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FAST DETERMINISTIC APPROXIMATION OF SYMMETRIC
INDEFINITE KERNEL MATRICES WITH HIGH DIMENSIONAL

DATASETS\ast 

DIFENG CAI\dagger , JAMES NAGY\dagger , AND YUANZHE XI\dagger 

Abstract. Kernel methods are used frequently in various applications of machine learning.
For large-scale high dimensional applications, the success of kernel methods hinges on the ability to
operate certain large dense kernel matrix K. An enormous amount of literature has been devoted
to the study of symmetric positive semidefinite (SPSD) kernels, where Nystr\"om methods compute a
low-rank approximation to the kernel matrix via choosing landmark points. In this paper, we study
the Nystr\"om method for approximating both symmetric indefinite kernel matrices as well SPSD ones.
We first develop a theoretical framework for general symmetric kernel matrices, which provides a
theoretical guidance for the selection of landmark points. We then leverage discrepancy theory
to propose the anchor net method for computing accurate Nystr\"om approximations with optimal
complexity. The anchor net method operates entirely on the dataset without requiring the access
to K or its matrix-vector product. Results on various types of kernels (both indefinite and SPSD
ones) and machine learning datasets demonstrate that the new method achieves better accuracy and
stability with lower computational cost compared to the state-of-the-art Nystr\"om methods.
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1. Introduction. Kernel methods provide a powerful tool for solving nonlin-
ear problems in data science and are used in various machine learning tools such
as support vector machines (SVMs), kernel ridge regression, spectral clustering, and
Gaussian processes (cf. [7]). Given n data points x1, . . . , xn \in Rd and a kernel func-
tion \kappa (\cdot , \cdot ), kernel methods form an n\times n kernel matrix Ki,j = \kappa (xi, xj) to implicitly
map data to a kernel feature space, where the originally nonlinear relationship be-
tween categories can be transformed into a linear one. The kernel function \kappa is often
taken to be symmetric positive semidefinite (SPSD) in the literature [43, 9]. Re-
cently, methods based on indefinite kernel functions such as the jittering kernel [10],
Kullback--Leibler divergence kernel [30], tangent distance kernel [19], and multiquadric
kernel [16] have also been developed. In addition, indefinite kernel matrices also occur
as the derivatives of SPSD kernels in solving optimization problems (see, for example,
[2]). Theoretical justifications for the SVMs associated with indefinite kernels can be
found in [36, 18].

Due to the need to assemble and operate dense kernel matrices K, kernel methods
are often quoted to scale at least O(n2). A popular approach to circumvent this
computational bottleneck is to work with a low-rank approximation to K. Nystr\"om
methods are widely used to derive low-rank approximations to SPSD kernel matrices
that arise frequently in SVMs and other applications. The method first generates a
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1004 DIFENG CAI, JAMES NAGY, AND YUANZHE XI

small subset of points S, known as landmark points, and then computes a low-rank
approximation of the following form:

(1.1) K \approx KXSK
+
SSKSX ,

where we use KIJ to denote the matrix with entries given by \kappa (x, y) for x \in I \subset 
Rd, y \in J \subset Rd and K+

SS denotes the pseudoinverse of KSS . Different ways of
choosing S yield different variants of the Nystr\"om method. The original Nystr\"om
method in [44] selects S via a uniform sampling over the dataset and is often called the
uniform Nystr\"om method. Later developments for generating S include nonuniform
sampling techniques such as ridge leverage score--based sampling [27, 1, 17, 32, 39]
and determinantal point processes [25, 15, 14], the k-means clustering--based method
[46, 45], the randomized projection method [33], etc. Since the choice of S dictates the
approximation accuracy, a fundamental question for Nystr\"om method is the following:

\bullet Question 1. Given a datasetX, what kind of subset S yields a good Nystr\"om
approximation?

For SPSD kernels, a probabilistic interpretation is given by ridge leverage score. For
general possibly indefinite kernels, from a computational point of view, it is more
desirable to have a straightforward geometric understanding of good landmark points
S, which will facilitate the fast computation of S in O(n) complexity.

Despite the lack of discussion, the query for applying Nystr\"om approximation in
(1.1) to indefinite kernel matrices is quite natural because, mathematically, (1.1) does
not require K to be SPSD. Thus it is natural to ask the following questions:

\bullet Question 2. Does Nystr\"om approximation (1.1) apply to indefinite kernel
matrices?

\bullet Question 3. For a symmetric (possibly indefinite) kernel matrix, how should
one choose S in O(n) complexity to obtain an accurate Nystr\"om approxima-
tion?

Note that ridge leverage score is only defined for a SPSD kernel matrix and a different
low-rank approximation method called the random kitchen sinks method (or random
Fourier features method) [37, 38, 28] not only requires the kernel to be SPSD but also
shift-invariant. Hence those methods can not be directly applied to indefinite kernels.

The questions above motivate the work in this paper, and the main contributions
of the paper are summarized below.

1. Theoretical guidance for landmark point selection. To guide the choice
of landmark points, we present a new framework to analyze the Nystr\"om
approximation error in the general setting, where the kernel matrix can be
indefinite. The new error estimate takes the following form and is independent
of the underlying scheme to select S:

(1.2) | | K  - KXSK
+
SSKSX | | max \leq \epsilon 1 + 2\epsilon 2 + CS\epsilon 

2
2,

where \epsilon 1, \epsilon 2 measure certain deviation between S and X, CS = | | K+
SS | | 2, and

| | \cdot | | max denotes the max norm, e.g., \| A\| max := maxi,j | Ai,j | . A geometric
interpretation of \epsilon 1 and \epsilon 2 suggests that landmark points should spread evenly
in the dataset in order to achieve small approximation error.

2. Optimal complexity for general symmetric kernels. Based on the
analysis, we leverage discrepancy theory and propose an efficient deterministic
Nystr\"om method for arbitrary symmetric (possibly indefinite) kernels. The
proposed method scales O(dmn) for selecting m landmarkpoints in a dataset
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ANCHOR NET NYSTR\"OM 1005

of n points in Rd and forming the associated low-rank factors KXS and KSS .
This process is highly parallelizable and does not require any access to the
kernel matrix or its matrix-vector products.

3. Improved efficiency, approximation accuracy, and stability. Compre-
hensive experiments have been performed to show that the proposed method
outperforms several state-of-the-art methods for various kinds of kernels on
both synthetic and real datasets when the same rank is used. We also show
that the choice of S significantly affects the numerical stability of the re-
sulting Nystr\"om approximation and numerical regularization or stabilization
techniques cannot fully resolve the stability issue.

The rest of the paper is organized as follows. Section 2 reviews existing Nystr\"om
methods, and section 3 presents a general error analysis for Nystr\"om approximations
to guide the selection of landmark points, valid for both indefinite kernels and SPSD
ones. Section 4 introduces the anchor net method for computing Nystr\"om approx-
imation in linear complexity. Extensive experiments are provided in section 5, and
concluding remarks are drawn in section 6. In the remaining sections, the following
notations will be used throughout the paper:

\bullet | x - y| denotes the Euclidean distance between x, y \in Rd;
\bullet \| \cdot \| denotes the 2-norm of a vector or a matrix;
\bullet \| \cdot \| max denotes the max norm of a matrix, i.e., \| A\| max := maxi,j | Ai,j | ;
\bullet dist\infty (\cdot , \cdot ) denotes the distance function in l\infty -norm;
\bullet \lambda (\Omega ) denotes the Lebesgue measure of a bounded measurable set \Omega in Rd.

2. General Nystr\"om method: SPSD and indefinite cases. Given an in-
put dataset X = \{ x1, . . . , xn\} \subset Rd and a symmetric (possibly indefinite) kernel
function \kappa (x, y), the corresponding kernel matrix is defined by K = [\kappa (xi, xj)]

n
i,j=1.

For kernel functions supported on the entire domain of definition, such as \kappa (x, y) =

e - \| x - y\| 2

, tanh(x \cdot y + 1), the corresponding kernel matrix K is dense, and the corre-
sponding cost for storing the matrix or applying it to a vector is O(n2).

The Nystr\"om method was proposed in [44] to reduce the quadratic cost by com-
puting an approximate low-rank factorization in the form K \approx KXSK

+
SSKSX , where

the size of S is significantly smaller than n. Different variants of the Nystr\"om method
use different methods to compute the landmark points S. Some methods require
K to be SPSD, including nonuniform sampling--based approaches like leverage score
sampling, determinantal point processes, etc., while others like uniform sampling and
k-means clustering can also be potentially applied to indefinite kernel matrices. We
review below some popular Nystr\"om methods.

