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ABSTRACT

Prediction of indoor airborne pollutant concentrations can enable a smart indoor air quality control strategy that
potentially reduces building energy use and improves occupant comfort. In service of this overarching goal, this
work pursues four objectives: 1) Determine which low-cost airborne pollutant sensors are useful for prediction of
indoor air quality variables of interest, investigating whether a few commercially available sensors held value for
making such predictions. 2) Investigate which algorithms are most useful for making these predictions. 3)
Develop an understanding of how far into the future we can conceivably predict indoor concentrations based on
low-cost airborne pollutant signals. 4) Investigate methods for predicting elevated concentration events from
historical data. Four different methods (Rolling Average, Random Forest, Gradient Boosting, and Long-Short
Term Memory) for predicting eight indoor pollutant concentrations (carbon dioxide, nitrogen dioxide, ozone,
PM 1, PM 2.5, PM 10, formaldehyde, total volatile organic compounds) are compared for their ability to predict
future sensor signals in a single commercial building in California. Long-Short Term Memory was consistently the
best method for predicting indoor pollutants, though the best combinations of input variables differed depending
on pollutant of interest. To predict elevated concentration events, results show that indirect classification
through a regression prediction that was then compared to a threshold performed marginally better than a direct
classification prediction for all pollutants except PM;.

1. Introduction

Moving to a smarter control paradigm using a fully optimized, data-
driven approach with ubiquitous sensors offers the possibility of
improved indoor environments and more energy efficient delivery of
these environments. Smart building systems have offered immense

Exposure to airborne indoor pollutants such as mold, radon,
secondhand smoke, formaldehyde, and airborne fine particles is corre-
lated to adverse health effects, including asthma and lung cancer [1]
among others. To control concentrations of these pollutants and mitigate
health effects, commercial buildings are typically provided with a
relatively simple combination of particle filtration with prescribed
removal effectiveness in central air handling units, source control, and
prescriptive quantities of ventilation air supplied to the building while it
is occupied [2]. This results in expenditure of few percent of all source
energy used in the United States each year [3]. Commercial buildings
also contribute between 33% and 45% of summer peak demand [4,5], of
which a large fraction is attributable to ventilation, perhaps upwards of
10% of all peak power demand [6].

* Corresponding author.

benefits in many areas, with much of the research on smart building
systems centering on thermal control. Several reviews of such smart
building technologies exist [7,8].

Provision of indoor air quality, despite its well-established link with
occupant health, comfort, and productivity, is one of the less-studied
smart building functions. However, recently, in an attempt to provide
better indoor environments more efficiently, research has commenced
on “smart” control of ventilation systems and air cleaning in which one
or more continuously measured variables is used as an input to a
responsive control ventilation or air cleaning device controller. Early
efforts at smart control involved only an accounting of volumetric flow
rates of ventilation air and perhaps non-air quality signals such as
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Abbreviations

MSE Mean Squared Error

RF Random Forest

GB Gradient Boosting

LSTM Long-Short Term Memory
RTT Ratio of Testing-Training
_in Indoor

_out Outdoor

num_week Number of day in a week
num_year Number of day in a year

TP True Positive
N True Negative
FP False Positive
FN False Negative

outdoor temperature, occupancy, and relative humidity. A few recent
reviews of smart air quality control in residences are available [9,10].
Less et al. (2019) quantified the energy savings of ventilation control
strategies in California residences that responded to outdoor tempera-
ture signals, as opposed to providing constant airflow. For the most
effective strategies, up to 55% of heating costs were saved on average,
accounting for 15% of all HVAC costs [11]. Clark et al. (2019) found
little improvement in these strategies was available by adding occu-
pancy sensing [12]. Young et al. (2020) found that similar strategies
could be used to remove nearly all peak electric power demand due to
ventilation in most building types [6]. Less et al. (2020) extended pre-
vious work to include multi-zone approaches, which offered marginal
benefits [13].

An emerging improvement to these flow-based smart control stra-
tegies is the integration of signals from low-cost airborne pollutant
sensors, which are being studied heavily for indoor environmental
monitoring and control [14-33]. A sampling of commercially available
low-cost airborne pollutant sensors and their specifications is given in
Appendix A. Low-cost airborne pollutant sensors come in many forms,
with perhaps the most common being optical sensors that use the
interaction of light with a pollutant to ascertain characteristics about the
pollutant. For example, optical particle sensors detect particles by seeing
how a light source is scattered by the particulate matter in the air [34].
Other kinds of sensors include electrochemical, solid-state, catalytic,
photo-ionization, non-dispersive infrared, and metal oxide sensors [35].

