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Abstract

Motivated by the growing availability of complex time series observed in real applica-

tions, we propose a threshold matrix-variate factor model, which simultaneously addresses

the sample-wise and time-wise complexities of a time series. The sample-wise complexity is

characterized by modeling matrix-variate observations directly, while the time-wise complexity

is modeled by a threshold variable to describe the non-linearity in time series. The estima-

tors for loading spaces and threshold values are introduced and their asymptotic properties

are investigated. Our matrix-variate models compress data more efficiently than traditional

vectorization-based models. Furthermore, we greatly extend the scope of current research on

threshold factor models by removing several restrictive assumptions, including existence of

only one threshold, fixed factor dimensions across different regimes, and stationarity within

regime. Under the relaxed assumptions, the proposed estimators are consistent even when the

numbers of factors are overestimated. Simulated and real examples are presented to illustrate

the proposed methods.
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1 Introduction

Advances in information technology have brought a growing number of high-dimensional matrix-

variate time series in forms of dynamic panels (Chen et al., 2020a), dynamic networks (Chen

and Chen, 2019), and multi-variate spatial temporal observations (Yu et al., 2015). To reduce

dimensions and to reveal underlying correlation structures, Wang et al. (2019) proposed a matrix-

variate factor model which is defined, for time series of Xt P Rp1ˆp2 , as

Xt “ RFtC
1 `Et, t “ 1, 2, . . . , T. (1)

Here, the observed matrix Xt is driven by a latent factor matrix Ft P Rk1ˆk2 of a smaller dimension

(i.e. k1 ! p1 and k2 ! p2), plus a noise matrix Et. Unobserved R P Rp1ˆk1 and C P Rp2ˆk2

are row and column loading matrices, respectively. The temporal dynamics of Xt is entirely

driven by the latent factor Ft in the sense that Et is assumed to serially independent. Model (1)

extends the classic factor analysis to directly modeling matrix-variate observations. Compared

with those estimated from the vectorized factor model, estimators obtained from (1) have been

shown to achieve faster convergence rate (Wang et al., 2019) and provide better interpretation in

real applications such as international import-export trading (Chen and Chen, 2019) and multi-

variate spatial temporal environment data (Chen et al., 2020b).

Factor models for high-dimensional time series have been extensively investigated over the

past decades. The most widely-studied model in econometrics, called approximate factor model,

searches for common factors that affect the dynamics of most of time series in the cross-section

dimension, and allows limited time-series and cross-section dependence in the idiosyncratic com-

ponent; See Assumption B and Assumption C in Bai (2003). Many existing theoretical results on

factor models were derived under this setting; See examples Chen et al. (2014), Barigozzi et al.

(2018), Barigozzi and Cho (2020), Massacci (2017), Ma and Su (2018), Wu (2021) and references

therein. Following the assumptions in the approximate factor model, Chen and Fan (2021) ex-

tended the model for matrix-variate time series analysis. However, Lam et al. (2011) pointed out

that the rigorous definition of factors and idiosyncratic noise in the approximate factor model

can only be established when the dimension goes to infinity, and they proposed another approach

to decompose the observed data. Lam et al. (2011) separates the time series into two parts: a

dynamic part driven by factors which captures all the temporal dependence of the observed pro-

cess and a static noise which is time-independent. Since the noise has no serial dependence, the

decomposition is unique when the cross-section dimension is finite. The model proposed by Lam
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et al. (2011) became popular recently and were discussed in Chang et al. (2015), Liu and Chen

(2016), Chen et al. (2020a), Liu and Chen (2020), and Liu and Zhang (2022). Wang et al. (2019)

extended the factor models for matrix time series analysis based on Lam et al. (2011). Two types

of factor models are compared in Remark 2. Throughout this paper we follow the factor model

settings proposed by Lam et al. (2011).

One important assumption of the matrix variate factor model (1) is that the loading matrices R

and C affects the observation in a time-invariant linear fashion. However, literature has shown the

presence of nonlinearity in many time series data (Tong and Lim, 1980; Tsay, 1989, 1998; Fan and

Yao, 2008). Particularly, the threshold effect is observed in many cases of factor models (Massacci,

2017; Liu and Chen, 2020; Wu, 2021). For example, CAPM theory indicates that the expected

market return is an important factor for the expected return of various assets, and Liu and Chen

(2016) found that its impact (loadings) on any individual asset may be different depending on

whether a stock market is volatile or stable. In economics, risk-free rate, unemployment, and

economic growth are crucial factors of all economic activities and serve as their performance

indicators. Indeed, the loadings of these factors may vary under different fiscal policies or in

different stages of the economic cycle (Kim and Nelson, 1998).

In this paper, we introduce a threshold matrix-variate factor model, which relaxes the time-

invariant assumption on R and C and extends model (1) to allow for the threshold effect (Tong

and Lim, 1980; Tsay, 1989, 1998). The theoretical research on vector-variate threshold factor

models has emerged in literature in the past few years. Massacci (2017) used the least squares

method to estimated the threshold and proposed model selection criteria. Liu and Chen (2020)

developed a projection-based objective function to estimate the threshold value. Wu (2021)

discussed the case when the threshold variable divides the data into multiple regimes and proposed

an algorithm to identify regime shifts. Our threshold matrix-variate factor model generalizes its

vector-variate counterpart to directly handle the intrinsic matrix structure. We achieve greater

dimension reduction and obtain better estimation than the vectorization-based procedure via

a carefully-designed estimation procedure that exploits intrinsic matrix and regime-switching

structure.

Besides that, we also make the following contributions to the current literature on threshold

factor models. Firstly, we consider the case where dimensions of the latent factor matrix may vary

in different regimes. This removes the limitation of the methods proposed in Massacci (2017),

Liu and Chen (2020), and Wu (2021), all of which require the number of factors to remain the
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same across regimes. Secondly, our algorithm is able to identify the thresholding mechanism when

the number of thresholds is unknown. In contrast, current literature in threshold factor models

(Massacci, 2017; Liu and Chen, 2020) only allows one threshold to divide data in two regimes.

Thirdly, the proposed estimation procedure can be applied to data that neither the factor or the

noise process is stationary, while the method in Wu (2021) is limited to data in which latent factor

and noise process are both strictly stationary. We only require the factor process to satisfy the

mixing condition and the moments of factor and noise processes to be bounded. Our methods

can successfully identify regime switchings and estimate thresholds and loadings when the means

and variances of factor and noise processes are time-varying; See simulation results in Section 3.3.

In summary, the proposed methods greatly relax these restrictive assumptions and thus extend

the scope of potential applications of threshold factor models.

The rest of the paper is organized as follows. Section 2.1 introduces the threshold factor

model with two regimes for high-dimensional matrix-variate time series. Section 2.2 discusses the

estimators for loading spaces and presents their theoretical properties. Section 2.3 investigates the

threshold estimation and establishes the asymptotics of the proposed threshold estimator. The

estimation for numbers of factors is studied in Section 2.4, and we show that if the numbers of

factors are overestimated the proposed estimators are still consistent. In Section 2.5 we consider

the threshold matrix factor models with multiple thresholds and introduce the procedure for

model identification. We apply our methods to simulated and real data, and present the results

in Sections 3 and 4, respectively. Section 5 provides the conclusions. The lemmas and detailed

mathematical proofs are in the Appendix 1. Appendix 2 presents more simulation results.

Here is some notation we will use throughout the paper. Let vecp¨q be the vectorization oper-

ator, which converts a matrix to a vector by stacking columns of the matrix on top of each other.

For any matrix H, let }H}2 and }H}F be the L-2 norm and Frobenius norm of H, respectively,

σipHq be its i-th largest singular value, rankpHq be its rank, and }H}min be the square root of

the minimum nonzero eigenvalue of H1H. For a squarer matrix H, trpHq denotes its trace. We

use hu¨ and hv to represent the vectors with the entries in the u-th row and the v-th column of

H respectively, and huv to represent the pu, vq-th entry of H. We write a — b, if a “ Opbq and

b “ Opaq. For a constant a, tau is the largest integer less than or equal to a. We use C’s and Ci’s

to denote generic uniformly positive constants which only depend on the parameters.
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2 Estimation and Identification of Threshold Matrix Factor Mod-

els

In this Section, we will introduce the threshold matrix factor models, propose the estimation

methods, and develop an algorithm for model identification. The asymptotic properties of the

proposed estimators will also be investigated. We first consider a special case for threshold matrix

factor models with two regimes in Section 2.1, and propose methods to estimate the loading

spaces and threshold value when the numbers of factors are known in Section 2.2 and Section 2.3,

respectively. In practice, the numbers of factors are also unobserved, and Section 2.4 considers

the estimation for the numbers of factors. Section 2.5 discusses the case when the number of

regimes is unknown and presents the algorithm to identify the number of regimes and estimate

multiple threshold values.

2.1 Two-regime threshold matrix factor model

Let Xt be a p1 ˆ p2 observed matrix-variate time series, where

Xt “

$

&

%

R1Ft,1C
1
1 `Et zt ă r0,

R2Ft,2C
1
2 `Et zt ě r0,

t “ 1, . . . , T. (2)

Ft,i is a k1,i ˆ k2,i matrix-variate time series which consists of fundamental latent factors for

i “ 1, 2. Ri is an unobserved p1 ˆ k1,i row loading matrix in regime i, and Ci is an unobserved

p2 ˆ k2,i column loading matrix in regime i, for i “ 1, 2. Et is a p1 ˆ p2 matrix which is the

noise process and has no serial dependence. zt is an observed threshold variable, controlling the

switchings between two regimes. Loading matrices tRi,Ciu are different across regimes.

Threshold models were first proposed by Tong and Lim (1980) to interpret nonlinear dynamics

in time series data, and were widely applied in economics (Wu and Chen, 2007), finance (Tsay,

1989; Massacci, 2017), biology (Tong and Lim, 1980), and environmental science (Tsay, 1998).

The threshold variable is always assumed to be observable, which is one of the limitations of this

class of models. There are various choices of threshold variables used in literature. Specifically,

the threshold variable can be a lag variable of the observed time series (Tong and Lim, 1980;

Tong, 1990), an exogenous variable (Tsay, 1998), or a linear or nonlinear combination of observed

data and/or exogenous variables (Chen, 1995).

Two regimes in model (2) are only distinguished by loading matrices, which is a common

assumption in factor models for high dimensional vector time series with multiple regimes; See
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examples in Chen et al. (2014); Baltagi et al. (2017); Massacci (2017). One advantage to focus

exclusively on the regime switchings in loadings is that the factor and noise processes can ac-

commodate non-stationarity within regimes, including but not limited to time-varying mean and

time-varying variance; See Section 3.3. However, as a result, our methods cannot be used to make

inferences about the changes in the moments of Ft,1, Ft,2, or Et as Barigozzi et al. (2018) does.

Remark 1. Model (2) with pk1,1k2,1 ` k1,2k2,2q factors is a special case of matrix factor model

(Wang et al., 2019), since it can be re-written as

Xt “ rRrFt
rC1 `Et, (3)

where

rR “

´

R1 R2

¯

, rFt “

¨

˝

Ft,1It,1 0

0 Ft,2It,2

˛

‚, rC “

¨

˝

C1

C2

˛

‚,

where It,1 “ Ipzt ă r0q and It,2 “ Ipzt ě r0q. Model (3) is a one-regime factor model in Wang

et al. (2019) with constraints in the factor process. If we ignore the changes of loadings, the

number of factors may be enlarged as pk1,1 ` k1,2qpk2,1 ` k2,2q in (3), the threshold factor model

(2) uses fewer factors and achieves greater dimension reduction by introducing regimes.

Remark 2. The approximate factor model in econometrics was built based on the assumption

that the factors have an impact on most of the series, and thus the idiosyncratic noise allows

serial dependence but only has weak cross-sectional dependence, i.e., 1
p

řp
i“1

řp
j“1 |σij,t| ă C for

t “ 1, . . . , T , where p is the dimension of the vector time series and σij,t is the pijq-th entry in the

covariance matrix of the noise process at time t; See Assumption C3 in Bai (2003), Assumption

M1.b in Stock and Watson (2002), and more examples in Bai and Ng (2002); Fan et al. (2017).

However, under this condition, the common component and noise process are not identifiable

when the dimension is finite. Lam et al. (2011) took another setting that the factors capture

all serial dependence of the observed process. As a result, the noise is time-independent and

can accommodate strong cross-sectional dependence, i.e., |σij,t| ă C for i, j “ 1, . . . , p and t “

1, . . . , T ; See more examples in Chang et al. (2015); Liu and Chen (2016); Wang et al. (2019);

Chen et al. (2020a). To make the common component and noise process separable, in this paper,

we follow their settings, and further relax their assumption by allowing heteroscedasticity for the

noise process.

