated in Figure 2.
The reset of the membrane potential is no longer instanta-

neous. Instead, it is modeled as a negative potential induced
by the output spike train So(t) going through a kernel function
h(t),

R(t) =

∫ ∞
0

So(t− s)h(s)ds =
∑
to

′<t

h(t− to
′
), (8)

where to
′

is the time of spikes on the output spike train.
Usually h(t) is a kernel given in Equation 5.

The way to interpret the neuron dynamics is as a convolution
of the impulse response of a filter with the input spike train as
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Fig. 4: Neuron modeled by digital filters [29].
.

in Equations 4 and 8, and is referred to as the Spike Response
Model (SRM).

The membrane potential is the combined effect of PSP (t)
and R(t) as shown in Figure 3. Using SRM representation, it
can be represented as an integral over the past input and kernel
responses. A typical SRM model is defined as the following
[12]:

Vm(t) =

N∑
j=1

wj

∑
t
′
j<t

K(t− t
′

j)− Vth
∑
t′o

h(t− t
′

o) (9)

where Vm(t) is the membrane potential, K(t) and h(t) are
two convolution kernels associated to synaptic dynamics and
membrane potential reset events. When Vm(t) exceeds the
threshold Vth, the neuron generates a spike output whose time
is indicated by the spike time t

′

o.

By using a kernel K(t) with arbitrary shape, the SRM
model provides complicated dynamics and rich temporal infor-
mation. The simplified LIF model in Equation 3 is a special
case of the SRM model, where the K(t) and h(t) are two
low-pass filters. The SRM model shows that the membrane
potential is a function based on not only the current but also
the past input spikes, which explains the neuron’s ability to
respond to temporal patterns.

The kernels in the SRM model can be implemented as
discretized digital filters. Using the Z-transform [30], [31],
they can be represented as a Linear Constant-Coefficient
Difference (LCCD) equation in the following form:

y [t] =
P∑

p=1

αpy[t− p] +

Q∑
q=1

βqx[t− p], (10)

where y[t] and x[t] are the output and input of the kernel
and P and Q are the feedback and feedforward orders. Using
this implementation, a neuron in the SRM model can be
represented as a network of IIR filters, as shown in Figure
4. This architecture was adopted in [32]–[34] for the digital
implementation of SRM neurons.

C. Neural coding and spike timing

Neural coding is an essential part of the SNN. It refers
to the way in which information is represented by discrete
spikes. Neural coding is tightly coupled with the neuron model
and determines the performance of the SNN and hardware
implementation.

Exactly how the brain and sensory system encode infor-
mation is not fully understood yet. Rate coding and temporal
coding are two commonly used information coding in neu-
romorphic computing. Rate coding represents a value by the
number of spikes in a unit time. It agrees with the observation
that the sensory nerves’ spike frequency increases as the
stimulus intensity increases. Rate coding has been widely
adopted. For example, most SNN models and neuromorphic
hardware for image classification use rate coding, where the
pixel value is represented by the number of spikes in unit
time [13], [35]–[37]. However, rate coding has its limitations.
First of all, it introduces latency. The firing rate cannot be
determined accurately until a sufficiently large number of
spikes have been received. While a typical neuron firing rate is
between 1 and 200 Hz, in realistic biological neural networks,
there is not enough time to integrate spikes to get the spike
count. For example, a fly can respond to a visual object after
one or two spikes are received [12]. Secondly, rate coding
is not energy efficient. It represents large values using high
spike frequency, which increases the switching activities in
computing hardware, and may even pose challenges to neuro-
morphic chip design [38]–[40]. Without extended latency or
escalated spiking frequency, rate coding will suffer from high
quantization error. When spikes are generated as stochastic
events, there will be sampling errors too.

Temporal coding takes spike timing into account [41]–[43]
such that the temporal structure of a spike train can convey
information. Two spike-trains with the same spike count could
represent distinct information, as shown by [44], and produce
significantly different postsynaptic current. When considering
the spike timing, the information capacity of a spike train is
significantly increased [45]. However, temporal coding is still
not well understood. There are many hypotheses, which lead to
different variations of temporal coding schemes. For example,
[46] shows that the spatial structure of an image is encoded
by retinal ganglia using the relative timing of first spikes,
referred to as latency coding. Latency coding assumes that
the first spike carries the most significant information, while
the subsequent spikes are less important. The latency coding
is also known as Time-to-first-spike (TTFS) coding [12]. It is
noteworthy that there are some subtle differences between the
latency coding observed in a biological system and the TTFS
in the context of neuromorphic computing. The latter utilizes at
most one spike per neuron to encode information by applying
a long refractory period or a strong inhibition [47], [48], while
there is no such restriction in biological systems. [49] proposes
reverse coding, which assumes that a stronger stimulus is
encoded by a later spike time. This can be interpreted as
a variation of TTFS. Training algorithms and neuromorphic
hardware have been designed specifically for TTFS cod-
ing [47]–[50]. TTFS usually allows more efficient hardware
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because it substantially reduces spike numbers, hence the
communication workload is less. Furthermore, neurons using
TTFS do not have to accumulate multiple spikes to produce
output, hence the computation latency is also reduced. As
another variation of temporal coding, phase coding considers
the entire spike train. Information is represented by the relative
spike timing with respect to periodical background oscillation
[12].

[51] and [52] suggest that different coding schemes may
co-exist in the nervous system, and the brain uses different
coding for different tasks. The variety and task specialization
of coding schemes can also be seen in existing research in
SNN. For example, [53], [54] encode image as spatial spike
patterns. [55], [56] proposed to convert audio signals into time-
varying spike patterns.

The choice of neural coding scheme is closely related to the
decision on SNN training algorithms, neuron models and even
the hardware architecture. For example, to recognize different
temporal spike patterns, [57] employs LIF neuron with dual-
exponential synapse defined in Equation 7. Every individual
input spike builds up a time-varying PSP, which represents
certain characteristics; [50] designs a dedicated single-spiking
MAC circuit to support TTFS.

To utilize the information embedded in spike timing, neu-
ron models with certain temporal dynamics, as discussed in
Section II-B, must be used. For example, [33], [57]–[59] use
SRM or its variants to learn spike timings. However, these
models are not readily supported by some of the existing
neuromorphic hardware. For example, TrueNorth uses a sim-
plified LIF model, where a neuron’s membrane potential is
the accumulation of weighted input spikes with a constant
leakage. While this architecture provides extremely high neu-
ron/synapse density and energy efficiency, it is not suitable
to implement the aforementioned models of temporal coding.
A few other neuromorphic systems have memory allocated to
each synapse to store the temporal dynamics. For example,
Loihi allows a synapse to have three different state variables,
which can be configured as traces. [34] reported an FPGA
based SNN where each neuron core has a dedicated memory
bank for the post-synaptic potential.

D. Network Topologies

Given the models of neurons and synapses, a spiking
neural network can be constructed. Based on the network
topology, we divide the SNNs into three categories, feedfor-
ward, recurrent and bio-inspired networks. Feedforward and
recurrent networks are inspired by ANNs as shown in Figure
5 whereas the bio-inspired networks mimic the structure of
various biological neural motifs.

1) ANN-inspired: Feedforward network is the simplest
form of neural networks where the information moves in only
one direction, from the input layer, through the hidden layers
and to the output layer.

The recurrent SNN can be further divided into two cate-
gories, recurrent with synchronization and recurrent without
synchronization. Recurrent structure is widely used in ANNs
to detect temporal patterns in input sequences or generate

Fig. 5: ANN-inspired topologies.

Fig. 6: Confabulation network.

temporally correlated outputs. In these ANNs, the hidden state
of the network induced by previous input loops back to be
processed with the current input to generate new hidden states
and outputs. The synchronization between the hidden state of
the previous cycle and the input of the current cycle is difficult
to achieve in SNN, due to the inherent asynchronous and even
driven nature of the SNN neurons. Because the input and
hidden state variables are represented by a sequence of spike
trains, special store-and-release neurons must be used to gate
and release the spike sequences in order to synchronize them
[60], [61]. It was not until recently that some works presented
techniques on translating recurrent networks to SNNs [60],
[61] or introducing dynamics into the neuron and synapse
models to implement a form of recurrence [62]. We refer to
these networks as recurrent SNNs with synchronization.