The original Nystr\"om method in [44], known as the uniform Nystr\"om method,
selects landmark points via a uniform sampling over X (or, equivalently, over the
index set from 1 to n). Since then, a variety of schemes have been developed to select
landmark points. See, for example, [46, 26, 45, 27, 1, 17, 32, 39]. Computationally, the
uniform Nystr\"om method is the most efficient one, since it does not require any access
to the kernel matrix or its matrix-vector product, and is not iterative. As a result,
the uniform Nystr\"om method is easy to compute and can be applied to a broad class
of kernel matrices. However, the uniform Nystr\"om method also suffers from several
issues. Firstly, due to the stochastic nature, it suffers from possibly large variance [39].
Secondly, the approximation accuracy usually fails to increase consistently with the
increase of the number of landmark points. Thirdly, the random choice of landmark
points may lead to numerically unstable approximations. The accuracy slowdown and
numerical instability will be illustrated via extensive numerical experiments.
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1006 DIFENG CAI, JAMES NAGY, AND YUANZHE XI

Nonuniform sampling techniques have been developed to improve the approxima-
tion accuracy with strong theoretical guarantees [27, 1, 17, 32, 25]. These methods
measure the importance of each data point with some statistical scores. A notable ex-
ample is the leverage score--based sampling [29, 1, 17], including determinantal point
processes [25, 14]. Each point xi in the dataset is associated with a leverage score
defined as l\gamma i (K) := (K(K + \gamma I) - 1)i,i with \gamma > 0 a user-specified parameter. To
generate the landmark points, each point xi is sampled with a probability propor-
tional to l\gamma i (K). Since computing leverage scores involves the dense kernel matrix K
and computing the matrix inverse (K + \gamma I) - 1, these methods cost at least O(n2).
Recently, several iterative schemes have been proposed to accelerate its computations
[32, 39]. Different from uniform sampling, those methods require K to be SPSD in
order to guarantee the nonnegativeness of l\gamma i .

Another variant of Nystr\"om methods is the k-means Nystr\"om method [46, 45].
This method performs the k-means clustering over the dataset and chooses the cluster
centers as the landmark points. Similar to uniform sampling, the k-means method
does not require any access to the kernel matrix. Experiments show that it tends to
be more accurate than the uniform Nystr\"om method [46, 45] but still suffers from
numerical instability.

In existing literature, discussion on the choice of good landmark points out that
work for indefinite kernels has been lacking. In fact, the Nystr\"om approximation
K \approx KXSK

+
SSKSX has not been investigated for indefinite kernels, theoretically and

numerically. We will show that the Nystr\"om approximation is well defined for indefi-
nite kernels but faces much more numerical challenges such as numerical instability,
as compared to SPSD kernels.

3. Error estimates for the general Nystr\"om method. In this section, we
derive error estimates for the general Nystr\"om method, which are valid for all sym-
metric kernels, including indefinite ones. The only assumption is that the landmark
points are chosen from the original dataset. The analysis reveals the inherent relation
between landmark points and the quality of the corresponding Nystr\"om approxima-
tion. It serves as the theoretical foundation of the new linear complexity method
proposed in section 4.

The lemma below will be used in proving the main result in Theorem 3.2.

Lemma 3.1. Assume A is an n-by-n matrix and \alpha , \^\alpha , \beta , \^\beta are n-by-1 vectors.
Define \epsilon 1 := \| \^\alpha  - \alpha \| and \epsilon 2 := \| \^\beta  - \beta \| . Then

(3.1)
\bigm| \bigm| \bigm| \^\alpha TA\^\beta  - \alpha TA\beta 

\bigm| \bigm| \bigm| \leq \bigm\| \bigm\| \alpha TA
\bigm\| \bigm\| \cdot \epsilon 2 + \| A\beta \| \cdot \epsilon 1 + \| A\| \cdot \epsilon 1\epsilon 2.

Proof. Define e1 := \^\alpha  - \alpha and e2 := \^\beta  - \beta . Then (3.1) follows from the fact that

\^\alpha TA\^\beta  - \alpha TA\beta = \alpha TAe2 + eT1 A\beta + eT1 Ae2.

In the theorem below, we derive a universal error bound for the Nystr\"om method.
The kernel function is assumed to be symmetric and continuous, not necessarily
positive-definite. Unlike existing error estimates, the result below is independent
of the specific Nystr\"om scheme. The only assumption is that the landmark points
belong to the original dataset, which is indeed the case in all Nystr\"om schemes except
the one based on k-means clustering [46, 45].

Theorem 3.2. Let \kappa (x, y) be a symmetric function, e.g., \kappa (x, y) = \kappa (y, x). Sup-
pose X = \{ x1, . . . , xn\} \subset Rd and K = KXX := [\kappa (xi, xj)]

n
i,j=1. If S = \{ z1, . . . , zr\} \subset 
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ANCHOR NET NYSTR\"OM 1007

X, then

(3.2)
\bigm\| \bigm\| K  - KXSK

+
SSK

T
XS

\bigm\| \bigm\| 
max

\leq Er + 2 \^Er +
\bigm\| \bigm\| K+

SS

\bigm\| \bigm\| \^E2
r ,

where
(3.3)

Er := max
x,y\in X

min
u,v\in S

| \kappa (x, y) - \kappa (u, v)| , \^Er := max
x\in X

min
u\in S

\Biggl( 
r\sum 

i=1

| \kappa (x, zi) - \kappa (u, zi)| 2
\Biggr) 1

2

.

Proof. Define R = X\setminus S. Since S \subset X, for some permutation matrix P , there
holds

K  - KXSK
+
SSK

T
XS = P

\biggl[ 
O O
O KRR  - KRSK

+
SSK

T
RS

\biggr] 
PT .

Consequently,
\bigm\| \bigm\| K  - KXSK

+
SSK

T
XS

\bigm\| \bigm\| 
max

=
\bigm\| \bigm\| KRR  - KRSK

+
SSK

T
RS

\bigm\| \bigm\| 
max

. It suffices to
estimate the difference below:

(3.4) \kappa (x, y) - KxSK
+
SSK

T
yS ,

where
KxS :=

\bigl[ 
\kappa (x, z1) \cdot \cdot \cdot \kappa (x, zr)

\bigr] 
for any x \in Rd.

Note that, for any u, v \in S,

(3.5) \kappa (u, v) = KuSK
+
SSK

T
vS

because KSSK
+
SSKSS = KSS and KSS = KT

SS . Define the column vectors

(3.6) \alpha := KT
uS , \^\alpha := KT

xS , \beta := KT
vS ,

\^\beta := KT
yS

and the scalars

(3.7)

\epsilon 1 := | | \^\alpha  - \alpha | | =

\Biggl( 
r\sum 

i=1

| \kappa (x, zi) - \kappa (u, zi)| 2
\Biggr) 1

2

,

\epsilon 2 := | | \^\beta  - \beta | | =

\Biggl( 
r\sum 

i=1

| \kappa (y, zi) - \kappa (v, zi)| 2
\Biggr) 1

2

.

We can then use (3.5) and (3.6) to rewrite (3.4) as

(3.8) \kappa (x, y) - \^\alpha TK+
SS

\^\beta = (\kappa (x, y) - \kappa (u, v)) + (\alpha TK+
SS\beta  - \^\alpha TK+

SS
\^\beta ),

where u, v \in S can be arbitrary.
The second part on the right-hand side of (3.8) can be estimated as follows by

using Lemma 3.1:

(3.9)

\bigm| \bigm| \bigm| \^\alpha TK+
SS

\^\beta  - \alpha TK+
SS\beta 

\bigm| \bigm| \bigm| \leq \bigm\| \bigm\| \alpha TK+
SS

\bigm\| \bigm\| \epsilon 2 + \bigm\| \bigm\| K+
SS\beta 

\bigm\| \bigm\| \epsilon 1 + \bigm\| \bigm\| K+
SS

\bigm\| \bigm\| \epsilon 1\epsilon 2
\leq \epsilon 2 + \epsilon 1 +

\bigm\| \bigm\| K+
SS

\bigm\| \bigm\| \epsilon 1\epsilon 2.
Here, the last inequality is due to the fact that both \alpha TK+

SS = KuSK
+
SS and K+

SS\beta =
K+

SSKSv are the row or column of the matrix

KSSK
+
SS = K+

SSKSS = U

\left[   e1 . . .

er

\right]   UT ,
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1008 DIFENG CAI, JAMES NAGY, AND YUANZHE XI

where U is an orthogonal matrix and ei \in \{ 0, 1\} . As a result,
\bigm\| \bigm\| \alpha TK+

SS

\bigm\| \bigm\| \leq 1 and\bigm\| \bigm\| K+
SS\beta 

\bigm\| \bigm\| \leq 1.
Finally, (3.9) and (3.8) imply the estimate

(3.10)
\bigm| \bigm| \bigm| \kappa (x, y) - \^\alpha TK+

SS
\^\beta 
\bigm| \bigm| \bigm| \leq | \kappa (x, y) - \kappa (u, v)| + \epsilon 1 + \epsilon 2 +

\bigm\| \bigm\| K+
SS

\bigm\| \bigm\| \epsilon 1\epsilon 2,
which holds for any u, v \in S. Minimizing the upper bound in (3.10) over all u, v \in S
immediately yields
(3.11)\bigm| \bigm| \bigm| \kappa (x, y) - \^\alpha TK+

SS
\^\beta 
\bigm| \bigm| \bigm| \leq min

u,v\in S
| \kappa (x, y) - \kappa (u, v)| +min

u\in S
\epsilon 1+min

v\in S
\epsilon 2+

\bigm\| \bigm\| K+
SS

\bigm\| \bigm\| min
u\in S

\epsilon 1 \cdot min
v\in S

\epsilon 2,

where \epsilon 1, \epsilon 2 are defined in (3.7). The proof is completed by taking a maximum of the
upper bound in (3.11) over x, y \in X. That is,\bigm| \bigm| \bigm| \kappa (x, y) - \^\alpha TK+

SS
\^\beta 
\bigm| \bigm| \bigm| \leq max

x,y\in S
min
u,v\in S

| \kappa (x, y) - \kappa (u, v)| +max
x\in X

min
u\in S

\epsilon 1 +max
y\in X

min
v\in S

\epsilon 2

+
\bigm\| \bigm\| K+

SS

\bigm\| \bigm\| max
x\in X

min
u\in S

\epsilon 1 \cdot max
y\in Y

min
v\in S

\epsilon 2

= Er + 2 \^Er +
\bigm\| \bigm\| K+

SS

\bigm\| \bigm\| \^E2
r .