Since Ri, Ci and Ft,i are all unobserved, the factor models have ambiguity issues and Ri and
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Ci are not uniquely defined. Specifically, the model (2) can be re-written as,

Xt “

2
ÿ

i“1

“

RiUi

`

U´1
i Ft,iV

´1
i

˘

ViC
1
i

‰

It,i `Et, t “ 1, . . . , T.

The row loading matrix, column loading matrix and factor process can be replaced by RiUi,

CiV
1
i, and U´1

i Ft,iV
´1
i , for any non-singular matrices Ui and Vi, i “ 1, 2. However, the column

spaces spanned by Ri and Ci, MpRiq and MpCiq, called row loading space and column loading

space for regime i respectively, are identifiable. Our aim is to estimate the row and column loading

spaces, instead of loading matrices. We can further decompose Ri and Ci as follows

Ri “ Q1,iW1,i, and Ci “ Q2,iW2,i, (4)

where Qs,i is a ps ˆ ks,i orthogonal matrix, and Ws,i is a ks,i ˆ ks,i non-singular matrix, for

s, i “ 1, 2. s is the index for dimension reduction directions (row/column), and i is the index for

regimes. By the definition, we have MpRiq “MpQ1,iq and MpCiq “MpQ2,iq. In the following,

we will estimate the orthonormal representatives of MpRiq and MpCiq, Q1,i and Q2,i, for i “ 1, 2.

2.2 Estimation of loading spaces when the threshold value is known

If only considering the v-th column of Xt in model (2), we have

xt,v “

$

&

%

R1Ft,1c1,v¨ ` et,v “ Q1,1Zt,1q2,1,v¨ ` et,v zt ă r0,

R2Ft,2c2,v¨ ` et,v “ Q1,2Zt,2q2,2,v¨ ` et,v zt ě r0,
(5)

where Zt,i “ W1,iFt,iW
1
2,i for i “ 1, 2.

If we use r as the tentative threshold value to split data, let h be a positive integer, and

define the second cross moment matrices of the factor process and observed process in different

partitions,

Ωzq,ij,uvph, rq “
1

T

T´h
ÿ

t“1

ErZt,iq2,i,u¨q
1
2,j,v¨Z

1
t,jIt,iprqIt`h,jpr0qs,

Ωx,i,uvph, rq “
1

T

T´h
ÿ

t“1

Erxt,ux
1
t`h,vIt,iprqs,

for i, j “ 1, 2, and u, v “ 1, . . . , p2, where It,1prq “ Ipz ă rq and It,2prq “ Ipzt ě rq.

Since the noise process is independent over time, if r “ r0, when h ą 0, we have

Ωx,i,uvph, r0q “ Q1,i rΩzq,i1,uvph, r0q `Ωzq,i2,uvph, r0qsQ
1
1,i. (6)
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For a pre-determined positive integer h0, define

M1,iprq “
h0
ÿ

h“1

p2
ÿ

u“1

p2
ÿ

v“1

Ωx,i,uvph, rqΩx,i,uvph, rq
1, for i “ 1, 2. (7)

By equation (6), if r “ r0, it follows that

M1,ipr0q “ Q1,i

«

h0
ÿ

h“1

p2
ÿ

u“1

p2
ÿ

v“1

˜

2
ÿ

j“1

Ωzq,ij,uvph, r0q

¸˜

2
ÿ

j“1

Ωzq,ij,uvph, r0q

¸1ff

Q1
1,i. (8)

M1,ipr0q is a symmetric non-negative definite matrix sandwiched by Q1,i and Q1
1,i. If the matrices

in the parentheses of (8) are full rank, the eigenvectors of M1,ipr0q corresponding to the nonzero

eigenvalues span the row loading space in regime i. Hence, MpQ1,iq can be estimated by the

eigen-decomposition of sample version of M1,ipr0q. Let q1,i,k be the unit eigenvector of M1,ipr0q

corresponding to the k-th largest eigenvalue, and we can now uniquely define Q1,i by

Q1,i “ pq1,i,1, . . . ,q1,i,k1,iq.

Now we define the sample version of the above statistics.

pΩx,i,uvph, rq “
1

T

T´h
ÿ

t“1

xt,ux
1
t`h,vIt,iprq, (9)

xM1,iprq “
h0
ÿ

h“1

p2
ÿ

u“1

p2
ÿ

v“1

pΩx,i,uvph, rqpΩ
1

x,i,uvph, rq, (10)

for i “ 1, 2. Let pq1,i,k be the unit eigenvector of xM1,ipr0q corresponding to the k-th largest

eigenvalue. Then if the threshold value r0 is known, the row loading space in regime i can be

estimated by

{MpRiq “MppQ1,iq,

where pQ1,i “ ppq1,i,1, . . . , pq1,i,k1q. For the column loading spaces, they can be estimated by per-

forming the same procedure on the transposes of X1
ts to construct M2,iprq, for i “ 1, 2.

Remark 3. The estimation procedure here is a generalized version of that in Liu and Chen

(2020). However, Liu and Chen (2020) divides the observed process with two tentative threshold

values and defines the second cross moment matrices of the observed process in four partitions.

Although their model allows overlap between loading spaces in two regimes in Condition 9, the

effective sample size is much smaller; See Remark 4. Another advantage of our method is that

we can deal with the case when the numbers of factors vary across regimes, while Liu and Chen

(2020) only discusses the scenario when the number of factors remains the same.
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2.3 Threshold Estimation

In this section, we construct a project-based objective function following the method in Liu and

Chen (2020) for threshold value estimation, and provide the estimators for loading spaces when

the threshold value is unknown. The theoretical properties of the estimators will also be studied.

Let Bs,i “ pqs,i,ki`1, . . . ,qs,i,piq be a ps ˆ pps ´ ks,iq matrix, whose columns consist of the

unit eigenvectors of Ms,ipr0q corresponding to zero eigenvalues for s, i “ 1, 2. MpBs,iq is the

complement of loading space MpQs,iq and Q1
s,iBs,i “ 0, for s, i “ 1, 2. Define the objective

function

Gprq “
2
ÿ

s“1

2
ÿ

i“1

›

›B1s,iMs,iprqBs,i

›

›

2
. (11)

By the definition of Ms,iprq, we can tell that Gprq measures the sum of the squared norm of the

projections of Ωx,i,uvph, rq onto the complement of loading spaces, MpBs,iq, for h “ 1, . . . , h0,

u, v “ 1, . . . , pi, and s, i “ 1, 2.

If r “ r0, the observations in two regimes are correctly classified into different subsets. Then

by (8), Ms,iprq is sandwiched by Qs,i and Q1
s,i. Hence, Gprq “ 0. However, if r ‰ r0, the

observations from one regime are misclassified into two subsets, and one of the two subsets is

mixed. Ms,iprq is not sandwiched by Qs,i and Q1
s,i, and the projection is nonzero.

A standard assumption for threshold variable estimation is imposed which is that r0 is in a

known region of the support of zt, r0 P pη1, η2q, where η1 and η2 are called trimming parameters.

We use data corresponding to zt ď η1 and zt ě η2 to estimate MpBs,1q and MpBs,2q, respectively,

for s “ 1, 2. The sample version of Gprq is defined as

pGprq “
2
ÿ

s“1

2
ÿ

i“1

›

›pB1s,ipηiq
xMs,iprq pBs,ipηiq

›

›

2
,

where

pΩx,i,uvph, ηiq “
1

T

T´h
ÿ

t“1

xt,ux
1
t`h,vIt,ipηiq,

xM1,ipηiq “
h0
ÿ

h“1

p2
ÿ

u“1

p2
ÿ

v“1

pΩx,i,uvph, ηiqpΩx,i,uvph, ηiq
1,

xM2,ipηiq is defined in a similar way with transposes of Xt’s, pBs,ipηiq “ ppqs,i,ki`1pηiq, . . . , pqs,i,pipηiqq,

and pqs,i,kpηiq is the k-th largest eigenvector of xMs,ipηiq.

We estimate r0 by

pr “ arg min
rPtz1,...,zT uXpη1,η2q

pGprq.
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Remark 4. Compared with the method by Liu and Chen (2020) using both trimming parameters

to estimate the complement loading space in each regime, here we estimate Bs,i with only one

trimming parameter utilizing more information from data. Let us say η1 and η2 are the 10-th and

90-th quantiles of the threshold variable, and then we use 10% of observations to estimate Bs,i

in (11), while Liu and Chen (2020) only uses 1%. The effective sample size for the estimation of

Bs,i is much smaller for Liu and Chen (2020). The simulation results in Section 3.2 confirm that

our methods outperform the methods by Liu and Chen (2020).

The following regularity conditions are needed to obtain the theoretical properties.

Condition A1. The process pFt,1,Ft,2, ztq is α-mixing. Specifically, for some γ ą 2, the mixing

coefficients satisfy the condition
ř8
h“1 αphq

1´2{γ ă 8, where

αphq “ sup
i

sup
APF i

´8,BPF8

i`h

|P pAXBq ´ P pAqP pBq|,

and F j
i is the σ-field generated by tpFt,1,Ft,2, ztq : i ď t ď ju.

Define

Σf,ijphq “
1

T

T´h
ÿ

t“1

ErvecpFt,iqvecpFt`h,jq
1s,

Σf,ijph, rq “
1
T

řT´h
t“1 ErvecpFt,iqvecpFt`h,jq

1It,iprqIt`h,jpr0qs

ErIt,iprqIt`h,jpr0qs
.

Condition A2. For any i “ 1, 2, u “ 1, . . . , k1,i, v “ 1, . . . , k2,i, and t “ 1, . . . , T , Ep|ft,i,uv|
4γq ď

σ4γf , where σf is a positive constant and γ is given in Condition A1. There exists an h P r1, h0s

such that rankpΣf,ijphqq ě kmax, and σkmaxpΣf,ijphqq is uniformly bounded, as p1 and p2 go to

infinity, where kmax “ maxtk1,1, k1,2, k2,1, k2,2u. For i “ 1, 2, u “ 1, . . . , ki,1 and v “ 1, . . . , ki,2,

1
T´h

řT´h
t“1 Covpft,i,u, ft`h,i,uq ‰ 0, 1

T´h

řT´h
t“1 Covpft,i,v¨, ft`h,i,v¨q ‰ 0.

Condition A3. VarpEtq “ Σt,e for t “ 1, . . . , T . The absolute value of each element in Σt,e re-

mains bounded by σ2e as p1 and p2 increase to infinity for t “ 1, . . . , T . CovpvecpEt1q, vecpFt2,iqq “

0 and CovpvecpEt1q, vecpEt2qq “ 0 for t1, t2 “ 1, . . . , T and i “ 1, 2.

Condition A4. For i “ 1, 2, there exist constants δ1 and δ2 P r0, 1s such that }Ri}
2
2 — p1´δ11 —

}Ri}
2
min and }Ci}

2
2 — p1´δ22 — }Ci}

2
min, as p1 and p2 go to infinity.

When studying high-dimensional time series, it is common to assume the norm of the loading

matrices grows as the dimension increases to infinity. We use the strength of factors δi defined in

Lam et al. (2011) and Lam and Yao (2012) to measure the growth rate for s, i “ 1, 2. It reflects the

relative growth rate of information about Ft,i carried by Xt as the dimensions increase, comparing
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to the growth rate of the noise process. For example, if δ1 “ 0, the row factors are strong, and

observations are fully loaded with signal as p1 increases. If δ1 “ 1, the row factors are extremely

weak, and only noise is added to the observed data as p1 increases.

Condition A5. Ms,i has ks,i distinct positive eigenvalues for s, i “ 1, 2.

Conditions A1-A5 are similar to the standard assumptions for factor models (Lam et al., 2011; Lam

and Yao, 2012; Wang et al., 2019). Like in Liu and Chen (2020) and Liu and Zhang (2022), here

a more general setting is considered, and we only require the factor process to satisfy the mixing

condition and the moments of the factor and noise processes to be bounded. Heteroskedasticity

in the Ft,1, Ft,2, or Et is allowed not only through their cross-sectional dimension but also the

time dimension; See simulation results in Section 3.3.

Condition B1. Assume r0 P pη1, η2q. zt is a continuous random variable, and the process tztu

is stationary. The marginal probability of zt satisfies that P pzt ď η1q ą 0 and P pzt ě η2q ą 0.

For the density function of zt, fpztq, there exist two positive constants τ1 and τ2 such that

τ2 ď fpztq ď τ1 uniformly in rη1, η2s. The conditional probability of zt`h given zt satisfies that

P pzt`h ă η1 | ztq ą π1 ą 0 and P pzt`h ą η2 | ztq ą π2 ą 0 for any zt P p´8, η1q or pη2,`8q and

h “ 1, . . . , h0.

Condition B2. There exists a positive integer h̃i P r1, h0s such that rankpΣf,ijph̃i, ηiqq ě kmax

and }Σf,ijph̃i, ηiq}min is uniformly bounded above 0, for i, j “ 1, 2.