The performance of these sensors under laboratory and field condi-
tions has been studied extensively, especially for low-cost particle sen-
sors [14-34,36-54] and continues to improve rapidly, although they are
still known to suffer from several classes of errors, which has prevented
their wide-scale uptake in the industry to date. These errors include
non-linearity [55], signal drift [56], cross-substance sensitivity, varia-
tions in performance with environmental conditions, different perfor-
mance when measuring different concentrations and other variations in
conditions [57]. However, some of the best sensors (especially particle
sensors) have been shown to give performance similar to much more
expensive instruments [44]. Also, it should be noted that in some ap-
plications, the absolute accuracy of a sensor is less important for making
control decisions than is the sensor signal relative to a baseline (e.g.
activating a filtration system during an indoor particle emission event)
and therefore “inaccurate” sensor signals may still be of value. There is
also evidence in the literature that inaccurate sensor signals can be made
more accurate through post-processing of sensor signals in software
[341.

Low-cost fine particle sensors for potential application in indoor
environments have been tested more extensively and with better results
than low-cost gas sensors in the literature [93-102,105,106,109,111],
owing to the fact that the low-cost particle sensing technology (almost
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always optical sensing with inexpensive LEDs) is considered more
mature and robust that low-cost gas sensing technology. Testing of gas
sensors for indoor air quality monitoring has been published, however,
with mixed results [58,59]. Another challenge in gas sensing is the
multitude of gases of interest and the specificity needed in a sensor to
give useful information. Formaldehyde is perhaps the most important
gase in indoor environments for chronic health concerns [60] and
real-time monitoring of formaldehyde with even ~$1-2000 devices is
still in need of improvement as evidenced by the few field studies on the
subject, e.g. Ref. [61]. Nonetheless, as explained above,
less-than-accurate sensors may offer some utility for registering
high-concentration events. For this reason, we did explore the use of
low-cost gas sensors in this work to predict high concentration events
and expect commercially available gas sensors to have some utility for
this application.

In addition to the signals from the sensors themselves, software post-
processing of low-cost pollutant signals can provide additional valuable
information. Post-processing can range from simple linear corrections
for environmental conditions, to fully optimized predictive control al-
gorithms using a multitude of sensor signals and other information. The
latter has been explored very little in the literature and motivates the
current work. Chen et al. (2018) predicted time series of three gases in
an academic building using machine learning using measurements from
higher-cost reference grade instruments, with support vector machine
algorithms providing the best predictions [54]. They were able to pre-
dict carbon dioxide (CO3) and total volatile organic compounds with
relative success, but were unable to predict formaldehyde concentra-
tions. Ahn et al. (2017) applied Long Short-Term Memory (LSTM) and
gated recurrent units models to predict environmental variables
including dust concentration in an indoor environment [57]. Zhang
et al. (2021) used artificial neural networks to predict emissions of VOCs
from furniture [62]. Algorithms used in other applications likely hold
some promise for predicting and controlling air quality in buildings in a
data-driven way [57]. Recently, Tang et al. [63] used the Random Forest
model to predict fine particle emission events in 18 apartments and 65
new homes with a high degree of success.

Machine learning and deep learning models have been employed
successfully in other sub-disciplines within building science, including
building thermal load prediction [64], commercial building energy
consumption prediction, and other disciplines [65-71]. We expect
similar advances are possible when machine learning is applied to in-
door air quality prediction as well.

1.1. Scope and objectives

In this work, we attempted to apply machine learning algorithms
popular in other applications to prediction of air quality in a commercial
building to gain insights on paths forward for data-driven air quality
control in buildings.

Our objectives are to (1) determine which algorithms are most useful
for making these predictions, (2) determine which low-cost pollutant
sensors are useful for prediction of indoor air quality variables in the
building studied, including making a determination as to whether a few
commercially available sensors held value for making such predictions,
(3) develop an understanding of how far into the future we can
conceivably predict indoor concentrations based on low-cost airborne
pollutant signals, and (4) develop methods for predicting elevated
concentration events from historical data.