Remark 3.3. Note that Theorem 3.2 only requires the kernel function to be sym-
metric. Thus the result applies to a broad class of kernels, including SPSD kernels,
like Gaussian or more generally Mat\'ern kernels, and indefinite kernels, such as multi-
quadrics, thin plate spline, sigmoid kernel, etc.

We call Er and \^Er in Theorem 3.2 the bivariate and univariate kernelized marking
errors, respectively, as both quantities are measured in terms of either bivariate or
univariate kernel function evaluations and indicate the overall capacity of the land-
mark points S to approximate the dataset X. There are two variables that affect the
approximation error of the Nystr\"om method: the number of the landmark points r
and the set of landmark points S. Here we focus on how to choose landmark points S
when r is fixed. In this case, both the quantities \^Er and Er can be used to investigate
how different choices of landmark points S would impact the Nystr\"om approximation.
If r is viewed as a variable, then \^Er may or may not grow as r increases. Consider
the one dimensional toy problem, where \kappa (x, y) = | x  - y| 2, X = \{ xi\} 10i=0 = \{ i

10\} ,
S1 = \{ x10\} , S2 = \{ x0, x10\} . Let \^Ek denote the quantity for S = Sk. Then it can
be computed that \^E1 = 1 (achieved at x = x0) and \^E2 = 1

2
\surd 
2
\approx 0.35 (achieved at

x = x5). In this case, \^Er does decay as r increases. If we further assume that the
kernel function k(x, y) is Lipschitz continuous, then | k(x, y)  - k(u, v)| will be small
if (x, y) and (u, v) are close. Under this assumption, the distance between points
reflects the difference between the respective kernel evaluations. Hence the set of a
fixed number of landmark points S is considered good if it is able to minimize the
deviation from X, namely, making dist(x, S) small for each point x \in X. A similar
result has recently been conducted in [4], which shows the exponential convergence of
adaptive cross approximation [5] with respect to the fill-distance of pivoting points.
We also want to emphasize that the estimate (3.2) is mainly used to motivate the
selection of S rather than to select the number of the points in S in order to satisfy
certain approximation accuracy.

In the next corollary, we further show that the approximation error can be
bounded by maxx\in X dist(x, S) when the kernel function \kappa is Lipschitz continuous.
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Corollary 3.4. Under the assumption of Theorem 3.2, if \kappa (x, y) \in C(Rd \times Rd)
is Lipschitz continuous, i.e., | \kappa (x\prime , y\prime )  - \kappa (x, y)| \leq L(| x  - x\prime | 2 + | y  - y\prime | 2)1/2 with
Lipschitz constant L, then

(3.12)
\bigm\| \bigm\| K  - KXSK

+
SSK

T
XS

\bigm\| \bigm\| 
max

\leq 
\surd 
2L\delta X,S + 2

\surd 
rL\delta X,S +

\bigm\| \bigm\| K+
SS

\bigm\| \bigm\| rL2\delta 2X,S ,

where \delta X,S = maxx\in X dist(x, S).

Proof. The proof relies on (3.2), and it suffices to relate Er, \^Er to maxx\in X dist(x, S).
First we estimate Er. For each x \in X, choose zx \in S to be the nearest point to x.
Then it follows that

E2
r \leq L2 max

x,y\in X
(| x - zx| 2 + | y  - zy| 2) = 2L2 max

x\in X
| x - zx| 2 = 2L2 max

x\in X
dist(x, S)2.

Similarly, for \^Er, we deduce that

\^E2
r \leq L2 max

x\in X

r\sum 
i=1

| x - zx| 2 = L2 max
x\in X

r| x - zx| 2 = rL2 max
x\in X

dist(x, S)2.

The two estimates and (3.2) immediately imply (3.12), and the proof is complete.

It can also be seen from (3.12) that, to achieve a better approximation, landmark
points are encouraged to spread over the entire dataset to capture its geometry, thus
reducing \delta X,S . Roughly speaking, this means that any point in X is not ``too far""
from a landmark point in S. In fact, this principle can also lead to a submatrix KSS

with a relatively large numerical rank in general, an improved numerical stability, and
accuracy. In two and three dimensions, one way to generate evenly spaced samples
is to use farthest point sampling (FPS) [13]. FPS constructs a subset S of X by first
initializing S with one point and then sequentially adding to S a point in X\setminus S that
is farthest from S. However, in high dimensions, the method tends to sample points
on the boundary of the dataset and may ignore the interior of the dataset unless
the number of samples is large enough. Computationally, the sequential procedure
of FPS can be quite expensive in high dimensions since each step requires solving
a minimization problem over O(n) points and the overall complexity is O(m2n) for
generating m landmark points, which is not optimal in m. We present in the next
section an efficient, fully parallelizable algorithm with linear complexity in m and n
to generate the desired subset S.

Note that several existing works have analyzed low-rank approximation--associated
kernel matrices based on analytic approximation of the kernel function [21, 6, 40, 42].
Although these results are independent of the positive-definiteness of the kernel func-
tion, they are restricted to low dimensions because of the curse of dimensionality
associated with analytic techniques. That is, the number of terms in an analytic
approximation increases exponentially with the dimension, and the resulting matrix
approximation is not low-rank for high dimensional problems. In the context of in-
tegral equations, a popular method called ACA [5] serves as a column-pivoted LU
factorization. Thus it is able to perform low-rank factorization for a kernel matrix
with high dimensional data in linear complexity.

Remark 3.5. One may use a different norm to measure the approximation error.
The set of optimal landmark points that minimize the error bound may differ, de-
pending on the underlying norm. A detailed investigation on how the norm affects the
choice of landmark points will be discussed in a forthcoming paper. The analysis in
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1010 DIFENG CAI, JAMES NAGY, AND YUANZHE XI

this section aims to provide an intuitive understanding of the desired qualities of land-
mark points, which will then serve as a theoretical guidance for choosing landmark
points.

Remark 3.6. It should be pointed out that directly minimizing the bound in The-
orem 3.2 is not a practical way to generate S due to the high computational cost, for
example, O(n2) in computing Er in (3.3). Our goal is to design a fast algorithm (with
optimal complexity) for generating landmark points with good quality. Thus the er-
ror bound is used as a theoretical guidance for designing more efficient algorithms on
generating landmark points S.

4. Anchor net method. In this section, we introduce the anchor net method
to facilitate the selection of landmark points. From the analysis in section 3, we
see that landmark points that spread evenly in the dataset and contain no clumps
are more favorable in reducing the Nystrom approximation error. If the dataset
is the unit cube, then the uniform grid points satisfy the desired properties. In
general, the study of uniformity is a central topic in discrepancy theory for solving
high dimensional problems. The discrepancy of a given point set measures how far the
distribution deviates from the uniform one. Existing work on discrepancy theory all
focuses on distribution in the unit cube, while distribution in a general region has not
been investigated yet, theoretically or computationally. In section 4.1, we review low
discrepancy sets and give the definition of discrepancy for a general region instead
of the unit cube. Based on low discrepancy sets, the anchor net is introduced in
section 4.2, which is able to capture the geometry of the given dataset. In section 4.3,
we use anchor net to design a linear complexity landmark point selection algorithm.
Discussion on implementation details is provided in section 4.4.

4.1. Low discrepancy sets. We start with the concept of low discrepancy
sets. Roughly speaking, a dataset with low discrepancy contains points that spread
evenly in the space with almost no local accumulations. There are several kinds of
discrepancies [24], and the most widely used one is the star discrepancy, as defined
below.

Definition 4.1. The star discrepancy D\ast 
N (\scrA ) of \scrA = \{ x1, . . . , xN\} \subset [0, 1]d is

defined by
D\ast 

N (\scrA ) := sup
J\in \scrJ 1

| \#(\scrA \cap J)/N  - \lambda (J)| ,

where \scrJ 1 is the family of all boxes in [0, 1)d of the form
\prod d

i=1[0, ai) and \lambda (J) denotes
the Lebesgue measure of J .

Low discrepancy sets have been studied in a number of literature as a means
of generating quasi-random sequences [22, 41, 31, 24]. The most widely used ones
include Halton sequences [22], digital nets, and digital sequences [41, 34, 11]. They
are known to have low discrepancies in the sense that

D\ast 
N (\scrA N ) = O(N - 1(logN)d),

where \scrA N denotes the first N terms of a Halton sequence or a digital sequence [31, 24].
Note that uniform tensor grids are also representative low discrepancy sets but are
not popular in practice due to the curse of dimensionality. We present adaptive tensor
grids in section 4.4 to alleviate the issue, which allows the practical use of tensor grids
in high dimensions.

The above low discrepancy sets themselves are only defined for the unit cube
and are inefficient in tessellating a real dataset whose ``shape"" may not be regular.
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ANCHOR NET NYSTR\"OM 1011

Therefore, we introduce what we call the anchor net in section 4.2, which is built upon
a collection of low discrepancy sets adjusted to the structure of the dataset. Loosely
speaking, anchor nets can be viewed as generalized low discrepancy sets dictated by
and specific to the given dataset. In order to measure the uniformity of a dataset in
a general region, we first generalize Definition 4.1 below.

