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Abstract

Motivated by the growing availability of complex time series observed in real applica-
tions, we propose a threshold matrix-variate factor model, which simultaneously addresses
the sample-wise and time-wise complexities of a time series. The sample-wise complexity is
characterized by modeling matrix-variate observations directly, while the time-wise complexity
is modeled by a threshold variable to describe the non-linearity in time series. The estima-
tors for loading spaces and threshold values are introduced and their asymptotic properties
are investigated. Our matrix-variate models compress data more efficiently than traditional
vectorization-based models. Furthermore, we greatly extend the scope of current research on
threshold factor models by removing several restrictive assumptions, including existence of
only one threshold, fixed factor dimensions across different regimes, and stationarity within
regime. Under the relaxed assumptions, the proposed estimators are consistent even when the
numbers of factors are overestimated. Simulated and real examples are presented to illustrate

the proposed methods.

KEYWORDS: Curse of dimensionality; Factor models; High-dimensional time series; Matrix-

variate time series; Thresholding effect.

*Xialu Liu is an Associate Professor, Management Information Systems Department, San Diego State University,

San Diego, CA 92182. Email: xialu.liu@sdsu.edu. Xialu Liu is the corresponding author.
TElynn Y. Chen is an Assistant Professor at the Stern School of Business, New York University. Email:

elynn.chen@stern.nyu.edu. The authors thank the editor, the associate editor, and the referee for the insightful

comments and suggestions which significantly improve the paper.



1 Introduction

Advances in information technology have brought a growing number of high-dimensional matrix-
variate time series in forms of dynamic panels (Chen et al., 2020a), dynamic networks (Chen
and Chen, 2019), and multi-variate spatial temporal observations (Yu et al., 2015). To reduce
dimensions and to reveal underlying correlation structures, Wang et al. (2019) proposed a matrix-

variate factor model which is defined, for time series of X; € RP1*P2_ ag
X; =RF,C' +E;, t=1,2,...,T. (1)

Here, the observed matrix X, is driven by a latent factor matrix Fy € RF¥1*%2 of a smaller dimension
(i.e. k1 « p; and ks < p9), plus a noise matrix E;. Unobserved R € RP1*¥1 and C e RP2*k2
are row and column loading matrices, respectively. The temporal dynamics of X; is entirely
driven by the latent factor F; in the sense that E; is assumed to serially independent. Model (1)
extends the classic factor analysis to directly modeling matrix-variate observations. Compared
with those estimated from the vectorized factor model, estimators obtained from (1) have been
shown to achieve faster convergence rate (Wang et al., 2019) and provide better interpretation in
real applications such as international import-export trading (Chen and Chen, 2019) and multi-
variate spatial temporal environment data (Chen et al., 2020b).

Factor models for high-dimensional time series have been extensively investigated over the
past decades. The most widely-studied model in econometrics, called approximate factor model,
searches for common factors that affect the dynamics of most of time series in the cross-section
dimension, and allows limited time-series and cross-section dependence in the idiosyncratic com-
ponent; See Assumption B and Assumption C in Bai (2003). Many existing theoretical results on
factor models were derived under this setting; See examples Chen et al. (2014), Barigozzi et al.
(2018), Barigozzi and Cho (2020), Massacci (2017), Ma and Su (2018), Wu (2021) and references
therein. Following the assumptions in the approximate factor model, Chen and Fan (2021) ex-
tended the model for matrix-variate time series analysis. However, Lam et al. (2011) pointed out
that the rigorous definition of factors and idiosyncratic noise in the approximate factor model
can only be established when the dimension goes to infinity, and they proposed another approach
to decompose the observed data. Lam et al. (2011) separates the time series into two parts: a
dynamic part driven by factors which captures all the temporal dependence of the observed pro-
cess and a static noise which is time-independent. Since the noise has no serial dependence, the

decomposition is unique when the cross-section dimension is finite. The model proposed by Lam



et al. (2011) became popular recently and were discussed in Chang et al. (2015), Liu and Chen
(2016), Chen et al. (2020a), Liu and Chen (2020), and Liu and Zhang (2022). Wang et al. (2019)
extended the factor models for matrix time series analysis based on Lam et al. (2011). Two types
of factor models are compared in Remark 2. Throughout this paper we follow the factor model
settings proposed by Lam et al. (2011).

One important assumption of the matrix variate factor model (1) is that the loading matrices R
and C affects the observation in a time-invariant linear fashion. However, literature has shown the
presence of nonlinearity in many time series data (Tong and Lim, 1980; Tsay, 1989, 1998; Fan and
Yao, 2008). Particularly, the threshold effect is observed in many cases of factor models (Massacci,
2017; Liu and Chen, 2020; Wu, 2021). For example, CAPM theory indicates that the expected
market return is an important factor for the expected return of various assets, and Liu and Chen
(2016) found that its impact (loadings) on any individual asset may be different depending on
whether a stock market is volatile or stable. In economics, risk-free rate, unemployment, and
economic growth are crucial factors of all economic activities and serve as their performance
indicators. Indeed, the loadings of these factors may vary under different fiscal policies or in
different stages of the economic cycle (Kim and Nelson, 1998).

In this paper, we introduce a threshold matrix-variate factor model, which relaxes the time-
invariant assumption on R and C and extends model (1) to allow for the threshold effect (Tong
and Lim, 1980; Tsay, 1989, 1998). The theoretical research on vector-variate threshold factor
models has emerged in literature in the past few years. Massacci (2017) used the least squares
method to estimated the threshold and proposed model selection criteria. Liu and Chen (2020)
developed a projection-based objective function to estimate the threshold value. Wu (2021)
discussed the case when the threshold variable divides the data into multiple regimes and proposed
an algorithm to identify regime shifts. Our threshold matrix-variate factor model generalizes its
vector-variate counterpart to directly handle the intrinsic matrix structure. We achieve greater
dimension reduction and obtain better estimation than the vectorization-based procedure via
a carefully-designed estimation procedure that exploits intrinsic matrix and regime-switching
structure.

Besides that, we also make the following contributions to the current literature on threshold
factor models. Firstly, we consider the case where dimensions of the latent factor matrix may vary
in different regimes. This removes the limitation of the methods proposed in Massacci (2017),

Liu and Chen (2020), and Wu (2021), all of which require the number of factors to remain the



same across regimes. Secondly, our algorithm is able to identify the thresholding mechanism when
the number of thresholds is unknown. In contrast, current literature in threshold factor models
(Massacci, 2017; Liu and Chen, 2020) only allows one threshold to divide data in two regimes.
Thirdly, the proposed estimation procedure can be applied to data that neither the factor or the
noise process is stationary, while the method in Wu (2021) is limited to data in which latent factor
and noise process are both strictly stationary. We only require the factor process to satisfy the
mixing condition and the moments of factor and noise processes to be bounded. Our methods
can successfully identify regime switchings and estimate thresholds and loadings when the means
and variances of factor and noise processes are time-varying; See simulation results in Section 3.3.
In summary, the proposed methods greatly relax these restrictive assumptions and thus extend
the scope of potential applications of threshold factor models.

The rest of the paper is organized as follows. Section 2.1 introduces the threshold factor
model with two regimes for high-dimensional matrix-variate time series. Section 2.2 discusses the
estimators for loading spaces and presents their theoretical properties. Section 2.3 investigates the
threshold estimation and establishes the asymptotics of the proposed threshold estimator. The
estimation for numbers of factors is studied in Section 2.4, and we show that if the numbers of
factors are overestimated the proposed estimators are still consistent. In Section 2.5 we consider
the threshold matrix factor models with multiple thresholds and introduce the procedure for
model identification. We apply our methods to simulated and real data, and present the results
in Sections 3 and 4, respectively. Section 5 provides the conclusions. The lemmas and detailed
mathematical proofs are in the Appendix 1. Appendix 2 presents more simulation results.

Here is some notation we will use throughout the paper. Let vec(:) be the vectorization oper-
ator, which converts a matrix to a vector by stacking columns of the matrix on top of each other.
For any matrix H, let |H|2 and |H|r be the L-2 norm and Frobenius norm of H, respectively,
o;(H) be its i-th largest singular value, rank(H) be its rank, and ||H| i, be the square root of
the minimum nonzero eigenvalue of H'H. For a squarer matrix H, tr(H) denotes its trace. We
use h,. and h, to represent the vectors with the entries in the u-th row and the v-th column of
H respectively, and hy, to represent the (u,v)-th entry of H. We write a =< b, if a = O(b) and
b= O(a). For a constant a, |a] is the largest integer less than or equal to a. We use C’s and C;’s

to denote generic uniformly positive constants which only depend on the parameters.



2 Estimation and Identification of Threshold Matrix Factor Mod-

els

In this Section, we will introduce the threshold matrix factor models, propose the estimation
methods, and develop an algorithm for model identification. The asymptotic properties of the
proposed estimators will also be investigated. We first consider a special case for threshold matrix
factor models with two regimes in Section 2.1, and propose methods to estimate the loading
spaces and threshold value when the numbers of factors are known in Section 2.2 and Section 2.3,
respectively. In practice, the numbers of factors are also unobserved, and Section 2.4 considers
the estimation for the numbers of factors. Section 2.5 discusses the case when the number of
regimes is unknown and presents the algorithm to identify the number of regimes and estimate

multiple threshold values.

2.1 Two-regime threshold matrix factor model

Let X; be a p; X po observed matrix-variate time series, where

x, = BEaC R m <. 2)
RoF.2Ch, +E; 2 =19,
F;; is a k1; x ko; matrix-variate time series which consists of fundamental latent factors for
i =1,2. R; is an unobserved p; x k1; row loading matrix in regime 7, and C; is an unobserved
p2 X ko; column loading matrix in regime ¢, for ¢ = 1,2. E; is a p; x py matrix which is the
noise process and has no serial dependence. z; is an observed threshold variable, controlling the
switchings between two regimes. Loading matrices {R;, C;} are different across regimes.
Threshold models were first proposed by Tong and Lim (1980) to interpret nonlinear dynamics
in time series data, and were widely applied in economics (Wu and Chen, 2007), finance (Tsay,
1989; Massacci, 2017), biology (Tong and Lim, 1980), and environmental science (Tsay, 1998).
The threshold variable is always assumed to be observable, which is one of the limitations of this
class of models. There are various choices of threshold variables used in literature. Specifically,
the threshold variable can be a lag variable of the observed time series (Tong and Lim, 1980;
Tong, 1990), an exogenous variable (Tsay, 1998), or a linear or nonlinear combination of observed
data and/or exogenous variables (Chen, 1995).
Two regimes in model (2) are only distinguished by loading matrices, which is a common

assumption in factor models for high dimensional vector time series with multiple regimes; See



examples in Chen et al. (2014); Baltagi et al. (2017); Massacci (2017). One advantage to focus
exclusively on the regime switchings in loadings is that the factor and noise processes can ac-
commodate non-stationarity within regimes, including but not limited to time-varying mean and
time-varying variance; See Section 3.3. However, as a result, our methods cannot be used to make
inferences about the changes in the moments of F; 1, Fy 2, or E; as Barigozzi et al. (2018) does.