Condition B3. Ms,ipηiq has ks,i distinct positive eigenvalues for s, i “ 1, 2.

We define an indicator function for regime 1, IRp¨q. For a constant c, IRprq “ 1 if r ď r0, and

IRpcq “ 2 if r ą r0. For c1 and c2 satisfying IRpc1q “ IRpc2q, let

Σf,ijph, c1, c2q “
1
T

řT´h
t“1 ErvecpFt,iqvecpFt`h,jq

1Ipc1 ă zt ă c2qs

ErIpc1 ă zt ă c2qs
.

Condition B4. For any r P pη1, r0q, there exists an integer h˚1 P r1, h0s such that rankpΣf,1jph
˚
1 , r, r0qq ě

kmax, for j “ 1, 2. For any r P pr0, η2q, there exists an integer h˚2 P r1, h0s such that rankpΣf,2jph
˚
2 , r0, rqq ě

kmax, for j “ 1, 2. The minimum nonzero singular values of these aforementioned matrices are all

uniformly bounded above γ0, where γ0 ą 0.

Condition B5. There exists a constant υ ă 1 such that }Q1
s,1Qs,2}2 ă υ for s “ 1, 2 as p1 and

p2 grow to infinity.

Condition B1-3 indicate that the estimators for loading spaces are consistent when only data with

tzt P p´8, η1qu or tzt P pη2,`8qu are used. Condition B4 guarantees that the cross moment
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matrices of vecpFt,iq with mixed data from two regimes carry the information on the latent factor

process in both regimes. Condition B5 is stronger than the Condition 9 in Liu and Chen (2020)

which requires the distance of loading space to be greater than 0. This is because we estimate

loading spaces with only one trimming parameter. }Q1
s,1Qs,2}2 ă 1 ensures that dimpMpQ2,1q X

MpQs,2qq “ 0 and signals are not cancelled out when we combine data transitioning from regime

i to both regimes, i “ 1, 2.

Before presenting the asymptotic properties of the proposed estimators, we introduce a mea-

sure to quantify the distance of two linear spaces, which is first proposed by Liu and Chen (2020).

Let S1 be a p ˆ q1 full-rank matrix, and S2 be a p ˆ q2 full-rank matrix, where p ě q1, q2. Let

Oi be an orthogonal representative of MpSiq, i.e., MpOiq “MpSiq and O1
iOi “ Iqi , for i “ 1, 2.

The distance of MpS1q and MpS2q is defined as

DpMpS1q,MpS2qq “

d

1´
trpO1O1

1O2O1
2q

mintq1, q2u
.

It is a quantity between 0 and 1. It is 1 if and only if MpS1q K MpS2q, and is 0 if and only if

MpS1q ĎMpS2q or MpS2q ĎMpS1q.

Theorem 1. Under Conditions A1-A5 and B1-B5, when the numbers of factors are known,

if pδ11 p
δ2
2 T

´1{2 “ op1q, as p1, p2, T Ñ8, it holds that

P ppr ă r0 ´ εq ď
Cpδ11 p

δ2
2

εT 1{2
, P ppr ą r0 ` εq ď

Cpδ11 p
δ2
2

εT 1{2
,

for ε ą 0.

Theorem 1 shows that the estimator pr is consistent under some mild conditions. pδ11 p
δ2
2 T

´1{2 “

op1q is a standard assumption used to prove the consistency for loading space estimation in matrix

factor models (Wang et al., 2019). Hence, it is also needed in model (1) to distinguish two regimes.

If all factors are strong with δ1 “ δ2 “ 0, P ppr ă r0´εq and P ppr ą r0`εq reduce to OpT´1{2q. The

estimation error for r0 is asymptotically immune to the increase of p1 and p2. When p1 and p2

grow, the curse of dimensionality is offset by the information brought by new incoming series. If

row and column factors are weak, the convergence rate in Theorem 1 depends on the cross-section

dimension. The estimator gets less efficient when p1 and p2 increase.

Theorem 1 shows that as long as T 1{2 increases faster than pδ11 p
δ2
2 asymptotically, pr converges

to r0. It is worth noting that the approximate factor model by Bai (2003) requires δ1 and δ2 to

be less than 1{2 to obtain consistent estimators (Bates et al., 2013; Bailey et al., 2016; Massacci,
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2017). However, Lam et al. (2011) does not put any constraints on the strength of factors. Lam

and Yao (2012) and Liu and Chen (2020) did numerical experiments with factor strength equal

to 0.5 and 1 respectively, and the results confirm that the estimators are consistent when factor

strength is equal to or greater than 0.5. The simulation results in Section 3.2 also proves that our

method performs well for finite samples when δ1 “ δ2 “ 0.5.

The final estimation of loading spaces is obtained using pr as the threshold value and following

the procedure in Section 3.3.

Theorem 2. Under Conditions A1-A5 and B1-B5, when the numbers of factors are known

if pδ11 p
δ2
2 T

´1{2 “ op1q, as p1, p2, T Ñ8, it holds that

DpMppQs,ipprqq,MpQs,iqq “ Oppp
δ1
1 p

δ2
2 T

´1{2q, for s, i “ 1, 2.

From Theorem 2 we can see that the asymptotics of the loading space estimators are the same

with the case when there is only one regime discussed in Wang et al. (2019).

2.4 When the numbers of factors are unknown

Since both the factors and loadings are unobserved, the numbers of factors in each regime need

to be estimated. Lam and Yao (2012) proposed a ratio-based estimator, and Wang et al. (2019)

extended it to analyze matrix-variate time series. Here we apply it for threshold matrix-variate

factor models. Assume that r0 is in a known interval pη1, η2q, and let

pks,i “ arg min
1ďkďR

pλs,i,k`1pηiq

pλs,i,kpηiq
, for s, i “ 1, 2, (12)

where pλs,i,kpηiq is the k-th largest eigenvalue of xMs,ipηiq. Note that the eigenvalues practically

will go to zero and here we cannot search up to p1 or p2. We use R “ tps{2u following Lam and

Yao (2012) and R “ tT {2u when T ă ps, for s “ 1, 2.

Corollary 1. Under Conditions A1-A5 and B1-B5, if pδ11 p
δ2
2 T

´1{2 “ op1q, as p1, p2, T Ñ 8, it

holds that

pλs,i,k`1pηiq{pλs,i,kpηiq — 1, for k “ 1, . . . , ks,i ´ 1,

pλs,i,ks,i`1pηiq{
pλs,i,ks,ipηiq “ Oppp

δ1
1 p

δ2
2 T

´1q
p
Ñ 0, for s, i “ 1, 2.

Corollary 1 presents the convergence rates of the ratios of eigenvalues of xMs,ipηiq, and indicates

that the estimated eigenvalue ratio will drop sharply at k “ ks,i, which provides a theoretical un-

derpinning for the estimator of ks,i. When k ą ks,i, the eigenvalue λs,i,k is theoretically zero and
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thus the property of the ratio pλs,i,ks,i`1pηiq{
pλs,i,ks,ipηiq is difficult to obtain. Lam and Yao (2012)

only proves that the probability to underestimate the number of factors goes to zero asymp-

totically. Although the consistency of the ratio-based estimator cannot obtained, the method

performs well in numerical experiments; See examples in Chang et al. (2015); Liu and Chen

(2016); Wang et al. (2019); Liu and Chen (2020); Liu and Zhang (2022).

Since the probability of overestimating the numbers of factors cannot be proved to converge

to 0, we shall discuss the theoretical properties of proposed estimators when the numbers of

factors are overestimated in the following. The overestimation issue for the factor number in

the approximate factor model is not new and has been considered by Barigozzi et al. (2018) and

Barigozzi and Cho (2020). Barigozzi et al. (2018) uses wavelet to detect the structural changes in

the observed process, which circumvents the issues of accurate estimation of the number of factors.

Barigozzi and Cho (2020) shows that the errors in the principal component estimators for the

common component resulting from the overestimated factor number can be non-negligible. Under

the settings by Lam et al. (2011), the estimator for the common component may be inconsistent

as well when the loading spaces are spuriously enlarged, which needs significant investigation that

is beyond the scope of this paper. Even so the proposed estimator for r is still consistent with

some regularity conditions which will be shown in the following. The reason is that the classifier

used to identify two regimes in (11) is built on Bs,i. If factor numbers are overestimated, even

though the column space spanned by estimated Bs,i is a proper subspace of MpBqs,i, it still can

differentiates data from two regimes under mild conditions.

Let

pGpr, k1,1, k1,2, k2,1, k2,2q “
2
ÿ

s“1

2
ÿ

i“1

}pB1s,i,ks,ipηiq
xMs,iprqpBs,i,ks,ipηiq}2, (13)

where pBs,i,ks,ipηiq “ ppqs,i,ks,i`1pηiq, . . . , pqs,i,pspηiqq, for s, i “ 1, 2. When the numbers of factors

are unknown, we estimate r0 by

rr “ arg min
rPtz1,...,zT uXpη1,η2q

pGpr, pk1,1,pk1,2,pk2,1,pk2,2q. (14)

If the numbers of factors are overestimated, Condition B6 ensures that the two spuriously

enlarged loading spaces MpQ˚
s,1q and MpQ˚

s,2q are still differentiable for s “ 1, 2.

Condition B6. When pks,i ą ks,i there exists a positive constant d̃ such that DpMpQ˚
s,1q,MpQs,2qq ą

d̃ and DpMpQs,1q,MpQ˚
s,2qq ą d̃, as ps goes to infinity, where Q˚

s,i “ pQs,i,Us,iq is a ps ˆ pks,i

matrix, for s, i “ 1, 2 and any psˆppks,i´ks,iq matrix Us,i such that dimpMpUs,iqXMpQs,iqq “ 0,
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Theorem 3. Under Conditions A1-A5 and B1-B6, if pδ11 p
δ2
2 T

´1{2 “ op1q, pks,i ě ks,i for s, i “ 1, 2,

as p1, p2, T Ñ8, it holds that

P prr ă r0 ´ εq ď
Cpδ11 p

δ2
2

εT 1{2
, P prr ą r0 ` εq ď

Cpδ11 p
δ2
2

εT 1{2
,

for ε ą 0.

The loading spaces are estimated using pks,i as the number of factors and rr as the threshold

value,

rQs,iprr,pks,iq “ ppqs,i,1prrq, . . . , pqs,i,pks,iprrqq, for s, i “ 1, 2. (15)

Define rQs,iprrq as the matrix which consists of the first ks,i columns of rQs,iprr,pks,iq. The following

theorem indicates that its spanned space converges to the true loading space as fast as MppQs,ipprqq

shown in Theorem 2 asymptotically,

rQs,iprrq “ ppqs,i,1prrq, . . . , pqs,i,ks,iprrqq, for s, i “ 1, 2.

Theorem 4. Under Conditions A1-A5 and B1-B6, if pδ11 p
δ2
2 T

´1{2 “ op1q, pks,i ě ks,i for s, i “ 1, 2,

as p1, p2, T Ñ8, it holds that

DpMprQs,iprrqq,MpQs,iqq “ Oppp
δ1
1 p

δ2
2 T

´1{2q, for s, i “ 1, 2.

Theorems 3 and 4 tell that when the numbers of factors are overestimated, our estimators

perform asymptotically as good as those when the number of factors are correctly estimated

under mild conditions. The consistency of the estimators shown in Theorems 3 and 4 helps us

build a complete theoretical framework for the estimation of threshold value and loading spaces

since the numbers of factors could be overestimated theoretically (Lam and Yao, 2012). One may

argue that in practice we do not know whether the numbers of factors are correctly estimated

or overestimated. However, compared with the estimators proposed by Massacci (2017) in which

the theoretical properties were investigated based on the assumption that the number of factor is

known or correctly estimated, here the proposed estimators are more robust.

2.5 Model identification for models with multiple regimes

In this section, we will consider the threshold matrix-variate factor models with multiple regimes,

and develop an algorithm to identify the regimes and estimate multiple threshold values. The
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following m-regime threshold matrix-variate factor model is considered:

Xt “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

R1Ft,1C
1
1 `Et zt ă r0,

R2Ft,2C
1
2 `Et r0 ď zt ă r1,

. . .