This work is not concerned with establishing the “ground truth” for
comparison of low-cost sensor outputs with those of more sophisticated
measurement techniques, but rather with the prediction of sensor sig-
nals based on previous outputs of these same sensors. We leave it to
others to establish the accuracy of each sensor, and much of this work is
being done or has been done. The scope of this work is also not con-
cerned with control, but rather with prediction of time series of pollutant
concentrations given historical concentrations, and with prediction of
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elevated concentration events.
2. Methodology

We first describe the data used in the investigation, and then the
methods for analysis and prediction, and finally the metrics used to
evaluate the performance of the methods tested.

2.1. Data

2.1.1. Indoor data

We analyzed data from a set of sensors located inside a single mixed
use building in California. The building is primarily office space and
conference rooms but contains small dry labs as well. Researchers at the
Lawrence Berkeley National Laboratory collected readings for eight in-
door airborne pollutants every minute, including carbon dioxide (CO5),
nitrogen dioxide (NO3), ozone (Os3), particulate matter of three different
nominal sizes (PM;, PMz 5, and PM), a signal referred to as TVOCs, and
formaldehyde (HCHO), as well as the indoor temperature (T), relative
humidity (RH), and pressure (P) from October 25, 2019 to March 14,
2020, dates inclusive. This data was recorded using low-cost sensors,
which were dispersed throughout the interior of a five story building
located in Berkeley, California. Suites of these eight sensors were located
in various parts of the building, including offices, entryways, conference
rooms, hallways, lounges, and a single suite located on the roof. The
specifications of each sensor are given in Table 1. All specifications are
manufacturer-reported unless otherwise noted.

All sensors were located in common areas such as hallways, entry-
ways and conference rooms and exposed to the public. A typical example
of sensor placement is provided in Fig. 1 as shown below:

Because the time resolution of the indoor sensors varied, we aver-
aged our data to an hourly resolution to match the hourly resolution of
the outdoor data described below. This allowed us to provide consistent
inputs to our prediction algorithms. Further, previous work has sug-
gested that at time scales less than 1 h, sensor noise and other factors
cause accuracy of low-cost sensor signals to rapidly decrease [43]; hence
we believe that averaging made our data more accurate as well.

2.1.2. Outdoor data

In addition to indoor sensor data, we used outdoor data as inputs to
our predictive algorithms, anticipating the effect of outdoor conditions
on concentrations of indoor pollutants. We used outdoor concentration
data for CO2, NO5, O3, PM;, PM; 5 and PM;, along with T and RH data.
We pulled this data from public datasets available from three websites
[72-74]:

e CO, data was taken from the Berkeley Environmental Air-quality &
CO2 Network (BEACO2N) [72]. The website for this network
(http://beacon.berkeley.edu/metadata/) lays out various quality
control procedures, etc. The nearest monitoring station to the project
site was 0.39 miles away.

e The PM [74] and RH [74] data were taken from the PurpleAir
Network (https://www2.purpleair.com/) [74]. PurpleAir sensors
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Sensors Set

Fig. 1. A typical example of sensor placement.

have been tested extensively in the literature including [43-45,75,
76] and shown to be among the better of the commercially available
low-cost particle sensors along several dimensions. The nearest
monitoring site was 0.73 miles from the project site.

e O3 and NO, data were taken from airnowtech.org [73]. The nearest
monitoring station is 0.39 miles from the project site.

e The output frequency of all outdoor pollutants is hourly.

While indoor air quality data from sensors was essentially complete,
outdoor air measurements had numerous missing data points, as shown
in Table B1 in Appendix B. The amount of missing data also varied by
pollutant. Thus, for particulate matter (PM;, PMa 5, PM;), relative hu-
midity (RH), and temperature (T), only five or six records (less than one
percent) of the data were absent. For these pollutants, we simply filled in
the previous datapoint for each missing record. Data from CO,, NO5, and
O3 sensors had between 5 and 8% of their original data missing, so more
complex methods described in Appendix B were used to interpolate the
data.

2.1.3. Other data

Additionally, we included an integer value for time of day and
another integer for day of the week as inputs to the prediction algo-
rithms (e.g. data collected on Monday had an additional input of “1” for
day of the week, Tuesday gives “2”, etc.), as well as a numerical value
representing the day of the year (“1” through “365”).

