
1
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Abstract—The prospect of massive deployment of devices for
Internet-of-Things (IoT) motivates grant-free access for simulta-
neously uplink transmission by multiple nodes. Blind demixing
represents a promising technique for recovering multiple such
source signals over unknown channels. Recent studies show
Wirtinger Flow (WF) algorithm can be effective in blind demix-
ing. However, existing theoretical results on WF step size selection
tend to be conservative and slow down convergence rates. To
overcome this limitation, we propose an improved WF (WF-OPT)
by optimizing its step size in each iteration and expediting the
convergence. We provide a theoretical guarantee on the strict
contraction of WF-OPT and present the upper bounds of the
contraction ratio. Simulation results demonstrate the expected
convergence gains.

Index Terms—Blind demixing, blind deconvolution, grant-free
access, optimal step size, Wirtinger Flow.

I. INTRODUCTION

BLIND demixing is a well-known fundamental problem
that arises in various fields such as wireless communica-

tions, image processing, and array processing [1]. The rapidly
growing deployment of IoT devices poses challenges to access
control and spectrum management. Blind demixing can play a
major role to facilitate grant-free access for simultaneous data
transmission by multiple uplink nodes over unknown channels
[2]. In blind deconvolution of a single source, the task is to
recover an unknown signal x from its (noisy) convolution

y = h ∗ x+ n (1)

with an unknown channel h under additive noise n. In the
IoT context, x corresponds to the signal transmitted from a
sensor/source node whereas h captures its unknown wireless
fading channel. Blind deconvolution is feasible by exploiting
high-order statistics of x under certain practical conditions [3].

Blind demixing extends the task of single-source recovery
to simultaneous recovery of multiple source signals, where the
observed signal y is a noisy superposition of S convolutions
between multiple source signals {xi}Si=1 and their correspond-
ing unknown channels {hi}Si=1. Given S active sources, the
uplink host node receives

y =

S∑
i=1

hi ∗ xi + n. (2)

Note that this extension is nontrivial since the incoherence
among signals from different sources poses special challenges
[4]. Moreover, the bilinear nature of measurements of (2)
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is incompatible with certain existing demixing methods [5]
developed for linear measurements.

A growing number of research works have contributed to
address these challenges. One approach is to transform the
original bilinear problem into a convex optimization problem
by lifting products of unknown signal vectors into rank-one
matrices. To overcome the non-convexity of the rank-one con-
dition, such solutions apply semi-definite relaxation to derive
a convex optimization problem that can be tackled via semi-
definite programming [6] [7] and nuclear norm minimization
[8]. Although convex optimization via lifting appears attrac-
tive, such solutions significantly expand the solution space
that leads to exceedingly high computational cost, and the
projection from the high dimensional lifted space back to the
required original solution space also introduces uncertainties.

To mitigate the complexity of convex lifting, an alternative
is to remain in the original lower dimensional space. Recent
studies have reexamined the non-convexity of blind demixing
by exploiting manifold geometry of fixed-rank matrices [9]
via Riemannian optimization. However, iterative Riemannian
optimization still poses challenges to statistical analysis. Al-
ternatively, Ling [10] proposed a regularized Gradient Descent
(GD) method for non-convex blind demixing, though its
attractive optimality properties require careful tuning.

From another perspective, a connection between phase
retrieval and blind source separation was noted at least as
early as in 1996 [11]. The Wirtinger Flow (WF) algorithm,
originally proposed in [12] for phase retrieval, is a simple
but effective method for high dimensional statistical problems.
WF is a two-stage regularization-free algorithm that consists
of spectral initialization followed by a standard GD procedure.
Previous studies in [9], [13] show that WF can also tackle the
challenging blind deconvolution and demixing problems with
linear convergence rates in both noiseless and noisy scenarios.

However, theoretical results thus far [9], [13] only guarantee
convergence to ground-truth signals when the step size is
a constant selected within an approximate range. In this
sense, the WF step size may be set conservatively to ensure
convergence, resulting in a possibly slow convergence rate.
To attain faster convergence rates, the algorithm proposed in
[14] adapts the GD step size by exploiting the geometry of
blind demixing. Nonetheless, this algorithm only guarantees
asymptotic convergence to ground-truths.