A large set of neural networks use the recurrent structure
to stabilize signals and suppress noises. No synchronization
among neurons is attempted in these networks. The feed-
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(a)

(b) Winner-Take-All network

Fig. 7: Bio-inspired topologies.

back and the input eventually reach a dynamic equilibrium,
which defines the network state. For example, Echo State
Network (ESN), also referred to as reservoir network, is a
variation of recurrent networks which consists of a hidden
layer (reservoir), containing neurons randomly connected to
each other with fixed weights, and connected to the output
layer which feeds back to the reservoir with plastic weights
[63]–[69] as shown in Figure 5(c). In a reservoir network,
the output layer is used to classify the state of the network.
Learning takes place only in the output layer, which consists
of conventional (i.e. non-spiking) neurons. Another example
is the spiking confabulation network. Cogent confabulation is
a connection-based cognitive model that captures correlations
among features at the symbolic level, as shown in Figure 6. It
describes the basic dimensions of the observation using a set
of features referred to as lexicons. The attributes of a given
feature are referred to as the symbols, which are analogous
to neurons in the biological nervous system. Their pairwise
conditional probabilities are referred to as the knowledge links.
When implemented with Bayesian spiking neurons as in [70],
[71], the neurons interact with each other and the equilibrium
state of the spiking rates infers the likelihood of the symbols
represented by each neuron.

A large number of SNNs are arranged to follow biological
neural architectures. For example, simultaneous localization
and mapping (SLAM) [72] networks get inspiration from the
navigation system in the hippocampus and entorhinal cortex

(a)

(b)

Fig. 8: (a) STDP and (b) its profile.

of rats, where different types of spatially-tuned neurons were
found: the head-direction cells are sensitive to the heading
direction of the animal, place cells are active each time the
animal visits a particular part of the environment, and grid
cells presumably perform path integration [73]. As another
example, Winner-Take-All (WTA) networks containing recur-
rent connectivity between inhibitory and excitatory neurons
are common models to explain decision-making and action
selection in the cortex [74], [75]. They are widely used for
unsupervised learning and feature selection in SNNs [76],
[77]. Figures 7a and 7b illustrate the structure of the two
aforementioned networks.

The hierarchies in the sensory cortex are of particular
interests to research in sensor signal processing. The mam-
malian olfactory system contains three major hierarchical
levels including the epithelium where the stimulus enters
the nervous system, the olfactory bulb (OB) where the first
transformation happens, and the piriform cortex (PC) which
integrates and stores the information relevant for odor recog-
nition [78], [79]. Such hierarchical network structures have
been used for recognition and decision-making tasks in SNNs
[80]–[82]. Medial Superior Olive (MSO) in the mammalian
auditory pathway is responsible for sound localization. They
are organized spatially as a place map of location [83],
[84] and at a higher level these subgroups are subsequently
also organized into frequency selective clusters. These MSO
systems inspired [85], [86] to utilize SNNs for sound classifi-
cation and localization. Attractor networks, whose activity tend
towards dynamic stability, have been posited to help explain
eye control, working memory, head direction, locomotion and
olfaction [87] and thus have been utilized for such control
tasks in SNNs [88]–[90].

E. Learning

The ability of synaptic connections to change their efficacy
is referred to as synaptic plasticity. This is thought to be
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the basic mechanism underlying learning and memory in
biological neural networks [91]. Various forms of synaptic
plasticity co-exist. Some are determined only by the history
of presynaptic stimulation, independently of the postsynaptic
responses [92]–[94]. Others depend on the temporal order of
pre- and postsynaptic activities [92], [95], [96].

In general, synaptic potentiation (i.e. the increase of synap-
tic efficacy) is observed when presynaptic spikes precede
postsynaptic spikes, as it indicates a causal relationship. The
reversed order of spikes induces synaptic depression (i.e. the
decrease of synaptic efficacy). This phenomenon is called
Spike-Timing-Dependent-Plasticity (STDP). It can be used for
unsupervised learning. A popular choice for the STDP rule
[97] for potentiation ∆w+ and depression ∆w− is given as:

∆w+ = +A+ exp (−∆t/τ+) for ∆t > 0
∆w− = −A− exp (+∆t/τ−) for ∆t < 0

(11)

where τ+ and τ− determine the ranges of pre- to postsy-
naptic interspike intervals over which synaptic strengthening
and weakening occur. A+ and A− determine the maximum
amounts of synaptic modification, and ∆t is the time of the
postsynaptic spike minus the time of the presynaptic spike.

A wide range of SNN algorithms that can learn temporal
spike patterns employ more biologically realistic LIF neuron
models with alpha or dual-exponential synapse [57], [77],
[98]–[100] as shown in Section II-B. In these models, the
PSP decays exponentially over time, hence, can be utilized as
a metric to reflect temporal dependency. This type of neuron
does not simply accumulate weighted spikes as membrane po-
tential, instead, it integrates weighted time varying PSP, hence
exhibiting complex temporal dynamic behavior. Various STDP
learning rules have been proposed that update the weight
based on different traces. Traces are decaying state variables
reflecting the temporal history of input and output spikes. They
correspond to the ion concentrations in a biological neuron.
The PSP is an example of a trace variable. A pairwise STDP
rule using traces [101] is given as:

∆w = A+x(t)Sx(t)−A−y(t)Sy(t) (12)

where x(t) and y(t) are the pre- and postsynaptic traces.
Sx(t) =

∑
x δ(t− tx) and Sy(t) =

∑
y δ(t− ty) are the pre-

and postsynaptic spike trains. Thus, from Equation 12 and Fig-
ure 8a, the weight is increased at the moment of postsynaptic
firing by an amount that depends on the value of the trace x(t)
left by the presynaptic spike. Similarly, the weight is depressed
at the moment of presynaptic spikes by an amount proportional
to the trace y(t) left by previous postsynaptic spikes. This has
been shown to fit the experimental data as shown in Figure 8b
and [95], and has been studied in [12], [102], [103].

The most straightforward way to implement supervised
learning is to use Hebbian Learning [77], [104]. Supervision
is introduced in Hebbian learning by an additional ’teaching’
signal that reinforces the postsynaptic neuron to fire at the
target times and to remain silent at other times. The ’teaching’
signal is usually transmitted to the neuron in a form of synaptic
currents or as intracellularly injected currents.

Another approach is to utilize a supervised learning algo-

rithm for ANNs called backpropagation. Backpropagation, a
gradient-based optimization algorithm, is a standard training
technique for ANNs. However, it cannot be directly applied to
the in-hardware learning of an SNN running on a neuromor-
phic processor due to several reasons; (1) spiking neuron’s
activities are not differentiable, (2) the connections between
neurons in SNNs are unidirectional such that a backward path
must be added explicitly with constantly updated weights dur-
ing learning, (3) errors in ANNs are propagated as real values
and (4) weight update of a synapse is not solely dependent on
locally available information as required in a neuromorphic
hardware [105]. There have been various approaches to adopt
the backpropagation algorithm to train deep SNNs directly
[13], [33], [36], [106]–[108]. One category of approaches
keeps track of the membrane potential at spike times and
back-propagate errors based on that. SpikeProp [109] is the
first attempt to train an SNN using such an approach. But
SpikeProp is limited to single-spike learning. A similar cate-
gory of approaches [110] [13] treats the discontinuities during
spike times as noise and smoothens the membrane potential to
essentially make it continuous. These approaches utilize spike-
rate to compute the loss and membrane potential to compute
the error derivative, and hence create a discrepancy. [106]
proposed an event-driven random backpropagation (eRBP)
algorithm simplifying the backpropagation chain path. But
this work requires multicompartmental neurons to enable error
to locally modulate plasticity. In [107], a supervised learning
method was proposed (BP-STDP) where the backpropagation
update rules were converted to temporally local STDP rules
for multilayer SNNs. Recently, Error-Modulated STDP (EM-
STDP) [108], [111] was proposed to approximate backpropa-
gation in the spike domain for neuromorphic implementation.
This work applies the same type of integrate and fire (IF)
neuron in the forward and backward path, and enhances
the biological plausibility of backpropagation algorithm by
introducing a weight update rule that resembles the rate-based
STDP using only the locally available information. Its learning
capability has been demonstrated on the Loihi processor [111].