2.1.3.1. Input data used for each method. Since it was not feasible to test
all 22 input variables at once, and to reduce the complexity and training
time of our models, the list of input variables was down-selected in two
phases. First, the list of inputs for predicting each concentration of in-
terest was shortened by considering the contributing factors of each
pollutant (i.e. the physics of each pollutant). Thus, we eliminated
occupant-related variables such as indoor CO, concentration as inputs
for pollutants, such as ozone, expected to be primarily generated out-
doors. Conversely, we eliminated outdoor pollutant concentrations as
inputs for predicting indoor-generated pollutants such as formaldehyde.
Combustion bi-products such as NO2 and particulate matter were
retained as inputs for other combustion bi-products, and occupant-

Table 1

Specifications of each pollutant sensor.
Specification O3 NO, CO, PM HCHO TVOC
Sensor Spec 3SP_03_20 P Spec 3SP_NO2 5F P Elichens Foxberry Plantower PMS 7003 ZE07-CH20 CCS811-ams
Functional Principle Electro-chemical Electro-chemical nondispersive infrared optical Electro-chemical Electro-chemical
Range 20 ppb - 20 ppm 20 ppb - 20 ppm 0-10000 ppm 0-500 pg/m® 0-5 ppm Oppb-32768 ppb
Reproducibility +10 ppb +5% +10 ppb +5% +10pg/m3 + 10%
Sensitivity —60 + 10 nA/ppm —60 + 10 nA/ppm
Cross Sensitivity NO2 03"
Accuracy +30 ppm +2% 0.01 ppm +2%
Reference [771 [78] [79] [80] [81] [82]

2 Includes a filter for the labeled pollutant.
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related pollutants such as CO, and TVOCs (assumed to be at least in part
generated from occupant activities) were retained for prediction of other
occupant-related pollutant concentrations. Table 2 shows the inputs
used for each predicted concentration listed in the top row after the first
down-selection phase.

After this initial down-selection phase, we sought to further reduce
the list of input variables needed for prediction of each pollutant con-
centration. This was done primarly to investigate which sensors were
most beneficial in predicting the concentration of another correlated
pollutant, in order to help answer the practical question of which min-
imal suite of sensors should ultimately be installed. We determined
which sensor signals were most beneficial for predicting each pollutant
of interest by programmatically running all combinations of each po-
tential input variable for each predicted concentration. For example, for
PM10 predictions, we tried 2!!-1 combinations of 11 potential inputs.
For each of these runs we predicted the times series of PM10 concen-
trations using the methods described in Section 2.2. We did this for four
different ratios of training and testing data (“ratio of testing to training”
or RTT). We repeated this five times for each RTT to eliminate statistical
bias. Thus, for example, for PM;( predictions we did 4x5%(2'1-1) runs to
determine the best input variables. Of all the runs, we then looked at the
100 best predictions (based on our evaluation metrics - also discussed in
Section 2.3) and counted the number of times each input was present in
these 100 best combinations. The number of times the input was present
determined the value of that input to the prediction (we report this in the
section on Results).

2.2. Methods for prediction

Our primary goals were (a) predict time series of future pollutant
concentrations from models built on past concentrations, and (b) predict
of high-concentration events. We now describe the methods used for
each.

2.2.1. Predicting the time series of future concentrations

From the fully interpolated dataset, we first attempted to predict
time series concentrations of eight indoor pollutants: CO5, NO,, O3, and
PMj, PM; 5, PM;, HCHO, and "TVOC". We applied four methods: rolling
average [83], Random Forest (RF) [84,85], Gradient Boosting (GB) [86,
87], and LSTM models [88-90]. The rolling average method, which
takes the average of a number of previous data points to compute the
next (future) datapoint, was considered the baseline. We used seven
previous data points as our look-back.

RF is a supervised machine learning algorithm frequently used for
classification, regression, and other tasks. This method generates a large
number of individual uncorrelated decision trees at training time. Then,
for classification, each decision tree outputs the class that is the mode of
all the individual classes. For regression, each decision tree outputs the
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mean (i.e. the average) value generated by each individual tree. Boot-
strap aggregating, or bagging, is applied during tree learning during
training. This typically leads to a better model due to the decrease of its
variance. By ensuring that trees are uncorrelated, they become more
robust to noise in the training set [84]. We used 320 estimators when
generating the trees. Finally our RF scripts were executed using re-
sources from Google Collab (https://colab.research.google.com/), tak-
ing a total of 6 h to complete training and testing.