Motivated by these recent works and the challenges of
blind demixing, in this letter we propose an efficient and
provable WF-based blind demixing procedure: WF-OPT. The
proposed WF-OPT analytically obtains an optimized step size
for implementing WF at each iteration, which substantially im-
proves the convergence speed with only a marginal increase in
computational cost. We further provide convergence analysis
on the proposed WF-OPT and derive theoretical performance
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bounds. Finally, our simulation results demonstrate the signif-
icant performance gains by WF-OPT.

Notations: Throughout this letter, we denote (·)∗, (·)T
and (·)H as conjugate, transpose, and conjugate transpose,
respectively. We use small bold letters for vectors, capital
bold letters for matrices, and non-bold font for scalars and
functions. Finally, ∥ · ∥ denotes the ℓ2 norm.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In general, the blind demixing problem becomes intractable
without imposing certain structures, and hence we first assume
that convoluted signals belong to known subspaces [8], [10].
We consider S sources simultaneously transmitting data to an
access point (AP), who observes the mixture of the transmitted
signals through their corresponding wireless channels with N
samples. In the frequency domain (e.g. using OFDM), we can
represent the j-th received signal sample as

yj =

S∑
i=1

bHj h̄i(x̄i)
Haij + nj , 1 ≤ j ≤ N, (3)

which are noisy bilinear measurements of the mixture of
the S ground-truth transmitted signals x̄i ∈ CK and their
corresponding channels h̄i ∈ CL. Here, K is the length of the
signal vectors and L is the maximum length of the channels
whereas aij ∈ CK and bj ∈ CL are known design vectors.

We assume that aij are i.i.d. multivariate complex Gaussian,
i.e. aij ∼ CN (0, IK). Without loss of generality, we focus
on OFDM transmissions such that bj depends on the first L
columns of discrete Fourier Transform (DFT) matrix F ∈
CN×N , via F

[
IL
0

]
=
[
b1 · · · bN

]H ∈ CN×L [8], [9].

Furthermore, nj is i.i.d. circularly symmetric complex AWGN,
i.e. nj ∼ CN (0, d20/γ), where d20 =

∑S
i=1 ∥h̄i∥2∥x̄i∥2/N2

and γ denotes signal-to-noise ratio (SNR).
According to the model of Eq.(3), our goal in blind demix-

ing is to simultaneously recover signals {x̄i} (and possibly
channel responses {h̄i}) by solving the following problem

min
h,x

G(h,x), G(h,x) =

N∑
j=1

∣∣∣yj − S∑
i=1

bHj hix
H
i aij

∣∣∣2 (4)

where we denote h = [hT
1 , · · · , hT

S ]
T, x = [xT

1 , · · · , xT
S ]

T.

III. WIRTINGER FLOW WITH OPTIMAL STEP SIZE

The original WF is a two-stage algorithm that consists of a
spectral initialization followed by iterative GD. In this letter,
we further propose to determine the optimal step size at each
GD iteration to accelerate convergence speed and improve
performance. We label this approach WF-OPT, summarized
in Algorithm 1. We present our derivation in the following.

1) Spectral Initialization: We first define auxiliary matrices

Mi =

N∑
j=1

yjbja
H
ij , 1 ≤ i ≤ S, (5)

and let σ1(Mi), h̆i and x̆i be the leading singular value, left
singular vector and right singular vector of Mi, respectively.
Next, we set the initial point of the WF algorithm to

h0
i =

√
σ1(Mi)h̆i, x0

i =
√
σ1(Mi)x̆i. 1 ≤ i ≤ S. (6)

2) Gradient Descent Procedure: After initialization, the
algorithm will iteratively update the variables ht, xt for t ≥ 1
using Wirtinger derivatives [15], where t denotes the iteration
index. Let ∇hi

G and ∇xi
G denote the Wirtinger gradient

of the cost function G(h,x) with respect to hi and xi

respectively, which are computed as

∇hiG(h,x) =

N∑
j=1

( S∑
i=1

bHj hix
H
i aij − yj

)
bHj a

H
ijxi, (7a)

∇xi
G(h,x) =

N∑
j=1

( S∑
i=1

bHj hix
H
i aij − yj

)
aH
ijb

H
j hi, (7b)

for 1 ≤ i ≤ S. Then the GD of the original WF algorithm
uses a constant step size η as follows:

ht+1
i = ht

i −
η

∥xt
i∥2

∇ht
i
G(ht

i,x
t
i), 1 ≤ i ≤ S, (8a)

xt+1
i = xt

i −
η

∥ht
i∥2

∇xt
i
G(ht

i,x
t
i), 1 ≤ i ≤ S. (8b)

In Eq. (8), gradients with respect to hi are normalized by
the norm of signal vectors, and vice versa, which ensures both
channels and signals are bounded in a practical way regardless
of the scalar invariance of (4) [13].