III. NEUROMORPHIC SYSTEM DESIGN CONSIDERATIONS

To design a neuromorphic processor, a complete ecosystem
including both software and hardware needs to be considered.
This does not only include the hardware implementation
of neurons and synapses, and their communication network,
but also simulators and compilers for design validation and
optimization.

A. Neuron and Synapse Implementations

A bottom-up approach is generally adopted in neuromor-
phic hardware design. Neurons and synapses are the building
blocks, whose implementations are designed first. These build-
ing blocks are connected by a communication network to form
a system architecture. Different implementations and hardware
architectures are selected for neuron and synapse models with
different degrees of complexity. The leaky integrate and fire
(LIF) model in Equation 3 has been a popular choice for
hardware implementation [105], [112]–[114] since it is simple



8

but still retains some temporal dynamics. Complex neuron
and synapse behavior specified in Equation 9 requires specific
hardware to efficiently compute their evolution through time.
The LIF can be reduced into an IF model, which can be
implemented cost effectively using an adder, a comparator,
and a memory [11], for input integration, threshold detection
and membrane potential storage, respectively.

To achieve higher degree of fidelity to biological models,
ionic channels and other bio-realistic components have been
implemented [113], [115], [116]. [117] implements advanced
reconfigurable units based on the work of Izhikevich [26]
or bio-realistic ion channels [116] interaction in fully digital
designs. The SpiNNaker [118] can be used to evaluate detailed
biological neuron and synapse models at a high computation
cost. These implementations of highly bio-plausible neurons
and synapses provide insights of the brain function from the
neuroscience point of view. They usually are not used for
machine intelligent applications.

B. Implementation Choices
Based on their implementation choices, neuromorphic sys-

tems can be categorized into three categories, (1) digital, (2)
analog, or (3) mixed signal platform.

Digital neuromorphic systems can further be divided into
CPU based, Application Specific Integrated Circuit (ASIC)
based and FPGA based implementations. An example of
CPU based implementation is SpiNNaker. SpiNNaker is an
ARM based, fully digital massively parallel system. It is com-
posed of thousands of ARM cores and a custom interconnect
communication scheme optimized for spike-based network
communication. The processing unit itself is general purpose
and not customized for neuromorphic functions [40], [118]–
[133].

IBM’s TrueNorth [114], [117], [134]–[139] and Intel’s Loihi
[105] are well known examples of fully custom ASIC imple-
mentation of neuromorphic systems. Some other examples of
ASIC based neuromorphic systems include [63], [64], [140]–
[155].

Most ASICs are subject to limitations of specific neuron
models and algorithms. Therefore, FPGA has also drawn
much attention for its flexibility. FPGA has been widely used
for exploring various aspects of neuromorphic hardware and
algorithms research. Most of these works adopt a multi-core
architecture [34], [156]–[159]. Due to the limited resource
of a single FPGA, there are also works utilizing multiple
FPGAs [160]–[162]. FPGA’s flexibility also lends it for ex-
ploration into various in-hardware training algorithms. Some
examples are: a modified STDP rule that uses shift operation
to replace the exponential operation to reduce logic resource
consumption [157]; competitive Hebbian learning on chip with
biologically plausible Izhikevich neurons on FPGA [163]; a
hardware friendly STDP rule which allows low bit precision
in a liquid state machine (LSM) on FPGA [164]; STDP
for convolutional SNN on FPGA [165]; and an STDP rule
that uses only 1-bit synaptic weights to reduce computing,
communication, and memory overhead [166].

For different biological neuron behaviors, such as conser-
vation of charge, amplification, thresholding and integration,

the analog circuit analogies can be found [2]. Such similarity
makes analog integrated circuits and neuromorphic systems
well suited for each other. The original neuromorphic defini-
tion by Carver Mead referred to analog circuits that operated
in subthreshold mode [2]. Many analog neuromorphic systems
also operate in this region typically for power efficiency [90],
[167]–[176]. There are a large variety of other neuromorphic
analog implementations [90], [177]–[209].

Similar to digital FPGAs, there are field programmable
analog arrays (FPAAs) enabling programmability for analog
neuromorphic systems [210]–[214]. Some custom FPAAs are
developed specifically for neuromorphic systems, including
the field programmable neural array (FPNA) [215] and the
NeuroFPAA [216]. While many of the digital neuromorphic
systems adopt asynchronous and event driven methods for
energy efficiency, analog neuromorphic systems do sometimes
employ clocks for synchronization.

Mixed analog and digital implementation is usually the
solution to overcome some inherent limitations of analog im-
plementation. In many analog neuromorphic systems, synaptic
weights are stored in digital memory for reliability and longer
duration [217]–[220]. In some analog neuromorphic systems,
digital communication is utilized either within the chip, or
among neuromorphic chips [221]. These communications are
usually in the form of digital spikes. Using digital compo-
nents for programmability or learning mechanisms is also
common [222]–[225]. Two major projects within the mixed
analog/digital family are Neurogrid and BrainScaleS.

C. Architecture

In this section, we discuss three different architecture
choices, their pros and cons, as well as implications on
hardware design. These three choices are von Neumann ar-
chitecture, ideal architecture for neuromorphic computing and
practical mult-core architecture.

von Neumann Architecture Von Neumann architecture is
the foundation of modern general-purpose computers. It is
shown in Figure 9a . A typical von Neumann architecture
consists of following components: a central processing unit
(CPU), memories, and input/output (I/O) devices. Devices
are connected through bus systems. Data and program are
stored in external memory, and fetched by CPU sequentially.
Such architecture sufferers from the well-known von Neumann
bottleneck, i.e. the system performance is bounded by the
data exchange speed between CPU and the external memory.
Though von Neumann architecture provides high flexibility, it
is not suitable for neuromorphic computing because it cannot
provide the massive concurrency and parallelism featured in
the biological neural systems.

Ideal Architecture In a biological system, each neuron
and synapse has its own state, which can be characterized
by a set of parameters and variables in software/algorithm
models. These parameters/variable are not shared among dif-
ferent neurons or synapses, and they are updated locally
and concurrently. The inter-neuron communication is also a
parallel process through massive number of synapses. Based
on above observations, an ideal architecture should support
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(a) (b) (c)

Fig. 9: (a) Von Neumann Architecture (b) Ideal Neuromorphic Architecture (c) Practical Neuromorphic Core.

TABLE I: Trade-offs of different architectures.

Architecture Scability Cost performance
Von Neumann ++ ++ —
Ideal - – +++
Practical ++ + ++

1) Local and dedicated data storage; 2) Massive concurrency;
and 3) High connection density.

Based on above requirements, an ideal architecture of
digital neuromorphic hardware is presented in Figure 9b
where each processing unit and its local memory are used to
represent a single neuron, and the local Arithmetic/logic unit
(ALU) is responsible for updating neuron status. The close-to-
memory computing reduces data retrieving latency, while the
distributed memory enables parallel computation. This ideal
architecture maximizes the number of synaptic operations
per second (SynOps/s), which is an important measure of
neuromorphic hardware performance.

Practical Architecture The aforementioned ideal neuro-
morphic architecture, that maintains one processing unit for
each neuron, is not scalable when the size of the neural
network increases. The large circuit overhead arising from
an ALU assigned to each neuron and hardwiring the neurons
to each other for large-scale SNNs is highly impractical. A
practical solution is to group a number of neurons in a core, as
shown in Figure 9c. These neurons have their own local data,
but share the same data path to update neuron and synapse
status. Compared to the ideal neuromorphic architecture, this
reduces the effective circuit area per neuron significantly. The
cores also enable sharing of common parameters among the
neurons for a more efficient usage of memory. However, as the
same ALU is utilized to update the neurons and synapse status
associated with a core, usually time-multiplexing is utilized.
This reduces the parallelism, as the ALU can only be accessed
by one neuron at a time. Additionally, this also introduces
spiking delays (or delay in neuron update) that can cause
errors in the neuronal encoding. Trade-offs of above three
architectures are shown in Table I.

D. Communication

Neuromorphic systems support both intra-chip and inter-
chip communication. Both types of communications are imple-
mented using address event representation (AER). [226]–[228]
apply AER to on-chip inter-neuron packet based communi-
cations. Vainbrand and Ginosaur studied different network-
on-chip architectures for neural networks, including mesh,
shared bus, tree, and point-to-point. They found network-on-
chip multicast to have the highest performance [229]. Ring-
based communication structure has been tested successfully
[230], [231] for on-chip neuron communications. Buses were
also utilized for some on-chip communication systems [232],
[233]. This asynchronous bundled data design style is well
suited for SNNs that fundamentally feature a high degree of
sparseness in their activity across both space and time. [234]–
[239] also apply AER to inter-chip communications, where the
chip ID is encoded as part of the packet address. AER have
been implemented through custom PCI boards to optimize
performance [240], [241] or utilizing FPGAs [242]–[244].