RmFt,mC1m `Et rm´2 ď zt ă rm´1 “ `8,

(16)

for t “ 1, . . . , T , where 0 ă m ! T . Let Q1,i and Q2,i be the orthonormal representatives of

MpRiq and MpCiq for i “ 1, . . . ,m. For any i ‰ j, }Q1
1,iQ1,j}2 ă 1 or }Q1

2,iQ2,j}2 ă 1 . When

m “ 1, model (16) is a one-regime matrix-variate factor model introduced by Wang et al. (2019);

When m “ 2, model (16) is the one we discuss in Section 2.1. Our aim is to estimate m, threshold

values tri | i “ 0, . . . ,m ´ 2u, and loading spaces in different regimes. Motivated by the idea

that the numbers of factors will be overestimated when fitting data from multiple regimes with

one-regime factor models (Chen et al., 2014; Wu, 2021; Liu and Zhang, 2022), we consider fitting

data from multiple regimes with one-regime models first. We shall use the simple example with

m “ 2 to illustrate the idea. Without loss of generality, we assume row loading spaces are different

with }Q1
1,1Q1,2}2 ă 1. Define

Ωx,uvphq “
1

T

T´h
ÿ

t“1

Epxt,ux
1
t`h,vq, M “

h0
ÿ

h“1

p2
ÿ

u“1

p2
ÿ

v“1

Ωx,uvphqΩx,uvphq
1, (17)

pΩx,uvphq “
1

T

T´h
ÿ

t“1

xt,ux
1
t`h,v,

xM “

h0
ÿ

h“1

p2
ÿ

u“1

p2
ÿ

v“1

pΩx,uvphqpΩx,uvphq
1.

With the following conditions, we shall show that xM may lead to an overestimated number of

row factors.

Condition B7. The nonzero eigenvalues of M are distinct.

Corollary 2. Under Conditions A1-A5 and B1-B7, if pδ11 p
δ2
2 T

´1{2 “ op1q, as p1, p2, T Ñ 8, it

holds that

pλk`1{pλk — 1, for k “ 1, . . . , k1,1 ` k1,2 ´ 1,

pλk1`k2`1{
pλk1`k2 “ Oppp

2δ1
1 p2δ22 T´1q

p
Ñ 0,

where pλk is the eigenvector of xM corresponding to the k-th largest eigenvalue.

Corollary 2 indicates that the ratio of the estimated eigenvalues will drop sharply at k “ k1`k2

if we combine data from two regimes, which has the same pattern with one-regime models shown
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in Corollary 1 in Lam and Yao (2012) for vector time series and Theorem 2 in Wang et al. (2019)

for matrix time series. Motivated by this observation, we extend the algorithm developed by

Wu (2021) and propose a regime-switching identification procedure which applies to matrix time

series and can deal with the case that the numbers of factors are different across regimes.

First we divide the range of the threshold variable tztu into J subintervals, S1, . . . , SJ , where J

is a pre-specified integer satisfying m ! J ! T and and Sj “ psj´1, sjs. Specifically, let sj “ zptjq

for j “ 0, . . . , J , where tj “ t
jT
J u and zptjq is the ptjq-th order statistic of zt. For each subinterval,

we define

pΩ
J

x,j,uvphq “
1

T

T
ÿ

t“1

xt,ux
1
t`h,vIpsj´1 ă zt ď sjq, xMJ

1,j “

h0
ÿ

h“1

p2
ÿ

u“1

p2
ÿ

v“1

pΩ
J

x,j,uvphq
pΩ
J

x,j,uvphq
1

,

for j “ 1, . . . , J . xMJ
2,j can be defined in a similar way with transposes of Xt’s. The numbers of

row and column factors in the j-th subinterval can be estimated by

pkJ1,j “ arg min
1ďkďR

pλJ1,j,k`1
pλJ1,j,k

, pkJ2,j “ arg min
1ďkďR

pλJ2,j,k`1
pλJ2,j,k

,

where pλJs,j,k is the k-th largest eigenvalue of xMJ
s,j , for s “ 1, 2 and j “ 1, . . . , J . We define

an indicator function IJj to track the possible changes of the numbers of factors among these

subintervals. Let IJj “ 1 if pkJ1,j ‰
pkJ1,j´1 or pkJ2,j ‰

pkJ2,j´1; Otherwise IJj “ 0. There are three

situations that can happen for IJj :

(i) When IJj´1 “ 0, IJj “ 1, IJj`1 “ 1 and IJj`2 “ 0, the regime switching happens in the interior

of Sj .

(ii) When IJj´1 “ 0 and IJj “ 0, no regime switching happens in the interior of Sj , or the regime

switching may happen in the left end of Sj or the right end of Sj´1 and the numbers of

factors are the same in two regimes.

(iii) When IJj´1 “ 0, IJj “ 1, and IJj`1 “ 0, the regime switching happens in the left end of Sj or

the right end of Sj´1, and the numbers of factors are different in two regimes.

The case when IJj´1 “ 1 is not included here because it shall be considered for IJj´1; the case

when IJj´1 “ 0, IJj “ 1, IJj`1 “ 1, and IJj`2 “ 1 is not discussed since we assume m " J implying

that there is at most one regime switching in two consecutive subintervals.

For case (i), the complement loading spaces in (11) can be estimated using eigenvectors of

xMJ
s,j´1 corresponding to the smallest pps ´ pkJs,j´1q eigenvalues and eigenvectors of xMJ

s,j`1 corre-

sponding to the smallest pps ´ pkJs,j`1q eigenvalues for s “ 1, 2, and then the estimators for the
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threshold value and loading spaces can be obtained by the method in Section 2.3. For case (ii),

to detect if the regime switching happens in the left end of Sj or the right end of Sj´1, we use the

midpoints of the J subintervals to re-divide the range of zt into J`1 subintervals, S˚j “ ps
˚
j´1, s

˚
j s

for j “ 1, . . . , J ` 1, where s˚j “ zpt˚j q
, t˚0 “ 0, t˚j “ t

p2j´1qT
2J u for j “ 1, . . . , J , and t˚J`1 “ T . Then

we estimate the numbers of row and column factors in the j-th subinterval, denoted by pkJ˚1,j and

pkJ˚2,j . We define an indicator function IJ˚j to identify if the numbers of factors in SJ˚j and SJj are

different. IJ˚j “ 1 if pkJ˚1,j ‰
pkJ1,j or pkJ˚2,j ‰

pkJ2,j ; I
J˚
j “ 0 if pkJ˚1,j “

pkJ1,j and pkJ˚2,j “
pkJ2,j . There are two

situations that can happen for IJ˚j in case (ii):

(a) when IJ˚j “ 0, there is no regime switching in the left end of Sj or the right end of Sj´1.

(b) when IJ˚j “ 1, regime switching happens in the left end of Sj or the right end of Sj´1.

For case (b) and case (iii) discussed above, we can estimate the complement loading space with

eigenvectors of xMJ˚
s,j´1 corresponding to the smallest pps ´ pkJ˚s,j´1q eigenvalues and eigenvectors

of xMJ˚
s,j`1 corresponding to the smallest pps ´ pkJ˚s,j`1q eigenvalues for s “ 1, 2, then we follow the

procedure described in Section 2.3 to estimate the threshold value and loading spaces in these

regimes.

The proposed identification procedure is build on the ratio estimator by Lam and Yao (2012).

Since the eigenvalues go to zero theoretically, Lam and Yao (2012) was not able to prove the

consistency of the estimators. Therefore, we cannot derive an explicit asymptotic expression for

the identification of different regimes. However, the simulation results in Section 3.3 show that

the proposed procedure performs very well.

3 Simulation

In this section we present the performance of the proposed methods for synthetic data sets. For

all settings, the reported results are based on 200 replications, h0 “ 1, and the threshold process

zt follows an independent Gaussian process N p0, 1q.

3.1 Estimation of numbers of factors

We study the performance of the proposed estimators for the factor numbers in Section 2.4. There

are two regimes. The dimension of common factors in both regimes is 2 ˆ 2 with k1,1 “ k1,2 “

k2,1 “ k2,2 “ 2. The factor at time t is generated by 4 independent autoregressive (AR) process of
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order 1 with AR coefficient 0.9 and innovation variance 4. The threshold value is 0. η1 and η2 are

the 10-th and 90-th percentiles of tztu. The error process Et is a white noise process with mean 0

and a Kronecker product covariance structure, that is, CovpvecpEtqq “ Γ2bΓ1, where Γ1 and Γ2

are of sizes p1 ˆ p1 and p2 ˆ p2 respectively, and both have diagonal entries of 1 and off-diagonal

entries equal to σγ . Here, σγ “ 0.1. Table 1 reports the relative frequency that the numbers of

factors are correctly estimated. We can tell that as the sample size increases, the frequency that

pk1,1 “ pk1,2 “ pk2,1 “ pk2,2 “ 2 increases as well. When the factors are strong, the estimation is at

its best. When there are weak factors, the estimation is worse but still accurate.

Table 1: The relative frequency that pk1,1 “ pk1,2 “ pk2,1 “ pk2,2 “ 2 with different combinations of

pT, p1, p2q and factor strength in Section 3.1

T p1 p2 δ1 “ 0, δ2 “ 0 δ1 “ 0.2, δ2 “ 0 δ1 “ 0.2, δ2 “ 0.2

200 20 20 0.910 0.835 0.710

40 40 0.985 0.950 0.760

400 20 20 0.995 0.985 0.920

40 40 1.000 0.995 0.980

800 20 20 1.000 1.000 1.000

40 40 1.000 1.000 1.000

3.2 Estimation of threshold value and loading spaces

In this section, we examine the performance of the propose estimators for threshold value and

loading spaces in Section 2.4 when there are two regimes. The dimension of the latent factors in

both regime is fixed at 3 ˆ 3 with k1,1 “ k1,2 “ k2,1 “ k2,2 “ 3. We simulate the latent factor

process from 9 independent AR models of order one. The AR coefficients are -0.8, 0.8, 0.9, -0.7,

-0.9, 0.8, 0.7, 0.8, 0.7, and the innovation variance is 4. The threshold value, η1 and η2 are the

same with these in Section 3.2. The distribution of error Et has the same structure with that in

Section 3.2 and σγ “ 0.2.

Since Section 3.1 shows that the numbers of factors can be estimated precisely, in the following

we set different values for pk’s to better demonstrate the performance of the proposed method

when the numbers of factors are correctly estimated or overestimated. We run simulations with

different combinations of pT, p1, p2q and factor strength. When there are weak factors, the strength

of weak factors are 0.3. Table 2 shows the mean and standard deviation (in the parentheses) of
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the absolute error |pr ´ r0|. It can be seen that the threshold value r0 is estimated with higher

accuracy when the latent dimensions are correctly estimated shown in the first four rows of Table

2. We can also tell that the performance of our method improves as the sample size increases

from 200 to 400 and the factors strength increases in all settings. However, the increase of p1

and p2 has different impact on three settings. When row and column factors are strong with

δ1 “ δ2 “ 0, the estimation does not change much as p1 and p2 grow and is immune to the curse

of dimensionality. When row or/and column factors are weak, the estimation performance gets

worse as p1 and p2 increases. Table 2 also reports the estimation results for the threshold value

when pk1,1 “ pk1,2 “ pk2,1 “ pk2,2 “ 4 are overestimated, which confirms the theoretical results in

Section 2.4 that the estimator for r0 is consistent when the numbers of factors are overestimated.

The last four rows in Table 2 show the estimation errors when the method in Liu and Chen (2020)

is extended for matrix time series analysis. Specifically, we define

pΩx,ij,uvph, r1, r2q “
1

T

T´h
ÿ

t“1

xt,ux
1
t`h,vIt,ipriqIt`h,jprjq,

xM1,ipr1, r2q “
h0
ÿ

h“1

2
ÿ

j“1

p2
ÿ

u“1

p2
ÿ

v“1

pΩx,ij,uvph, r1, r2qpΩx,ij,uvph, r1, r2q
1,

for i, j “ 1, 2. xM2,i can be constructed similarly with transposes of Xt’s. The threshold value is

estimated by

prLCR “ arg min }pBs,ipη1, η2q
1
xMs,ipr, rqpBs,ipη1, η2q}2,

where the columns of pBs,ipη1, η2q are eigenvectors of xMs,ipη1, η2q corresponding to the pps ´ ks,iq

smallest eigenvalues. pQs,i is estimated by the eigenvectors of xMs,ipprLCR, prLCRq corresponding to

the ks,i largest eigenvalues. From Table 2, it can be seen that our method outperforms the one

by Liu and Chen (2020).