3) Optimizing Step Size: Instead of using a fixed step
size for both channels and signals, WF-OPT shall separately
compute optimized step sizes for ht and xt at each iteration
t ≥ 0, denoted as ηopth and ηoptx , respectively. To that end, we
derive from the cost function of (4) and consider the following
optimization problems:

ηopth = argmin
ηh

G
(
ht − ηh∇htG(ht,xt),xt

)
, (9a)

ηoptx = argmin
ηx

G
(
ht+1,xt − ηx∇xtG(ht+1,xt)

)
. (9b)

where, for convenience, we stack normalized gradients with
respect to the i-th channel and signal

∇htG =
[
∥xt

1∥−2(∇ht
1
G)T · · · ∥xt

S∥−2(∇ht
S
G)T

]T
,

∇xtG =
[
∥ht+1

1 ∥−2(∇xt
1
G)T · · · ∥ht+1

S ∥−2(∇xt
S
G)T

]T
.

Note from (9) that we obtain the optimal step size for xt

(i.e. ηoptx ) based on the updated channel ht+1, i.e. computing
sequential gradients separately with transient iterates, instead
of optimizing the step size simultaneously for both channel and
signal iterates and their corresponding gradients. We justify
this choice after presenting our analytical derivation.

We first focus on solving (9a). We define vectors Φh,Ψh ∈
CN with respect to their j-th element, 1 ≤ j ≤ N , given by

[Φt
h]j =

S∑
i=1

bHj
∇ht

i
G

∥xt
i∥2

(xt
i)

Haij , (10a)

[Ψt
h]j =

S∑
i=1

bHj h
t
i(x

t
i)

Haij − yj . (10b)

Here, Φt
h can be interpreted as the perturbation vector in the

cost value caused by descending in direction ∇htG in each
sample, while Ψt

h is the vector that collects the cost value
contributed by each sample, and satisfies ∥Ψt

h∥2 = G(ht,xt).
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Therefore, we can expand Eq.(4) as

G(ht+1,xt) = min
ηh

G(ht − ηh∇htG,xt)

= min
ηh

N∑
j=1

∣∣∣yj − S∑
i=1

bHj

(
ht
i − ηh

∇ht
i
G

∥xt
i∥2
)
(xt

i)
Haij

∣∣∣2
= min

ηh

N∑
j=1

∣∣∣[Φt
h]jηh − [Ψt

h]j

∣∣∣2
= min

ηh

∥Φt
h∥2
(
ηh −

Re
{
Φt

h
H
Ψt

h

}
∥Φt

h∥2
)2

+G(ht,xt)

−
Re2

{
Φt

h
H
Ψt

h

}
∥Φt

h∥2
, (11)

which is a quadratic function of ηh. From the last equality of
(11), selecting ηh to optimal value ηopth maximizes G(ht,xt)−
∥Φt

h∥−2Re2{Φt
h
H
Ψt

h}. Moreover, the optimal ηopth for ht is

ηopth =
Re
{
Φt

h
H
Ψt

h

}
∥Φt

h∥2
∈ R. (12)

Note that if ∥Φh∥ = 0, then Re
{
Φt

h
H
Ψt

h

}
= 0 and

Eq.(11) reduces to a constant term G(ht+1,xt) = ∥Ψt
h∥2 =

G(ht,xt). Moreover, if Re
{
Φt

h
H
Ψt

h

}
= 0, Eq.(11) reduces

to G(ht+1,xt) = minηh
∥Φt

h∥2η2h + ∥Ψt
h∥2 with ηopth = 0.