Definition 4.2. Let \scrA = \{ x1, . . . , xN\} \subset [0,\infty )d and \Omega be a bounded measurable
set in [0,\infty )d such that \lambda (\Omega ) > 0 and \scrA \subset \Omega . The generalized star discrepancy
D\ast 

N,\Omega (\scrA ) of \scrA in \Omega is defined by

D\ast 
N,\Omega (\scrA ) = sup

J\in \scrJ 
| \#(\scrA \cap J)/N  - \lambda (\Omega \cap J)/\lambda (\Omega )| ,

where \scrJ is the family of all boxes in [0,\infty )d of the form
\prod d

i=1[0, ai).

Note that the generalized star discrepancy D\ast 
N,\Omega (\scrA ) coincides with the standard

one D\ast 
N (\scrA ) if \scrA \subset \Omega = [0, 1)d. Given an arbitrary dataset, finding a region \Omega that

contains the dataset and reflects the geometry of the data will be beneficial in generat-
ing efficient samples that can effectively minimize the approximation error. However,
the perfect region is extremely challenging to find in general since the discrete dataset
can be arbitrary. In section 4.2, we introduce anchor nets as a computationally effi-
cient way for constructing such a region \Omega . Anchor nets will be used in section 4.3 to
facilitate the selection of landmark points with linear complexity.

4.2. Anchor nets. In this section, we present an efficient algorithm to construct
the so-called anchor net for a given dataset. We then verify two major properties of
the anchor net: it is able to capture the entire dataset, and it has low discrepancy. As
discussed in section 3, good landmark points are expected to spread over the entire
dataset without forming clumps. The anchor net is designed to achieve this goal by
leveraging discrepancy theory [34, 11], where one tries to construct low discrepancy
sequences (deterministically) in order to avoid clumps that are frequently found in
pure random sequences. Low discrepancy sequences can achieve faster convergence
than pure random sequences in Monte Carlo methods [35, 31, 11]. Intuitively, one
can view the anchor net as the counterpart of low discrepancy sequence and uniform
sampling as the counterpart of random sequence.

The anchor net can be considered as a two-level low discrepancy set. The first
level is used to decompose the dataset into smaller subsets, and the second level is
used to generate ``anchors."" The construction procedure is sketched in Algorithm 4.1.
The inputs are the dataset and a net size m. Line 1 first generates a low discrepancy
set \scrT of a given size in the smallest box B0 that contains X. Lines 3--6 decompose
X into smaller subset Gi's. Lines 8--10 then construct a low discrepancy set \scrA (i)

for each (nonempty) Gi. Here we choose the number of points in \scrA (i) to be equal
to \lceil m \ast \lambda (Bi)/

\sum 
i \lambda (Bi)\rceil based on the following guideline that the size of \scrA (i) is

proportional to \lambda (Bi):

(4.1)
Mi\sum Q
i=1 Mi

=
\lambda (Bi)\sum Q
i=1 \lambda (Bi)

,

where Mi = \#\scrA (i). This guideline is necessary for proving the property of anchor
nets in Theorem 4.5.

In lines 1 and 11, the choice of the particular low discrepancy set is determined
by the user. Options include Halton sequences, digital nets, tensor grids, etc. More
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1012 DIFENG CAI, JAMES NAGY, AND YUANZHE XI

Algorithm 4.1. Anchor net construction.

Input: Given dataset X = \{ x1, . . . , xn\} \subset Rd with n data points, net size m
Output: Anchor net \scrA X

1: Create a low discrepancy set \scrT = \{ t1, t2, . . . , ts\} with s = O(m) points in the
smallest rectangular box B0 that contains X

2: Initialize Gi = \{ \} for i = 1, 2, . . . , s.
3: for j = 1, 2, . . . , n do
4: Find index i such that i = argmink=1,...,s \| xj  - tk\| \infty 
5: Update Gi = Gi \cup \{ xj\} 
6: end for
7: Check the number of nonempty G-sets: G1, . . . , GQ

8: for i = 1, 2, . . . , Q do
9: Find the smallest closed box Bi that contains Gi, and compute its Lebesgue

measure \lambda (Bi)
10: end for
11: Choose Q low discrepancy sets \scrA (1) \subset B1, . . . ,\scrA (Q) \subset BQ such that \#\scrA (i) =

\lceil m \ast \lambda (Bi)/
\sum 

i \lambda (Bi)\rceil 
12: return \scrA X =

\bigcup Q
i=1 \scrA (i)

details on the implementation of Algorithm 4.1 are discussed in section 4.4. See
Figure 1 for an illustration of anchor nets with increasing net size m constructed for
a two dimensional highly nonuniform synthetic dataset.

Next we prove major properties of \scrA X returned by Algorithm 4.1. The main
result is stated in Theorem 4.5.

First we prove the following lemma.

Lemma 4.3. For i = 1, . . . , Q, define

A(i)
\epsilon := lim sup

Mi\rightarrow \infty 

\Bigl\{ 
x \in Rd : dist\infty (x,\scrA (i)) \leq \epsilon 

\Bigr\} 
,

where Mi = \#\scrA (i). Then
\bigcap 

\epsilon >0 A
(i)
\epsilon = Bi.

Proof. Without loss of generality, assume Bi = [0, 1]d. Our goal is to prove that\bigcap 
\epsilon >0 A

(i)
\epsilon = Bi. It is easy to see that A

(i)
\epsilon 1 \subset A

(i)
\epsilon 2 whenever \epsilon 1 < \epsilon 2, so

\bigcap 
\epsilon >0 A

(i)
\epsilon 
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Fig. 1. An illustration of six anchor nets (blue ``x"") of increasing net sizes m and \Omega =
\bigcup Q

i=1 Bi

(green) on a highly nonuniform synthetic dataset (red dots).
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ANCHOR NET NYSTR\"OM 1013

can be viewed as the limit of sets as \epsilon \rightarrow 0. We first show that Bi \subset A
(i)
\epsilon for each

0 < \epsilon < 1. Fix an \epsilon \in (0, 1). For an arbitrary x \in Bi, let Jx be the box centered at
x with side \epsilon . Define J = Jx \cap [0, 1)d. Then \lambda (J) \geq ( 12 )

d\lambda (Jx) =
1
2d
\epsilon d. Since \scrA (i) is

a low discrepancy set, D\ast 
Mi

(\scrA (i)) \rightarrow 0 as Mi \rightarrow \infty . Therefore, for the tolerance 1
5d
\epsilon d,

if Mi is large enough, we have\bigm| \bigm| \bigm| \#(\scrA (i) \cap J)/Mi  - \lambda (J)
\bigm| \bigm| \bigm| \leq D\ast 

Mi
(\scrA (i)) <

\epsilon d

5d
< \lambda (J),

which implies that \scrA (i) \cap J \not = \emptyset . Hence there is a point in \scrA (i) whose l\infty distance to
x is within \epsilon , i.e.,

(4.2) dist\infty (x,\scrA (i)) \leq \epsilon .

Note that (4.2) is true as long as Mi is large enough. Consequently, there are infinitely
many Mi such that (4.2) holds true. According to the definition of lim sup, it follows
that

x \in lim sup
Mi\rightarrow \infty 

\Bigl\{ 
x \in Rd : dist\infty (x,\scrA (i)) \leq \epsilon 

\Bigr\} 
= A(i)

\epsilon .

This shows that Bi \subset A
(i)
\epsilon since x is arbitrary in Bi. Because \epsilon > 0 is arbitrary, we

see that Bi \subset 
\bigcap 

\epsilon >0 A
(i)
\epsilon . It remains to prove the other direction:

\bigcap 
\epsilon >0 A

(i)
\epsilon \subset Bi.

This is equivalent to the fact that if x /\in Bi, then x /\in 
\bigcap 

\epsilon >0 A
(i)
\epsilon . Now suppose

x /\in Bi = [0, 1]d. Then dist\infty (x,Bi) = \delta > 0 for some positive constant \delta . We know

that \scrA (i) \subset Bi, so dist\infty (x,\scrA (i)) \geq \delta > 0 for any Mi. Therefore, x /\in A
(i)
\delta , which

yields that x /\in 
\bigcap 

\epsilon >0 A
(i)
\epsilon . Now the second direction is proved, and we conclude that\bigcap 

\epsilon >0 A
(i)
\epsilon = Bi.

The next lemma is a property of the generalized discrepancy.

Lemma 4.4. Let S1 and S2 be two finite subsets of \Omega 1 \subset [0,\infty )d and \Omega 2 \subset [0,\infty )d,
respectively. Suppose \lambda (\Omega 1 \cap \Omega 2) = 0 and S1 \cap S2 = \emptyset . If D\ast 

N1,\Omega 1
(S1) < \epsilon and

D\ast 
N2,\Omega 2

(S2) < \epsilon , where Ni = \#Si, then

(4.3) D\ast 
N1+N2,\Omega 1\cup \Omega 2

(S1 \cup S2) <

\bigm| \bigm| \bigm| \bigm| N1

N1 +N2
 - \lambda (\Omega 1)

\lambda (\Omega 1) + \lambda (\Omega 2)

\bigm| \bigm| \bigm| \bigm| + \epsilon .

Proof. Denote \lambda i = \lambda (\Omega i) with i = 1, 2. Let \scrJ be the family of boxes as in
Definition 4.2. For any J \in \scrJ , define

Ai := \#(Si \cap J), bi := \lambda (\Omega i \cap J), i = 1, 2.