E. Supporting Software and Ecosystems

Supporting software tools are important components in
the ecosystem of neuromorphic processors. Those usually
consists of tools for mapping, programming and simulation.
The mapping tools partition an SNN into clusters and map
clusters to processing units on the neuromorphic hardware
[132], [245]–[250]. The goal is to minimize the inter-core
communication that considers the hardware constraints such
as the number of input/output channels, the amount of local
memories, etc. Programming tools enable users to explicitly
describe a particular neuromorphic architecture [251]–[255]
by setting different parameters and topology configurations,
or by utilizing custom training methods. Software simulators
[131], [249], [253], [256]–[259] are used to emulate the
neuromorphic hardware and enable the user base in developing
and testing of network topologies, training algorithms, neuron
parameters, etc., when the hardware has not been widely
deployed.
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IV. CASE STUDIES OF SOME LARGE-SCALE
NEUROMORPHIC SYSTEMS

In this section, we will discuss several representative sys-
tems as examples to showcase the main components discussed
in previous section. They are: neuromorphic super computing
platform (SpiNNaker), digital ASIC (TrueNorth), digital ASIC
with on-chip learning (Loihi), analog and mixed-signal de-
sign (BrainScaleS), and ANN-SNN hybrid design (Tianjic).
A quick summary of the neuron and synapse models that
they support, their implementation choices, architecture and
software support is provided in Table II.

A. Digital ASIC: TrueNorth

TrueNorth is a brain-inspired digital chip with an intercon-
nected network of 64x64 neurosynaptic cores, where each core
has 256 incoming axons, a 256x256 synapse crossbar, and
256 neurons [138] as shown in Figure 10a. In total, there
are 1 million spiking neurons and 256 million synapses in a
TrueNorth chip. Binary synapses, with programmable weights,
gate the information flow from axons to neurons. Each axon
fans out to all neurons in a core in parallel, thus, providing a
256-fold reduction in communication volume in comparison to
a point-to-point approach. TrueNorth implements these intra-
core connections through SRAM crossbar memory whereas
inter-core connections are implemented through spike-based
message-passing network. Programmability of TrueNorth in
terms of neuron parameters, synaptic crossbar connections,
and inter-core connectivity allows a wide range of structures,
dynamics, and behaviors.

1) Neuron and Synapse Implementation: TrueNorth’s neu-
ron model is based on the classic leaky integrate-and-fire
neuron (LIF) with five basic operations: synaptic integration,
leak integration, threshold comparison, spike generation, and
membrane potential reset. The membrane potential Vj(t) of
the neuron j is updated according to these five operations as
summarized in Equations 13, 14 and 15.

Synaptic integration:

Vj(t) = Vj(t− 1) +

N−1∑
i=0

Si(t)xi (13)

Leak integration:

Vj(t) = Vj(t)− λj (14)

Membrane potential reset:

If Vj(t) ≥ αj , spike and Vj(t) = Rj (15)

For each of the neurons, membrane potential is the accumu-
lated sum of the product of spike input to the synapse Si(t)
at the current timestep and the signed synaptic weight xi.
Following integration, the LIF neuron model subtracts the leak
value λj from the membrane potential every timestep. This
linear leak operation serves as a constant bias on the neural
dynamics. The neuron fires a spike and resets its membrane
potential to Rj (typically, Rj is zero), when the membrane
potential of the LIF neuron at the current timestep Vj(t) is
greater than or equal to the neuron threshold voltage αj .

(a)

(b)

Fig. 10: Truenorth architecture (a) Functional view (b) A
corelet [138].

This LIF neuron model is augmented by configurable and
reproducible stochasticity [117]. Each individual neuron can
be configured to have stochastic synaptic input, leak, and
threshold to enable rich dynamics across population and time.
The neuron model allows for four leak modes that bias
the internal state dynamics in four different ways so that
neurons can have radically different responses to identical
inputs. The leaks can be either positive or negative to let the
membrane potential to diverge from or converge towards a
resting potential. The neuron model also provides two types
of threshold; deterministic and stochastic, so that neurons
can fire at different patterns even with the same accumulated
membrane potential. It has six reset modes to determine the
membrane potential after firing, enabling a rich finite-state
transition behavior. To reduce complexity, it adopts fixed-point
arithmetic and the neuron model uses only simple addition and
multiplexing arithmetic/logic units instead of complex function
units such as multiplication, division, and exponentiation.

The synapses themselves are binary (1: connected, 0:
disconnected). Each synapse connected to a neuron in the
crossbar is allocated a choice of four 8-bit signed weights.
The synapses of TrueNorth neurons are non-plastic, i.e. the
synaptic weight cannot be modified during the runtime.

Exploiting the provided configurability, users can use
TrueNorth neurons to implement a wide variety of computa-
tional functions, including arithmetic, control, data generation,
logic, memory, classic neuron behaviors, signal processing,
and probabilistic computations. The programmable leakage
and threshold give neurons the capacity to support a variety of
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neural codes including rate, population, binary, and time-to-
spike coding. Rich and diverse array of complex computations
and behaviors can also be synthesized by composing multiple
neurons together. For example, the 20 behaviors of the Izhike-
vich dynamical neuron model can be qualitatively replicated,
using a small number of elementary neurons.

A TrueNorth chip, built in Samsung’s 28-nm process
technology, occupies 4.3 cm2 area and contains 5.4 billion
transistors. Each core has 104,448 bits of local memory to
store synapse states, neuron states and parameters , destination
addresses, and axonal delays. In total, the TrueNorth has 428
million bits of on-chip memory. Addititionally, TrueNorth’s
power density is 20 mW per cm2 which is highly efficient in
comparison to typical CPU’s 50 to 100 w per cm2.

The very high energy efficiency of the TrueNorth pro-
cessor does not only come from the low-cost hardware and
simplified function, but also from its mixed synchronous-
asynchronous neuron architecture, which reduces the neuron
switching activities by 99%.The average firing frequency of
TrueNorth neurons is approximately 20 Hz, which is close to
the frequency of the Beta Wave associated to normal waking
consciousness. This activity is very sparse compared to the
speed of modern silicon. Joined with extensive power-gating,
event-driven computing and asynchronous communication, the
sparse activity significantly improves the energy efficiency.

2) Architecture and Communication: Multiple neurosynap-
tic cores are connected using distributed on- and off-chip
connectivity to construct complex networks. There is no global
clock other than a 1-kHz global synchronization signal, which
discretizes the neuron dynamics into 1-ms time steps and en-
sures one-to-one equivalence between software and hardware.

A two-dimensional mesh network of routers form the back-
bone for interconnecting the 64x64 core array. Each of the
routers have five ports (north, south, east, west, and local) and
communicates spike event between cores in a time-multiplexed
manner. With this mesh network, a neuron can talk to an axon
on any core. When a neuron spikes in a core, it looks up an
axonal delay (4 bits) and the destination address (8-bit absolute
address for the target axon and two 9-bit relative addresses
representing core hops in each dimension to the target core)
in the local memory and encodes it in a packet. This packet is
injected into the mesh, where it hops from core to core - first
in the x dimension then in the y dimension (deadlock-free
dimension-order routing). The asynchronous router delivers
spikes at 0.3fJ per bit per µm. A merge-split structure is
used at the four edges of the mesh to serialize exiting spikes
and deserialize entering spikes. This enables scaling the two-
dimensional mesh across chip boundaries as tiles, similar to
the mammalian neocortex.

The architecture is efficient because neurons that form a
cluster can be mapped to the same neuron core and com-
municate using local connections. The remaining inter-core
connection is sparse, which reduces the communication cost.
Additionally, each spike event addresses a pool of neurons on
a target core, reducing the number of long-range spike events.
The tile based architecture also increases the fault tolerance,
as the system usability is not disrupted by occasional defects
at the core and chip level. Also, the architecture is flexible

as each neuron is individually configurable, each synapse
can be turned on or off individually, and the neurons and
synapses support programmed stochastic behavior. Thus, the
neuron model [117] supports a wide variety of computational
functions and biologically relevant spiking behaviors. One
of the limitations of the architecture is that, to reduce the
hardware cost, each column in the crossbar supports only 4
different synaptic weights, ranked from 1-4; and all synaptic
connections in the same row must select the weight in the
same rank in the corresponding column.