Like RF, GB is a supervised machine learning technique for regres-
sion and classification that relies on the use of decision trees. Base trees
of the same size are added iteratively, while existing trees within the
model are not changed. GB seeks to minimize the loss when new trees
are added to the model [86]. For our work, we used 100 estimators when
using this method. Using one GPU node on Google Collab, it took about
7 h to complete training and testing.

The last method discussed is LSTM. LSTM is a modification of
recurrent neural networks (RNN) that addresses the RNN shortcoming of
loss of earlier information in long temporal records during training.
LSTM address this issue by transferring important information from the
past while eliminating unnecessary information using a “forget” neural
gate [89,90]. LSTM is capable of learning long-term dependencies and is
designed to overcome both errors in back-propagation and efficiency
issues found in previous short-term memory algorithms. LSTM makes
use of memory cells containing input gates and output gates, which
control the error flow from both a cell’s inputs and outputs by deciding
when to override, keep, or access information in a memory cell. An
LSTM network contains one input layer, one hidden layer (containing
the cells and the gates), and one output layer. Comparisons to traditional
short-term memory algorithms have shown that LSTM learns much
faster and is more efficient, making it a common tool for modeling
sequential data, especially multivariate sequential data [88,89]. We
trained our LSTM models for 1000 epochs, using a batch size of 256, a
validation split of 10%, and a sub signal size of seven. The activation
function used was the Sigmoid function. Architectures of the LSTM
models varied by their application (and are discussed with each appli-
cation). LSTM requires more computational resources. Hence, the LSTM
scripts were executed on 62 CPU nodes, each with 40 cores, on the Ohio
Supercomputer Center (OSC), taking 19 h to complete training and
testing.

Note also that each of our methods used the input data differently. RF
and GB looked at a single prior data point, whereas the rolling average
looked at seven previous data points and the LSTM method looked at
twelve prior data points. Similarly, the output data was also generated
differently by the different methods. The Rolling Average, RF, and GB
methods generated one data point at a time, while the LSTM method
generated batches of consecutive data points.

Table 2
Inputs used for each predicted variable after first down-selection phase (based on physical reasoning).
Indoor concentration predicted for next hour CO, NO, 03 PM; PM, 5 PM;o CH,0O TVOC
Current hour input variables used Hour Hour Hour Hour Hour Hour Hour Hour
COy_in NO,_in O3_in NOo_in COy_in CO, in CO,_in COy_in
RH_in T in T in PM;_in PM, 5_in PM;q_in CH,O_in TVOC._in
T in NO,_out 03 out T in T in T in RH_in RH_in
CO,_out RH_out RH_out PM,_out PM, 5_out PM,;_out T.in T in
T out T_out T_out T out T_out T out T_out T_out
num_week num_week num_year num_year num_week num_week num_week num_week
CH,O_in CO,_out num_week num_week NOg_in PM,_in TVOC_in CH,O_in
TVOC._in 0s_out CO,_out Os.in 05 in PM, 5_in
PM,_out NO,_out PMa5_in PM,_in PM,_out
PM; 5_out PM;_out PM;q_in PM;o_in PM; 5 out
PM, 5_out NO,_out NO,_out
05_out 0s_out
PM; 5 out PM;_out

PM;o_out PM; _out
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2.2.2. Predicting high concentration events

In addition to predicting the future time series of concentrations, we
also attempted to predict the occurrence of high-concentration events,
as a potentially practical method for knowing when to pre-emptively
activate a pollutant mitigation device in a building. Several such
events were visibly evident in the datasets, likely resulting from an in-
door emission event, the introduction of outdoor pollutants, or a com-
bination thereof. Fig. 2 shows an example of 48 h of NO; concentrations
with clearly evident high-concentration events (the 11 readings circled
qualified as high-concentration events - we defined high-concentration
events as those whose readings are greater than two standard de-
viations the average of the readings).

We developed and evaluated two methods for predicting high-
concentration events: indirect event classification and direct event
classification. For both methods, 20% of the data was held out of
training to be used as a test set. We describe the two methods next.

2.2.2.1. Indirect classification. Here, we first predict whether a high
concentration event would occur by predicting a times series of each
concentration and then classify each predicted point as an event or a
non-event (to repeat, we consider a data point as part of a high-
concentration event if its value exceeds the threshold of 2 standard
deviations above the mean. The number of events, and the percentage of
the data that contains such events in both the training and testing sets
(20% RTT) are listed in Table 3.