Table 3 shows the mean and standard deviation of estimation errors for loading spaces under

different combinations of pT, p1, p2q and factor strength. When the numbers of factors are correctly

specified or overestimated, our method can estimate loading spaces precisely. Compared the

proposed estimators with the ones in Liu and Chen (2020), ours performs much better when

sample size is relatively small or there are weak factors. When sample size is large (T “ 400)

and factors are strong, two methods can both estimate Bs,i in (11) very well, so the estimation

results are very close. More comparison results with different values of η1 and η2 are presented in

Appendix 2.
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Table 2: Mean and standard deviation (in the parentheses) of the absolute error |pr ´ r0| with

different combinations of pT, p1, p2q and factor strength in Section 3.2

Method (pk1,1, pk1,2, pk2,1, pk2,2) T p1 p2 δ1 “ 0, δ2 “ 0 δ1 “ 0.3, δ2 “ 0 δ1 “ 0.3, δ2 “ 0.3

Our method

(3,3,3,3) correctly specified 200 20 20 0.017 (0.018) 0.027 (0.030) 0.085 (0.076)

40 40 0.018 (0.016) 0.037 (0.034) 0.180 (0.109)

400 20 20 0.009 (0.010) 0.016 (0.017) 0.048 (0.041)

40 40 0.011 (0.012) 0.023 (0.022) 0.093 (0.065)

(4,4,4,4) overestimated 200 20 20 0.013 (0.013) 0.013 (0.013) 0.017(0.016)

40 40 0.013 (0.014) 0.013 (0.014) 0.016 (0.015)

400 20 20 0.006 (0.006) 0.007 (0.007) 0.009 (0.009)

40 40 0.006 (0.006) 0.007 (0.006) 0.009 (0.012)

LCR

(3,3,3,3) correctly specified 200 20 20 0.213 (0.294) 0.284 (0.286) 0.431 (0.243)

40 40 0.222 (0.306) 0.299 (0.283) 0.552 (0.246)

400 20 20 0.025 (0.058) 0.054 (0.071) 0.205 (0.119)

40 40 0.021 (0.040) 0.084 (0.089) 0.313 (0.150)

Note: LCR denotes the method in Liu and Chen (2020) extended to analyze matrix time series data

Then we will present the performance of our method when the strength level of weak factors

is 0.5. T is set as p1p2, 2p1p2, 4p1p2. Table 4 shows the mean and standard deviation (in the

parentheses) of the absolute error |pr ´ r0|. When there are strong factors in at least one regime

(δ1 “ δ2 “ 0 or δ1 “ 0.5 and δ2 “ 0), as T grows with p1 and p2, the estimate error decreases.

When δ1 “ δ2 “ 0.5, it is not surprising that the estimation gets worse as T grows with p1

and p2. However, if T grows faster than pp1p2q, our estimation improves as T increases which is

aligned with results shown in Theorem 1. Table 5 shows the mean and standard deviation (in

the parentheses) of the estimation errors for loading spaces. It can be seen that if the strength of

weak factors is 0.5, our method can estimate loading spaces precisely when sample size is large.

3.3 Regime switching identification

In this example, we investigate the performance of multiple threshold estimation discussed in

Section 2.5. We will show that the proposed procedure performs well even when the factor and

noise processes are non-stationary. T “ 500, 1000, p1 and p2 are set to be 20 and 40, and δ1 and

δ2 are set to be 0 and 0.2. When T is 500, J “ 10; when T “ 1000, J “ 15. If the factor process

is stationary, each time series in the factor process follows an independent AR(1) model with AR

coefficient 0.9. If the factor process is non-stationary, Ft,i is a 2 ˆ 2 matrix for t “ 1, . . . , T and
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Table 3: Mean and standard deviation (in the parentheses) of DpMppQs,iq,MpQs,iqq with different

combinations of pT, p1, p2q and factor strength in Section 3.2

(pk1,1, pk1,2, pk2,1, pk2,2) T p1 p2
δ1 “ 0, δ2 “ 0 δ1 “ 0.3, δ2 “ 0 δ1 “ 0.3, δ2 “ 0.3

regime 1 regime 2 regime 1 regime 2 regime 1 regime 2

Our method

(3,3,3,3) 200 20 20 row 0.017 (0.005) 0.017 (0.004) 0.029 (0.008) 0.029 (0.009) 0.056 (0.022) 0.057 (0.032)

column 0.018 (0.004) 0.017 (0.004) 0.029 (0.008) 0.028 (0.008) 0.058 (0.023) 0.056 (0.024)

40 40 row 0.012 (0.002) 0.011 (0.002) 0.022 (0.005) 0.022 (0.005) 0.066 (0.031) 0.063 (0.031)

column 0.012 (0.002) 0.012 (0.002) 0.022 (0.005) 0.022 (0.004) 0.061(0.029) 0.064 (0.034)

400 20 20 row 0.012 (0.003) 0.011 (0.002) 0.019 (0.005) 0.019 (0.004) 0.035 (0.011) 0.034 (0.011)

column 0.013 (0.003) 0.012 (0.003) 0.021 (0.005) 0.019 (0.004) 0.038 (0.013) 0.035 (0.011)

40 40 row 0.008 (0.001) 0.008 (0.001) 0.015 (0.003) 0.015 (0.003) 0.034 (0.012) 0.034 (0.011)

col 0.008 (0.001) 0.008 (0.002) 0.015 (0.003) 0.015 (0.003) 0.034 (0.011) 0.035 (0.014)

(4,4,4,4) 200 20 20 row 0.015 (0.003) 0.014 (0.003) 0.023 (0.005) 0.023 (0.004) 0.035 (0.008) 0.035 (0.007)

column 0.015 (0.004) 0.015 (0.004) 0.023 (0.005) 0.023 (0.005) 0.036 (0.008) 0.035 (0.008)

40 40 row 0.010 (0.001) 0.010 (0.001) 0.017 (0.003) 0.017 (0.002) 0.029 (0.004) 0.028 (0.004)

column 0.010 (0.002) 0.010 (0.002) 0.017 (0.003) 0.017 (0.003) 0.029 (0.004) 0.029 (0.004)

400 20 20 row 0.010 (0.002) 0.010 (0.002) 0.016 (0.003) 0.015 (0.003) 0.025 (0.005) 0.024 (0.005)

column 0.010 (0.002) 0.010 (0.002) 0.016 (0.003) 0.016 (0.003) 0.026 (0.005) 0.025 (0.005)

40 40 row 0.007 (0.001) 0.007 (0.001) 0.012 (0.002) 0.012 (0.002) 0.020 (0.003) 0.021 (0.003)

column 0.007 (0.001) 0.007 (0.001) 0.012 (0.002) 0.012 (0.002) 0.021 (0.003) 0.021 (0.003)

LCR

(3,3,3,3) 200 20 20 row 0.066 (0.144) 0.069 (0.145) 0.066 (0.147) 0.069 (0.147) 0.151 (0.168) 0.153 (0.171)

column 0.073 (0.152) 0.069 (0.141) 0.101 (0.164) 0.095 (0.148) 0.167 (0.179) 0.157 (0.162)

40 40 row 0.065 (0.148) 0.064 (0.151) 0.079 (0.147) 0.082 (0.152) 0.163 (0.169) 0.175 (0.179)

column 0.075 (0.166) 0.072 (0.160) 0.088 (0.163) 0.098 (0.169) 0.184 (0.192) 0.210 (0.199)

400 20 20 row 0.011 (0.004) 0.011 (0.013) 0.018 (0.024) 0.019 (0.024) 0.051 (0.060) 0.045 (0.040)

column 0.013 (0.005) 0.013 (0.025) 0.019 (0.009) 0.021 (0.031) 0.056 (0.061) 0.057 (0.068)

40 40 row 0.008 (0.005) 0.008 (0.002) 0.018 (0.015) 0.020 (0.016) 0.054 (0.064) 0.057 (0.065)

col 0.010 (0.026) 0.008 (0.002) 0.020 (0.029) 0.025 (0.054) 0.071 (0.094) 0.088 (0.114)

Note: LCR denotes the method in Liu and Chen (2020) extended to analyze matrix time series data

Table 4: Mean and standard deviation (in the parentheses) of the absolute error |pr ´ r0| with

different combinations of pT, p1, p2q and factor strength in Section 3.2

δ1, δ2 p1 p2 T “ p1p2 T “ 2p1p2 T “ 4p1p2

δ1 “ 0, δ2 “ 0 10 10 0.029 (0.030) 0.018 (0.019) 0.009 (0.010)

10 20 0.018 (0.019) 0.011 (0.012) 0.008 (0.010)

20 20 0.009 (0.010) 0.007 (0.007) 0.005 (0.005)

δ1 “ 0.5, δ2 “ 0 10 10 0.063 (0.063) 0.044 (0.047) 0.024 (0.030)

10 20 0.038 (0.040) 0.024 (0.025) 0.017 (0.017)

20 20 0.028 (0.029) 0.022 (0.021) 0.015 (0.014)

δ1 “ 0.5, δ2 “ 0.5 10 10 0.214 (0.185) 0.166 (0.137) 0.120 (0.100)

10 20 0.275 (0.172) 0.203 (0.118) 0.143 (0.086)

20 20 0.378 (0.144) 0.281 (0.114) 0.159 (0.084)

22



Table 5: Mean and standard deviation (in the parentheses) of DpMppQs,iq,MpQs,iqq with different

combinations of pT, p1, p2q and factor strength in Section 3.2

δ1, δ2 p1 p2
T “ p1p2 T “ 2p1p2 T “ 4p1p2

regime 1 regime 2 regime 1 regime 2 regime 1 regime 2

δ1 “ 0, δ2 “ 0 10 10 row 0.040 (0.016) 0.038 (0.012) 0.027 (0.008) 0.027 (0.009) 0.019 (0.007) 0.018 (0.006)

col 0.039 (0.015) 0.037 (0.013) 0.027 (0.012) 0.027 (0.009) 0.019 (0.007) 0.019 (0.007)

10 20 row 0.019 (0.008) 0.018 (0.006) 0.013 (0.005) 0.013 (0.004) 0.009 (0.003) 0.009 (0.003)

column 0.025 (0.004) 0.025 (0.004) 0.018 (0.004) 0.018 (0.004) 0.013 (0.003) 0.013 (0.003)

20 20 row 0.012 (0.002) 0.011 (0.002) 0.008 (0.002) 0.008 (0.002) 0.006 (0.001) 0.006 (0.001)

column 0.012 (0.002) 0.012 (0.002) 0.008 (0.002) 0.008 (0.002) 0.006 (0.001) 0.006 (0.001)

δ1 “ 0.5, δ2 “ 0 10 10 row 0.087 (0.057) 0.082 (0.047) 0.055 (0.024) 0.054 (0.025) 0.038 (0.019) 0.034 (0.013)

column 0.086 (0.059) 0.081 (0.053) 0.056 (0.032) 0.055 (0.022) 0.037 (0.018) 0.037 (0.016)

10 20 row 0.042 (0.022) 0.041 (0.041) 0.028 (0.014) 0.026 (0.011) 0.018 (0.007) 0.017 (0.005)

column 0.048 (0.008) 0.049 (0.009) 0.033 (0.008) 0.034 (0.009) 0.023 (0.006) 0.023 (0.006)

20 20 row 0.028 (0.007) 0.027 (0.008) 0.019 (0.005) 0.019 (0.005) 0.013 (0.003) 0.013 (0.003)

column 0.030 (0.009) 0.028 (0.007) 0.019 (0.005) 0.019 (0.005) 0.013 (0.003) 0.013 (0.003)

δ1 “ 0.5, δ2 “ 0.5 10 10 row 0.251 (0.140) 0.245 (0.130) 0.165 (0.101) 0.162 (0.105) 0.106 (0.076) 0.097 (0.078)

col 0.257 (0.148) 0.261 (0.148) 0.162 (0.114) 0.176 (0.119) 0.101 (0.075) 0.106 (0.078)

10 20 row 0.242 (0.132) 0.248 (0.142) 0.154 (0.110) 0.144 (0.111) 0.080 (0.057) 0.073 (0.057)

column 0.242 (0.075) 0.240 (0.089) 0.126 (0.075) 0.137 (0.089) 0.072 (0.036) 0.075 (0.039)

20 20 row 0.226 (0.138) 0.214 (0.131) 0.107 (0.075) 0.102 (0.068) 0.050 (0.027) 0.048 (0.023)

column 0.260 (0.136) 0.232 (0.140) 0.119 (0.076) 0.113 (0.087) 0.051 (0.026) 0.050 (0.026)

i “ 1, . . . ,m.

ft,1 “ ´
0.1t

T
` 0.9ft´1,1 ` εt,1, ft,2 “ ´1´

3t

T
, ft,3 “ 1`

3t

T
, ft,4 “

0.1t

T
´ 0.9ft´1,4 ` εt,2,

where εt,u are independent and N p0, 4q for t “ 1, . . . , T and u “ 1, . . . , 2.

The noise process is a time-independent Gaussian process with mean 0 and a Kronecker

product covariance structure, that is, CovpvecpEtqq “ Γt,2 b Γt,1, where Γt,1 and Γt,2 are of sizes

p1ˆp1 and p2ˆp2 respectively. If tEtu is stationary, Γt,1 and Γt,2 both have diagonal entries of 1

and off-diagonal entries of 0.1 for t “ 1, . . . , T . If the noise process is non-stationary, Γt,1 and Γt,2

both have diagonal entries of
a

1` sinp2πt{T q and off-diagonal entries of 0.1 for t “ 1, . . . , T .

Three settings are considered:

1. m “ 2 and there is only one threshold with r0 “ 0. Both the factor and noise processes are

stationary. In regime 1, k1,1 “ 1 and k1,2 “ 2; In regime 2, k2,1 “ k2,2 “ 2.