According to Definition 4.2 and the assumptions in the claim, it suffices to show that

(4.4)

\bigm| \bigm| \bigm| \bigm| \#((S1 \cup S2) \cap J)

N1 +N2
 - \lambda ((\Omega 1 \cup \Omega 2) \cap J)

\lambda (\Omega 1 \cup \Omega 2)

\bigm| \bigm| \bigm| \bigm| = \bigm| \bigm| \bigm| \bigm| A1 +A2

N1 +N2
 - b1 + b2

\lambda 1 + \lambda 2

\bigm| \bigm| \bigm| \bigm| 
<

\bigm| \bigm| \bigm| \bigm| N1

N1 +N2
 - \lambda 1

\lambda 1 + \lambda 2

\bigm| \bigm| \bigm| \bigm| + \epsilon .

Note first that the definition of D\ast 
Ni,\Omega i

(Si) yields

(4.5)

\bigm| \bigm| \bigm| \bigm| Ai

Ni
 - bi

\lambda i

\bigm| \bigm| \bigm| \bigm| \leq D\ast 
Ni,\Omega i

(Si) < \epsilon , i = 1, 2.
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1014 DIFENG CAI, JAMES NAGY, AND YUANZHE XI

It is easy to see that

A1 +A2

N1 +N2
 - b1 + b2

\lambda 1 + \lambda 2
=

N1

N1 +N2
\cdot A1

N1
+

N2

N1 +N2
\cdot A2

N2

 - 
\biggl( 

\lambda 1

\lambda 1 + \lambda 2
\cdot b1
\lambda 1

+
\lambda 2

\lambda 1 + \lambda 2
\cdot b2
\lambda 2

\biggr) 
.

Together with (4.5), we deduce that\bigm| \bigm| \bigm| \bigm| A1 +A2

N1 +N2
 - b1 + b2

\lambda 1 + \lambda 2

\bigm| \bigm| \bigm| \bigm| <\bigm| \bigm| \bigm| \bigm| \biggl( N1

N1 +N2
 - \lambda 1

\lambda 1 + \lambda 2

\biggr) 
\cdot A1

N1
+

\biggl( 
N2

N1 +N2
 - \lambda 2

\lambda 2 + \lambda 2

\biggr) 
\cdot A2

N2

\bigm| \bigm| \bigm| \bigm| + \epsilon 

\leq 
\bigm| \bigm| \bigm| \bigm| N1

N1 +N2
 - \lambda 1

\lambda 1 + \lambda 2

\bigm| \bigm| \bigm| \bigm| + \epsilon ,

where we have used the fact that | A1

N1
 - A2

N2
| \leq 1. Since (4.4) is proved for any J \in \scrJ ,

by taking a sup of the left-hand side of (4.4) over J \in \scrJ , we conclude that (4.3) holds
true.

Based on Lemmas 4.3 and 4.4, we show in Theorem 4.5 the properties of the out-
put of Algorithm 4.1. The first property says that the region \Omega =

\bigcup Q
i=1 Bi associated

with anchor nets is able to compactly capture X, and the second property indicates
that the anchor nets have low discrepancy in \Omega .

Theorem 4.5. For a given dataset X, let \scrA X be the output of Algorithm 4.1 and
N := \#\scrA X , Mi := \#\scrA (i). Assume that 0 < \tau 1 \leq Mi/N \leq \tau 2 < 1 for some constants

\tau 1, \tau 2 \in (0, 1). Define \Omega =
\bigcup Q

i=1 Bi; then
1. \Omega has the equivalent expression

(4.6) \Omega =
\bigcap 
\epsilon >0

lim sup
N\rightarrow \infty 

\bigl\{ 
x \in Rd : dist\infty (x,\scrA X) \leq \epsilon 

\bigr\} 
with \lambda (\Omega ) > 0 and X \subset \Omega ;

2. lim
N\rightarrow \infty 

D\ast 
N,\Omega (\scrA X) = 0.

Furthermore, if (4.1) holds for every i, then

(4.7) D\ast 
N,\Omega (\scrA X) = O(N - 1(logN)d).

Proof. We verify that the two conditions are satisfied by \scrA X =
\bigcup Q

i=1 \scrA (i).

Since \scrA X =
Q\bigcup 
i=1

\scrA (i) and Mi/N \in (\tau 1, \tau 2), we see that

\Omega =

Q\bigcup 
i=1

\bigcap 
\epsilon >0

lim sup
Mi\rightarrow \infty 

\Bigl\{ 
x \in Rd : dist\infty (x,\scrA (i)) \leq \epsilon 

\Bigr\} 
=

Q\bigcup 
i=1

\bigcap 
\epsilon >0

A(i)
\epsilon ,

where A
(i)
\epsilon is defined as in Lemma 4.3. According to Lemma 4.3, it follows that

\Omega =
\bigcup Q

i=1 Bi. In addition, we have the estimation

\lambda (\Omega ) \geq \lambda (B1) > 0 and X \subset 
Q\bigcup 
i=1

Gi \subset 
Q\bigcup 
i=1

Bi = \Omega ,

which justifies the first condition.
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Next we prove the second property:

(4.8) lim
N\rightarrow \infty 

D\ast 
N,\Omega (\scrA X) = 0.

This is proved by using Lemma 4.4. Assume at this moment Q = 2. Then \scrA X =
\scrA (1) \cup \scrA (2), \Omega = B1 \cup B2. We deduce from Lemma 4.4 that
(4.9)

lim
N\rightarrow \infty 

D\ast 
N,\Omega (\scrA X) \leq lim

N\rightarrow \infty 

\bigm| \bigm| \bigm| \bigm| M1

M1 +M2
 - \lambda (B1)

\lambda (B1) + \lambda (B2)

\bigm| \bigm| \bigm| \bigm| + lim
N\rightarrow \infty 

max
i=1,2

D\ast 
Mi,Bi

(\scrA (i)),

where the first term in the upper bound goes to zero due to (4.1) and the second term
also vanishes because of the fact that limMi\rightarrow \infty D\ast 

Mi,Bi
(\scrA (i)) = 0 andMi/N \in (\tau 1, \tau 2).

If Q > 2, based on the result for Q = 2, we can apply Lemma 4.4 inductively to show
that the condition holds true for Q = 3, 4, . . . . Therefore, (4.8) is justified.

Finally it remains to prove (4.7). This is actually an immediate result of (4.9).
Consider Q = 2. Under the above assumption, it follows from (4.9) that

(4.10) lim
N\rightarrow \infty 

D\ast 
N,\Omega (\scrA X) \leq lim

N\rightarrow \infty 
max
i=1,2

D\ast 
Mi,Bi

(\scrA (i)).

Since\scrA (i) is a low discrepancy set in Bi,D
\ast 
Mi,Bi

(\scrA (i)) = O(M - 1
i (logMi)

d). According
to the assumption in the theorem, i.e., there are constants \tau 1, \tau 2 \in (0, 1) such that
\tau 1N \leq Mi \leq \tau 2N , we see that O(M - 1

i (logMi)
d) = O(N - 1(logN)d). Therefore,

(4.10) implies D\ast 
N,\Omega (\scrA X) = O(N - 1(logN)d), which completes the proof.

It should be pointed out that even though the first condition in Theorem 4.5 says
that \Omega is large enough to capture X, it does not indicate that \Omega will be unnecessarily
large. Note that \Omega adapts to the geometry of X and can be roughly viewed as a
region spanned by X, as illustrated in Figure 1. For highly nonuniform datasets,
sampling in \Omega will be more efficient than in one single box that contains X. This is
because \Omega nicely reflects the geometry of the dataset X and thus uniform distribution
(guaranteed by the second property) in \Omega is expected to yield uniform distribution in
X, as can be seen from the last subfigure in Figure 1.

4.3. Anchor net method. In this section we propose the anchor net method
for selecting landmark points and prove its computational complexity. The anchor
net method starts with the construction of an anchor net for the given dataset X and
then searchs for the landmark points in the vicinity of the anchor net. The algorithm
is presented in Algorithm 4.2.

Algorithm 4.2. Anchor net method.

Input: Dataset X = \{ x1, . . . , xn\} \subset Rd, integer m
Output: The set of landmark points S

1: Apply Algorithm 4.1 with net size m to construct the anchor net \scrA X for X
2: for each point y in \scrA X do
3: Find xi such that xi = argminxk\in X | | xk  - y| | \infty 
4: Update S = S \cup \{ xi\} 
5: end for
6: return S

Since the landmark points are selected in the vicinity of the anchor net in Algo-
rithm 4.2, the selected landmark points are uniformly spread inside the dataset. In
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Proposition 4.6, we show that the computational cost of Algorithm 4.2 scales linearly
in n.

Proposition 4.6. The complexity of the anchor net method described in Algo-
rithm 4.2 with net size m is O(mdn).

Proof. First we calculate the complexity of Algorithm 4.1. Since s = O(m), it is
easy to see that step 1 costs O(md) and the for loop in steps 3--6 amounts to O(mdn).
Since G1, . . . , GQ forms a disjoint partition of X, we have \#G1+ \cdot \cdot \cdot +\#GQ = n. The
cost of the for loop in steps 8--10 is then d \cdot \#G1 + \cdot \cdot \cdot + d \cdot \#GQ = dn. The cost of
step 11 is d \cdot \#\scrA (1) + \cdot \cdot \cdot + d \cdot \#\scrA (Q) = dO(m). Overall, we see that the complexity
of Algorithm 4.1 is O(mdn).