2.2.2.2. Creating a direct classification model. Alternatively, events
could be predicted directly using classification. In this method, the same
inputs were used to predict whether the next event (occurring 1 h later)
is a high-concentration event. For many practical applications this
classification will be sufficient, since an hour’s notice is usually suffi-
cient to activate a control device such as an exhaust fan. We used mul-
tiple classification methods, including RF, GB, and LSTM. Each of these
models used the same architecture and the same RTT of 20% as the
corresponding models used for indirect prediction.

2.3. Evaluation metrics

Mean Square Error (MSE) was used as the evaluation metric to find
the optimal combination of inputs. The Adjusted R-Squared (Adjusted
R?) is also reported as a secondary metric (adjusted R is not used during
training because it is redundant), one that measures the extent of the
correlation (i.e. fit) between the predicted and actual values (“fit” is not
something MSE can validate, because it is a magnitude). Note also that
the R? measure has both a standard form and adjusted form. The
adjusted R? measure accounts for independent variables in the compu-
tation of the correlation, providing better insight into the correlations.
For our LSTM models, five repetitions were performed for each input

o
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I—

NO2 Concentration [ppm]
fo 3]
(=] (=1

12 AM 12 PM 12 AM 12 PM 12 AM
2019-11-01 2019-11-02 2019-11-03
Time

Fig. 2. Time series of NO, concentrations over two days with high-
concentration events circled. The line at approximately 16 ppm shows the
average + 2 standard deviations of the entire dataset.
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Table 3
Number of events and the percentage of datapoints classified as high-
concentration events for each indoor pollutant over the training and testing
datasets.

Pollutant Number of events Percentage
Training/(Testing) Training/(Testing)

COy.in 183/(24) 6.78%/(4.00%)
NOo_in 143/(34) 5.30%/(5.67%)
Os_in 66/(70) 2.44%/(11.67%)
PM,_in 218/(13) 8.07%/(2.17%)
PM, 5 in 197/(10) 7.30%/(1.67%)
PM;_in 190/(9) 7.04%/(1.50%)
CH,0_in 71/(52) 2.63%/(8.67%)
TVOC_in 80/(102) 2.97%/(17.00%)

combination to account for random statistical bias. We used RTTs of 5%,
10%, 15%, and 20%. The best values for training and test MSE and
Adjusted R? are shown in the Results section.

Several different metrics could have been used to evaluate the per-
formance of our models. One of them, accuracy, is the typical metric for
such models, and simply looks at the percentage of correct classifications
out of the total set of attempts, and includes both true positives and true
negatives [91]. However, for datasets such as this one where the number
of true positives is vastly outweighed by the number of true negatives,
using accuracy as the primary metric can lead to an incorrect perception
of performance. Other metrics must be used to evaluate how well a
classifier can identify rarer classes. Precision and recall are the most
common of these metrics. Precision looks at how many positive classi-
fications by the model were correct, while recall looks at how many of
the existing positive data points were correctly classified [92]. Another
metric, known as the F1 score, takes both of these factors into account;
the F1 score is the harmonic mean of the precision and recall [91]. In our
analysis, and because less than 13.5% of the original data points con-
sisted of high-concentration events, we used recall as the primary
metric.

3. Results and discussion

In this section, we first discuss the results of the down-selection of
input signals, then the time series predictions and finally the results of
the prediction of high-concentration events.

3.1. Determining best input combinations

We first present results of the down-selection process that evaluated
the many combinations of possible inputs (as discussed in Section 2.1.1).
Table 4 shows how many times each input variable appeared in the top
five input combinations across the four RTT values and five repetitions
of the model. For example, Table 4 shows that for CO, prediciton, the
inputs “Hour” and “current hour of CO, appeared in all of the top
combinations of inputs, and for next hour PM; prediction, indoor O3
appeared 59 times out of a maximum of 100. The five inputs with the
most predictive value for each predicted concentration are shown in
Table 4.