2. m “ 3 and there are two thresholds with r0 “ ´0.5 and r1 “ 0.5. The factor process is

stationary and the noise process is non-stationary.
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3. m “ 1. Both the factor and noise processes are non-stationary.

Table 6 shows the relative frequency to identify the regime switching(s) correctly with different

combinations of pT, p1, p2q and factor strength, and Table 7 reports the absolute error of threshold

value estimation conditional on the all regime switchings are correctly detected. When the factors

are strong in at least one direction, our method can identify the regime switchings with a very

high relative frequency and estimate their locations very well. When both row and column factors

are weak with δ1 “ δ2 “ 0.2, the performance of our methods gets slightly worse, but the proposed

algorithm still can identify the regime switchings in most cases.

Table 6: Relative frequency to correctly detect the regime switchings with different combinations

of pT, p1, p2q and factor strength under three settings in Section 3.3

T p1 p2
δ1 “ 0 δ1 “ 0.2 δ1 “ 0.2

δ2 “ 0 δ2 “ 0 δ2 “ 0.2

500 20 20 Setting 1 0.935 0.860 0.745

Setting 2 0.985 0.970 0.900

Setting 3 0.955 0.915 0.860

40 40 Setting 1 0.990 0.960 0.810

Setting 2 0.995 1.000 0.970

Setting 3 0.965 0.955 0.940

1000 20 20 Setting 1 0.965 0.955 0.875

Setting 2 1.000 0.995 0.940

Setting 3 0.985 0.960 0.935

40 40 Setting 1 0.995 0.990 0.990

Setting 2 1.000 1.000 0.965

Setting 3 0.995 0.990 0.975

4 Application to Real Data

We apply the proposed method to the Fama-French 10 by 10 return series. A universe of stocks

is grouped into 100 portfolios, according to ten levels of market capital and ten levels of equity

ratio. We analyze their monthly returns from November 1980 to October 2020 with T “ 480
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Table 7: Mean and standard deviation (in the parentheses) of absolute error of threshold value

estimation conditional on that all regime switching are correctly detected in Section 3.3

T p1 p2
δ1 “ 0 δ1 “ 0.2 δ1 “ 0.2

δ2 “ 0 δ2 “ 0 δ2 “ 0.2

500 20 20 Setting 1 0.007(0.008) 0.009(0.012) 0.008(0.009)

Setting 2 Threshold 1 0.006(0.007) 0.007(0.008) 0.007(0.008)

Threshold 2 0.006(0.006) 0.007(0.007) 0.007(0.008)

40 40 Setting 1 0.006(0.005) 0.008(0.009) 0.012(0.011)

Setting 2 Threshold 1 0.006(0.005) 0.008(0.008) 0.009(0.008)

Threshold 2 0.007(0.006) 0.007(0.007) 0.009(0.009)

1000 20 20 Setting 1 0.004(0.003) 0.004(0.004) 0.005(0.006)

Setting 2 Threshold 1 0.004(0.004) 0.004(0.004) 0.004(0.004)

Threshold 2 0.003(0.003) 0.004(0.003) 0.004(0.004)

40 40 Setting 1 0.004(0.003) 0.005(0.005) 0.006(0.006)

Setting 2 Threshold 1 0.003(0.003) 0.003(0.004) 0.005(0.005)

Threshold 2 0.003(0.003) 0.004(0.004) 0.005(0.005)

and p1 “ p2 “ 10. More detailed information about this data set is available here, http:

//mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

Here we let h0 “ 1 and J “ 12, and use the monthly log return of S&P 500 index as the

threshold variable. Figure 1 plots the estimate numbers of factors in subintervals tSju and tS˚j u.

Although the number of row factors remains the same in the support of zt, the number of column

factors changes in S2 and S5. It indicates that there are two regime switchings caused changes

in the column loading spaces, happening in the interior of S2 and S5, and the number of column

factors does not change across regimes. With method in Section 2.5, we have pr0 “ ´0.026 and

pr1 “ ´0.002. Table 8 reports the distance of estimated loading spaces, and we can tell that the

column loading spaces are well apart, and the row loading spaces are closer to each other, which

is aligned with the observation that the estimated number of row factors remain the same in all

subintervals shown in Figure 1.
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Figure 1: Estimated numbers of factors in subintervals tSju and tS˚
j u for data in Section 4.

Table 8: Distance of estimated loading spaces for Section 4

Row loading space Regime 1 Regime 2 Regime 3

Regime 1 – 0.170 0.110

Regime 2 0.170 – 0.167

Regime 3 0.110 0.167 –

Column loading space Regime 1 Regime 2 Regime 3

Regime 1 – 0.519 0.238

Regime 2 0.519 – 0.325

Regime 3 0.238 0.325 –
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5 Conclusion

In this article, we extend the threshold factor models for multivariate time series to matrix-variate

data and propose a threshold factor model for high-dimensional matrix-variate time series, where

loading spaces change across regimes controlled by a threshold variable. The methods to estimate

threshold value, loading spaces in different regimes, and the numbers of factors are developed.

The procedure to identify regime switching is discussed. Compared with the existing results on

threshold factor models which often assume that the number of factors does not change over the

sampling period, the proposed method can be applied to the case when the numbers of factors

vary across regime. Another distinguished feature of our method is that the factor or noise process

is not necessarily to be stationary within regime which greatly enhances the application scope of

threshold factor models, while most current research results are obtained based on the assumption

that the observed process is stationary within regime. The simulated and real data examples all

confirm that the proposed method can detect regime switchings effectively and estimate threshold

values and loading spaces well.
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Appendix 1: Lemmas and Proofs

In this section, only the theoretical results for s “ 1 are demonstrated, since those for s “ 2 are

similar. Moreover, we mainly focus on the proofs when r ą r0 and ε ą 0 because those for r ď r0

or ε ă 0 can be obtained in a similar fashion.

In the following we assume c1 and c2 are constants satisfying IRpc1q “ IRpc2q. Define

Itpc1, c2q “ Ipc1 ă zt ă c2q,

St “
2
ÿ

i“1

RiFt,iC
1
iIt,i,

Ωs,ij,uvph, rq “
1

T

T´h
ÿ

t“1

E
“

s1t,ust`h,vIt,iprqIt`h,j
‰

,

pΩs,ij,uvph, rq “
1

T

T´h
ÿ

t“1

s1t,ust`h,vIt,iprqIt`h,j ,

pΩse,ij,uvph, rq “
1

T

T´h
ÿ

t“1

s1t,uet`h,vIt,iprqIt`h,j ,

pΩes,ij,uvph, rq “
1

T

T´h
ÿ

t“1

e1t,ust`h,vIt,iprqIt`h,j ,

pΩe,ij,uvph, rq “
1

T

T´h
ÿ

t“1

e1t,uet`h,vIt,iprqIt`h,j ,

Ωfc,ij,uvph, c1, c2q “
1

T

T´h
ÿ

t“1

ErFt,ici,u¨c
1
j,v¨F

1
t`h,jItpc1, c2qIt`h,js,

pΩfc,ij,uvph, c1, c2q “
1

T

T´h
ÿ

t“1

Ft,ici,u¨c
1
j,v¨F

1
t`h,jItpc1, c2qIt`h,j .

Lemma 1. Let ft,i,qu denote the pquq-th entry in Ft,i. Under Conditions A1-A2 and B1, for any

q, u “ 1, 2, . . . , k1, and `, v “ 1, . . . , k2, if holds that

E

#

1

T

T´h
ÿ

t“1

rft,i,q`ft`h,j,uvItpc1, c2qIt`h,j ´ Epft,i,q`ft`h,j,uvItpc1, c2qIt`h,jqs

+2

ď
p3h` 8αqρc1,c2σ

4
f

T
,

and
ˇ

ˇ

ˇ

ˇ

ˇ

1

T

T´h
ÿ

t“1

Erft,i,q`ft`h,j,uvItpc1, c2qIt`h,js

ˇ

ˇ

ˇ

ˇ

ˇ

“ ρc1,c2σ
2
f ,
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where α “
ř8
u“1 αpuq

1´2{γ, and c1 ă c2 can be any real numbers in pη1, η2q, ´8, or `8. ρc1,c2 “ 1

if at least one of c1 and c2 is ´8 or `8, and ρc1,c2 “ τ1pc2´c1q if c1 and c2 are both real numbers,

where τ1 is given in Condition B1.

Proof: Similar to the proof of Lemma 1 in Liu and Chen (2020), we can obtain the conclusions.

Lemma 2. For i, j “ 1, 2, u, v “ 1, . . . , p2, it holds that

}Ωfc,ij,uvph, c1, c2q}
2
2 ď

›

›

›

1

T

T´h
ÿ

t“1

ErFt`h,j b Ft,iItpc1, c2qIt`h,js
›

›

›

2

F
}ci,u¨}

2
2 ¨ }cj,v¨}

2
2,

and

}pΩfc,ij,uvph, c1, c2q ´Ωfc,ij,uvph, c1, c2q}
2
2

ď

›

›

›

1

T

T´h
ÿ

t“1

rFt`h,j b Ft,iItpc1, c2qIt`h,j ´ EpFt`h,j b Ft,iItpc1, c2qIt`h,js
›

›

›

2

F
}ci,u¨}

2
2 ¨ }cj,v¨}

2
2,

where c1 ă c2 can be real numbers, ´8, or `8.

Proof: By the definition and properties of Kronecker product, we have

}Ωfc,ij,uvph, c1, c2q}
2
2

ď }Ωfc,ij,uvph, c1, c2q}
2
F “ }vecpΩfc,ij,uvph, c1, c2q}

2
2

“

›

›

›

1

T

T´h
ÿ

t“1

vecpEpFt,ici,u¨c
1
j,v¨F

1
t`h,jItpc1, c2qIt`h,jqq

›

›

›

2

2

“

›

›

›

1

T

T´h
ÿ

t“1

ErFt`h,j b Ft,iItpc1, c2qIt`h,jsvecpci,u¨c
1
j,v¨q

›

›

›

2

2

ď

›

›

›

1

T

T´h
ÿ

t“1

ErFt`h,j b Ft,iItpc1, c2qIt`h,js
›

›

›

2

2
}vecpci,u¨c

1
j,v¨q}

2
2

ď

›

›

›

1

T

T´h
ÿ

t“1

ErFt`h,j b Ft,iItpc1, c2qIt`h,js
›

›

›

2

F
}ci,u¨c

1
j,v¨}

2
F

ď

›

›

›

1

T

T´h
ÿ

t“1

ErFt`h,j b Ft,iItpc1, c2qIt`h,js
›

›

›

2

F
}ci,u¨}

2
2 ¨ }cj,v¨}

2
2.

The other inequality can be proven similarly.

Lemma 3. Under Conditions A1-A2, A4 and B1, for i, j “ 1, 2, it holds that

p2
ÿ

u“1

p2
ÿ

v“1

E}pΩfc,ij,uvph, c1, c2q ´Ωfc,ij,uvph, c1, c2q}
2
2 ď p3h` 8αqρc1,c2k1k

3
2a

4
0σ

4
fp

2´2δ2
2 T´1,
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and

p2
ÿ

u“1

p2
ÿ

v“1

}Ωfc,ij,uvph, c1, c2q}
2
2 ď ρ2c1,c2k1k

3
2a

4
0σ

4
fp

2´2δ2
2 ,

where k1 “ maxtk1,1, k1,2u, k2 “ maxtk2,1, k2,2u, a0 satisfies }Ci}2 ď a0p
1{2´δ2{2
2 for i “ 1, 2, and

c1 ă c2 can be real numbers in pη1, η2q, ´8 or `8.

Proof: Condition A4 implies that there exists a positive constant a0 such that }Ci}2 ď a0p
1{2´δ2{2
2

for i “ 1, 2. By Lemma 1 and Lemma 2, it follows

p2
ÿ

u“1

p2
ÿ

v“1

E}pΩfc,ij,uvph, c1, c2q ´Ωfc,ij,uvph, c1, c2q}
2
2

“

˜

p2
ÿ

u“1

}ci,u¨}
2
2

¸˜

p2
ÿ

v“1

}cj,v¨}
2
2

¸

¨E
›

›

›

1

T

T´h
ÿ

t“1

rFt`h,j b Ft,iItpc1, c2qIt`h,j ´ EpFt`h,j b Ft,iItpc1, c2qqs
›

›

›

2

F

ď }Ci}
2
F }Cj}

2
F ¨ E

›

›

›

1

T

T´h
ÿ

t“1

rFt`h,j b Ft,iItpc1, c2qIt`h,j ´ EpFt`h,j b Ft,iItpc1, c2qIt`h,jqs
›

›

›

2

F

ď k22}Ci}
2
2}Cj}

2
2 ¨ E

›

›

›

1

T

T´h
ÿ

t“1

rFt`h,j b Ft,iItpc1, c2qIt`h,j ´ EpFt`h,j b Ft,iItpc1, c2qIt`h,jqs
›

›

›

2

F

ď p3h` 8αqρc1,c2k1k
3
2a

4
0σ

4
fp

2´2δ2
2 T´1.