Remark 1. Model (2) with (ki 1k + k12k22) factors is a special case of matrix factor model

(Wang et al., 2019), since it can be re-written as

X,; = RF,C' + E,, (3)
where
~ ~ Fiilia 0 ~ Ci
R:<R1 RZ)? Ft: ) C= P
0 Fi2li2 Cs

where Iy = I(z < r9) and I;2 = I(2 > ro). Model (3) is a one-regime factor model in Wang
et al. (2019) with constraints in the factor process. If we ignore the changes of loadings, the
number of factors may be enlarged as (ki1 + k1,2)(k21 + k2,2) in (3), the threshold factor model
(2) uses fewer factors and achieves greater dimension reduction by introducing regimes.

Remark 2. The approximate factor model in econometrics was built based on the assumption

that the factors have an impact on most of the series, and thus the idiosyncratic noise allows

serial dependence but only has weak cross-sectional dependence, i.e., % ?:1 ?:1 loiji| < C for
t=1,...,T, where p is the dimension of the vector time series and oy is the (ij)-th entry in the

covariance matrix of the noise process at time ¢; See Assumption C3 in Bai (2003), Assumption
M1.b in Stock and Watson (2002), and more examples in Bai and Ng (2002); Fan et al. (2017).
However, under this condition, the common component and noise process are not identifiable
when the dimension is finite. Lam et al. (2011) took another setting that the factors capture
all serial dependence of the observed process. As a result, the noise is time-independent and
can accommodate strong cross-sectional dependence, i.e., |0y;:] < C for i,5 = 1,...,p and t =
1,...,T; See more examples in Chang et al. (2015); Liu and Chen (2016); Wang et al. (2019);
Chen et al. (2020a). To make the common component and noise process separable, in this paper,
we follow their settings, and further relax their assumption by allowing heteroscedasticity for the
noise process.

Since R;, C; and Fy; are all unobserved, the factor models have ambiguity issues and R,; and



C; are not uniquely defined. Specifically, the model (2) can be re-written as,

2
X, = > [RiU; (U 'F, V) Vi€l I + By, t=1,...,T.
=1

The row loading matrix, column loading matrix and factor process can be replaced by R;Uj,
C;V}, and U, 1Ft ZV , for any non-singular matrices U; and V;, ¢ = 1, 2. However, the column
spaces spanned by R; and C;, M(R;) and M(C;), called row loading space and column loading
space for regime i respectively, are identifiable. Our aim is to estimate the row and column loading

spaces, instead of loading matrices. We can further decompose R; and C; as follows
R; = Q1,;Wi,, and C; = Q2; Wy, (4)

where Qg; is a ps x ks; orthogonal matrix, and Wy; is a ks; x ks; non-singular matrix, for
s,i =1,2. s is the index for dimension reduction directions (row/column), and i is the index for
regimes. By the definition, we have M(R;) = M(Q ;) and M(C;) = M(Qz,). In the following,

we will estimate the orthonormal representatives of M(R;) and M(C;), Q1 and Qa;, for i = 1, 2.

2.2 Estimation of loading spaces when the threshold value is known

If only considering the v-th column of X; in model (2), we have

RiF;icip +e = Q114419210 + €10 2t < 70,
Xt = (5)
RoF;i2co,. + ey = Q12420224 + €10 2t = 70,

where Ztﬂ' = Wl,iFt,iW,Q,i for ¢ = 1, 2.
If we use r as the tentative threshold value to split data, let h be a positive integer, and
define the second cross moment matrices of the factor process and observed process in different

partitions,

quﬂ,‘j uv h T = Zt,z’(IQ,i,u-qlz,j,v-Zg,thﬂ(T)It-&-h,j(TO)]v

Nl
M|

ﬂﬁ-
3.»—!

Qx,z,uv h T =

N~
||M

Xtvux:ﬁ+h,vlt7i (T)] )

for i,7 = 1,2, and u,v = 1,...,p2, where I; 1(r) = I(z <r) and L 2(r) = I(z = 7).

Since the noise process is independent over time, if r = rg, when h > 0, we have

Qx,i,uv(ha TO) = Ql,i [qu,il,uv(ha 7"0) + qu,i2,uv(h7 7"O)] Qll,z (6)



For a pre-determined positive integer hg, define

ho p2 P2

Myi(r) = Y1 0 D Qaiuo (b 1) Qi (b, ), for i = 1,2, (7)

h=1u=1v=1

By equation (6), if r = ro, it follows that

0o P2 P2 2 !
Mlz TO le [Z Z Z (Z qumuv h To ) (Z 2q,ij, uv h TO)) ] Qll,z (8)

h=1u=1v=1

M, i(ro) is a symmetric non-negative definite matrix sandwiched by Q; ; and Q’LZ If the matrices
in the parentheses of (8) are full rank, the eigenvectors of M ;(rg) corresponding to the nonzero
eigenvalues span the row loading space in regime i. Hence, M(Q; ;) can be estimated by the
eigen-decomposition of sample version of M ;(rg). Let qi, be the unit eigenvector of My ;(r¢)

corresponding to the k-th largest eigenvalue, and we can now uniquely define Qg ; by

Qi = (1315 ALikr )

Now we define the sample version of the above statistics.

T—h
N 1
Qm,z,uv(h r T Z Xt uXt+h vItz( ) (9)
ho p2 p2
Mlz ZZZszuvhr mzuv(h T‘) (]‘O)
h=1u=1v=1

for i = 1,2. Let q;;x be the unit eigenvector of 1/\\/1172-(7’0) corresponding to the k-th largest
eigenvalue. Then if the threshold value ry is known, the row loading space in regime i can be

estimated by

—

M(R;) = M(Qu),

where Ql,i = (Q14,1,---,41,ik, ). For the column loading spaces, they can be estimated by per-
forming the same procedure on the transposes of Xjs to construct Ma ;(r), for i = 1, 2.

Remark 3. The estimation procedure here is a generalized version of that in Liu and Chen
(2020). However, Liu and Chen (2020) divides the observed process with two tentative threshold
values and defines the second cross moment matrices of the observed process in four partitions.
Although their model allows overlap between loading spaces in two regimes in Condition 9, the
effective sample size is much smaller; See Remark 4. Another advantage of our method is that
we can deal with the case when the numbers of factors vary across regimes, while Liu and Chen

(2020) only discusses the scenario when the number of factors remains the same.



2.3 Threshold Estimation

In this section, we construct a project-based objective function following the method in Liu and
Chen (2020) for threshold value estimation, and provide the estimators for loading spaces when
the threshold value is unknown. The theoretical properties of the estimators will also be studied.

Let Bsi = (Qs,ik;+1,--->9sip;) b€ @ ps X (ps — ks;) matrix, whose columns consist of the
unit eigenvectors of M ;(rp) corresponding to zero eigenvalues for s,i = 1,2. M(Bg;) is the
complement of loading space M(Q;;) and Q};B;s; = 0, for s,i = 1,2. Define the objective

function

y (11)

2 2
DNLANES

By the definition of M ;(r), we can tell that G(r) measures the sum of the squared norm of the
projections of Qg ; . (h,r) onto the complement of loading spaces, M(Bs;), for h = 1,..., ho,
u,v=1,...,p;, and s,7 = 1, 2.

If » = rg, the observations in two regimes are correctly classified into different subsets. Then
by (8), M;;(r) is sandwiched by Qs; and Q’Sl Hence, G(r) = 0. However, if r # rg, the
observations from one regime are misclassified into two subsets, and one of the two subsets is

mixed. M ;(r) is not sandwiched by Q,; and Q. ;, and the projection is nonzero.

S l’

A standard assumption for threshold variable estimation is imposed which is that ry is in a
known region of the support of z;, 79 € (171,72), where 71 and 72 are called trimming parameters.
We use data corresponding to z; < m and 2z; > 7 to estimate M(By 1) and M(By2), respectively,

for s = 1,2. The sample version of G(r) is defined as

where

1Th

ho p2 p2
Q;t zuv(h 771 = 2 Xt uXt+h v[t 1(771) Ml,i(ni) = Z 2 2 Qx,i,uv(h7ni)ﬂx,i,uv(h’7 ni)/7
h=1u=1v=1

~

1?/[271-(7714) is defined in a similar way with transposes of X;’s, B i(1:) = (Qs,i k;+1(1), - - -, As,ip: (M3)),
and Qs ; (1) is the k-th largest eigenvector of K\/I“(m)

We estimate rg by

T = arg min @(r)
r€{z1,....,z7 O (171,m2)



Remark 4. Compared with the method by Liu and Chen (2020) using both trimming parameters
to estimate the complement loading space in each regime, here we estimate B, ; with only one
trimming parameter utilizing more information from data. Let us say 7n; and 7 are the 10-th and
90-th quantiles of the threshold variable, and then we use 10% of observations to estimate By ;
n (11), while Liu and Chen (2020) only uses 1%. The effective sample size for the estimation of
B, is much smaller for Liu and Chen (2020). The simulation results in Section 3.2 confirm that
our methods outperform the methods by Liu and Chen (2020).

The following regularity conditions are needed to obtain the theoretical properties.
Condition A1l. The process (Fy;1,F;2,2) is a-mixing. Specifically, for some v > 2, the mixing
coefficients satisfy the condition )77 ; a(h)'~2/7 < co, where

a(h)=swp _swp |P(AnB)~ P(4)P(B)]
© AeF . BeFL,
and ]-"g is the o-field generated by {(F1,Fi2,2) 11 <t < j}.
Define

3rij(h) = = Z [vec(F¢i)vec(Fiin )],
t=1

AT Elvec(Fy i) vee(Fypn) Tei(r) Lsn i (r0)]
E[1ti(r)i4n,j(ro)]

Condition A2. Forany i =1,2, u=1,....k1;, v=1,... ko, and t = 1,..., T, E(| friw|?) <

J;lﬂ, where o is a positive constant and + is given in Condition Al. There exists an h € [1, ho]

such that rank(Xy;;(h)) = kmax, and oy, (37;(h)) is uniformly bounded, as p; and p> go to

inﬁnity, where kmax = max{ki 1, k1, g,k:g 1,kopo}. Fori=1,2,u=1,....kjiandv=1,... ko,
i ST Cov(f i Brrnin) # 0, 7o Sy Cov(frivms i) # O.

Condition A3. Var(E;) = X;. for ¢t = 1,...,T. The absolute value of each element in 3. re-

mains bounded by o2 as p; and py increase to infinity for t = 1,...,T. Cov(vec(Ey, ), vec(Fy,;)) =

0 and Cov(vec(Ey, ), vec(E,)) =0 for t1,to =1,...,T and i = 1, 2.

Condition A4. For i = 1,2, there exist constants &; and &, € [0,1] such that |R;|2 = pl=°* =

IR|2,, and |C;3 = pi™% = |C;|2,,, as p1 and py go to infinity.

min min’

When studying high-dimensional time series, it is common to assume the norm of the loading
matrices grows as the dimension increases to infinity. We use the strength of factors d; defined in
Lam et al. (2011) and Lam and Yao (2012) to measure the growth rate for s,i = 1,2. It reflects the

relative growth rate of information about Fy; carried by X; as the dimensions increase, comparing

10



to the growth rate of the noise process. For example, if §; = 0, the row factors are strong, and
observations are fully loaded with signal as p; increases. If §; = 1, the row factors are extremely

weak, and only noise is added to the observed data as p; increases.
Condition A5. M;; has k,; distinct positive eigenvalues for s,¢ = 1, 2.