In both cases, the optimized GD step leads to G(ht+1,xt) =
G(ht,xt), which corresponds to a stable equilibrium of the
algorithm, indicating that the GD has already converged. Thus,
we can omit these two cases in our analysis. Finally, we can
solve (9b) by defining Φt

x,Ψ
t
x ∈ CN with respect to their j-th

element, 1 ≤ j ≤ N in a similar way:

[Φt
x]j =

S∑
i=1

bHj h
t+1
i

( ∇xt
i
G

∥ht+1
i ∥2

)H
aij , (13a)

[Ψt
x]j =

S∑
i=1

bHj h
t+1
i (xt

i)
Haij − yj . (13b)

We then can obtain

ηoptx =
Re
{
Φt

x
H
Ψt

x

}
∥Φt

x∥2
∈ R. (14)

The WF-OPT algorithm will repeatedly implement GD
on ht and xt by computing the optimal step sizes until
convergence, which we define by setting a small tolerance ϵ
for the computed step sizes, i.e. ηopth < ϵ or ηoptx < ϵ.

Now we can justify our choice for optimizing the step
size using sequential gradients with transient variables instead
of the full gradient containing both ∇htG and ∇xtG. First,
the optimal step size for the full gradient is a real root
of a third-order polynomial without a closed form. Second,
and more importantly, our tests show that the performance
of the algorithm using the full-gradient optimal step size
is only marginally better than using sequential gradients,
despite higher computational complexity. Choosing sequential
gradients with transient variables offers an attractive tradeoff,
with faster computation and similar convergence speed.

Algorithm 1: WF with Optimal Step Size (WF-OPT)

Input: known design vectors {aij}S,Ni=1,j=1, {bj}Nj=1,
and bilinear measurements {yj}Nj=1

Output: recovered signals h∗
i ,x

∗
i , for 1 ≤ i ≤ S

1 Compute Mi =
∑N

j=1 yjbja
H
ij for 1 ≤ i ≤ S and

obtain its largest singular value and singular vectors
2 Set h0

i =
√

σ1(Mi)h̆i, 1 ≤ i ≤ S

3 Set x0
i =

√
σ1(Mi)x̆i, 1 ≤ i ≤ S

4 while not converged do
5 Compute optimal step size ηopth for ht using (12)
6 Update ht+1 = ht − ηopth ∇hG(ht,xt)
7 Compute optimal step size ηoptx for xt using (14)
8 Update xt+1 = xt − ηoptx ∇xG(ht+1,xt)
9 end

10 Compute scaling factors αi = xµ
i,1/x̂i, for 1 ≤ i ≤ S

11 Return hopt
i = (α∗

i )
−1hµ

i and xopt
i = αix

µ
i , 1 ≤ i ≤ S

4) Signal Recovery: It is clear that the channel h and signal
x in blind demixing are only identifiable up to global scaling
[13]. That is, for any nonzero constant α ∈ C, we have

hix
H
i =

[
(α∗)−1hi

](
αxi

)H
, 1 ≤ i ≤ S, (15)

which means that the result of WF is inherently invariant
to a scaling and phase rotation of the ground-truth values.
Therefore, after GD convergence at iteration µ, WF-OPT
applies proper scaling to the obtained final iterate (hµ,xµ).
This is easily done by, e.g., transmitting one known pilot
symbol x̂i to estimate the scalar/phase factor of each source
at the AP. Another practical approach is to leverage a CRC. If
data is modulated using QAM, then by checking the recovered
data sequence for each user against an embedded CRC/FEC
code for each of the four phase ambiguities, we can determine
the correct phase when the packet passes the CRC or FEC
parity check. Without loss of generality, assuming that the
first symbol of each signal is the pilot, the scaling factors are
αi = xµ

i,1/x̂i, 1 ≤ i ≤ S, and the outputs of the WF-OPT are

hopt
i = (α∗

i )
−1hµ

i , xopt
i = αix

µ
i , 1 ≤ i ≤ S. (16)

Let us consider the computation complexity of WF-OPT in
terms of N and S. From Eq. (5), the spectral initialization
step exhibits a complexity of O(NS). Jointly, Eqs. (7) and
(8) have a cost of O(NS) to compute gradients and update
iterates. Further, from the definition of Φ and Ψ and the closed
form of η, step size optimization has a complexity of O(NS).
If convergence takes T iterations, the overall complexity of
the gradient descent process will be O(TNS), and recovering
the signals has complexity of O(S), according to (15) and
(16). Therefore, the overall complexity of WF-OPT is of order
O(TNS), which is equivalent to WF.