We can also obtain the bound of
řp2
u“1

řp2
v“1 }Ωfc,ij,uvph, c1, c2q}

2
2 with Lemma 1 and Lemma 2 in

a similar way.

Lemma 4. Under Conditions A1-A4 and B1, for i “ 1, 2 and any ε P pη1 ´ r0, η2 ´ r0q, it holds

that
p2
ÿ

u“1

p2
ÿ

v“1

E}pΩx,i,uvph, r0 ` εq ´Ωx,i,uvph, r0 ` εq}
2
2 “ Oppp

2
1p

2
2T
´1q.
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Proof: By Condition A4, Lemmas 1 and 3, when ε ą 0 and i “ j “ 1, we have

p2
ÿ

u“1

p2
ÿ

v“1

E}pΩs,11,uvph, r0 ` εq ´Ωs,11,uvph, r0 ` εq}
2
2

ď

p2
ÿ

u“1

p2
ÿ

v“1

4}R1}
4
2 ¨ E}p

pΩfc,11,uvph,´8, r0q ´Ωfc,11,uvph,´8, r0qq}
2
2

`

p2
ÿ

u“1

p2
ÿ

v“1

4}R1}
2
2 ¨ E}

pΩfc,12,uvph,´8, r0q ´Ωfc,12,uvph,´8, r0q}
2
2 ¨ }R2}

2
2

`

p2
ÿ

u“1

p2
ÿ

v“1

4}R2}
2
2 ¨ E}

pΩfc,21,uvph, r0, r0 ` εq ´Ωfc,21,uvph, r0, r0 ` εq}
2
2 ¨ }R1}

2
2

`

p2
ÿ

u“1

p2
ÿ

v“1

4}R2}
4
2 ¨ E}

pΩfc,22,uvph, r0, r0 ` εq ´Ωfc,22,uvph, r0, r0 ` εq}
2
2

ď Cp2´2δ11 p2´2δ22 T´1.

For the interaction of the common component and noise and the noise term, we use the same

trick,

p2
ÿ

u“1

p2
ÿ

v“1

E}pΩse,11,uvph, r0 ` εq}
2
2

ď 2

p2
ÿ

u“1

p2
ÿ

v“1

}R1}
2
2 ¨ E

›

›

›

1

T

T´h
ÿ

t“1

Ft,1c1,u¨e
1
t`h,vIpzt ă r0qIpzt`h ă r0q

›

›

›

2

2

`2

p2
ÿ

u“1

p2
ÿ

v“1

}R2}
2
2 ¨ E

›

›

›

1

T

T´h
ÿ

t“1

Ft,2c2,u¨e
1
t`h,vIpr0 ă zt ă r0 ` εqIpzt`h ă r0q

›

›

›

2

2

ď 2}R1}
2
2

˜

p2
ÿ

v“1

E
›

›

›

1

T

T´h
ÿ

t“1

et`h,v b Ft,1Ipzt ă r0q
›

›

›

2

2

¸˜

p2
ÿ

u“1

}c1,u¨}
2
2

¸

`2}R2}
2
2

˜

p2
ÿ

v“1

E
›

›

›

1

T

T´h
ÿ

t“1

et`h,v b Ft,2Ipr0 ă zt ă r0 ` εq
›

›

›

2

2

¸˜

p2
ÿ

u“1

}c2,u¨}
2
2

¸

ď Cp1´δ11 p1´δ22

»

–

1

T 2

p2
ÿ

v“1

p1
ÿ

u“1

k1,1
ÿ

q“1

k2,1
ÿ

v“1

T´h
ÿ

t“1

E
`

e2t`h,uvf
2
t,1,qvIpzt ă r0q

˘

fi

fl

`Cp1´δ11 p1´δ22

»

–

1

T 2

p2
ÿ

v“1

p1
ÿ

u“1

k1,2
ÿ

q“1

k2,2
ÿ

v“1

T´h
ÿ

t“1

E
`

e2t`h,uvf
2
t,2,qvIpr0 ă zt ă r0 ` εq

˘

fi

fl

ď Cp2´δ11 p2´δ22 T´1, (18)

p2
ÿ

u“1

p2
ÿ

v“1

E}pΩez,11,uvph, r0 ` εq}
2
2 ď Cp2´δ11 p2´δ22 T´1,

p2
ÿ

u“1

p2
ÿ

v“1

E}pΩe,11,uvph, r0 ` εq}
2
2 ď Cp21p

2
2T
´1.
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It follows

p2
ÿ

u“1

p2
ÿ

v“1

E}pΩx,1,uvph, r0 ` εq ´Ωx,1,uvph, r0 ` εq}
2
2

ď

p2
ÿ

u“1

p2
ÿ

v“1

´

4E}pΩs,11,uvph, r0 ` εq ´Ωs,11,uvph, r0 ` εq}
2
2 ` 4E}pΩse,11,uvph, r0 ` εq}

2
2

`4E}pΩes,11,uvph, r0 ` εq}
2
2 ` 4E}pΩe,11,uvph, r0 ` εq}

2
2

¯

ď Cp21p
2
2T
´1.

Lemma 5. Under Conditions A1-A5, and B5 for ε P pη1 ´ r0, η2 ´ r0q, we have

p2
ÿ

u“1

p2
ÿ

v“1

}B11,1pη1qΩx,1,uvph, r0 ` εq}
2
2 “

$

&

%

0 ε ď 0,

Opε2p1´2δ11 p2´2δ22 q ε ą 0,

p2
ÿ

u“1

p2
ÿ

v“1

}B11,2pη1qΩx,2,uvph, r0 ` εq}
2
2 “

$

&

%

Opε2p1´2δ11 p2´2δ22 q ε ď 0,

0 ε ą 0.

Proof: From the definition we can easily reach the conclusion following the proof of Lemma 4 in

Liu and Chen (2020).

Lemma 6. Under Conditions A1-A5 and B4-B5, for any ε P pη1 ´ r0, 0q,

λk1,1

˜

p2
ÿ

u“1

p2
ÿ

v“1

Ωfc,1j,uvph
˚
1 , r0 ` ε, r0qΩfc,1j,uvph

˚
1 , r0 ` ε, r0q

1

¸

ě Cε2p2´2δ22 ,

and for any ε P p0, η2 ´ r0q,

λk1,2

˜

p2
ÿ

u“1

p2
ÿ

v“1

Ωfc,2j,uvph
˚
2 , r0, r0 ` εqΩfc,2j,uvph

˚
2 , r0, r0 ` εq

1

¸

ě Cε2p2´2δ22 ,

for j “ 1, 2, where λkpHq is the k-th largest eigenvalue of H.

Proof: By definition and properties of the Kronecker product, we have

Ωfc,ij,uvph, c1, c2q

“
1

T

T´h
ÿ

t“1

Erpc1i,u¨ b Ik1,iqvecpFt,iqvecpFt`h,jq
1pcj,v¨ b Ik1,j qItpc1, c2qIt`h,js

“ P pc1 ă zt ă c2qpc
1
i,u¨ b Ik1,iqΣf,ijph, c1, c2qpcj,v¨ b Ik1,j q.
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Under Conditions A1-A3, following the proof of Lemma 5 in Wang et al. (2019), we can obtain

1

P pc1 ă zt ă c2q2
¨ λk1,i

˜

p2
ÿ

u“1

p2
ÿ

v“1

Ωfc,ij,uvph, c1, c2qΩfc,ij,uvph, c1, c2q
1

¸

ě λk1,i
`

pCj b Ik1,iqΣf,ijph, c1, c2q
1pC1iCi b Ik1,iqΣf,ijph, c1, c2qpC

1
j b Ik1,j q

˘

.

Since C1iCi is a k2,i ˆ k2,i symmetric positive definite matrix, we can find a k2,i ˆ k2,i positive

definite matrix Ui such that C1iCi “ UiU
1
i and }Ui}2 ě }Ui}min ě Cp

1{2´δ2{2
2 , for i “ 1, 2. With

the property of the Kronecker product, it can be seen that σ1pUib Ik1,iq ě σpk1,ik2,iqpUib Ik1,iq ě

Cp
1{2´δ2{2
2 . By Theorem 9 in Merikoski and Kumar (2004), Lemma 3, and Condition B4, we have

σk1,2pΣf,2jph
˚
2 , r0, r0 ` εqpU2 b Ik1qq ě Cp

1{2´δ2{2
2 .

Similar to proof of Lemma 5 in Wang et al. (2019), we have

1

p2ε
λk1,2

˜

p2
ÿ

u“1

p2
ÿ

v“1

Ωfc,2j,uvph
˚
2 , r0, r0 ` εqΩfc,2j,uvph

˚
2 , r0, r0 ` εq

1

¸

ě
“

σk1,2
`

pU1
2 b Ik1qΣf,2jph

˚
2 , r0, r0 ` εqpU2 b Ik1q

˘‰2
ě Cp2´2δ22 ,

where pε “ P pr0 ă zt ă r0 ` ε, I
Rpzt`hq “ jq. The conclusion follows.

Lemma 7. Under Conditions A1-A5 and B1-B5, for ε P pη1 ´ r0, η2 ´ r0q, when the numbers of

factors are known, we have Gpr0q “ 0, and

Gpr0 ` εq ě Cp2´2δ11 p2´2δ22 , if ε ‰ 0.

Proof: When ε ą 0, by Theorem 9 in Merikoski and Kumar (2004) and Lemmas 3 and 6, we have

}B11,1M1,1pr0 ` εqB1,1}2 ě

›

›

›

h0
ÿ

h“1

p2
ÿ

u“1

p2
ÿ

v“1

B11,1Ωx,1,uvph
˚
2 , r0 ` εqΩx,1,uvph

˚
2 , r0 ` εq

1B1,1

›

›

›

2

“

›

›

›

p2
ÿ

u“1

p2
ÿ

v“1

B11,1R2

“

Ωfc,21,uvph
˚
2 , r0, r0 ` εqR

1
1 `Ωfc,22,uvph

˚
2 , r0, r0 ` εqR

1
2

‰

¨
“

R1Ωfc,21,uvph
˚
2 , r0, r0 ` εq

1 `R2Ωfc,22,uvph
˚
2 , r0, r0 ` εq

1
‰

R1
2B1,1

›

›

›

2

“ }B11,1R2}
2
2 ¨

›

›

›

p2
ÿ

u“1

p2
ÿ

v“1

“

Ωfc,21,uvph
˚
2 , r0, r0 ` εqR

1
1 `Ωfc,22,uvph

˚
2 , r0, r0 ` εqR

1
2

‰

¨
“

R1Ωfc,21,uvph
˚
2 , r0, r0 ` εq

1 `R2Ωfc,22,uvph
˚
2 , r0, r0 ` εq

1
‰

›

›

›

min

“ }B11,1R2}
2
2 ¨ min
}u}PRk1,2

#

p2
ÿ

u“1

p2
ÿ

v“1

u1
“

Ωfc,21,uvph
˚
2 , r0, r0 ` εqR

1
1 `Ωfc,22,uvph

˚
2 , r0, r0 ` εqR

1
2

‰

¨
“

R1Ωfc,21,uvph
˚
2 , r0, r0 ` εq

1 `R2Ωfc,22,uvph
˚
2 , r0, r0 ` εq

1
‰

u

+

. (19)
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Let

vj “ W1,jΩfc,2j,uvph
˚
2 , r0, r0 ` εq

1u,

where W1,j is defined in (4), for j “ 1, 2. Condition B5 implies that

u1
“

Ωfc,21,uvph
˚
2 , r0, r0 ` εqR

1
1 `Ωfc,22,uvph

˚
2 , r0, r0 ` εqR

1
2

‰

¨
“

R1Ωfc,21,uvph
˚
2 , r0, r0 ` εq

1 `R2Ωfc,22,uvph
˚
2 , r0, r0 ` εq

1
‰

u

“ }Q1,1v1}
2
2 ` 2v11Q

1
1,2Q1,2v2 ` }Q1,2v2}

2
2 ě }Q1,1v1 ´ υQ1,2v2}

2
2 ` p1´ υ

2q}Q1,2v2}
2
2

ě p1´ υ2q}Q1,2v2}
2
2 “ p1´ υ

2q}R2Ωfc,2j,uvph
˚
2 , r0, r0 ` εq

1u}22. (20)

Lemma 5 in Liu and Chen (2020) tells us that }B1,1R2}
2
2 ě Cp1´δ11 , therefore, with (19) and (20),

we have

}B11,1M1,1pr0 ` εqB1,1}2

ě }B11,1R2}
2
2 ¨ min
}u}PRk1,2

˜

p2
ÿ

u“1

p2
ÿ

v“1

}R2Ωfc,22,uvph
˚
2 , r0, r0 ` εq

1u}22

¸

ě }B11,1R2}
2
2 ¨ }R}

2
minλk1,2

˜

p2
ÿ

u“1

p2
ÿ

v“1

Ωfc,22,uvph
˚
2 , r0, r0 ` εqΩfc,22,uvph

˚
2 , r0, r0 ` εq

1

¸

ě Cε2p2´2δ11 p2´2δ22 .