3) Supporting Software/Software Ecosystem: A TrueNorth
program is a complete specification on the connectivity and
configurations of a network of neurosynaptic cores, along
with its external inputs and outputs. The “corelet”, abstraction
is used to represent a TrueNorth program by only exposing
external inputs and outputs while encapsulating all other
details of the network of neurosynaptic cores as shown in
Fig. 10b. The object-oriented Corelet Language is developed
by IBM for creating, composing, and decomposing corelets.
As part of the TrueNorth ecosystem, a Corelet Library that
provides a repository of reusable corelets macros, and an end-
to-end Corelet Laboratory that is a programming environment
integrated with the TrueNorth architectural simulator are also
provided [258]. In 2016, IBM released the Eedn deep learning
framework [36] to facilitate the training and mapping of deep
spiking neural network on the TrueNorth system.

Eedn-trained CNNs have matched state-of-the-art accuracy
on benchmarks that previously required floating-point preci-
sion and unconstrained connectivity, while achieving through-
put of 1,200-2,600 classifications on CIFAR dataset per second
and power consumption of only 25-275 mW [36] on 2000
to 4000 cores. TrueNorth systems have been applied to real
time handwritten character recognition and confabulation [70],
anomaly detection [260], optical flow [261], unconstrained
optimization [262], decoding EEG [263], medical image seg-
mentation [264], etc.

B. ASIC with on-chip Learning: Loihi

Loihi [105] is a digital neuromorphic chip recently de-
veloped by Intel. Loihi is fabricated in Intel’s 14-nm pro-
cess. A Loihi chip contains 128-neuromorphic cores totaling
130,000 artificial current-based (CUBA) leaky-integrate-and-
fire neurons and 130 million synapses. It also provides a
programmable microcode learning engine for on-chip SNN
training. A Loihi chip consists of 3 Lakemont cores, which
help with implementing advanced learning rules and managing
the neuromorphic cores. The Loihi design supports scaling up
to 4,096 on-chip cores and 16,384 chips.

1) Neuron and Synapse Implementation: Loihi adopts a
variation of the CUBA LIF model that has two internal
state variables, the synaptic response current ui(t) and the
membrane potential vi(t). The synaptic response current is
given by the sum of filtered input spike trains and a constant
bias current:

ui(t) =
∑
j 6=i

wi,j(αu ∗ Sj)(t) + bi (16)
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where wij is the synaptic weight from neuron j to i,
αu(t) = τ−1

u exp (−t/τu)H(t) is the synaptic filter impulse
response parameterized by the time constant τu with H(t) the
unit step function, Sj(t) is the input spike train, “*” indicates
the convolution operation, and bi is a constant bias. As shown
in Eq. 16, the same kernel αu(t) is used by all synapses
of the postsynaptic neuron u. The synaptic current is further
integrated into the membrane potential based on Eq. 17, and
the neuron spikes when its membrane potential passes its firing
threshold θi.

vi(t+ 1) = − 1

τv
vi(t) + ui(t)− θiSi(t) (17)

where Si(t) is the output spike of the neuron. As shown
in Eq. 17, the integration is leaky, as captured by the time
constant τv . vi is initialized with a value less than θi, and is
reset by θi after a spiking event occurs.

Each synapse in Loihi is configured by a 5-tuple:
(i, j, weight, delay, tag), where i, j are the source and des-
tination neuron indices of the synapse, and weight, delay
and tag are integer-valued properties of the synapse. Synap-
tic delays enable advanced temporal codes by delaying the
accumulation of an incoming spike, while tags are useful
as an additional scratch variable within the learning engine.
Each synapse also associates with multiple presynaptic traces,
and whereas compartment with postsynaptic traces. They use
different exponential smoothing parameters with decay α and
impulse magnitude δ and are evaluated as follows:

x [t] = α · x [t− 1] + δ · S [t] (18)

where x[t] is the trace variable and S[t] is the incoming
spike train. The traces are used by the learning engine as input
variables for synaptic adaptation. Loihi supports in-hardware
adaptation for all three synaptic variables, weight, delay and
tag. The locality constraint is satisfied during the procedure.
The weight (delay, tag) can only be accessed and modified
by the postsynaptic neuron, based only on locally available
information, such as the spike trains from the presynaptic
(source) and postsynaptic (destination) neurons. The functional
form of adaptation rules is described in sum-of-products form
in terms of microcode operations associated with the synapse:

z = z +

Np∑
i=1

Ai

ni∏
j=1

(xi,j + Ci,j) (19)

where z is the transformed synaptic variable
(weight, delay or tag), xi,j refers to some selected input
traces available to the learning engine, and Ci,j and Ai are
microcode-specified signed constants [105]. Based on Eq. 19,
the learning engine supports simple pairwise STDP rules and
also much more complicated rules such as triplet STDP [265],
[266], reinforcement learning with synaptic tag assignments
[267], and complex rules that reference both rate averaged
and spike-timing traces.

2) Architecture and Implementation: The Loihi processor is
a digital and functionally deterministic neuromorphic chip. It
was implemented in an asynchronous bundled data design style

allowing for event-driven communication through spikes with
maximal activity gating during idle periods. It was fabricated
in Intel’s 14nm FinFET process. The chip has a die area of 60
mm2 containing 2.07 billion transistors and consists of 128
neuromorphic cores and three x86 cores. Loihi includes a total
of 16MB of synaptic memory. It boasts a maximum synaptic
density of 2.1 million unique synaptic variables per mm2 with
its densest 1-bit synapse format and maximum neuron density
of 2,184 per mm2. After adjusting for the benefit from the
advanced technology, this comes to a 2× reduction in the
neuron density in comparison to TrueNorth, which can be
interpreted as the cost of Loihi’s greatly expanded feature set.

Each neuromorphic core in Loihi implements 1,024 prim-
itive spiking neural units called compartments, which can
be grouped into sets of trees constituting neurons. The ar-
chitecture memory for the storage of configuration and state
variables for the compartments and the associated connectivity
(fan-in and fan-out) are shared in a core. Every algorithmic
timestep, the state variables are updated in a time-multiplexed,
pipelined manner. When a neuron’s activation exceeds the
threshold, it generates a spike message that is routed to the
fan-out compartment in one or multiple destination cores.

An asynchronous network-on-chip (NoC) forms the back-
bone for communication between the cores. All communica-
tion between cores occurs in the form of packetized messages.
The different types of communication messages include core
management and x86-to-x86 messaging, spike messages, and
barrier messages for time synchronization between cores. The
NoC distributes the communication messages according to the
dimension-order routing. The NoC itself only supports unicast
distributions. To multicast spikes, the output process of each
core iterates over a list of destination cores for a firing neuron’s
fan-out connections and sends one spike per core.

The host CPU, the on-chip x86 processors and the neural
cores can communicate with each other using any type of
messages. For off-chip communication over a second-level
network, messages may be hierarchically encapsulated. The
mesh protocol allows for scaling to 4096 on-chip cores and
up to 16,384 chips.

3) Supporting Software/Software Ecosystem: Loihi pro-
vides a Python-based API that can be used to specify complex
SNN topologies and to program custom learning rules. It
also provides a compiler and runtime library for building and
executing SNNs on Loihi. The API utilizes core primitives:
neuronal compartments and synaptic connections as means of
defining SNN topology, synaptic traces and a neuron model
to describe SNN dynamics, and synaptic learning rules. Thus,
enabling the programmers to implement SNNs in an intuitive
way without requiring intimate knowledge of its architectural
details. The compiler takes an SNN implementation and
produces a binary byte stream in three steps: preprocessing,
resource allocation, and code generation. Due to the support of
more complex neuron and synapse models, the application of
Loihi is more diversified. It has been applied to accelerate the
process of Locally Competitive Algorithm for LASSO [105],
Neural Engineering Framework (NEF) [52], Stochastic SNNs
for solving Constraint Satisfaction Problems [268], Parallel
graph search [269] and Random diffusion walkers [270]. It
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has also been used to implement biological inspired systems
such as Olfaction-inspired rapid learning [271]. Dynamic
Neural Fields [272], SLAM [72], Evolutionary search [273]
are fields to which Loihi is being applied. It has also been used
to implement deep SNN for conventional machine learning
applications such as classification or prediction. For these
applications, Nengo is used to convert a DNN to SNN [274],
[275].