Now we compute the overall complexity of Algorithm 4.2. Since \#\scrA X = O(m),
the for loop in steps 2--5 of Algorithm 4.2 costs O(mdn). Thus we conclude that the
overall complexity of Algorithm 4.2 is O(mdn), and the proof is complete.

It is known that both uniform sampling and k-means Nystr\"om methods tend to
generate more sample points from regions with a high density of points, which can
not effectively help reduce the Nystr\"om approximation error. Different from those
density-based approaches, anchor net \scrA X is designed to efficiently tessellate the given
data to avoid the formation of clumps. Because of the geometric properties of anchor
nets, the anchor net method can yield more accurate Nystr\"om approximation with
same approximation rank, regardless of the positive-definiteness of the kernel function.
It should be emphasized that a good selection of landmark points also benefits the
numerical stability of the Nystr\"om method, which significantly affects the quality of
the approximation. We discuss in section 4.4.2 the stability issue associated with the
Nystr\"om method and provide an numerical example in section 5.2 to demonstrate the
impact of landmark points on approximation accuracy and numerical stability.

4.4. Practical implementation. In this section, we discuss several implemen-
tation details of the proposed method.

4.4.1. Adaptive tensor grids. Though tensor grids display perfect uniformity,
they are not used for high dimensional data due to the curse of dimensionality. The
naive construction of tensor grid by employing a parameter that specifies the number
of points per direction is not practical in high dimension since the degrees of freedom
(DOFs) depend exponentially on dimension. In this section, we propose an adaptive
tensor grid to significantly reduce the exponential growth of DOFs with dimension,
which enables the practical use of tensor grids.

Instead of treating approximation in each dimension independently, we control the
total number of nodes per direction over all dimensions. That is, for a nonnegative
integer p, if ik is the number of nodes in the kth dimension, then we require i1+ \cdot \cdot \cdot +
id = p + d. This new strategy yields significantly fewer DOFs and results in a much
slower growth of DOFs with respect to d or p, as illustrated in Figure 2. An upper
bound of the DOFs is given in Proposition 4.7.

Proposition 4.7. Let p be a nonnegative integer. Consider a tensor grid in Rd

with ik points (ik \geq 1) in the kth dimension such that i1 + \cdot \cdot \cdot + id = p+ d. Then the
total number of nodes is bounded by ep, i.e., i1i2 \cdot \cdot \cdot id \leq (p+d

d )d < ep.

Proof. The second inequality in the estimate follows from the fact that\Bigl( 
1 +

p

d

\Bigr) d/p
< e.

We now prove the first inequality by induction on d. For d = 1, the inequality
automatically holds true. Assume that the inequality holds true for Rd. For Rd+1,
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there are p + 1 possible values for id+1. That is, id+1 = k and i1 + \cdot \cdot \cdot + id =
p + d + 1  - k, k = 1, . . . , p + 1. Applying the induction assumption for Rd gives
i1i2 \cdot \cdot \cdot id \leq (p+d+1 - k

d )d. Hence

max
| \bfi | =p+d+1
id+1=k

i1i2 \cdot \cdot \cdot idid+1 \leq k

\biggl( 
p+ d+ 1 - k

d

\biggr) d

\leq max
1\leq k\leq p+1

g(k),

where g(x) := x(p+d+1 - x
d )d. Next we show that g(k) is bounded by ( p+d+1

d+1 )d+1. By
computing g\prime (x),

g\prime (x) =

\biggl( 
p+ d+ 1 - x

d

\biggr) d - 1
p+ d+ 1 - (d+ 1)x

d
,

we see that g has a unique maximizer at x\ast = (p+d+1)/(d+1) in [0, p+1]. Therefore,

max
| \bfi | =p+d+1

i1i2 \cdot \cdot \cdot idid+1 \leq max
1\leq k\leq p+1

g(k) \leq g(x\ast ) =

\biggl( 
p+ d+ 1

d+ 1

\biggr) d+1

.

We conclude that the inequality holds for Rd+1, and the proof is complete.

Figure 2 shows a comparison between DOFs of the uniform tensor grid (dotted
line) and the new one (solid line). In the uniform tensor grid, p+1 denotes the number
of nodes in each dimension, while in adaptive tensor grid, p + d controls the sum of
numbers of nodes in each dimension. The left subfigure plots the DOFs with respect
to dimension d when p = 2, 3, 4, 5, and the right subfigure plots the DOFs with respect
to p at different dimensions d = 2, 3, 4, 5. It can be seen from the left plot in Figure 2
that the classical tensor grid (dotted line) yields exponentially increasing DOFs with
the dimension, while the new one (solid line) is immune to the increase of dimension.
The right plot in Figure 2 shows that, compared to the old method, the new method
yields a much slower growth of DOFs as p increases. We see from both figures that
the new method is not sensitive to the increase of dimension d. Adaptive tensor grids
control the rate of increase of DOFs across different levels of approximation by adding
more intermediate levels. The numerical experiments in section 5 demonstrate that
the approximation error decreases as more DOFs are used in the adaptive tensor grid.

Although adaptive tensor grids share the same goal as sparse grids [3] to control
the number of generated nodes in high dimensions, there are several major differences

dimension d
1 2 3 4 5 6 7 8

D
O

Fs

100

101

102

103

104

105

106

107 DOFs v.s. dimension d for approximation levels p=2,3,4,5

Old (p=2)
New (p=2)
Old (p=3)
New (p=3)
Old (p=4)
New (p=4)
Old (p=5)
New (p=5)

approximation level p
1 2 3 4 5 6 7 8

D
O

Fs

100

101

102

103

104

105 DOFs v.s. approximation level p for d=2,3,4,5
Old (d=2)
New (d=2)
Old (d=3)
New (d=3)
Old (d=4)
New (d=4)
Old (d=5)
New (d=5)

Fig. 2. Left: DOFs vs dimension d; Right: DOFs vs p.
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between them: (1) Sparse grids use highly nonuniform nodes in the cubic domain. For
example, along a specific dimension (for example, y = 0 in the two dimensional case),
the nodes are sparser in the interior and denser near the boundary. On the other hand,
adaptive tensor grids tend to generate uniformly distributed nodes in the dataset. (2)
Despite the fact that sparse grids reduce the exponential dependence on the dimension
d to a polynomial one, from pd to dp, the actual number of DOFs can still be very
large even for a moderate d. For example, as shown in [3], when p (maximum number
of nodes per dimension) increases from 1 to 7, the number of DOFs increases from 21
to 652065 for a dimension d = 10 problem. Therefore, if one wants higher accuracy
by increasing p, significantly more DOFs will be generated. On the other hand, as
shown in the right subfigure of Figure 2 the number of nodes increases at a much
slower rate in adaptive tensor grids as the approximation level p increases. (3) Sparse
grids are used for approximating functions and high dimensional integrals instead of
matrix approximations, particularly the Nystr\"om method for low-rank factorization.
The motivation of sparse grid is to reduce the cost in approximating a continuous
problem (e.g., a function, an integral) in high dimensions, while a matrix is a discrete
object.

4.4.2. Numerical techniques for improving stability. The Nystr\"om for-
mula requires computing K+

SS , the pseudoinverse of the kernel matrix associated with
the landmark points. In some cases, the resulting kernel matrix can be nearly sin-
gular, causing numerical instability when computing the exact pseudoinverse. The
issue can be circumvented for SPSD kernels by regularization techniques, i.e., adding
a scalar matrix \alpha I with a small constant \alpha > 0 to lift all eigenvalues to (\alpha ,\infty ) and
computing the inverse of the sum. For indefinite kernels, however, regularization is no
longer effective since KSS may have both positive and negative eigenvalues around 0.
A well-known method that can handle both cases is to use the \epsilon -pseudoinverse K+

SS,\epsilon 

in place of K+
SS , where KSS,\epsilon is derived from KSS by treating singular values smaller

than \epsilon as zeros. The modified Nystr\"om approximation with a truncated pseudoinverse
then becomes

(4.11) KXX \approx KXSK
+
SS,\epsilon KSX .

Some other alternatives have also been proposed. For example, [33] proposed the
following QR-based approximation in place of KSS :

(4.12) KXX \approx (KXSR
+
\epsilon )(Q

TKSX),

where KSS = QR is the QR factorization of KSS and R\epsilon is derived from R by
truncating singular values smaller than \epsilon , similar to KSS,\epsilon with respect to KSS . In
section 5, we perform numerical tests to show that the truncation techniques do rectify
the stability issue. However, aside from improved stability, numerical results show
that (4.11) impairs the accuracy of the original Nystr\"om approximation. Although
(4.12) performs better than (4.11), the approximation still becomes less accurate as
the number of landmark points increases. In general, numerical techniques require
accurate computation of singular values close to zero for a numerically low-rank matrix
and are not able to fully resolve the structural issues on accuracy and stability. In
this paper, we alleviate this issue by choosing a good selection of landmark points to
improve the conditioning of the KSS , as demonstrated in section 5.

5. Numerical experiments. In this section we present various experiments to
demonstrate the performance of the anchor net method and the numerical instability
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Table 1
Datasets (n instances in d dimensions).