Conditions A1-A5 are similar to the standard assumptions for factor models (Lam et al., 2011; Lam
and Yao, 2012; Wang et al., 2019). Like in Liu and Chen (2020) and Liu and Zhang (2022), here
a more general setting is considered, and we only require the factor process to satisfy the mixing
condition and the moments of the factor and noise processes to be bounded. Heteroskedasticity
in the Fy 1, Fy2, or E; is allowed not only through their cross-sectional dimension but also the
time dimension; See simulation results in Section 3.3.

Condition B1. Assume 79 € (71,72). 2 is a continuous random variable, and the process {z;}
is stationary. The marginal probability of z; satisfies that P(z; < n1) > 0 and P(z; = n2) > 0.
For the density function of z;, f(z:), there exist two positive constants 73 and 79 such that
7o < f(2¢) < 71 uniformly in [71,72]. The conditional probability of z;., given z; satisfies that
P(zgen <mi | ze) > m > 0and P(zeep > 12 | 2¢) > mo > 0 for any z; € (—o0,11) or (12, +00) and

h=1,..., ho.

Condition B2. There exists a positive integer h; € [1, ho] such that rank(2;(hi,7:)) = Emax

and [|X¢;;(hi, 7)|lmin is uniformly bounded above 0, for 4,j = 1,2.

Condition B3. M ;(n;) has k,; distinct positive eigenvalues for s,i = 1, 2.

We define an indicator function for regime 1, I*(-). For a constant ¢, I%(r) = 1 if r < rg, and
I%(c) = 2 if r > rg. For ¢; and ¢y satisfying I%(c1) = I%(cy), let

T 31 Elvec(Fri)vec(Fryn ) I(c1 < 2 < e)]
E[I(c1 <z < ¢9)]

Ygij(h,c1,02) =

Condition B4. For any r € (11,70), there exists an integer h} € [1, ho] such that rank(X1;(h}, 7, r0)) =
Emax, for j = 1,2. For any r € (rg, n2), there exists an integer h3 € [1, ho| such that rank(X2;(h3, ro, 7)) =
kmax, for j = 1,2. The minimum nonzero singular values of these aforementioned matrices are all

uniformly bounded above vy, where v > 0.

Condition B5. There exists a constant v < 1 such that ||Q};Qs2[2 < v for s = 1,2 as p; and

p2 grow to infinity.

Condition B1-3 indicate that the estimators for loading spaces are consistent when only data with

{z: € (—oo,m)} or {z € (n2,+0)} are used. Condition B4 guarantees that the cross moment

11



matrices of vec(F; ;) with mixed data from two regimes carry the information on the latent factor
process in both regimes. Condition B5 is stronger than the Condition 9 in Liu and Chen (2020)

which requires the distance of loading space to be greater than 0. This is because we estimate

loading spaces with only one trimming parameter. HQ’S?le’g l2 < 1 ensures that dim(M(Qz,1) N
M(Qs2)) = 0 and signals are not cancelled out when we combine data transitioning from regime
i to both regimes, 1 = 1, 2.

Before presenting the asymptotic properties of the proposed estimators, we introduce a mea-
sure to quantify the distance of two linear spaces, which is first proposed by Liu and Chen (2020).
Let S; be a p x ¢ full-rank matrix, and S, be a p x g9 full-rank matrix, where p > ¢1,q2. Let
O; be an orthogonal representative of M(S;), i.e., M(O;) = M(S;) and O,0; =1, for i = 1,2.
The distance of M(S;) and M(Ss) is defined as

B _ tr(010'1020,2)
D(M(S1), M(S2)) = \/1 min{qi, g2}

It is a quantity between 0 and 1. It is 1 if and only if M(S;) L M(S2), and is 0 if and only if
M(S1) € M(S2) or M(S2) € M(Sy).

Theorem 1. Under Conditions A1-A5 and B1-B5, when the numbers of factors are known,
ifp(jlngT_l/z =o(1), as p1,p2, T — 0, it holds that

§1,.0
Cp11p22
6Tl/2 ’

61,0
Cp11p22

P(r<rop—e) < TR

P(r>ro+e) <
for e > 0.

Theorem 1 shows that the estimator 7 is consistent under some mild conditions. p‘il p‘%QT_l/ 2 —
o(1) is a standard assumption used to prove the consistency for loading space estimation in matrix
factor models (Wang et al., 2019). Hence, it is also needed in model (1) to distinguish two regimes.
If all factors are strong with §; = &, = 0, P(7 < ro—¢) and P(F > 7o +€) reduce to O(T~'/2). The
estimation error for ro is asymptotically immune to the increase of p; and ps. When p; and po
grow, the curse of dimensionality is offset by the information brought by new incoming series. If
row and column factors are weak, the convergence rate in Theorem 1 depends on the cross-section
dimension. The estimator gets less efficient when p; and ps increase.

Theorem 1 shows that as long as T2 increases faster than pil ng asymptotically, 7 converges
to ro. It is worth noting that the approximate factor model by Bai (2003) requires §; and o to

be less than 1/2 to obtain consistent estimators (Bates et al., 2013; Bailey et al., 2016; Massacci,

12



2017). However, Lam et al. (2011) does not put any constraints on the strength of factors. Lam
and Yao (2012) and Liu and Chen (2020) did numerical experiments with factor strength equal
to 0.5 and 1 respectively, and the results confirm that the estimators are consistent when factor
strength is equal to or greater than 0.5. The simulation results in Section 3.2 also proves that our
method performs well for finite samples when d; = d9 = 0.5.

The final estimation of loading spaces is obtained using 7 as the threshold value and following

the procedure in Section 3.3.

Theorem 2. Under Conditions A1-A5 and B1-B5, when the numbers of factors are known
ifp(jlngT_l/z =o(1), as p1,p2, T — 0, it holds that

D(M(Qsi (7)), M(Qs)) = Op(pS pRT~Y2), for s,i=1,2.

From Theorem 2 we can see that the asymptotics of the loading space estimators are the same

with the case when there is only one regime discussed in Wang et al. (2019).

2.4 When the numbers of factors are unknown

Since both the factors and loadings are unobserved, the numbers of factors in each regime need
to be estimated. Lam and Yao (2012) proposed a ratio-based estimator, and Wang et al. (2019)
extended it to analyze matrix-variate time series. Here we apply it for threshold matrix-variate

factor models. Assume that r is in a known interval (n1,72), and let

Fui = arg min As,isk+1(77i)
s,0 =

= , for 5,1 =1,2, (12)
ISh<E Nk (ni)

where stk(m) is the k-th largest eigenvalue of K\/IM(m) Note that the eigenvalues practically
will go to zero and here we cannot search up to p; or ps. We use R = |ps/2] following Lam and

Yao (2012) and R = |T/2| when T < ps, for s = 1, 2.

Corollary 1. Under Conditions A1-A5 and B1-B5, if p‘lslngT_l/2 = o(1), as p1,p2, T — 0, it
holds that
Asihr1(Mi)/Asie(m) = 1, fork=1,... ks; —1,
Asieost1 (M) Nsies s (0) = Op(py'py’T~") B0, for s,i=1,2.
Corollary 1 presents the convergence rates of the ratios of eigenvalues of M s,i(ni), and indicates

that the estimated eigenvalue ratio will drop sharply at k = k;;, which provides a theoretical un-

derpinning for the estimator of ks;. When k£ > k;;, the eigenvalue A, ; ;. is theoretically zero and
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thus the property of the ratio Xs,i,ks,ﬂrl(Uz’)/:\s,z’,ks,i(772‘) is difficult to obtain. Lam and Yao (2012)
only proves that the probability to underestimate the number of factors goes to zero asymp-
totically. Although the consistency of the ratio-based estimator cannot obtained, the method
performs well in numerical experiments; See examples in Chang et al. (2015); Liu and Chen

(2016); Wang et al. (2019); Liu and Chen (2020); Liu and Zhang (2022).

Since the probability of overestimating the numbers of factors cannot be proved to converge
to 0, we shall discuss the theoretical properties of proposed estimators when the numbers of
factors are overestimated in the following. The overestimation issue for the factor number in
the approximate factor model is not new and has been considered by Barigozzi et al. (2018) and
Barigozzi and Cho (2020). Barigozzi et al. (2018) uses wavelet to detect the structural changes in
the observed process, which circumvents the issues of accurate estimation of the number of factors.
Barigozzi and Cho (2020) shows that the errors in the principal component estimators for the
common component resulting from the overestimated factor number can be non-negligible. Under
the settings by Lam et al. (2011), the estimator for the common component may be inconsistent
as well when the loading spaces are spuriously enlarged, which needs significant investigation that
is beyond the scope of this paper. Even so the proposed estimator for r is still consistent with
some regularity conditions which will be shown in the following. The reason is that the classifier
used to identify two regimes in (11) is built on By ;. If factor numbers are overestimated, even
though the column space spanned by estimated Bg; is a proper subspace of M(B);, it still can
differentiates data from two regimes under mild conditions.

Let )
Gr, ki1, k2, ka1, ko) = Z Z Sk (M) M z(r)ﬁs,z',ks,i(m)H% (13)
s=1:1=1

where ﬁs,i,ks,i (1) = (@syikeit1(M)s -5 Asipe (M), for s,4 = 1,2. When the numbers of factors

are unknown, we estimate rg by

~

7 =arg min G(r, %1,1,%1,2,%2,1,%2,2) (14)

re{z1,....zr}n(n1,m2)

If the numbers of factors are overestimated, Condition B6 ensures that the two spuriously

enlarged loading spaces M(Qj ;) and M(Qf,) are still differentiable for s = 1, 2.

Condition B6. When %Sﬂ' > ks there exists a positive constant d such that D(M( 1), M(Qs2)) >
d and D(M(Qs1), M(Q%,)) > d, as ps goes to infinity, where Qi = (Qsi, Usyi) is a ps x @Sﬂ-
matrix, for s,7 = 1,2 and any ps x (@SZ —ks,;) matrix Uy ; such that dim(M (U, ;) nM(Qs,:)) = 0,
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Theorem 3. Under Conditions A1-A5 and B1-B6, ifp‘{lp?T*l/Z = o(1), %s,i > kg fors,i=1,2,
as p1,p2, T — o0, it holds that

§1,.0
Cp11p22
6Tl/2 ’

61,0
Cp11p22

P(r<rog—e) < TR

P(F>rog+e) <
for e > 0.

The loading spaces are estimated using 25,1‘ as the number of factors and 7 as the threshold

value,

QS,’L'(Fv 2S,i) = (as,i,l(ma v 7?18 l‘,Eg (?)% for 8,1 = 172' (15)

Define QSZ(?) as the matrix which consists of the first k,; columns of Qs,i(ﬁ @SZ) The following
theorem indicates that its spanned space converges to the true loading space as fast as M(Q s,i(7))

shown in Theorem 2 asymptotically,

Qs,i(?) = (as,i,l(?% cee 7as,i,ks,¢ (F))7 fOI‘ Sai = 17 2.

Theorem 4. Under Conditions A1-A5 and B1-B6, ifpflpng_l/Q =o(1), ES,Z- > ks fors,i=1,2,

as p1,p2, T — o0, it holds that

DM(Qusi(7)), M(Qs1)) = Op(p}' pRT2), for s,i =1,2.