C. Analog/Mixed-signal System: BrainScaleS

Analog/mixed-signal design has always played an impor-
tant role in neuromorphic computing due to its analogue to
biological systems. After modeling the neurons and synapses
using circuits consisting of resistors, and capacitors/inductors,
basic operations of neural computation such as conservation
of charge, amplification, exponentiation, integration, thresh-
olding, etc., can be naturally emulated [4]. Such analog/mixed-
signal design has the potential to achieve higher speedup
and energy efficiency than digital systems. Some represen-
tative analog/mixed-signal neuromorphic computing systems
are: BrainScaleS, BrainDrop, NeuroGrid, DYNAP-SEL etc.
Though these systems differ in various aspects, they share the
same design philosophy. They all use analog circuits to imple-
ment neuron and synapse models for efficient computation and
implement control, on-chip communication, I/O, data storage
using digital circuits. They also adopt multi-core architecture
and NoC for parallelism and scalability. In this section, we
take BrainScaleS as an example to introduce neuromorphic
computing hardware using analog/mixed-signal design.

BrainScaleS is a part of Human Brain Project’s (HBP)
neuromorphic computing platform. HBP is a brain research
initiative supported by the European Union, aimed at facili-
tating research of human brain related areas, such as neuro-
science, medical research, cognitive science as well as brain-
inspired computing technologies [276], [277]. HBP neuromor-
phic computing platform offers two complementary systems:
BrainScaleS and SpiNNaker. BrainScaleS implements neuron
and synapse models using analog circuits, enabling low power
and high speed at the cost of flexibility. SpiNNaker, which
will be discussed in Section IV-D, on the other hand, is
based on general purpose ARM processors, providing flexible
functionalities.

1) SNN models: BrainScales implements an exponential
integrate and fire model (AdExp) [278], [279] as below:

−Cm
dV

dt
= gl(V − El)− glδth exp (

V − Vth
δth

)

+ ge(t)(V − Ee) + gi(t)(V − Ei) + wt (20)

− τw
dw

dt
= w − a(V − El) (21)

w ← w + b upon generating a spike (22)

Where Cm, gl, El, Ee and Ei are the membrane capacity,
leakage conductance, leakage, excitatory and inhibitory rever-
sal potentials respectively [280]. ge(t) and gi(t) represent the

total excitatory and inhibitory synaptic conductance. Vth is
the threshold, when V > Vth, the AdExp neuron potential
can develop to infinity rapidly, δth determines sharpness of
the procedure. Equation 21 depicts the evolution of adaption
current. w is increased by b, which is called spike triggered
adaption, upon generating a spike. τw is a time constant
and a is subthreshold adaptation efficacy. By ignoring the
exponential term and the adaption, the AdExp models can be
simplified to the common leaky integrate and fire model. More
details about how the neuron model is implemented can be
found in [279].

2) Hardware Platform: The full BrainScaleS-1 system
(NM-PM-1) consists of 20 neuromorphic wafer modules and
peripheral devices such as support infrastructure for power,
communication and analog readout. An additional computer
cluster is used to control the wafer modules [281].

The underlying building block of the BrainScaleS system
is the High Input Count Analog Neural Network chip (HI-
CANN), which is an uncut 20 cm wafer scale chip fabri-
cated by 180 nm CMOS technology [280]. HICANN adopts
mixed signal design. Computations of neurons and synapses
are carried out by analog circuits; weight storage, control
and communication are implemented by digital circuits. By
emulating the neuron and synapse differential equations with
analog circuits, power consumption can be reduced by several
orders of magnitude, compared with solving the differential
equations numerically using digital processors [282].

3) System Architecture : In order to address the high
communication throughput required by massive simulation and
high acceleration factor, HICANN adopts a unique technique,
namely wafer-scale integration. The wafer is not cut into
individual chips, but all the chips on the wafer are directly
interconnected to provide high connection density [283]. A
wafer consists of 56 reticles, each of which consist of 8
analog network chips (ANC) [283]. The major component of
ANC is Analog Neural Network Core (ANNCORE), which
contains 128k synapses and 512 membrane circuits/ dendrite
membrane (DenMem) circuits [283]. Each DenMem circuit
is connected to 224 synapses. Multiple DenMem circuits can
be grouped together to build a neuron, such that neurons can
have a variable number of synapses [280]. Up to 64 DemMem
circuits can be grouped together, resulting in a single neuron
with 14336 synapses. Each synapse has a 4-bit weight stored
in SRAM. Synapse current is generated by DAC.

The fault tolerant nature of biological neural network is pre-
served by HICANN, and hierarchical programmable topology
enables the replacement of individual defect neurons or an
entire neuron core.

The communication in BrainScales has a hierarchical ar-
chitecture. The Layer-1 communication is carried out by a
continuous-time serial bus system that enables inter wafer
communication between ANCs across the entire wafer. The
521 wires of the Layer-1 bus form 256 differential lanes
connected directly to the ANCs. Since the signal has to travel
along horizon and vertical buses across the wafer, repeaters
are required for signal and timing restoration. Repeaters are
placed at the boundaries of each chip. Each repeater consists
of a receiver, timing restoration circuit and driver [283]. The
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packet-based inter-wafer or wafer-to-host communication (i.e.
Layer-2) is implemented by dynamic routing chips connected
to the wafer surface [178].

4) Supporting Software/Software Ecosystem: BrainScaleS
supports PyNN as programming interface. A user can specify
the parameters of neurons and define connections and network
topology by Python [284], [285]. The existing packages in the
PyNN ecosystem can also be used with BrainScales [286].

D. Neuromorphic Super Computing Platform: SpiNNaker

The spiking neural network architecture (SpiNNaker)
project is a massively parallel computer system based on
general purpose ARM processor, aimed at providing high
performance and flexible simulators for neuroscience exper-
iments. Its goal is to simulate up to a billion neurons in real
time [122].

1) Hardware Platform: The basic building block of the
system is the SpiNNaker chip. A SpiNNaker chip is a cus-
tom designed multiprocessor system-on-chip, consisting 18
identical ARM968E-S 32-bit processors clocked at 200 MHz
[128]. Each core has 32-kB instruction memory and 64-kB
data memory. An off-die 128 MB SDRAM is stacked on the
chip [118]. The chip adopts a Globally Asynchronous Locally
Synchronous (GALS) architecture. Each core resides in its
own clock domain [287].

SpiNNaker chips are mounted on a printed circuit board
(PCB), forming a 48-node hexagonal array. A full system can
have up to 1200 such boards, resulting in 57K nodes, 1M
ARM cores and 7 T bytes of RAM in the entire system [122],
[128].

SpiNNaker consists of two different types of networks at
different hierarchies. The first one at the lower level is the
system NoC, which handles communication inside a chip. The
system NoC uses AMBA5 AXI interfaces [287]. It connects
the ARM cores and several slave devices, such as system
controller, Ethernet media-independent interface controller,
off-chip SDRAM etc. [128].

The second is the communication NoC, which is a packet
switching fabric responsible for system-wide communications.
It transmits packets from one processor to any other processor,
which doesn’t have to be in the same chip. The Router has
six full-duplex links connecting to adjacent chips of directions
(North, Northeast, East, South, Southwest, West) to form a 2-D
triangular toroidal mesh. In addition, the system configuration
and information are also transmitted by communication NoC
[128], [287].

2) Neuron Models: SpiNNaker is based on a general pur-
pose CPU, it has higher flexibility than BrainScaleS. The
project provides a C-based event-driven programming model:
SpiNNaker Application Run-Time Kernel (ARK) and Appli-
cation Programming Interface (API). The programming model
enables modelling of arbitrary neuron and synapse dynamics
[132].

Users can write C functions (also called “callbacks”) to
define a particular task, and then register the function to
scheduler specific events, so that the function can be triggered
by the event. The events can be arrival of a packet, the

completion of a DMA transfer, timer etc. [118], [132]. For
example, [132] implemented the Izhikevich neuron model and
three different synapse models, i.e. current-based instanta-
neous spike response model, current- and conductance-based
models with first-order response. [288] implemented a leaky
integrate and fire model. [289] Implemented stochastic neuron
models on SpiNNaker, and [290] provided implementation of
current-based leaky integrate and fire neurons and Izhikevich
neurons.