Table 4 shows a few interesting results. First, as would be expected
from the physics of the problem, the most predictive input for each
pollutant was the previous hour’s concentration. While this result may
seem trivial, it is important to state because it serves as a sanity check of
our methods. Next, non-air quality inputs play a substantial role in the
prediction of most of the pollutants. For example, time of day (“Hour”)
appears in the top five most predictive inputs for 6 out of 8 pollutants
and in the top 2 for the other 2 pollutants, suggest a strong diurnal
pattern in concentrations (as would be expected for O3 and indoor CO»).
Temperature inside and outside also seems predictive, although this was
highly correlated with diurnal changes in temperature, meaning that it
may be a confounder for the time of day. The day of the week appears in
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Table 4

Number of times (in parentheses) each input shows up in the best performing combination of inputs for each predicted variable (left column in bold).
Outputs # inputs analyzed 1st best 2nd best 3rd best 4th best 5th best
CO,_in 9 CO,_in (100) Hour (100) T_in (96) T_out (79) Num_week (79)
NO,_in 11 NO,_in (100) NO,_out (96) T_out (83) RH_out (79) 03_out (69)
O3 in 12 0O3_in (100) Hour (100) T_in (96) Num_week (62) Num_year (54)
PM,_in 15 PM,_in (100) T_in (100) PM;_out (100) Hour (93) Num_week (81)
PM, 5_in 15 PM, 5_in (100) PM, 5_out (100) T_in (96) Hour (91) Num_week (83)
PM,¢_in 11 PM;_in (100) T_in (100) PM;o_out (100) Hour (92) Num_week (83)
CH,0 8 CH0 (100) CO,_in (83) T out (76) Num_week (75) RH_in (72)
TVOC 8 TVOC (100) COo_in (85) RH_in (59) NO,_in (55) PM;_in (48)

the 6/8 top five lists, suggesting correlation with the work week habits
of occupants and nearby polluting activity — such as motorists. The most
interesting result was that (with a few exceptions) no pollutant signal
appeared to aid in the prediction of any other pollutant. This was not
what we expected considering conventional wisdom that pollutant
concentrations are correlated because they issue from the same or
related sources (e.g. automobiles on nearby streets or occupants of the
building). The two exceptions to this pattern were HCHO and TVOC
which appear to be predictable from the other pollutant signals. How-
ever, the prediction of these two elements was very poor (as we discuss
in Section 3.2); hence, this result may be illusory.

3.2. Predicting the time series of concentrations

This section discussed how the different machine learning algorithms
performed, both in terms of correctness of prediction and how far ahead
each method could reasonably predict. We first present the results pre-
dicted 1 h in advance. The MSE and Adjusted R? resulting from use of the
best input combinations for each method can be seen in Table 5. Several
observations can be made from Table 5:

o The first observation is that the more sophisticated machine learning
methods performed much better than the baseline. For the rolling
average method, the training MSE ranged between 0.005 and 0.05,
while the testing MSEs ranged between 0.007 and 0.08. This is
approximately 1.5 orders of magnitude greater than those of the
machine learning methods. This observation is confirmed by the R?
values, which are poor for the rolling average method but consid-
erably better for the machine learning methods.

Substantial overfitting can be observed with the RF and GB methods.
This is indicated primarily through the Adjusted R? values, which are
notably worse on the validation set than the training set. For NOo, the
RF method yielded a training Adjusted R? value of 98.27%, indi-
cating almost total representation of the variance in the training

data, while the validation Adjusted R? value was just 76.60%.

Similar trends can also be observed in the results from CO-.
e In all cases, the LSTM method performed better than any other
method we tested on the validation datasets. In some cases, CO5 for
example, the training MSE and Adjusted R? values were indeed
better for the RF and GB methods, but the LSTM method had better
validation MSEs and Adjusted R? values. This result is in line with
previous work showing that LSTM has superior performance in
predicting sequential data than other methods such as RF and GB
[90]. Although RF and GB are less computationally expensive and do
not require advanced computational elements such as a GPU, they
are insufficiently accurate in predicting sequential data. As expected,
LSTM did much better at extracting patterns from input feature
spaces that spanned long sequences [87].
Prediction of HCHO and TVOCs was quite poor. This is likely due to
inaccuracy in the sensor hardware and perennial difficulties in
accurately quantifying the concentrations of these gases with low-
cost sensors, but no definitive explanation can be given at the time.

Tables for two and 3 h look-aheads can be found in Appendix C.

Fig. 3 shows a plot of real versus estimated data for NOs, for the best
combination of input variables, and using a 20% RTT. Similar plots are
given for the other pollutants and other prediction models in Appendix
C.