Theorems 3 and 4 tell that when the numbers of factors are overestimated, our estimators
perform asymptotically as good as those when the number of factors are correctly estimated
under mild conditions. The consistency of the estimators shown in Theorems 3 and 4 helps us
build a complete theoretical framework for the estimation of threshold value and loading spaces
since the numbers of factors could be overestimated theoretically (Lam and Yao, 2012). One may
argue that in practice we do not know whether the numbers of factors are correctly estimated
or overestimated. However, compared with the estimators proposed by Massacci (2017) in which
the theoretical properties were investigated based on the assumption that the number of factor is

known or correctly estimated, here the proposed estimators are more robust.

2.5 Model identification for models with multiple regimes

In this section, we will consider the threshold matrix-variate factor models with multiple regimes,

and develop an algorithm to identify the regimes and estimate multiple threshold values. The
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following m-regime threshold matrix-variate factor model is considered:

p
RlFtJCIl + Et zZt <10,

X, = 4 RQFtQCé + E; ro < 2 < Ty, (16)

L RmFt,mC/m +E; rmo <z <rpmo1 =40,

fort = 1,...,T, where 0 < m « T. Let Qi; and Q2; be the orthonormal representatives of
M(R;) and M(GC;) for i = 1,...,m. For any i # j, [Q},Qujl2 <1 or [Q5,;Qzl2 <1. When
m = 1, model (16) is a one-regime matrix-variate factor model introduced by Wang et al. (2019);
When m = 2, model (16) is the one we discuss in Section 2.1. Our aim is to estimate m, threshold
values {r; | i = 0,...,m — 2}, and loading spaces in different regimes. Motivated by the idea
that the numbers of factors will be overestimated when fitting data from multiple regimes with
one-regime factor models (Chen et al., 2014; Wu, 2021; Liu and Zhang, 2022), we consider fitting
data from multiple regimes with one-regime models first. We shall use the simple example with

m = 2 to illustrate the idea. Without loss of generality, we assume row loading spaces are different

with |Qf 1 Q1,2

|2 < 1. Define

1 L=n ho p2 P2
Qpu(h) = T 231 E(Xt,uxz/wrh,v)v M = Z 21 21 Qa0 (M) Qo (R) (17)
t= h=1u=1v=

N 1 T—h e ho p2 p2 N
Qz,uv(h> = T Z Xt,uxg+h,v7 M = 2 2 Z Qm,uv<h)nm,uv(h)/-
t=1 h=1u=1v=1

With the following conditions, we shall show that M may lead to an overestimated number of
row factors.

Condition B7. The nonzero eigenvalues of M are distinct.

Corollary 2. Under Conditions A1-A5 and B1-B7, if pflngT*V2 = o(1), as p1,p2, T — 0, it
holds that

Aet1/A =1, fork=1,....ki1+k2—1,
Ak1+k2+1/)‘]~€1+kz = Op(p%(slngQT_l) 2) 07
where Xk is the eigenvector ofﬁ corresponding to the k-th largest eigenvalue.

Corollary 2 indicates that the ratio of the estimated eigenvalues will drop sharply at k = k1 +k»

if we combine data from two regimes, which has the same pattern with one-regime models shown
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in Corollary 1 in Lam and Yao (2012) for vector time series and Theorem 2 in Wang et al. (2019)
for matrix time series. Motivated by this observation, we extend the algorithm developed by
Wu (2021) and propose a regime-switching identification procedure which applies to matrix time

series and can deal with the case that the numbers of factors are different across regimes.

First we divide the range of the threshold variable {z;} into J subintervals, Sy, ..., Sy, where J
is a pre-specified integer satisfying m « J « T and and S; = (s;—1,s;j]. Specifically, let s; = (1))
for j =0,...,J, where t; = [%J and z(;;) is the (¢;)-th order statistic of z;. For each subinterval,
we define
~J 1 T ho P2 P2 /
Qx,j,uv(h) = f Z Xt,UX;Jrh,vI(Sj*l <zt < Sj ) Z Z Z z,7, uv z,7, uv(h) >
t=1 h=1u=1v=1
forj=1,...,J. 1\715 ; can be defined in a similar way with transposes of X’s. The numbers of

row and column factors in the j-th subinterval can be estimated by

Yy A
7 Ljk+l  7.J 2,5,k+1
ki ; = arg min , ki ; =arg min ,

1<k<R )\J . " 1<k<R )\J f
7]7 7]7

where /\J jk is the k-th largest eigenvalue of MY ., for s = 1,2 and 5 = 1,...,J. We define

8,77
an indicator function I ]J to track the possible changes of the numbers of factors among these
subintervals. Let I]‘-] =1if %‘1]] #* @{J_l or k: i 7 k2] 1; Otherwise IJ 0. There are three

situations that can happen for I 57 :

(i) When Ij]—l =0, I" =1, I]JJrl =1and I/ 5+2 = 0, the regime switching happens in the interior
of Sj.

(ii) When Ij]—l =0 and IJJ = 0, no regime switching happens in the interior of S, or the regime
switching may happen in the left end of S; or the right end of S;_; and the numbers of

factors are the same in two regimes.

(iii) When IJ‘-]_1 =0, I]J =1, and .T]‘.]Jrl = 0, the regime switching happens in the left end of S; or

the right end of S;_1, and the numbers of factors are different in two regimes.

The case when I ‘-]71 = 1 is not included here because it shall be considered for I ‘-771; the case
when I 1 =0, 15 J=1,1/ i1 =1, and I/ 549 = 1 is not discussed since we assume m >» J implying
that there is at most one regime switching in two consecutive subintervals.

For case (i), the complement loading spaces in (11) can be estimated using eigenvectors of
MJ sj—1 corresponding to the smallest (ps — E;] j_l) eigenvalues and eigenvectors of 1/\\/15‘] j+1 corre-

sponding to the smallest (ps — kSJ j +1) eigenvalues for s = 1,2, and then the estimators for the
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threshold value and loading spaces can be obtained by the method in Section 2.3. For case (ii),
to detect if the regime switching happens in the left end of S; or the right end of S;_1, we use the
midpoints of the J subintervals to re-divide the range of z; into J +1 subintervals, .57 = (5;‘_1, 3;"]
forj=1,...,J +1, where s} = Z(1%); to=0,t =[5 2J 1 |forj=1,...,J,and t}, , = T. Then
we estimate the numbers of row and column factors in the j-th subinterval, denoted by %‘1] % and
@J 5. We define an indicator function I ]J * to identify if the numbers of factors in Sj‘-] * and SJJ are
different. IJ* =1 1fk T k: . or @é’j # kéjj, I7* = 0if @‘1]”; = %{j and %gj = @QJJ There are two

situations that can happen for I JJ * in case (ii):
(a) when I ]‘] * = 0, there is no regime switching in the left end of S; or the right end of S;_;.
(b) when IJ‘-]* = 1, regime switching happens in the left end of S; or the right end of S;_;.

For case (b) and case (iii) discussed above, we can estimate the complement loading space with
eigenvectors of M _, corresponding to the smallest (ps — E‘S] ;?_1) eigenvalues and eigenvectors
of M‘SI j 41 correspondlng to the smallest (ps — ks‘] i +1) eigenvalues for s = 1,2, then we follow the
procedure described in Section 2.3 to estimate the threshold value and loading spaces in these
regimes.

The proposed identification procedure is build on the ratio estimator by Lam and Yao (2012).
Since the eigenvalues go to zero theoretically, Lam and Yao (2012) was not able to prove the
consistency of the estimators. Therefore, we cannot derive an explicit asymptotic expression for
the identification of different regimes. However, the simulation results in Section 3.3 show that

the proposed procedure performs very well.

3 Simulation

In this section we present the performance of the proposed methods for synthetic data sets. For
all settings, the reported results are based on 200 replications, hg = 1, and the threshold process

2 follows an independent Gaussian process N (0, 1).

3.1 Estimation of numbers of factors

We study the performance of the proposed estimators for the factor numbers in Section 2.4. There
are two regimes. The dimension of common factors in both regimes is 2 x 2 with k11 = k12 =

k21 = kg2 = 2. The factor at time ¢ is generated by 4 independent autoregressive (AR) process of
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order 1 with AR coefficient 0.9 and innovation variance 4. The threshold value is 0. 7; and 7 are
the 10-th and 90-th percentiles of {z;}. The error process E; is a white noise process with mean 0
and a Kronecker product covariance structure, that is, Cov(vec(E;)) = T'o ®I'1, where I'; and I'y
are of sizes p; x p1 and pa X po respectively, and both have diagonal entries of 1 and off-diagonal
entries equal to 0. Here, 0, = 0.1. Table 1 reports the relative frequency that the numbers of
factors are correctly estimated. We can tell that as the sample size increases, the frequency that
El’l = 2172 = %271 = /152,2 = 2 increases as well. When the factors are strong, the estimation is at

its best. When there are weak factors, the estimation is worse but still accurate.

Table 1: The relative frequency that @171 = El’g = Ez,l = 7{:\2,2 = 2 with different combinations of

(T, p1,p2) and factor strength in Section 3.1

T pr p2|61=0,06,=0 0,=0206=0 06 =028 =02
200 20 20 0.910 0.835 0.710
40 40 0.985 0.950 0.760
400 20 20 0.995 0.985 0.920
40 40 1.000 0.995 0.980
800 20 20 1.000 1.000 1.000
40 40 1.000 1.000 1.000

3.2 Estimation of threshold value and loading spaces

In this section, we examine the performance of the propose estimators for threshold value and
loading spaces in Section 2.4 when there are two regimes. The dimension of the latent factors in
both regime is fixed at 3 x 3 with k11 = k12 = ko1 = koo = 3. We simulate the latent factor
process from 9 independent AR models of order one. The AR coefficients are -0.8, 0.8, 0.9, -0.7,
-0.9, 0.8, 0.7, 0.8, 0.7, and the innovation variance is 4. The threshold value, n; and 7 are the
same with these in Section 3.2. The distribution of error E; has the same structure with that in
Section 3.2 and o, = 0.2.

Since Section 3.1 shows that the numbers of factors can be estimated precisely, in the following
we set different values for k’s to better demonstrate the performance of the proposed method
when the numbers of factors are correctly estimated or overestimated. We run simulations with
different combinations of (T, p1, p2) and factor strength. When there are weak factors, the strength

of weak factors are 0.3. Table 2 shows the mean and standard deviation (in the parentheses) of
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the absolute error |7 — rg|. It can be seen that the threshold value r( is estimated with higher
accuracy when the latent dimensions are correctly estimated shown in the first four rows of Table
2. We can also tell that the performance of our method improves as the sample size increases
from 200 to 400 and the factors strength increases in all settings. However, the increase of pq
and po has different impact on three settings. When row and column factors are strong with
01 = 92 = 0, the estimation does not change much as p; and py grow and is immune to the curse
of dimensionality. When row or/and column factors are weak, the estimation performance gets
worse as p; and po increases. Table 2 also reports the estimation results for the threshold value
when 21,1 = @172 = @2,1 = @2,2 = 4 are overestimated, which confirms the theoretical results in
Section 2.4 that the estimator for rg is consistent when the numbers of factors are overestimated.
The last four rows in Table 2 show the estimation errors when the method in Liu and Chen (2020)

is extended for matrix time series analysis. Specifically, we define
Qac,ij,uv(ha r1, 7’2) = T
My i(r1,72) = Z

fori,7 =1,2. ﬁQ,i can be constructed similarly with transposes of X;’s. The threshold value is

estimated by

TrLcr = argmin Hﬁs,i(m, n2) Mg (1, T)ﬁs,i(m, n2)|2s

where the columns of ]§S7i(771, 72) are eigenvectors of 1\713,i(m, n2) corresponding to the (ps — ks ;)
smallest eigenvalues. sti is estimated by the eigenvectors of K\/Is,i(?LC RrsTLCR) corresponding to
the k,; largest eigenvalues. From Table 2, it can be seen that our method outperforms the one
by Liu and Chen (2020).