Donkey Kong Abalone Anuran Calls (MFCC) Covertype
d 2 8 22 54
n 3000 4177 7195 581012

of some Nystr\"om methods for kernel matrices with rapidly decaying singular values.
The datasets are shown in Table 1. All experiments were performed in MATLAB
2020b on a desktop with an Intel i9-9900K 3.60 GHz CPU and 64 GB of RAM.
The 2-norm is used to measure the Nystr\"om approximation error in all experiments
except the one in Figure 9, where the 2-norm cannot be computed accurately and
the Frobenius norm is used instead. For probabilistic methods like uniform sampling,
the error is averaged over 10 repeated runs, and in each error-rank plot, the solid line
corresponds to the averaged error, while the dotted line corresponds to the error in
an individual run. See, for example, Figures 3--5. For the anchor net construction,
we choose the low discrepancy set to be the adaptive tensor grid discussed in section
4.4.1, as it is straightforward to parametrize adaptive tensor grids using the sum of
the number of nodes in each direction. In Algorithm 4.1, we choose \scrT to be larger
than \scrA (i) to tessellate the dataset more efficiently, especially in high dimensions. For
example, empirical results show that the size of \scrT can be chosen to be 2 to 20 times
larger than the size of \scrA (i), with a larger ratio for higher dimensions.

5.1. Indefinite kernels. We consider the following indefinite kernels:

Multiquadrics : \kappa (x, y) =
\sqrt{} 

| x - y| 2/\sigma 2 + 1,

sigmoid : \kappa (x, y) = tanh(x \cdot y/\sigma + 1),

Thin plate spline : \kappa (x, y) =
| x - y| 2

\sigma 2
ln

\biggl( 
| x - y| 2

\sigma 2

\biggr) 
.

Those kernels are commonly seen in deep learning, kernel density estimation, sta-
tistics, etc. To the best of our knowledge, the only Nystr\"om methods that could
potentially work for indefinite kernels are the uniform method [44] and the k-means
Nystr\"om method [46, 45]. Hence we compare our method to those two. (Note that
leverage score sampling--based Nystr\"om methods, such as [12, 17, 32], cannot be ap-
plied here since they require the kernel matrices to be SPSD.) The k-means method
is implemented with an efficient vectorized function to compute L2 distances between
points and centroids at each iteration. The iteration number is set to 5. We test
the three Nystr\"om methods over the following high dimensional datasets from the UC
Irvine Machine Learning Repository:1 Abalone, Anuran Calls (mel-frequency cepstral
coefficient (MFCC)), Covertype. See Table 1 for the statistics of the datasets. The
datasets are standardized to have zero mean and unit variance. For each kernel, we
choose \sigma to be the half radius of the standardized dataset, where the radius is de-
fined as the maximum distance from a point to the center. The choice ensures that
the resulting kernel matrices have fast singular value decay and are thus suitable for
low-rank approximations. For the Covertype dataset (n = 581012), the Nystr\"om ap-
proximation error is evaluated over 10000 randomly sampled points from the dataset.

1Datasets can be found at https://archive.ics.uci.edu/ml/index.php.
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Fig. 3. Multiquadrics: Abalone (left), MFCC (middle), Covertype (right).
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Fig. 4. Sigmoid: Abalone (left), MFCC (middle), Covertype (right).
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Fig. 5. Thin plate spline: Abalone (left), MFCC (middle), Covertype (right).

The error-rank plots in Figures 3--5 illustrate how the Nystr\"om approximation
error changes as the number of landmark points increases. The computational cost
associated with each method is shown in the error-time plots in Figures 6--8, where the
runtime for each method is computed over ten repeated runs and the approximation
error for uniform Nystr\"om method is averaged over ten runs.

We have the following observations regarding the accuracy and stability of the
Nystr\"om schemes under comparison for approximating different kinds of indefinite
kernel matrices.

1. According to Figures 3--8, we see that, for different indefinite kernels and
datasets, the anchor net method achieves overall the best accuracy for a given
approximation rank (i.e., the number of landmark points) and requires the
least computation time. It is overall more stable than uniform sampling and
k-means methods. We also note that the advantage of anchor net method is
more prominent for large-scale high dimensional datasets like Covertype.

2. Compared to uniform sampling and anchor net methods, the k-means clus-
tering can be quite unstable as one increases the approximation rank, as
illustrated in Figures 3 (right), 4, and 5. This is due to the heuristic and
iterative nature of the k-means clustering: the computed cluster centers after
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Fig. 6. Multiquadrics error-time plot: Abalone (left), MFCC (middle), Covertype (right).
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Fig. 7. Sigmoid error-time plot: Abalone (left), MFCC (middle), Covertype (right).
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Fig. 8. Thin plate spline error-time plot: Abalone (left), MFCC (middle), Covertype (right).

a few iterations are unpredictable, and it's hard to predict whether the final
output can yield a better Nystr\"om approximation accuracy than the initial
guess.

3. It's easy to see from Figure 3 (right) and Figure 4 (right) that the anchor net
method converges much faster to a fixed accuracy.

4. For large-scale datasets in high dimensions (e.g., Covertype), the k-means
Nystr\"om method is quite slow and is outperformed by uniform sampling ac-
cording to Figures 6 (right), 7, and 8 (right).

5. For the sigmoid kernel with MFCC dataset in Figure 7 (middle), all three
Nystr\"om schemes display oscillatory behaviors, but the anchor net method
stays at a much lower error level, so it actually oscillates with a much smaller
amplitude than the other two methods.

6. We see that indefinite kernel matrices are in general much harder for Nystr\"om
methods to approximate than SPSD matrices. This is because indefinite
kernels have both positive and negative eigenvalues around the origin. As a
result, the Nystr\"om approximation is more sensitive to numerical instability.
Existing general Nystr\"om schemes (uniform sampling and k-means) can be
quite unstable for indefinite kernels, while the anchor net method is very
robust and meanwhile achieves better accuracy with less computational cost.
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5.2. Geometry of landmark points and numerical issues for indefinite
kernels. In this subsection, we investigate two issues: (1) how the geometry of
landmark points impacts the accuracy as well as numerical stability of the resulting
Nystr\"om approximation; (2) how the stabilization techniques (4.11)--(4.12) influence
the accuracy of Nystr\"om approximation.

Geometry of landmark points. To illustrate the effect of geometry of land-
mark points on the Nystr\"om approximation, we consider the sigmoid kernel with
\sigma = 1 over a two dimensional highly nonuniform dataset illustrated in Figure 9 (left).
The singular values of the corresponding kernel matrix decay rapidly, and as a result,
Nystr\"om approximation is subject to numerical instability if landmark points are not
well chosen.

In terms of the selection of landmark points, it can be clearly seen from Figure 9
that both uniform sampling and k-means clustering tend to generate more landmark
points in denser regions of the dataset, for example, around (0.4, 0.3), (0.5, 0.7), etc.
This does not contribute to a better approximation and, conversely, may lead to
numerical instability and possibly a much worse approximation than the one with
fewer landmark points.

As reflected in the error plot in Figure 9 (right), over ten repeated runs, uniform
sampling often becomes ineffective due to the poor choice of landmark points S,
which causes the approximation error to blow up when computing K+

SS . The k-means
Nystr\"om method, on the other hand, can sometimes achieve high accuracy when k is
small but becomes quite unstable as k increases. Figure 9 (right) shows that the k-
means Nystr\"om method breaks down when k increases from around 220 to 440. As the
number of clusters increases, computing the centroids of the clusters puts more weight
on small dense clusters that contain a large number of points close to each other. This
will result in more landmark points (centroids) close to those dense clusters, eventually
causing numerical instability when computing the Nystr\"om approximation. It can be
seen that the anchor net method remains robust besides being the most accurate
as the number of landmark points increases. Overall, for indefinite kernel matrices
and highly nonuniform data, existing Nystr\"om methods tend to generate landmark
points that result in an extremely unstable and inaccurate approximation, while the
anchor net method is able to yield accurate and robust approximation by choosing
geometrically well-balanced landmark points with no clumps.

Performance of stabilization techniques. We then consider the same prob-
lem as in Figure 9 but use the ``stabilized"" Nystr\"om approximations based on (4.11)
and (4.12) to investigate the impact of using the approximate pseudoinverse K+

SS,\epsilon as

compared to K+
SS . We compute each of the two ``stabilized"" Nystr\"om approximations

in (4.11) and (4.12) using three methods: uniform sampling, k-means, and anchor net.
To study the impact of truncation in (4.11) and (4.12), we use four different values
of truncation tolerance: \epsilon = 10 - 8, 10 - 10, 10 - 12, 10 - 14. For each \epsilon , we compare the
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Fig. 9. Left to right: Donkey Kong dataset, 500 landmark points generated by three methods,
error-rank plot for approximating the sigmoid kernel matrix.
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Fig. 10. Approximation errors using stabilization techniques: \epsilon -pseudoinverse (top row)
in (4.11) and \epsilon -QR (bottom row) in (4.12). First four figures in each row are error-rank
plots of ``stabilized"" Nystr\"om methods (uniform sampling, k-means, anchor net) with \epsilon =
10 - 8, 10 - 10, 10 - 12, 10 - 14 and original anchor net Nystr\"om (dotted line with ``\times ""), respectively.
The last figure shows approximation errors of the k-means Nystr\"om method versus truncation tol-
erance \epsilon , where several ranks are used and the dotted line with the ``\times "" symbol denotes a fixed-rank
approximation error using the original Nystr\"om formula without stabilization.

performance of three Nystr\"om schemes. The resulting four error-rank plots are shown
in Figure 10. As expected, we see that the truncation techniques do stabilize the
Nystr\"om approximation for uniform sampling and k-means as compared to Figure 9.
However, we also see that the stabilized Nystr\"om approximation in (4.11) significantly
worsens the accuracy of the Nystr\"om approximation. In Figure 9, we see that, despite
stability, all three methods are able to achieve high accuracy, for example, around 9
to 11 digits when the rank is 200. According to Figure 10 (top), with the stabilized
approximation, all three methods can at most achieve around 5 digits of accuracy.
Meanwhile, different values of \epsilon yield quite different approximation accuracy, and in
practice it is hard to determine which one should be used.