Thus,

Gpr0 ` εq ě Cε2p2´2δ11 p2´2δ22 , if ε ą 0.

It can be shown that Gpr0 ` εq ě ε2p2´2δ11 p2´2δ22 when ε ă 0 and Gpr0q “ 0 by definition and

Lemmas 5 and 6.

Lemma 8. Under Condition A1-A5 and B1-B5, if r0 P pη1 ´ r0, η2 ´ r0q and r0 ‰ 0, and the

numbers of factors are known, we have

E| pGpr0 ` εq ´Gpr0 ` εq| ď C1p
2
1p

2
2T
´1 ` C2εp

2´δ1
1 p2´δ22 T´1{2,

and

E| pGpr0q ´Gpr0q| ď Cp21p
2
2T
´1.

Proof: Since r0 P pη1, η2q, by the definition, MpBs,iq “ MpBs,ipηiqq for s, i “ 1, 2. Hence, there
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exists a pps ´ ksq ˆ pps ´ ksq orthogonal matrix Γs,i such that Bs,i “ Bs,ipηiqΓs,i. Then we have
ˇ

ˇ

ˇ

ˇ

ˇ

2
ÿ

i“1

´

}pB11,ipηiq
xM1,iprqpB1,ipηiq}2 ´ }B

1
1,iM1,iprqB1,i}2

¯

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

2
ÿ

i“1

´

}pB11,ipηiq
xM1,iprqpB1,ipηiq}2 ´ }B

1
1,ipηiqM1,iprqB1,ipηiq}2

¯

ˇ

ˇ

ˇ

ˇ

ˇ

ď

h0
ÿ

h“1

2
ÿ

i“1

2
ÿ

j“1

p2
ÿ

u“1

p2
ÿ

v“1

´

}pB11,ipηiq
pΩx,ij,uvph, rq ´B1s,ipηiqΩx,ij,uvph, rq}

2
2

`2}B11,ipηiqΩx,ij,uvph, rqrpΩ
1

x,ij,uvph, rq
pB1,ipηiq ´Ω1x,ij,uvph, rqBs,ipηiqs

›

›

2

¯

ď

h0
ÿ

h“1

2
ÿ

i“1

2
ÿ

j“1

”

p2
ÿ

u“1

p2
ÿ

v“1

´

}pB1,ipηiq}2}pΩx,ij,uvph, rq ´Ωx,ij,uvph, rq}2

`}pB1,ipηiq ´B1,ipηiq}2}Ωx,ij,uvph, rq}2

¯2
` 2

p2
ÿ

u“1

p2
ÿ

v“1

}B1,ipηiqΩx,ij,uvph, rq}2

¨}pΩx,ij,uvph, rq ´Ωx,ij,uvph, rq}2}pB1,ipηiq}2 ` 2

p2
ÿ

u“1

p2
ÿ

v“1

}B1,ipηiq ¨Ωx,ij,uvph, rqΩx,ij,uvph, rq
1}2

}pB1,ipηiq ´B1,ipηiq}2

ı

“

2
ÿ

i“1

2
ÿ

j“1

rLi,j,1prq ` Li,j,2prq ` Li,j,3prqs. (21)

When ε ą 0, by Cauchy-Schwarz inequality and Lemmas 4-5,

EpL1,1,1pr0 ` εqq

ď 2
h0
ÿ

h“1

p2
ÿ

u“1

p2
ÿ

v“1

E}pΩx,1,uvph, r0 ` εq ´Ωx,1,uvph, r0 ` εq}
2
2

`2E}pB1,1pηiq ´B1,1pηiq}
2
2

˜

p2
ÿ

u“1

p2
ÿ

v“1

}Ωx,1,uvph, r0 ` εq}
2
2

¸

ď Opp21p
2
2T
´1q,

EpL1,1,2pr0 ` εqq “ Opεp2´δ11 p2´δ22 T´1{2q,

EpL1,1,3pr0 ` εqq “ Opεp2´δ11 p2´δ22 T´1{2q,

EpL1,2,1pr0 ` εqq “ Opp21p
2
2T
´1q, EpL1,2,2pr0 ` εqq “ Opεp2´δ11 p2´δ22 T´1{2q,

EpL1,2,3pr0 ` εqq “ Opεp2´δ11 p2´δ22 T´1{2q,

EpL2,1,1pr0 ` εqq ď Opp21p
2
2T
´1q, L2,1,2pr0 ` εq “ 0, L2,1,3pr0 ` εq “ 0,

EpL2,2,1pr0 ` εqq ď Opp21p
2
2T
´1q, L2,2,2pr0 ` εq “ 0, L2,2,3pr0 ` εq “ 0.

It follows from (21),

E
ˇ

ˇ

ˇ

2
ÿ

i“1

´

}pB1,ipηiq
1
xM1,iprqpB1,ipηiq}2 ´ }B

1
1,iM1,iprqB1,i}2

¯ ˇ

ˇ

ˇ
ď Opp21p

2
2T
´1q `Opεp2´δ11 p2´δ22 T´1{2q.
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Similarly we can establish the rate of convergence for
ř2
i“1p}

pB12,ipηiq
xM2,iprqpB2,ipηiq}2´}B

1
2,iM2,iprqB2,i}2q.

Then when ε ą 0, we have

| pGpr0 ` εq ´Gpr0 ` εq|

ď

ˇ

ˇ

ˇ

ˇ

ˇ

2
ÿ

s“1

2
ÿ

i“1

´

}pB1s,ipηiq
xMs,iprqpBs,ipηiq}2 ´ }B

1
s,iMs,iprqBs,i}2

¯

ˇ

ˇ

ˇ

ˇ

ˇ

“ Opp21p
2
2T
´1q `Opεp2´δ11 p2´δ22 T´1{2q.

Proof of Theorem 1. Following the proof of Theorem 2 in Liu and Chen (2020), we can reach

the conclusion.

Proof of Theorem 2. Following the proof of Theorem 3 in (Liu and Chen, 2020), the conclusions

can be reached.

Proof of Corollary 1. Similar to proof of and Corollary 1 in Liu and Chen (2016).

Proof of Theorem 3. Following the proof of Theorem 4 in Liu and Chen (2020), we can reach

the conclusion.

Proof of Theorem 4. Similar to proof of Theorem 2.

Proof of Corollary 2: By definition of M in (17), we have

M “

h0
ÿ

h“1

p2
ÿ

u“1

p2
ÿ

v“1

#

2
ÿ

i“1

«

Q1,i

˜

2
ÿ

j“1

Ωzq,ij,uvph, r0q

¸ff+#

2
ÿ

i“1

«

Q1,i

˜

2
ÿ

j“1

Ωzq,ij,uvph, r0q

¸ff+1

.

Similar to the proof of Corollary 2 in Liu and Zhang (2022), we can show that

σk1,1`k1,2

˜

2
ÿ

i“1

«

Q1,i

˜

2
ÿ

j“1

Ωzq,ij,uvph, r0q

¸ff¸

ě Cp1´δ11 p1´δ22 .

Following the proof of Lemma 6, it can be proved that

λk1,1`k1,2pMq ě Cp2´2δ11 p2´2δ22 .

Then we can reach the conclusions following the proof of Corollary 1 in Lam and Yao (2012).

Appendix 2

We compare the proposed method with the one by Liu and Chen (2020) using different values of

η1 and η2 in Table 9 and Table 10. Our method beats the one by Liu and Chen (2020). When

η1 “ 0.15, η2 “ 0.85, and sample size is large, there are enough observations used to estimate Bs,i

in (11) and the difference between estimators of two approaches is much smaller.
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Table 9: Mean and standard deviation (in the parentheses) of the absolute error |pr ´ r0| for two

methods with different combinations of pT, p1, p2q, factor strength, and pη1, η2q

(η1, η2) T p1 p2 Method δ1 “ 0, δ2 “ 0 δ1 “ 0.3, δ2 “ 0 δ1 “ 0.3, δ2 “ 0.3

(0.05, 0.95) 100 10 10 Our method 0.036 (0.038) 0.066 (0.078) 0.138 (0.120)

LCR 0.839 (0.248) 0.850 (0.249) 0.851 (0.255)

20 20 Our method 0.028 (0.024) 0.059 (0.063) 0.208 (0.167)

LCR 0.888 (0.242) 0.904 (0.250) 0.920 (0.252)

200 10 10 Our method 0.018 (0.020) 0.032 (0.034) 0.062 (0.062)

LCR 0.795 (0.216) 0.809 (0.212) 0.821 (0.212)

20 20 Our method 0.016 (0.016) 0.027 (0.028) 0.107 (0.090)

LCR 0.872 (0.235) 0.879 (0.225) 0.886 (0.221)

(0.15, 0.85) 100 10 10 Our method 0.026 (0.026) 0.032 (0.034) 0.060 (0.065)

LCR 0.168 (0.251) 0.222 (0.254) 0.295 (0.246)

20 20 Our method 0.027 (0.023) 0.033 (0.030) 0.074 (0.073)

LCR 0.168 (0.270) 0.214 (0.266) 0.362 (0.255)

200 10 10 Our method 0.016 (0.018) 0.023 (0.025) 0.035 (0.038)

LCR 0.025 (0.030) 0.048 (0.054) 0.040 (0.043)

20 20 Our method 0.015 (0.014) 0.020 (0.022) 0.043 (0.043)

LCR 0.019 (0.021) 0.049 (0.061) 0.156 (0.112)

Note: LCR denotes the method in Liu and Chen (2020) extended to analyze matrix time series data
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Table 10: Mean and standard deviation (in the parentheses) of DpMppQs,iq,MpQs,iqq for two

methods with different combinations of pT, p1, p2q, factor strength, and pη1, η2q

(η1, η2) T p1 p2 Method δ1 “ 0, δ2 “ 0 δ1 “ 0.3, δ2 “ 0 δ1 “ 0.3, δ2 “ 0.3
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200 10 10 Our method row 0.025 (0.009) 0.023 (0.010) 0.037 (0.015) 0.036 (0.017) 0.060 (0.032) 0.059 (0.037)

column 0.025 (0.015) 0.025 (0.009) 0.038 (0.026) 0.037 (0.015) 0.064 (0.050) 0.062 (0.039)

LCR row 0.290 (0.248) 0.232 (0.244) 0.305 (0.242) 0.237 (0.235) 0.327 (0.227) 0.253 (0.221)

column 0.287 (0.244) 0.235 (0.244) 0.303 (0.237) 0.242 (0.237) 0.328 (0.223) 0.261 (0.224)

20 20 Our method row 0.015 (0.004) 0.015 (0.004) 0.024 (0.007) 0.024 (0.006) 0.049 (0.020) 0.048 (0.022)

column 0.016 (0.003) 0.015 (0.004) 0.026 (0.007) 0.026 (0.007) 0.054(0.024) 0.054 (0.030)

LCR row 0.242 (0.263) 0.309 (0.272) 0.256 (0.255) 0.314 (0.263) 0.277 (0.240) 0.342 (0.245)

column 0.243 (0.261) 0.310 (0.269) 0.256 (0.254) 0.316 (0.260) 0.281 (0.237) 0.345 (0.242)

(0.15, 0.85) 100 10 10 Our method row 0.035 (0.012) 0.034 (0.015) 0.052 (0.020) 0.051 (0.025) 0.085 (0.043) 0.081 (0.045)

column 0.036 (0.014) 0.035 (0.012) 0.055 (0.025) 0.053 (0.020) 0.094 (0.069) 0.085 (0.041)

LCR row 0.068 (0.110) 0.079 (0.130) 0.101 (0.124) 0.104 (0.130) 0.162 (0.145) 0.149 (0.135)

column 0.066 (0.102) 0.082 (0.135) 0.094 (0.106) 0.113 (0.138) 0.175 (0.155) 0.169 (0.154)

20 20 Our method row 0.023 (0.007) 0.022 (0.005) 0.039 (0.015) 0.036 (0.010) 0.078 (0.045) 0.071 (0.032)

column 0.022 (0.005) 0.022 (0.006) 0.037 (0.010) 0.037 (0.010) 0.072 (0.026) 0.073 (0.030)
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column 0.025 (0.015) 0.025 (0.009) 0.038 (0.026) 0.036 (0.015) 0.061 (0.049) 0.058 (0.030)
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