Table 3 shows the mean and standard deviation of estimation errors for loading spaces under
different combinations of (7', p1, p2) and factor strength. When the numbers of factors are correctly
specified or overestimated, our method can estimate loading spaces precisely. Compared the
proposed estimators with the ones in Liu and Chen (2020), ours performs much better when
sample size is relatively small or there are weak factors. When sample size is large (7' = 400)
and factors are strong, two methods can both estimate By ; in (11) very well, so the estimation
results are very close. More comparison results with different values of 71 and 72 are presented in

Appendix 2.

20



Table 2: Mean and standard deviation (in the parentheses) of the absolute error |©F — rg| with

different combinations of (7', p1,p2) and factor strength in Section 3.2

Method (kv Fro, ko, ko) T p1 p2|01=0,6=0 6,=0308=0 6 =03,35 =03
(3,3,3,3) correctly specified 200 20 20 | 0.017 (0.018)  0.027 (0.030) 0.085 (0.076)

40 40 | 0.018 (0.016)  0.037 (0.034) 0.180 (0.109)

400 20 20| 0.009 (0.010)  0.016 (0.017) 0.048 (0.041)

S 40 40 | 0.011 (0.012)  0.023 (0.022) 0.093 (0.065)
(4,4,4,4) overestimated 200 20 20 | 0.013 (0.013) 0.013 (0.013) 0.017(0.016)

40 40 | 0.013 (0.014)  0.013 (0.014) 0.016 (0.015)

400 20 20| 0.006 (0.006)  0.007 (0.007) 0.009 (0.009)

40 40 | 0.006 (0.006)  0.007 (0.006) 0.009 (0.012)

(3,3,3,3) correctly specified 200 20 20 | 0.213 (0.294)  0.284 (0.286) 0.431 (0.243)

LR 40 40 | 0.222 (0.306)  0.299 (0.283) 0.552 (0.246)
400 20 20 | 0.025 (0.058)  0.054 (0.071) 0.205 (0.119)

40 40 | 0.021 (0.040)  0.084 (0.089) 0.313 (0.150)

Note: LCR denotes the method in Liu and Chen (2020) extended to analyze matrix time series data

Then we will present the performance of our method when the strength level of weak factors
is 0.5. T is set as pipa, 2p1p2, 4p1pe. Table 4 shows the mean and standard deviation (in the
parentheses) of the absolute error |77 — ro|. When there are strong factors in at least one regime
(61 = 92 = 0 or 01 = 0.5 and do = 0), as T grows with p; and ps, the estimate error decreases.
When §; = do = 0.5, it is not surprising that the estimation gets worse as T grows with p;
and pe. However, if T' grows faster than (p1p2), our estimation improves as T increases which is
aligned with results shown in Theorem 1. Table 5 shows the mean and standard deviation (in
the parentheses) of the estimation errors for loading spaces. It can be seen that if the strength of

weak factors is 0.5, our method can estimate loading spaces precisely when sample size is large.

3.3 Regime switching identification

In this example, we investigate the performance of multiple threshold estimation discussed in
Section 2.5. We will show that the proposed procedure performs well even when the factor and
noise processes are non-stationary. T' = 500, 1000, p; and ps are set to be 20 and 40, and 41 and
09 are set to be 0 and 0.2. When T is 500, J = 10; when T' = 1000, J = 15. If the factor process
is stationary, each time series in the factor process follows an independent AR(1) model with AR

coefficient 0.9. If the factor process is non-stationary, F;; is a 2 x 2 matrix for ¢ = 1,...,7T and
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Table 3: Mean and standard deviation (in the parentheses) of D(M(Q s,i), M(Qs ;) with different

combinations of (T, p1,p2) and factor strength in Section 3.2

~ A A A 01 =0,02=0 01 =03,0,=0 01 =0.3,0,=03
(K11, k12, o1y kap) T p1 p2 i - - : : :
regime 1 regime 2 regime 1 regime 2 regime 1 regime 2
(3,3,3,3) 200 20 20 row 0.017 (0.005)  0.017 (0.004) | 0.029 (0.008) 0.029 (0.009) | 0.056 (0.022) 0.057 (0.032)
column | 0.018 (0.004) 0.017 (0.004) | 0.029 (0.008) 0.028 (0.008) | 0.058 (0.023) 0.056 (0.024)
40 40 row 0.012 (0.002)  0.011 (0.002) | 0.022 (0.005) 0.022 (0.005) | 0.066 (0.031) 0.063 (0.031)
column | 0.012 (0.002) 0.012 (0.002) | 0.022 (0.005) 0.022 (0.004) | 0.061(0.029) 0.064 (0.034)
400 20 20 row 0.012 (0.003)  0.011 (0.002) | 0.019 (0.005) 0.019 (0.004) | 0.035 (0.011) 0.034 (0.011)
column | 0.013 (0.003) 0.012 (0.003) | 0.021 (0.005) 0.019 (0.004) | 0.038 (0.013) 0.035 (0.011)
40 40 row 0.008 (0.001)  0.008 (0.001) | 0.015 (0.003) 0.015 (0.003) | 0.034 (0.012) 0.034 (0.011)
O method col 0.008 (0.001) 0.008 (0.002) | 0.015 (0.003) 0.015 (0.003) | 0.034 (0.011) 0.035 (0.014)
(4,4,4,4) 200 20 20 row 0.015 (0.003)  0.014 (0.003) | 0.023 (0.005) 0.023 (0.004) | 0.035 (0.008) 0.035 (0.007)
column | 0.015 (0.004) 0.015 (0.004) | 0.023 (0.005) 0.023 (0.005) | 0.036 (0.008) 0.035 (0.008)
40 40 row 0.010 (0.001) 0.010 (0.001) | 0.017 (0.003) 0.017 (0.002) | 0.029 (0.004) 0.028 (0.004)
column | 0.010 (0.002) 0.010 (0.002) | 0.017 (0.003) 0.017 (0.003) | 0.029 (0.004) 0.029 (0.004)
400 20 20 row 0.010 (0.002) 0.010 (0.002) | 0.016 (0.003) 0.015 (0.003) | 0.025 (0.005) 0.024 (0.005)
column | 0.010 (0.002) 0.010 (0.002) | 0.016 (0.003) 0.016 (0.003) | 0.026 (0.005) 0.025 (0.005)
40 40 row 0.007 (0.001) 0.007 (0.001) | 0.012 (0.002) 0.012 (0.002) | 0.020 (0.003) 0.021 (0.003)
column | 0.007 (0.001) 0.007 (0.001) | 0.012 (0.002) 0.012 (0.002) | 0.021 (0.003) 0.021 (0.003)
(3,3,3,3) 200 20 20 row 0.066 (0.144) 0.069 (0.145) | 0.066 (0.147) 0.069 (0.147) | 0.151 (0.168) 0.153 (0.171)
column | 0.073 (0.152) 0.069 (0.141) | 0.101 (0.164) 0.095 (0.148) | 0.167 (0.179) 0.157 (0.162)
40 40 row 0.065 (0.148)  0.064 (0.151) | 0.079 (0.147) 0.082 (0.152) | 0.163 (0.169) 0.175 (0.179)
LCR column | 0.075 (0.166) 0.072 (0.160) | 0.088 (0.163) 0.098 (0.169) | 0.184 (0.192) 0.210 (0.199)
400 20 20 row 0.011 (0.004) 0.011 (0.013) | 0.018 (0.024) 0.019 (0.024) | 0.051 (0.060) 0.045 (0.040)
column | 0.013 (0.005) 0.013 (0.025) | 0.019 (0.009) 0.021 (0.031) | 0.056 (0.061) 0.057 (0.068)
40 40 row 0.008 (0.005) 0.008 (0.002) | 0.018 (0.015) 0.020 (0.016) | 0.054 (0.064) 0.057 (0.065)
col 0.010 (0.026)  0.008 (0.002) | 0.020 (0.029) 0.025 (0.054) | 0.071 (0.094) 0.088 (0.114)

Note: LCR denotes the method in Liu and Chen (2020) extended to analyze matrix time series data

Table 4: Mean and standard deviation (in the parentheses) of the absolute error |77 — ro| with

different combinations of (7', p1,p2) and factor strength in Section 3.2

01, 02 p1 p2 | T =pip2 T = 2pip2 T = 4pip2
51=0,86=0 10 10 | 0.029 (0.030) 0.018 (0.019) 0.009 (0.010)
10 20 | 0.018 (0.019) 0.011 (0.012) 0.008 (0.010)
20 20 | 0.009 (0.010) 0.007 (0.007) 0.005 (0.005)
61=05,60=0 10 10 | 0.063 (0.063) 0.044 (0.047) 0.024 (0.030)
10 20 | 0.038 (0.040) 0.024 (0.025) 0.017 (0.017)
20 20 | 0.028 (0.029) 0.022 (0.021) 0.015 (0.014)
61=05,86,=05 10 10 | 0.214 (0.185) 0.166 (0.137) 0.120 (0.100)
10 20 | 0.275 (0.172) 0.203 (0.118) 0.143 (0.086)
20 20 | 0.378 (0.144) 0.281 (0.114) 0.159 (0.084)
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Table 5: Mean and standard deviation (in the parentheses) of D(M(Q s,i), M(Qs ;) with different