IV. PERFORMANCE ANALYSIS

The convergence properties and sample complexity of non-
regularized WF have been studied in [9], [13], [16] and
WF-OPT inherits these properties, namely convergence guar-
antees with a given sample complexity and signal/channel
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incoherence, and computational complexity. Hence, we omit
theoretical convergence analysis of WF-OPT by assuming
that the number of samples is large enough to guarantee
convergence [9, Theorem 1]. In this section, then, we focus
on demonstrating that WF-OPT iterates provide a strict con-
traction of the cost function. We achieve this goal by stating
the following lemmas.

Lemma 1. At each WF-OPT iteration t ≥ 0 before conver-
gence (i.e. ηopt ̸= 0), the cost function G will strictly decrease.
Alternatively, the contraction ratios at iteration t satisfy

0 ≤ ζth =
G(ht+1,xt)

G(ht,xt)
< 1, (17a)

0 ≤ ζtx =
G(ht+1,xt+1)

G(ht+1,xt)
< 1. (17b)

Proof. Recall that G(·, ·) is always positive, and thus
ζth, ζ

t
x ≥ 0. We then focus on (17a). From (11), the

difference between numerator and denominator of ζth is
G(ht,xt)−G(ht+1,xt) = ∥Ψt

h∥2−minηh
∥Φt

hηh−Ψt
h∥2 =

−maxηh
∥Φt

h∥2
(
ηh − ηopth

)2
+ ∥Φt

h∥2(η
opt
h )2, which is a

quadratic function of ηh. If ηopth ̸= 0, the maximum of the
difference will be positive and hence, 0 ≤ ζth < 1. (17b)
follows similarly.

Lemma 2. At each iteration t ≥ 0 the cost value of WF-OPT
is bounded by the cost value of the previous iteration. i.e.

G(ht+1,xt) ≤
(
1− r2(Φt

h,Ψ
t
h)
)
G(ht,xt), (18a)

G(ht+1,xt+1) ≤
(
1− r2(Φt

x,Ψ
t
x)
)
G(ht+1,xt), (18b)

where r(u,v) represents the correlation coefficient of two

vectors u,v, defined by r(u,v) =
∑N

j=1 |uj ||vj |
∥u∥∥v∥ and vectors

Φt
h, Ψt

h, Φt
x and Ψt

x defined in Eq.(10) and (13).

Proof. Starting from (18a), we arrange the definition of ζth
and expand the equation as follows:

G(ht+1,xt) = ζthG(ht,xt) =
∥Φt

hη
opt
h −Ψt

h∥2

∥Ψt
h∥2

G(ht,xt)

(i)
=

(
1−

Re2
{
Φt

h
H
Ψt

h

}
∥Φt

h∥2∥Ψt
h∥2

)
G(ht,xt)

(ii)

≤

(
1−

(∑N
j=1

∣∣[Φt
h]j
∣∣ · ∣∣[Ψt

h]j
∣∣)2

∥Φt
h∥2∥Ψt

h∥2

)
G(ht,xt)

(iii)
=
(
1− r2(Φt

h,Ψ
t
h)
)
G(ht,xt) (19)

where equality (i) follows from using the result of Eq. (12),
inequality (ii) holds by applying the AM-GM inequality, and
inequality (iii) comes from the definition of correlation coef-
ficient r(u,v). We can prove (18b) in a similar manner.

Remark: Alternatively, r(u,v) can be interpreted as a mea-
sure of cosine similarity between vectors u and v. Therefore,
the more correlated Φt

h and Ψt
h are, i.e., the gradient is more

consistent with the magnitude of cost reduction, the tighter the
contraction bound will be.

Fig. 1: Convergence for different step
sizes.

Fig. 2: Convergence for different ini-
tialization methods.

Finally, by invoking Lemmas 1 and 2, the cost value
obtained after the GD step of WF-OPT is

G(hµ,xµ) = C1G(h0,x0)

≤
( µ∏

t=1

(1− r2(Φt
h,Ψ

t
h)
)(
1− r2(Φt

x,Ψ
t
x)
))

G(h0,x0)

where C1 =
∏µ

t=1 ζ
t
hζ

t
x < 1 is a constant, and µ is the iteration

index when the GD stage is completed.

V. NUMERICAL EXPERIMENTS

In this section, we provide simulation tests to validate the
performance gain of the proposed WF-OPT algorithms.