3) Supporting Software/Software Ecosystem: SpiNNaker
has a relatively well-developed software ecosystem compared
with other neuromorphic systems. In addition to the basic
SpiNNaker API, [248] introduced the PArtitioning and Con-
figuration MANager (PACMAN), which is an intermediate
translation layer that decouples the model from SpiNNaker
hardware, such that arbitrary neuron and synapse dynamics,
and arbitrary network topologies can be implemented on the
SpiNNaker system. Various frontend programming libraries
are built upon PACMAN to support SpiNNaker including
PyNN [291], Nengo [292], NEST [293], Brian [294], [295],
sPyNNaker [290] etc.

E. ANN-SNN Hybrid Design: Tianjic

Tianjic [296] is a 28 nm reconfigurable chip designed
by Tsinghua University. It provides a hybrid and synergistic
platform for both the Spiking Neural Network model and the
Artificial Neural Network Model. The Tianjic chip contains
around 40,000 neurons and 10 million synapses. Tianjic’s
flexible reconfiguration enable this chip to implement most
neural networks (fully connected, convolutional, pooling, spik-
ing, etc.) from the same basic topological layer.

1) SNN models: Tianjic supports various neural network
algorithms, for the neuromorphic approach, it adopts the
Spiking Neural Network (SNN) model. The axon block in
the FCore is to memorize the historical spikes or ANN inputs
and feed them through connected synapses according to its
configuration mode. After receiving signals from synapses,
the dendrites block performs either integration (SNN mode)
or MAC (multiplication and accumulation) operation (ANN
mode). The shared dendrites then deliver the results to soma
block. As shown in Equation 23, in SNN mode, the Tianjic
chip adopts the leaky Integrate-and-fire (LIF) model, where
V (t) denotes the membrane potential in the soma unit. The
soma part receives voltage VΣ coming from dendrites, here
Vr1 is the reset voltage and τ is the time constant.

τ
dVi(t)

dt
= − [Vi(t)− Vr1] + VΣ (23)

2) Hardware Platform: The Tianjic chip is fabricated with
28 nm high performance low power (HLP) process, and it
occupies 3.8 × 3.8 mm2 die area. One Tianjic chip consists
of 156 Fcores. For each Fcore, Tianjic chip supports 32 weight
indices and 256 fan-ins/fan-outs (N), and the static random-
access memory (SRAM) of each Fcores is around 22 KB. Un-
like Lohi and TrueNorth, the Tianjic chip adopts synchronous
circuits and its clock frequency is 300 MHz. The average
power consumption for control, audio and base applications is
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400 mW under 0.9 V working voltage. Generally, the Tianjic
chip requires 5,050 clock periods to complete a round of
computations and communications.

3) Architecture: As discussed in the previous section, Tian-
jic embraces a 2D mesh many-core architecture to achieve
massive parallelism. At the coarse-grained level, developers
are able to assign some Fcores to ANN mode and other
Fcores to SNN mode concurrently. While at the Fcore block
(fine-grained) level, the independently reconfigurable axon and
soma enable Tianjic to implement neuromorphic and artificial
neural networks. Tianjic chip also supports transition mode
between ANN and SNN, that is, when axon and soma are
set to different modes, FCore can process the ANN’s input
in axon block to SNN’s output in soma block or receive the
SNN’s inputs from the axon block and convert them to the
ANN’s outputs in the soma block. This unique transition mode
is hybrid mode.

There are two chunks of Axon memory. When the Axon
is assigned to ANN mode, the two chunks are served as a
ping pong buffer for ANN’s input. In SNN mode, these two
chunks are merged to store the temporal spike patterns in a
time window. As for the dendrite block, the processing neurons
are divided into groups, each group has 24-bit accumulators
to support the vector-matrix multiplication (VMM) that can
be used in both ANN and SNN modes. The dataflow in the
soma block is different in ANN mode and SNN mode: In
ANN mode, data flows in ‘bias, activation function, output
transmission’ fashion, and the biased activation value is 25-
bit; The dataflow changes to ‘potential leakage, spike gener-
ation, output transmission’ fashion in SNN mode, where the
membrane potential is also 25-bit.

4) Communication: The routing packet format is the same
for both SNN and ANN interFcore transmission, which con-
sists of control, address, and data segments. The post synaptic
axon parses received ANN or SNN signals from soma and
renders them to the routing blocks. In ANN mode, the data
segment transmits as 8-bit activation while in SNN mode it
transmits as nothing (itself is a spike or none). The 1KB
routing LUT consisting of address and control segments will
route the packet to one of the 5 communication channels: local,
eastern, western, southern, and northern.

Tianjic chip adopts conventional P2P [114]routing scheme
and adjacent multicast (AMC) routing scheme. The reconfig-
urable routing table allows each Fcore to connect with any
other neuron.

5) Supporting Software/Software Ecosystem: Tianjic’s soft-
ware tool chain supports the deployment of various SNN
and ANN models. To reduce the latency of the application,
Tianjic developed several software techniques, including but
not limited to unified abstraction for programming and an
automatic compiler for mapping hardware. The software tool
chain also supports direct training and indirect training for
neural networks. The direct training deploys a spatiotemporal
back-propagation algorithm to train the network on chip. The
indirect training uses a trained ANN and converts it to SNN.

6) Applications: Tianjic has been tested for several com-
puter vision tasks, such as MNIST detection. To demonstrate
that one Tianjic chip can handle complex biological plausible

neural networks in parallel, The Tianjic team designed an
unmanned bicycle experiment. The experiment requires the
chip to handle obstacle avoidance, real-time object detection,
voice recognition and decision-making with different neural
networks. For example, SNN is utilized for voice recognition,
CNN is used for object detection and CANN [297] is used for
target tracking.

In addition to the aforementioned systems, many other
large-scale neuromorphic computing platforms have been
playing an important role in machine intelligence and com-
putational neuroscience. Table III provides a more compre-
hensive comparison of the technology and performance of the
large-scale neuromorphic systems that are currently active.

V. OUTLOOK

The function and behavior of biological neural systems
inspire the third generation of neural networks, i.e. Spik-
ing Neural Networks (SNN). While moving from biological
system to software simulation deprives the energy efficiency
that the brain promises due to the inherent limitations of the
Von Neumann architecture in general purpose computers, this
challenge has been tackled by the emerging neuromorphic
hardware. In this work, we discussed the various aspects of
neuromorphic systems, such as the computing models and
their design considerations, as well as hardware platform
and communication systems. We have also discussed various
neuromorphic systems, which have provided not only solid
foundations for SNN hardware implementation, but also excit-
ing computing platforms for a variety of research fields helping
to push forward the frontier of computational neuroscience
and machine intelligence. However, there are still many areas
waiting to be explored. The research needs in neuromorphic
computing can be categorized into three areas 1) algorithm and
computational model. 2) hardware architecture. 3) emerging
device technologies.

A. Challenges in Model and Algorithm Design

On the algorithmic level, in-hardware learning is still a
major road block.

The capability of incrementally augmenting its knowledge
base during run time and adapting itself to the changing
environment is crucial to an intelligent system. In digital
neuromorphic hardware, the memory capacity not only limits
the network size, but also the size of the neuron/synapse
state variables and the data precision. This restricts the com-
plexity of learning rules that can be implemented on the
hardware. While advances have been made in approximating
the backpropagation algorithm in SNNs in recent years [111],
the quality of learning suffers from low precision of data
and weight representations. How to improve the accuracy of
supervised learning under limited precision of weight and
neuron activities is one of the problems that need to be solved
with high urgency.

Alongside further investigating the traditional backpropa-
gation algorithms, application developers should look beyond
them so as to potentially revolutionize online learning. It
is widely accepted that the biological learning rules, such
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TABLE II: Design choices in the large-scale neuromorphic systems.