combinations of (T, p1,p2) and factor strength in Section 3.2

T = pip2 T = 2p1p2 T = 4p1p2
81, 02 p1 P2 . R . . . .
regime 1 regime 2 regime 1 regime 2 regime 1 regime 2
01=0,02=0 10 10 row 0.040 (0.016) 0.038 (0.012) | 0.027 (0.008) 0.027 (0.009) | 0.019 (0.007) 0.018 (0.006)
col 0.039 (0.015) 0.037 (0.013) | 0.027 (0.012) 0.027 (0.009) | 0.019 (0.007) 0.019 (0.007)
10 20 row 0.019 (0.008) 0.018 (0.006) | 0.013 (0.005) 0.013 (0.004) | 0.009 (0.003) 0.009 (0.003)
column | 0.025 (0.004) 0.025 (0.004) | 0.018 (0.004) 0.018 (0.004) | 0.013 (0.003) 0.013 (0.003)
20 20 row 0.012 (0.002) 0.011 (0.002) | 0.008 (0.002) 0.008 (0.002) | 0.006 (0.001) 0.006 (0.001)
column | 0.012 (0.002) 0.012 (0.002) | 0.008 (0.002) 0.008 (0.002) | 0.006 (0.001) 0.006 (0.001)
01 =0.5,00=0 10 10 row 0.087 (0.057) 0.082 (0.047) | 0.055 (0.024) 0.054 (0.025) | 0.038 (0.019) 0.034 (0.013)
column | 0.086 (0.059) 0.081 (0.053) | 0.056 (0.032) 0.055 (0.022) | 0.037 (0.018) 0.037 (0.016)
10 20 row 0.042 (0.022) 0.041 (0.041) | 0.028 (0.014) 0.026 (0.011) | 0.018 (0.007) 0.017 (0.005)
column | 0.048 (0.008) 0.049 (0.009) | 0.033 (0.008) 0.034 (0.009) | 0.023 (0.006) 0.023 (0.006)
20 20 row 0.028 (0.007)  0.027 (0.008) | 0.019 (0.005) 0.019 (0.005) | 0.013 (0.003) 0.013 (0.003)
column | 0.030 (0.009) 0.028 (0.007) | 0.019 (0.005) 0.019 (0.005) | 0.013 (0.003) 0.013 (0.003)
01 =05,920=05 10 10 row 0.251 (0.140) 0.245 (0.130) | 0.165 (0.101) 0.162 (0.105) | 0.106 (0.076) 0.097 (0.078)
col 0.257 (0.148) 0.261 (0.148) | 0.162 (0.114) 0.176 (0.119) | 0.101 (0.075) 0.106 (0.078)
10 20 row 0.242 (0.132) 0.248 (0.142) | 0.154 (0.110) 0.144 (0.111) | 0.080 (0.057) 0.073 (0.057)
column | 0.242 (0.075) 0.240 (0.089) | 0.126 (0.075) 0.137 (0.089) | 0.072 (0.036) 0.075 (0.039)
20 20 row 0.226 (0.138) 0.214 (0.131) | 0.107 (0.075) 0.102 (0.068) | 0.050 (0.027) 0.048 (0.023)
column | 0.260 (0.136) 0.232 (0.140) | 0.119 (0.076) 0.113 (0.087) | 0.051 (0.026) 0.050 (0.026)
1=1,...,m.

fia = —%+09ft 11+ €1, frio=—1— %; frzg=1+ ¥, fra= %—091'} 1,4 + €2,

where €;,, are independent and AV (0,4) fort =1,..., T andu=1,...,2.

The noise process is a time-independent Gaussian process with mean 0 and a Kronecker
product covariance structure, that is, Cov(vec(E;)) = I't 2 ® 't 1, where I'; ;1 and I'; 5 are of sizes
p1 % p1 and po x py respectively. If {E;} is stationary, I';; and I'; » both have diagonal entries of 1
and off-diagonal entries of 0.1 for ¢ = 1,...,T. If the noise process is non-stationary, I'; 1 and I'; »
both have diagonal entries of \/W and off-diagonal entries of 0.1 for ¢t =1,...,T.

Three settings are considered:

1. m = 2 and there is only one threshold with rg = 0. Both the factor and noise processes are

stationary. In regime 1, k17 = 1 and k12 = 2; In regime 2, ko1 = kg2 = 2.

2. m = 3 and there are two thresholds with rp = —0.5 and r; = 0.5. The factor process is

stationary and the noise process is non-stationary.
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3. m = 1. Both the factor and noise processes are non-stationary.

Table 6 shows the relative frequency to identify the regime switching(s) correctly with different
combinations of (T, p1, p2) and factor strength, and Table 7 reports the absolute error of threshold
value estimation conditional on the all regime switchings are correctly detected. When the factors
are strong in at least one direction, our method can identify the regime switchings with a very
high relative frequency and estimate their locations very well. When both row and column factors
are weak with §; = d9 = 0.2, the performance of our methods gets slightly worse, but the proposed

algorithm still can identify the regime switchings in most cases.

Table 6: Relative frequency to correctly detect the regime switchings with different combinations

of (T, p1,p2) and factor strength under three settings in Section 3.3

00=0 0,=02 06;,=0.2
d2=0 92=0 02 = 0.2
500 20 20 Setting 1 | 0.935  0.860 0.745
Setting 2 | 0.985  0.970 0.900
Setting 3 | 0.955  0.915 0.860
40 40 Setting 1 | 0.990  0.960 0.810
Setting 2 | 0.995  1.000 0.970
Setting 3 | 0.965  0.955 0.940
1000 20 20 Setting 1 | 0.965  0.955 0.875
Setting 2 | 1.000  0.995 0.940

Setting 3 | 0.985  0.960 0.935
40 40 Setting 1 | 0.995  0.990 0.990
Setting 2 | 1.000  1.000 0.965
Setting 3 | 0.995  0.990 0.975

4 Application to Real Data

We apply the proposed method to the Fama-French 10 by 10 return series. A universe of stocks
is grouped into 100 portfolios, according to ten levels of market capital and ten levels of equity

ratio. We analyze their monthly returns from November 1980 to October 2020 with T = 480
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Table 7: Mean and standard deviation (in the parentheses) of absolute error of threshold value

estimation conditional on that all regime switching are correctly detected in Section 3.3

01=0 01 =0.2 01 =0.2
T pLop2
d2 =0 02 =0 d2 = 0.2
500 20 20 Setting 1 0.007(0.008) 0.009(0.012) 0.008(0.009)
Setting 2 | Threshold 1 | 0.006(0.007) 0.007(0.008) 0.007(0.008)
Threshold 2 | 0.006(0.006) 0.007(0.007) 0.007(0.008)
40 40 Setting 1 0.006(0.005) 0.008(0.009) 0.012(0.011)
Setting 2 | Threshold 1 | 0.006(0.005) 0.008(0.008) 0.009(0.008)
Threshold 2 | 0.007(0.006) 0.007(0.007) 0.009(0.009)
1000 20 20 Setting 1 0.004(0.003) 0.004(0.004) 0.005(0.006)
Setting 2 | Threshold 1 | 0.004(0.004) 0.004(0.004) 0.004(0.004)
Threshold 2 | 0.003(0.003) 0.004(0.003) 0.004(0.004)
40 40 Setting 1 0.004(0.003)  0.005(0.005) 0.006(0.006)
Setting 2 | Threshold 1 | 0.003(0.003) 0.003(0.004) 0.005(0.005)
Threshold 2 | 0.003(0.003) 0.004(0.004) 0.005(0.005)
and p; = py = 10. More detailed information about this data set is available here, http:

//mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

Here we let hg

1 and J = 12, and use the monthly log return of S&P 500 index as the

threshold variable. Figure 1 plots the estimate numbers of factors in subintervals {S;} and {S}}.
Although the number of row factors remains the same in the support of z;, the number of column
factors changes in Sy and Ss. It indicates that there are two regime switchings caused changes
in the column loading spaces, happening in the interior of Ss and S5, and the number of column
factors does not change across regimes. With method in Section 2.5, we have 7p = —0.026 and
r1 = —0.002. Table 8 reports the distance of estimated loading spaces, and we can tell that the
column loading spaces are well apart, and the row loading spaces are closer to each other, which
is aligned with the observation that the estimated number of row factors remain the same in all

subintervals shown in Figure 1.
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Figure 1: Estimated numbers of factors in subintervals {S;} and {57} for data in Section 4.

Table 8: Distance of estimated loading spaces for Section 4

Row loading space Regime 1 Regime 2 Regime 3

Regime 1 — 0.170 0.110
Regime 2 0.170 - 0.167
Regime 3 0.110 0.167 -

Column loading space | Regime 1 Regime 2 Regime 3

Regime 1 - 0.519 0.238
Regime 2 0.519 - 0.325
Regime 3 0.238 0.325 -
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5 Conclusion

In this article, we extend the threshold factor models for multivariate time series to matrix-variate
data and propose a threshold factor model for high-dimensional matrix-variate time series, where
loading spaces change across regimes controlled by a threshold variable. The methods to estimate
threshold value, loading spaces in different regimes, and the numbers of factors are developed.
The procedure to identify regime switching is discussed. Compared with the existing results on
threshold factor models which often assume that the number of factors does not change over the
sampling period, the proposed method can be applied to the case when the numbers of factors
vary across regime. Another distinguished feature of our method is that the factor or noise process
is not necessarily to be stationary within regime which greatly enhances the application scope of
threshold factor models, while most current research results are obtained based on the assumption
that the observed process is stationary within regime. The simulated and real data examples all
confirm that the proposed method can detect regime switchings effectively and estimate threshold

values and loading spaces well.
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Appendix 1: Lemmas and Proofs

In this section, only the theoretical results for s = 1 are demonstrated, since those for s = 2 are

similar. Moreover, we mainly focus on the proofs when r > rg and € > 0 because those for r < rg

or € < 0 can be obtained in a similar fashion.

In the following we assume c; and cp are constants satisfying I%%(c;) = I®(co). Define
Ii(c1,00) = I(c1 < 2z < ¢2),

2
S: = ) RF;Cil;,

Q, ’L],U'U h 7" Z St7ust+h,vIt,i(r)It+h,j]a
Q, 7, uv h 7“ = T Z tust+h vItz )It+h,j)
R 1 T—h
Qse,ij,uv(ha T) = T Z St7uet+h,vIt,i(r)It+h,j7
t=1
N 1 T—h
/
Qes,ij,uv(hu T) = T et’ust+h,vIt,i(T)It+h,j7
t=1
Q. i, uv h 7" 2 tuet-i-h,vIt,i(r)It-‘rh,j;
1 T—h
/ /
Qfeijun(h,c1,c2) = T Z E[Ft,ici,u~cj,u-Ft+h,th(Cl702)1t+h,j]a
t=1
chw ww(hyc1y02) = Z tzczuc]u t+h]It<clac2)It+hj

Lemma 1. Let fi; 4, denote the (qu)-th entry in Fy;. Under Conditions A1-A2 and B1, for any
gu=1,2,..., k1, and £,v=1,..., ko, if holds that
| T=h 2
E {T D Urigefesngande(cr, e2) Teeng — E(feigefeanjaunle(cr, 02)1t+h,j)]}
t=1

(3R + 8a)pe; e, 0
T b

~

and

’ﬂ \

Z ft,i,qfftJrh,j,uvIt(Cly CQ)ItJrh,j] = p01,820?7
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where o = ZZO:1 a(u)ld/"*, and ¢ < ¢ can be any real numbers in (n1,72), —00, 0T +00. Pe; ey = 1
if at least one of ¢1 and cp is —0 or +00, and pe, ¢, = T1(ca—c1) if c1 and ca are both real numbers,

where 11 1s given in Condition BI.
Proof: Similar to the proof of Lemma 1 in Liu and Chen (2020), we can obtain the conclusions. g

Lemma 2. Fori,j =1,2, u,v=1,...,p2, it holds that

1 T—h

2
9 ciian(hier )3 < |5 Y BlFiny ® Frali(er, ) oan]| lesa 13 - loso 13,
t=1

and

Hﬂfc,ij,uv(hv C1, 62) - ch,ij,uv(h7 C1, 02) H%
T—h

1 2
< Hf 2 [Fron ©Fuili(crsca)lien — B(Fin; @ Frili(er, cz)IHh,j]HFHci,u.H; lejol3,
t=1

where c1 < co can be real numbers, —o0, or +00.
Proof: By the definition and properties of Kronecker product, we have