In our simulations, we use the original WF as a baseline
for comparison. Unless otherwise stated, we use the following
settings throughout our tests. We assume there are S = 10
sources simultaneously transmitting signals {x̄i}Si=1 ∈ CK of
64 QPSK symbols plus one known pilot symbol to an AP (i.e.
K = 65) and further normalize each source signal vector. The
sample size is set to N = 50K which varies with K while the
step size of WF is chosen by trial and error to an appropriate
value η = 0.1. The known design vectors {aij}S,Ni=1,j=1 and
{bj}Nj=1 are defined according to the descriptions in Section II.
The channel ground-truths {h̄i}Si=1 ∈ CL are i.i.d. Rayleigh
fading, i.e. h̄i ∼ N (0, 1

2IL)+iN (0, 1
2IL), and we set L = K.

We also consider noiseless scenarios first, to then study the
effect of channel noise.

A. Effect of Algorithm Settings

Fig. 1 shows that WF-OPT significantly outperforms WF
for several choices of step size. WF-OPT attains the highest
cost reduction along directions of the alternating gradients with
the help of optimized step sizes. In contrast, the performance
of the original WF varies with the step size selection. For
example, if η is too small, convergence is rather slow; if η is
too large, the algorithm may even diverge, as in the case of
η = 0.4.

Fig. 2 compares spectral initialization with random ini-
tialization, where the initial iterate (h0, x0) are generated
randomly. Spectral initialization significantly lowers the cost
at the first iteration compared with the random initialization,
further improving convergence and performance at the expense
of additional computation. However, after a few iterations,
the convergence rate (slope) is similar for either initializa-
tion, thanks to the convergence properties of WF, which
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Fig. 3: Convergence for different num-
ber of samples.

Fig. 4: Convergence for different num-
ber of sources.

Fig. 5: Convergence for different SNR
values.

Fig. 6: Constellations at 10-th iteration
for different SNR values.

enjoys geometrically well-behaved regions reachable after a
few iterations with the random initialization, given sufficient
measurements [16].

B. Performance with Different System Parameters

Fig. 3 shows performance for different sample sizes in
noiseless scenarios. Here, both WF-OPT and WF reduce
cost G in each iteration, but at different convergence rates.
However, when data samples are shorter (e.g. m = 20K),
the cost drops more slowly, requiring a significant number
of iterations to converge. This is because both algorithms
require enough statistical richness from samples to recover
the underlying signals. In other words, given sufficient data
samples without noise, both WF-OPT and WF will converge
to near zero cost and recover near perfect signals. Fig. 4 shows
that more sources S makes the problem more challenging
and degrade the performance for both WF-OPT and WF.
Additionally, we notice that, a larger number of sources S
requires a larger number of samples to converge at a given
rate for signal recovery by successful blind demixing.

Finally, Fig. 5 illustrates performance under channel noise at
different SNR values. As expected, WF-OPT converges much
faster than WF. We also observe that in the presence of noise,
both WF-OPT and WF converge to the same non-diminishing
residual cost value depending on SNR. It is clear that the
residual cost value decreases with growing SNR, and can be
interpreted as the magnitude of distortion. In addition, it is
worth noting that at any given iteration, WF-OPT reaches a
lower cost at the marginal expense of modest computation
required for optimizing step sizes. Fig. 6 further corroborates
this analysis, by showing recovered signal constellations of
both WF-OPT and WF at iteration 10 and different SNR val-
ues. It shows that constellations recovered by WF-OPT exhibit
better quality in earlier iterations in terms of Error Vector
Magnitude (EVM), which measures the average magnitude
of deviation from the ground-truth value of all symbols. As
expected, recovery quality improves with increasing SNR.

VI. CONCLUSION

In this letter, we propose an efficient and practical blind
demixing procedure called WF-OPT by leveraging the original
WF algorithm. To accelerate convergence and enhance the
performance of WF, we optimize the step sizes for the gradient
descent stage of WF-OPT. Theoretical analysis shows that our

proposed WF-OPT strictly decreases the cost value in each
iteration with a bounded contraction ratio. Finally, our simu-
lation results show that WF-OPT significantly outperforms WF
in terms of convergence speed at a modest computation cost,
presenting an improved WF solution to the blind demixing
problem with overall lower computational complexity.
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