Neuron Synapse Implementation
Choice Architecture Software Support

TrueNorth Classic LIF

Binary with
a choice
of four

8-bit weights

Digital
256x256 crossbar

per core,
64x64 core array

Matlab-based
object-oriented

Corelet language

Loihi CUBA LIF

Variable precision
weight, allows

PSP with
exponential
kernel filter

Digital
No crossbar,

1048 neurons per core,
128 cores

Python-based
API NxSDK,
also supported

by Nengo

SpiNNaker Any Any
Digital,

Multiprocessor
SOC

-

SpiNNaker API,
PyNN, Nengo,
NEST, Brian,
sPyNNaker

BrainScaleS Exponential IF
(AdExp) - Analog/

Mixed signal

A wafer with 56x8 ANC
containing ANNCORE,

each of which has
128k synapse and

512 membrane circuits

PyNN

Tianjic Classic LIF - Digital

2D mesh many-core
with 156 Fcores,

each with 32 wieght index
and 256 fan-ins/fan-outs

-

TABLE III: Comparison of the large-scale neuromorphic systems.

Neuromorphic TrueNorth SpiNNaker Loihi BrainScaleS Neurogrid Braindrop Dynap-SEL TianjicChip
Implementation Digital Digital Digital Analog Analog Analog Mixed-signal Digital

Technology 28 nm ARM968 14 nm 180 nm 180 nm 28 nm 180 nm 28 nm130 nm
CMOS CMOS CMOS CMOS CMOS CMOS CMOS CMOS

# transistors 5.4 B 100 M 2.07 B 15 M 23 M
Neurons 256 ∼1k max 1024 8 to 512 65k 4096 1024 16per Core
Synapses 256x256 ∼1M ∼16k ∼130k 100M 64k 64k 22kper Core

Cores 4,096 16 128 352 16 16 4 156per Chip
Chip Area 430 102 60 50 168 43.79 14.44(mm2)

Energy/SOP 26 10000 23.6 100 100 0.38 17 0.95(pJ)

NoC
2D mesh 2D mesh 2D mesh Hierarchical Tree Tree Hierarchical Hierarchical
unicast multicast unicast multicast Multicast 2D mesh 2D mesh

multicast multicast
Packet Size 32 40 + 30 12 20(bits) optional 32

Time Discretized Discretized Discretized Discretized Real time Real time Real time Real time
Neuron Time Time Time Real time Real time Real time Real time Real time
Update Multiplexed Multiplexed Multiplexed

Bio-Plausibility Low Medium Medium High High High High Low
Simulation 1x to 21x Real-time >Real-time 104x Real-time 70 MHz Real-time 300 MHz

Time real-time but variable to 105x clock
On-Chip No Yes Yes Yes No Yes Yes NoLearning
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as STDP, is unsupervised and local. How to achieve useful
machine intelligence using the unsupervised local learning is
another area to be explored. This may require novel network
architectures that provide local feedback or reward signals
during the learning process. Since unsupervised learning in
general leads to associative memories, a study on the applica-
tion development and learning capacity of associative memory
is worthwhile.

Finally, like all online learning algorithms, the online learn-
ing of SNN will also suffer from catastrophic forgetting and
slow convergence. The low data precision in SNN deprives
us the flexibility of controlling the weights precisely. Hence,
techniques such as meta learning, which carefully move the
synaptic weights to a specific combination that works for
multiple input domains, may not be applicable for SNN. New
techniques to improve the quality of online learning must be
studied.

B. Challenges in Architectural Design

At the architecture level, the challenges come from off-
chip memory access latency, on-chip memory capacity, highly
diverse SNN models, reconfigurability, massive connection,
neuron density and network parallelism. The architectural
design has to balance these divergent and tightly coupled
aspects. The higher degree of flexibility and reconfigurability
comes at the cost of additional hardware cost. For example,
Loihi suffers a 2× reduction in the neuron density compared
with TrueNorth after process normalization [105]. SpiNNaker
achieves even higher flexibility as it adopts general purpose
ARM core and off-chip storage. To mitigate the memory
access latency, SpiNNaker stacks the SDRAM on the chip.
Digital designs such as Loihi, TrueNorth, and SpiNNaker
all work at the speed comparable to a biological system,
while BrainScaleS adopts an analogue design, and it achieves
10, 000× speedup over biological speed [298]. These design
trade-offs are made to serve specific purposes. Loihi and
TrueNorth are mainly designed for machine learning appli-
cations, hence use relatively simple models. SpiNNaker is
designed as a super computing system for various biological
research, hence it uses an ARM core rather than a model-
specific core to guarantee flexibility.

Although cost, flexibility, performance, and energy dissi-
pation are always contradictory goals during the hardware
design, a better architecture can push the design point for
a more efficient trade-off. Optimized resource allocation and
scheduling that maps neurons to physical cores while main-
taining workload balance and minimum communication will
further help to improve the performance and lower the energy
dissipation.

C. Emerging Devices

At the device level, the emerging technologies in nano
devices and materials provide a potential for extremely small,
ultra-fast and extremely low-lower neuromorphic hardware if
they are successfully married with suitable algorithms. These
works share similar ideas as analog/mixed-signal design, i.e.,

using the physical process to naturally and efficiently emulate
neuron and synapse dynamics.

In his work [299], Chua hypothesized the existence of the
missing element, memristor, defined by relation between flux-
linkage φ and charge q [300]:

dφ = M(q)dq (24)

where M(q) is a function of the amount of charge q flowed
through it. Such a memristor behaves like a non-linear resistor
with memory [299].

The synaptic weights in biological systems can be adjusted
by the ionic flow. This is analogous to the resistance of
the memristor, which can be adjusted by the charge or flux,
hence [301] demonstrated that the synapse function can be
implemented by a memristor. Furthermore, it showed that
STDP can be achieved by a hybrid system, which consists
of CMOS neurons and memristive synapses. Since then, the
memristor has attracted attentions as a promising implemen-
tation technique for neuromorphic systems [302]–[307] [217],
[308]–[311]. Most of these works adopt a memristor cross-
bar as it is capable of providing a high density connection
and efficient implementation of matrix-vector multiplication
[303], [312], [313] and can be used as an accelerator for
neuromorphic computing [310], [314]–[316]. How to realize
synaptic plasticity has also drawn a lot of interest [307], [317]–
[323]. [318] built a single layer perceptron and implemented
in situ training by the delta rule. [324] realized triplet STDP
learning rule on memristors. [306] also demonstrated the
feasibility of implementing ReLU neuron, convolution layer,
fully connected layer and unsupervised synaptic weight update
on memristor arrays.

A Photonic device is another promising direction for their
ultra-fast operation speed and virtually unlimited bandwidth
[325]–[336]. Recent works show that it is feasible to im-
plement synapses and neurons by photonic devices. [325]
implemented synapses in the optical domain via a photonic
integrated-circuit based on phase-change materials (PCMs)
cells. Because the PCM can be adjusted by optical pulses, the
PCM cell serves as non-volatile photonic memories. Synaptic
plasticity is also demonstrated [325]. [326] realized a scalable
all-optical spiking neural network circuit. A network of four
input neurons, three hidden-layer neurons and two output
neurons were built upon the proposed circuit. The network
demonstrated capability of pattern recognition in the optical
domain. [330] implemented a neuromorphic photonic network
to solve an ordinary differential equation system called a
Lorenz attractor, and it achieved 294 × speedup compared to
a CPU baseline. Though photonic neuromorphic computing is
still far from practical, it has the potential to exceed electronic
devices’ performance by many orders of magnitude [337].

While the neuromorphic systems implemented using afore-
mentioned emerging device technologies have demonstrated
great potentials, they also face significant challenges. How
to improve their scalability, flexibility and reliability will
continue to be the research direction in the future.
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VI. CONCLUSIONS

As a bio-inspired computing paradigm, neuromorphic com-
puting has great potentials in accelerating computational neu-
roscience, and enabling energy efficient solutions for machine
intelligence. Due to its unique way of encoding and processing
information, it is also believed to be particularly promising
for sensor and control-based applications that interact with
the physical environment. In this survey, we reviewed dif-
ferent computation models, learning algorithms, information
coding schemes, and hardware architectures of neuromorphic
computing. With more and more research efforts in academia
and industry, we anticipate that breakthroughs in more reliable
learning algorithms and more efficient implementations will be
seen in the near future.
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[244] S. Scholze, H. Eisenreich, S. Höppner, G. Ellguth, S. Henker, M. Ander,
S. Hänzsche, J. Partzsch, C. Mayr, and R. Schüffny, “A 32 GBit/s com-
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