The results in Figure 10 also show that stabilization techniques may harm the
accuracy when the original Nystr\"om approximation is accurate enough. This is easily
seen in Figure 10 by comparing stabilized anchor net--based approximation (red solid
line) to the original version (red dotted line), where both stabilization techniques lead
to orders of magnitude loss of accuracy. This can be seen from the right-most plots
in Figure 10. We also see that the stabilized approximation may not achieve as good
accuracy as the original Nystr\"om method.

By looking at the fourth plot \epsilon = 10 - 14 on the bottom row in Figure 10, we see
that the QR-based stabilization in (4.12) is accurate when the rank is small but then
leads to numerical instability as rank increases (see red solid line). Neither of the two
stabilization techniques is able to achieve the same level of accuracy that the anchor
net method attains without stabilization. Overall, the results show that numerical
techniques to resolve stability issues may lead to worse approximation and the error
from the \epsilon -truncation may dominate the Nystr\"om approximation error, especially in
the high accuracy regime. Thus we see that stabilization techniques are not able to
fully resolve the numerical issues associated with Nystr\"om method, and a more appro-
priate solution should come from a good choice of landmark points, as demonstrated
by the anchor net method in Figure 10.

5.3. Nystr\"om variants for SPSD kernels. To illustrate the possible numeri-
cal instability of existing Nystr\"om methods for SPSD kernel matrices, we consider the
approximation of the Gaussian kernel matrix (which is SPSD) with rapidly decaying
singular values. Since the kernel is SPSD, the numerical instability can be remedied
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Fig. 11. Error-rank plot for approximating a Gaussian kernel matrix with \sigma = 2.3 (left) and
\sigma = 11.8 (middle) and singular values of the two kernel matrices (right).
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Fig. 12. Error-rank plot for approximating a regularized Gaussian kernel matrix with \sigma = 2.3
(left) and \sigma = 11.8 (right).

via regularization, i.e., approximating K+\beta I for a small constant \beta > 0. We present
results for both K and K + \beta I and choose \beta = 10 - 9. The proposed method (anchor
net) is compared to the following Nystr\"om schemes: (1) the original uniform Nystr\"om
method [44], which was observed in [27] to yield satisfactory overall performance
(error-time trade-off) compared to several other methods; (2) the k-means cluster-
ing Nystr\"om method [46, 45], which usually yields better accuracy than the uniform
Nystr\"om method; (3) the recursive ridge leverage score (RLS) Nystr\"om method [32],
which improves the efficiency of the original leverage score--based sampling; (4) the
accelerated recursive RLS (RLS-x) Nystr\"om method [32], which is much faster than
RLS but may not be as robust. For probabilistic approaches (uniform samplig, RLS,
RLS-x), the error is averaged over ten repeated runs.

The methods above are compared from two perspectives: numerical stability and
computational efficiency. The Gaussian kernel \kappa (x, y) = e - | x - y| 2/\sigma 2

is used, and the
two experiment settings are listed below.

1. Numerical stability. We consider two Gaussian kernels with different
choices of the bandwidth parameter \sigma : 10\% and 50\% times the radius of
the standardized Abalone dataset. Note that larger \sigma leads to faster sin-
gular value decay of the kernel matrix. Without regularization, the results
are presented in Figure 11. With regularization, the results are shown in
Figure 12.

2. Computational efficiency. We consider two datasets: Abalone (n =
4177, d = 8) and Covertype (n = 581012, d = 54). For Abalone, we choose
\sigma = 2.3; for Covertype, \sigma is same as the one used in section 5.1. The experi-
ment results are collected as error-time plots in Figure 13 for K and Figure 14
for K + 10 - 9I. The Covertype dataset is quite large and high dimensional
compared to the Abalone dataset, and the results for the two datasets are
quite different, as can be seen in Figure 13.
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Fig. 13. Error-time plot for approximating a Gaussian kernel matrix with the Abalone dataset
(left) and Covertype dataset (right).
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Fig. 14. Error-time plot for approximating a regularized Gaussian kernel matrix with the
Abalone dataset (left) and Covertype dataset (right).

According to Figures 11--Figure 14, we have the following observations:
1. Overall, the anchor net method is more accurate and robust compared to

other Nystr\"om methods. It achieves significantly better error-time trade-off
for large-scale high dimensional datasets.

2. As can be seen from Figure 11 (middle), for SPSD kernel matrices with rapidly
decaying singular values, probabilistic methods are subject to numerical in-
stability. Via regularization, the issue can be resolved for RLS and RLS-x
but not for uniform sampling; cf. Figure 12 (right). The anchor net method,
on the other hand, achieves best accuracy without requiring regularization.

3. For large-scale high dimensional datasets like Covertype, we see from Figure
13 and Figure 14 that the anchor net method is able to reach high accuracy
in a significantly shorter time than other methods. Aside from numerical
stability, this demonstrates the superior efficiency of anchor net method in
practice.

Remark 5.1. As shown in Figure 11 (right), the kernel matrix with larger \sigma has
faster singular value decay and consequently is more suitable for low-rank approxima-
tions. Nevertheless, it should be emphasized that better spectral property does not
necessarily imply more accurate Nystr\"om approximations. Instead, it poses a great
numerical challenge for the effective use of Nystr\"om approximations: KSS may have
many singular values near 0, and computing K+

SS will be numerically unstable unless
the landmark points S are well chosen. This indicates that the Nystr\"om approxima-
tion accuracy can become even worse as the number of landmark points increases. As
one can see in Figure 11 (middle) as well as Figure 9 (right), this is indeed the case
for many Nystr\"om schemes.

5.4. Nystr\"om methods and pivoted Cholesky factorization for SPSD
matrices. In this section, we compare the k-means Nystr\"om method and anchor net
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Fig. 15. Approximating three Gaussian kernel matrices with bandwidths: \sigma = 2.3, 11.8, 47.4
(left to right).
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Fig. 16. Approximating regularized Gaussian kernel matrices with bandwidths: \sigma =
2.3, 11.8, 47.4 (left to right).

method to partially pivoted Cholesky decomposition in [23], which was shown to work
well for SPSD kernel matrices associated with low dimensional datasets. We consider
the Gaussian kernel \kappa (x, y) = exp( - | x  - y| 2/\sigma 2) and form the matrix KXX with
Abalone dataset (n = 4177, d = 8) . For the bandwidth parameter \sigma , we use three
different values, \sigma = 2.3, 11.8, 47.4, to investigate the performance of three methods.
The matrix with \sigma = 2.3 has the slowest singular value decay, while the matrix with
\sigma = 47.4 has the fastest singular value decay.

We consider approximating kernel matrices without and with regularization, i.e.,
K and K + \beta I, where the regularization parameter is chosen as \beta = 10 - 9. The test
results are presented in Figure 15 and Figure 16, respectively. From Figure 15, we see
that the performance of partially pivoted Cholesky decomposition is quite sensitive
to the bandwidth parameter if no regularization is applied to K. In this case, large \sigma 
can lead to numerical instability as approximation rank increases, while small \sigma can
lead to slow error decay and poor approximation accuracy. The numerical instability
of the partially pivoted Cholesky method is not seen when regularization is applied
to K according to Figure 16.

The Nystr\"om methods achieve better accuracy than pivoted Cholesky decompo-
sition in all cases. It is easy to see that the anchor net method is least sensitive to \sigma ,
achieving the best accuracy and numerical stability.

6. Conclusion. In this paper, we first analyze the Nystr\"om approximation error
in the most general setting covering both SPSD and indefinite kernel matrices. The
theoretical finding indicates that landmark points should encode the geometry of the
dataset to avoid numerical instability and meanwhile to improve the approximation
accuracy. Guided by the theoretical results, we propose the anchor net method for
performing Nystr\"om approximation with linear complexity in time and space. The
proposed method is valid for both SPSD and indefinite kernels and is efficient in high
dimensions. Comprehensive experiments covering indefinite and SPSD kernels, low
and high dimensional data, and original and stabilized Nystr\"om approximations are
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performed to investigate the performance of existing methods in terms of accuracy,
numerical stability, and speed. Overall, the anchor net method displays the best
numerical stability and computational efficiency. It is able to achieve better accu-
racy than other Nystr\"om schemes with smaller computational costs and demonstrate
excellent accuracy and numerical stability for indefinite kernels compared to other
methods with stabilized techniques. We plan to integrate the method into the com-
putation of hierarchical matrices [20, 5, 4, 8], which will significantly extend the scope
of applications.

Acknowledgments. The authors are indebted to Michele Benzi for his sugges-
tion on improving the presentation of the theoretical analysis and to Yuji Nakatsukasa
for the helpful discussion on the stable implementation of pseudoinverse.
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