192 feiju0 (hy €1, €2) |3

< 19,00 (hy c1, c2) [ F = [vee(Qpeijun (B 1, c2) 3

1 T—h 9
= |7 VeC(E(Ft,z'ci,u-C},U.F2+h,ﬂt(01»02)1t+h,j))H2
=1
1 T—h 9
= T E[Ft+h,j ® Ft,iIt(Ch CZ)It-',-h,j]VeC(Ci,wc;',v.) ‘2
t=1
1 T—h 9
< |7 2 ElFeeng ®Frilier, e2)lpen,] QHVGC(Ci,wCQ,U.)II%
t=1
1 T—h
< |7 2 ElFeeng ®Frili(er, e2)lpen,] Fl\cz’,u-c},v.l\%
=1
1 T—h 9
< |7 2 ElFeeng ®Frilier, c2)lpen,] Fl\cz’,u-H% o3
t=1
The other inequality can be proven similarly. ]

Lemma 3. Under Conditions A1-A2, A4 and B1, for i,j = 1,2, it holds that

P2 P2
Z Z EHch,ij,uv(ha c1,02) — quijﬂw(ha C1, Cg)”% < (3h + 80(),001762 k‘lk%ago’;%pg—QégT—l’

u=1v=1
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and

p2 P2

D 19 i (hacr, )3 < P2 oy kak3agotpy >,
u=1v=1
where ky = max{ky1,k12}, ko = max{ka1,ka2}, ag satisfies | Cif2 < (1010;/2_52/2 fori=1,2, and

c1 < ¢ can be real numbers in (n1,m2), —00 or +0.

Proof: Condition A4 implies that there exists a positive constant ag such that |C;ll2 < aopé/ 2-02/2

for ¢ = 1,2. By Lemma 1 and Lemma 2, it follows

P2 P2

Z Z EHﬁfc,ij,uv(hv C1, 62) - ch,ij,uv(hy 61702)”%
u=1v=1
p2 D2
= (Z ICi,u-II§> (Z |Cjn»|§>
u=1 v=1

T—h

1 2

EHT Z [Fiin; @Fili(cr,c2)liinj — E(Fign,; @ Fy il (e, C2))]HF
=1

T—h

1 2
ICHEICS I3 B 7 Y [Frons ® Frali(er, e2)Tiing — EFeong @ Fuililer, c2) i)
t=1

A

F

A

T—h

1 2

k3| Cil51C513 - EHT Z [Firn; @Frili(cr,co)lipny — B(Fn; @Fyili(cn, Cz)ft+h,j)]HF
=1

< (3h+ 8a)pe, o, k1 kiagotps 22T,

We can also obtain the bound of Y22, 372 |Q . ;i uv(h, €1, ¢2)[3 with Lemma 1 and Lemma 2 in

a similar way. |

Lemma 4. Under Conditions A1-A4 and B1, for i = 1,2 and any € € (N, — 19,12 — 7o), it holds

that
p2 P2

Z Z EHﬁx,i,uv(thO +€) — Quiuv(h,ro + 6)“% = Op(p%pgT_l).

u=1v=1
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Proof: By Condition A4, Lemmas 1 and 3, when € > 0 and ¢ = j = 1, we have

p2 P2

DD I 11w (By o + €) — Qs 11u0(h o + €3
u=1v=1
p2 P2 R
Z Z 4HR1H§ ’ EH(ch,ll,uv(ha —00, TO) - ch,ll,uv(h7 —0, 7“0))”%
u=1v=1
p2 P2 ~
+ Z Z AR5 - B[ Qe 12,0 (P, —00,70) = Qe 120 (hy —00,70)[3 - [Ra3
u=1v=1
P2 P2 N
+ 37 Y 4IR |3 - EIQ e 21,00 (R o, o + €) — Qpe 21w (By 0,70 + €)[3 - |Ra 3
u=1v=1
p2 P2 R
+ 2 ) ARa3 - EIQ e 22,00 (s 70,70 + €) = R pe22.0(hs 70,70 + )3
u=1v=1

< Cp2 251 2 252T_1.

For the interaction of the common component and noise and the noise term, we use the same

trick,
b2 p2 .
2 2 Bl 11,u0(hyro + )3
u=1v=1
P2 p2 2
< 2) Y IRf3- EHT Z Fri€108) L (2 < 170224 < 70)
u=1v=1
P2 p2 T h 9
+2 REH Fiocoue,  I(ro <z <10+ €)l <H
uzzlvle 2”2 T Z 1,2C2u-€ 4 p o (TO Zt 70 6) (Zt-i-h 7“0) )
< 2[Ry ( 1EHT 2 eveny @ Fil(z < 10)) ) (2 r)
b2
+2|Ra 3 <Z EH Z e rhp ®Fiol(ro <2t <ro+e H ) ( ’CZ,w’%)
=1
1 op k1,1 k21 T—h
1-61 1-6
< Cp 'p P : 72 2 2 Z E et-i—huvfthv (zt <T0))
v=1u=1¢g=1v=1 t=1
1 &2om k12 k22 T—h
4 o
+Cp1 " py %2 73 Z Z E (€?+h,uvft2,2,qvf(7“0 <z <rg+e))
v=1u=1qg=1v=1 t=1
< Cp%—élpg—&Tfl’ (18)
P2 p2
Z Z E“Qez 11 m) h ro + G)H sz &1 _62T_17
u=1v=1
p2 P2 .
DD T EIQe (o + €[5 < CpipT .
u=1v=1
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It follows

p2 P2

Z Z EHﬁx,l,uv(hﬂ To +€) — Qx,l,uv(ha To + E)H%

u=1v=1

P2 P2
< Z 2 <4E||Qs,11,uv(ha 70 + €) = Qo 11,00 (A, 70 + €)[3 + 4E[Qse,11,u0 (B, 70 + €) 3
u=1v=1

4B Qs 1100 (.70 + €)1 + 4B 110 (70 + €)[3) < T

Lemma 5. Under Conditions A1-A5, and B5 for € € (n1 — 19, 1m2 — 19), we have

P2 P2 ) 0 € < O,
3 Y B o+ 9= {

u=10v=1 O(e“p; 'py =) €>0,
P2 P2 0(62]?%7261]9%7262) € <0,
20 2 B ()20 (hyro + )3 =

u=1v=1 0 e > 0.

Proof: From the definition we can easily reach the conclusion following the proof of Lemma 4 in

Liu and Chen (2020).

Lemma 6. Under Conditions A1-A5 and B4-B5, for any € € (m — r9,0),

p2 P2
2 2—26
)\kl,l (Z Z ch,lj,uv(hfa To + Eyrﬂ)ﬂfc,lj,uv(hikvr() + €7T0)/> = Ce Do 23

u=1v=1

and for any € € (0,m2 — o),

p2 P2
)\kl,2 (Z Z ch,Qj,uv<h;7 T, 70 + E)ch,Zj,uv(hgy 70,70 + €)I> = C€2p§_2627

u=1v=1

for j = 1,2, where \,(H) is the k-th largest eigenvalue of H.

Proof: By definition and properties of the Kronecker product, we have

ch,ij,uv(hv C1, 02)
1 T—h
= 7 2, Bllely ® i, Jvee(Fr)vec(Fran ;) (jo @ Tk, ) i(er, c2)lin ]
t=1

= Pla <z < )¢, @y ) Brij(h, c1,c2)(Cjo @I, ).
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Under Conditions A1-A3, following the proof of Lemma 5 in Wang et al. (2019), we can obtain

1 P2 p2
N | 0D Qpeigun (s 1, €2) Qe ijaw (s €1, 02)'

P(Cl <zt < 02)2 —leml

> Ay, ((Cj @Ik, )Bg45(hyc1, ) (CiCs @ Iy ) Bpi5(h, c1,¢2) (C; @I, ) -

Since C.C; is a ka; x ko, symmetric positive definite matrix, we can find a kgo; X ko, positive
definite matrix U; such that C,C; = U; U} and |U;|2 = |Ujllmin = Cp§/2_52/2, for i = 1,2. With
the property of the Kronecker product, it can be seen that o1(U; ®1I, ;) = o4, 1, ) (Ui ®Ig, ;) =
Cp;/ 2-62/2 By Theorem 9 in Merikoski and Kumar (2004), Lemma 3, and Condition B4, we have
O (S (W3, 70,70 + ) (U2 ®1T1,)) > Cpy

Similar to proof of Lemma 5 in Wang et al. (2019), we have

1 p2 p2
p)\km <Z Z Qre2juw(h3, 70,70 + €)Qfe2j.u0(h3, 70,70 + €)'

€ u=1v=1
= [Uk1,2 ((U,Q ® Ikl)zfﬁj(h;? ro,T0 + 6)(U2 ® Ik‘1))] CPQ 2627

where p. = P(rg < 2t < 1o + €, I™(2,41,) = j). The conclusion follows. [

Lemma 7. Under Conditions A1-A5 and B1-B5, for e € (1 — ro,m2 — 10), when the numbers of

factors are known, we have G(rg) = 0, and
G(ro+€) = Cpi *p3 >, ife # 0.

Proof: When € > 0, by Theorem 9 in Merikoski and Kumar (2004) and Lemmas 3 and 6, we have

ho p2 D2
|B} 1 Mi1,1(ro + €)B11]2 > H D0 Bl 1w (k3,70 + €)1 (k3,0 +6)/B1,1H
h=1u=1v=1 2
p2 P2
= H Z Z B} 1Ro [Qfe21,u0(h3, 10,70 + €)RY + Q22,00 (h3, 70,70 + €)RY]|
u=1v=1

[R1Qpe21,u0(h3, 70,70 + €)' + Ra€pe 2000 (R, 70,70 + €)' R,2B1,1H2

p2 P2
|BY 1 Ral3 - H 02 [Qearun(B3, ro,m0 + QR + Qe 2200 (h3, 70,70 + €)RY]
u=1v=1

[R1Qpe21,u0(h3, 70,70 + €)' + Ra€pe 2000 (R, 70,70 + €)' )

min

p2 P2
|B} Raol3 - min {Z D [ Qe 01w (k570,70 + ORY + Qe 2.0 (h3, 70,70 + )R]

k
lufleR™2 { 4=10v=1

[R1Qpe21,u0(h3, 70,70 + €)' + RaSpe 2000 (R, 70,70 + €)' U}- (19)
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Let

Vi = W1 jQscju(h3, 10,70 + €)'u,
where W ; is defined in (4), for j = 1,2. Condition B5 implies that
u' [Qe21,u0(h3, 70,70 + ORY + Qpe00.00(hS, 10,70 + €)RY]
R1Qe 21,00 (RS, 70,70 + €)' + RaSpe 20 00 (h3, 70,70 + €)' | 1
= [Quivi[3 +2viQ) 9Quava + [Qu2val3 = [Quavi — vQu2val3 + (1 — v*)|Quaval3

> (1-09)|Quaval3 = (1 — v*)|RaQ e 25,00 (B3, 70,70 + €)'ul3. (20)

Lemma 5 in Liu and Chen (2020) tells us that [By 1R2[3 > C’p%_él, therefore, with (19) and (20),

we have

HBll,lMl,l (T() + €)B171

2

p2 P2
> |B} Raf3- min (Z > Rzﬂfc,22,uv(h§ﬂ‘0ﬂ“o+6)'UH§>

k
[u]eR*1:2 u=1v=1

p2 P2
> By iRal3 - [R5 Ak (Z D Qeonun(h3, 70,70 + €)Qfe22.u0(h3, 70,70 + 6)')

u=1v=1

2-26; 2-26
> Cépl #ps2,

Thus,

G(ro +¢€) = Cer%_%lpg_%Q, if e > 0.

It can be shown that G(rg + €) > €2p%7261p§7262 when ¢ < 0 and G(rg) = 0 by definition and

Lemmas 5 and 6. n

Lemma 8. Under Condition A1-A5 and B1-B5, if ro € (m — ro,m2 — 10) and v # 0, and the

numbers of factors are known, we have
E|CA¥(7‘0 +€)—G(ro+e)| <Cp2p3T ' + C’zep%_glpg_éQT*l/z,

and

E|G(ro) — G(ro)| < CpipaT 1.

Proof: Since 19 € (n1,12), by the definition, M(By;) = M(Bs (1)) for s,i = 1,2. Hence, there
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_k) (S_

exists a (ps

+2||i

ks) orthogonal matrix I's; such that B ; = By ;(1;)Ts

(HBU 7M1 (1) B () |2 — B0 M (1) B ()

2
2. (183 (M) Brs(l = 1B M) Bl ) ‘

p2 P2

1B (i) — Bai(mi) 2] 2a,ij,u0 (R T)HQ) +2 Z Z 1B, (1) i5,u0 (R, ) |2

Qa0 (1) —

|B1:(m:) — By i(m)\b]
2

PIPNC

i=175=1

[\

7.]7

u=1v=1

P2 P2

u=1v=1

(r) + Lija(r) + Lija(r)]

When € > 0, by Cauchy-Schwarz inequality and Lemmas 4-5,

E(L11,1(ro +¢€))
ho p2 p2

N

h=1u=1v=1

+2E|B1,1(m;) — Bu1(m:)|3 (

E

(L1,1,2(
(L1,1,8(
E(L12,:1(ro
(L12,(
(L2,1.1(
E(Ly,21(

It follows from (21),

2
B[ (IBram) Mus(r)Br(ni) |2 — B Mi1(r)Builz ) | < Owin3T
=1

N

A

233 3 B[ uwlh 0+ €) — Qg (hro + )3

P2 P2

u=1v=1

E(LLQ,Q (7’0 + 6)) = O(Ep% o

La1a(ro+€) =0, Lojsz(ro+e) =0,

Lyga(ro+e€) =0, Logs(ro+e)=0.

1) + O(epl 0
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4. Then we have

Qi ()2 IBri ()2 + 2 > D7 IB1Li (1) * Qi (B 7)o (7Y 12

Z Z Hﬂx,l,uv(h,TO + 6)”%) < O(p%p%T_l),

—52T_1/2)7

—52T71/2)‘



Similarly we can establish the rate of convergence for Z?:l(Hﬁé,L(Th)i\/_[QZ(T)ﬁQZ(Th) l2—[B5 ; Mz ;(r)Ba|2).
Then when € > 0, we have

~

|G(T‘() + 6) — G(To + 6)’

2 2
23 2 (IBL ) Mei(r)Baa(m) 2 — B M (r)Bul2)

s=11=1 ‘
= OWI3T ") + O(epy ' p3 2T 1/2).

<

[
Proof of Theorem 1. Following the proof of Theorem 2 in Liu and Chen (2020), we can reach
the conclusion. =
Proof of Theorem 2. Following the proof of Theorem 3 in (Liu and Chen, 2020), the conclusions
can be reached. |
Proof of Corollary 1. Similar to proof of and Corollary 1 in Liu and Chen (2016).
Proof of Theorem 3. Following the proof of Theorem 4 in Liu and Chen (2020), we can reach
the conclusion.
Proof of Theorem 4. Similar to proof of Theorem 2.

Proof of Corollary 2: By definition of M in (17), we have

2 2 2 2 !
M = {Z [Ql,i (2 qu,ij,uv(h7r0>>] } {Z [Ql,z‘ (Z qu,z’j,uv(h,m)>] } -
h=1u=1v=1 (i=1 j=1 i=1 j=1

Similar to the proof of Corollary 2 in Liu and Zhang (2022), we can show that

2 2
Oky1+k12 (Z [Ql,i (Z qu,ij,uv(h7T0)>]> = Cp%_élp%_(b'

i=1 j=1

>
=]
3
)
3
)

Following the proof of Lemma 6, it can be proved that
—20 —206
/\k1,1+1€1,2(M) = Cp% 2 lpg ? &

Then we can reach the conclusions following the proof of Corollary 1 in Lam and Yao (2012). g

Appendix 2

We compare the proposed method with the one by Liu and Chen (2020) using different values of
n and 72 in Table 9 and Table 10. Our method beats the one by Liu and Chen (2020). When
m = 0.15, 2 = 0.85, and sample size is large, there are enough observations used to estimate B, ;

in (11) and the difference between estimators of two approaches is much smaller.
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Table 9: Mean and standard deviation (in the parentheses) of the absolute error |7 — r¢| for two

methods with different combinations of (T, p1, p2), factor strength, and (11, 72)

(m, n2) T p1 p2 Method 01=0,00=0 6, =03,0o=0 61=0.3,0,=03
(0.05,0.95) | 100 10 10 Our method | 0.036 (0.038) 0.066 (0.078
LCR 0.839 (0.248 0.850 (0.249

0.138
0.851

0.120
0.255

20 20 Our method | 0.028
LCR 0.888

0.024
0.242

0.059
0.904

0.063 0.208 (0.167

0.250 0.920 (0.252

200 10 10 Owur method | 0.018
LCR 0.795

20 20 Our method | 0.016
LCR 0.872

0.020 0.032 (0.034 0.062 (0.062

0.216 0.809 (0.212 0.821 (0.212

)
)
)
)
)
0.016)
0.235)  0.879
)
)
)
)
)
)
)

( ) (0.120)
( ) (0.255)
( ) (0.167)
( ) (0.252)
( ) (0.062)
( ) (0.212)
( 0.027 (0.028) 0.107 (0.090)
( 0.225) 0.886 (0.221)
(0.15,0.85) | 100 10 10 Our method | 0.026 (0.026 ) (0.065)
( ) (0.246)
( ) (0.073)
( ) (0.255)
( ) (0.038)
( ) (0.043)
( ) (0.043)
(
2

0.032 (0.034
0.254

0.030

0.060 (0.065
LCR 0.168 (0.251

20 20 Our method | 0.027 (0.023

0.222
0.033

0.295
0.074

0.246
0.073

LCR 0.168
200 10 10 Our method | 0.016

0.270
0.018

0.214
0.023

0.266 0.362 (0.255

0.025 0.035 (0.038
LCR 0.025

20 20 Our method | 0.015

0.030 0.048

0.020

0.054
0.022

0.040 (0.043

0.043

(
(
(
(
(
(
(
(
(
(
(
(
(
(

0.014 0.043

LCR 0.019 (0.021) 0.049 (0.061) 0.156 (0.112)
Note: LCR denotes the method in Liu and Chen (2020) extended to analyze matrix time series data
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Table 10: Mean and standard deviation (in the parentheses) of D(M(Qs,i),M(Qm)) for two

methods with different combinations of (7', p1,p2), factor strength, and (1, 72)

(m1, m2) T p1 p2 | Method 61 =0,0=0 61=03,00=0 61 =03, =03
(0.05,0.95) | 100 10 10 | Our method row 0.035 (0.012)  0.035 (0.016) | 0.056 (0.025) 0.059 (0.050) | 0.107 (0.070) 0.101 (0.072)
column | 0.037 (0.015) 0.036 (0.013) | 0.059 (0.031) 0.059 (0.035) | 0.117 (0.098) 0.106 (0.070)
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column | 0.295 (0.272)  0.303 (0.274) | 0.306 (0.261) 0.319 (0.261) | 0.343 (0.234) 0.365 (0.235)
200 10 10 | Our method row 0.025 (0.009)  0.023 (0.010) | 0.037 (0.015) 0.036 (0.017) | 0.060 (0.032) 59 (0.037)
column | 0.025 (0.015) 0.025 (0.009) | 0.038 (0.026) 0.037 (0.015) | 0.064 (0.050) 0.062 (0.039)
LCR row 0.290 (0.248) 0.232 (0.244) | 0.305 (0.242) 0.237 (0.235) | 0.327 (0.227) 0.253 (0.221)
column | 0.287 (0.244)  0.235 (0.244) | 0.303 (0.237) 0.242 (0.237) | 0.328 (0.223) 0.261 (0.224)
20 20 | Our method row 0.015 (0.004)  0.015 (0.004) | 0.024 (0.007) 0.024 (0.006) | 0.049 (0.020) 0.048 (0.022)
column | 0.016 (0.003) 0.015 (0.004) | 0.026 (0.007) 0.026 (0.007) | 0.054(0.024) 0.054 (0.030)
LCR row 0.242 (0.263) 0.309 (0.272) | 0.256 (0.255) 0.314 (0.263) | 0.277 (0.240) 0.342 (0.245)
column | 0.243 (0.261)  0.310 (0.269) 56 (0.254)  0.316 (0.260) | 0.281 (0.237)  0.345 (0.242)
(0.15, 0.85) | 100 10 10 | Our method row 0.035 (0.012)  0.034 (0.015) | 0.052 (0.020) 0.051 (0.025) | 0.085 (0.043) 0.081 (0.045)
column | 0.036 (0.014) 0.035 (0.012) | 0.055 (0.025) 0.053 (0.020) | 0.094 (0.069) 0.085 (0.041)
LCR row 0.068 (0.110) 0.079 (0.130) | 0.101 (0.124) 0.104 (0.130) | 0.162 (0.145) 0.149 (0.135)
column | 0.066 (0.102) 0.082 (0.135) | 0.094 (0.106) 0.113 (0.138) | 0.175 (0.155) 0.169 (0.154)
20 20 | Our method row 0.023 (0.007)  0.022 (0.005) | 0.039 (0.015) 0.036 (0.010) | 0.078 (0.045) 0.071 (0.032)
column | 0.022 (0.005) 0.022 (0.006) | 0.037 (0.010) 0.037 (0.010) | 0.072 (0.026) 0.073 (0.030)
LCR row 0.054 (0.118)  0.076 (0.157) | 0.076 (0.117) 0.100 (0.159) | 0.151 (0.143) 0.168 (0.163)
column | 0.052 (0.111) 0.079 (0.155) | 0.071 (0.108) 0.103 (0.154) | 0.144 (0.128) 0.168 (0.155)
200 10 10 | Our method row 0.025 (0.009)  0.023 (0.010) | 0.036 (0.014) 0.035 (0.016) | 0.056 (0.026) 0.055 (0.032)
column | 0.025 (0.015) 0.025 (0.009) | 0.038 (0.026) 0.036 (0.015) | 0.061 (0.049) 0.058 (0.030)
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Note: LCR denotes the method in Liu and Chen (2020) extended to analyze matrix time series data
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