Fig. 4 displays a comparison of MSE values for predicting different
times into the future (1-3 h ahead) for each method. In Fig. 4 we show
two illustrative examples, the COy and PMj 5 predictions. The LSTM
method consistently had the least error and the least overfitting, while
overfitting increased dramatically after an hour using the RF and GB
methods. The LSTM method predictions did not show radical decrease in
performance after 3 h, but were significantly less accurate. Graphs for
the other pollutants can be found in Appendix C; the majority of the
pollutants look like PM; 5, while a few are CO,.

Table 5
Hour-ahead indoor pollutant prediction [Training Mean Squared errors] Training Adjusted R? {Testing Mean Squared errors} (Testing Adjusted R?).
Method CO4 NO- O3 PM; PM, s PMio CH,0 TVOC
Average [0.045697] [0.040134] [0.028170] [0.011167] [0.012636] [0.012184] [0.010090] [0.004979]
—0.20% 25.40% 53.64% 75.98% 74.43% 73.55% 34.36% 29.27%
{0.037571} {0.048218} {0.072395} {0.008050} {0.007295} {0.007983} {0.078506} {0.011034}
(—3.79%) (23.34%) (1.46%) (58.14%) (55.69%) (50.04%) (2.54%) (35.20%)
Random [0.000441] [0.000316] [0.000192] [0.000248] [0.000201] [0.000217] [0.000349] [0.000398]
Forest 98.27% 98.27% 99.23% 99.31% 99.17% 99.13% 96.27% 95.90%
{0.003197} {0.004543} {0.003554} {0.001611} {0.001096} {0.001271} {0.054821} {0.019477}
(83.55%) (76.60%) (88.82%) (89.14%) (88.12%) (86.92%) (23.93%) (60.28%)
Gradient [0.002277] [0.001446] [0.001172] [0.001102] [0.000787] [0.000803] [0.001467] [0.001015]
Boosting 90.58% 91.71% 95.16% 96.90% 96.73% 99.13% 84.35% 89.56%
{0.003235} {0.004437} {0.003119} {0.001595} {0.001083} {0.001275} {0.055129} {0.019530}
(83.42%) (77.50%) (90.03%) (89.52%) (88.31%) (86.97%) (23.51%) (60.17%)
LSTM [0.002976] [0.002195] [0.001775] [0.001803] [0.001372] [0.001520] [0.002130] [0.001996]
88.96% 89.11% 94.14% 94.92% 93.99% 93.88% 77.64% 77.25%
{0.002893} {0.003410} {0.002339} {0.001170} {0.000448} {0.000919} {0.056541} {0.016909}
(82.49%) (82.29%) (90.03%) (86.39%) (87.14%) (86.28%) (16.23%) (62.09%)
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Fig. 4. Methods Comparison for CO, and PM, 5 1, 2, and 3 h ahead.

3.3.1. Using prediction models for classification

Table 6 presents the confusion matrix values, accuracy, precision,
recall, and F1-score of the indirect event classification LSTM method for
each indoor pollutant. Fig. 5 shows True Positive, True Negative, False
Positive, and False Negative areas for NO; concentration after applying
threshold (0.47). The sum of the true positive (TP) and false negative
(FN) datapoints are equal to the number of high concentration events.
We use Recall as the preferred measure of performance as Recall is
effectively the fraction of the high concentration events that were

accurately categorized.

3.3.2. Direct classification of events

Below in [Table 7] are the results of the second method we used to

predict high-concentration events: LSTM direct classification for each
indoor pollutant. The header of the table indicates the pollutant that
each column refers to. The true positive, false positive, true negative and
false negative classification counts are reported, as well as the precision
and recall. These values were calculated for the test set, which was the
last 20% of the data with 600 total data points. Additionally, the accu-
racy and F1-scores are calculated and reported for each indoor pollutant.
While the precision and recall of the model are less than ideal for all of
the pollutants, the model is still capable of predicting upcoming events.
Further optimization may yield better results.

3.3.3. Indirect and direct classification comparison

In Tables 6 and 7, the best results obtained for indirect and direct
classification are compared. Using recall (considering true positive and
false negative) as the primary metric, results show that direct

Table 6
Confusion matrix values for the best prediction model for the indoor pollutants.
COo, NO, 03 PM; PM,5 PM;o CH,0 TVOC

True Positive 11 22 52 8 3 3 24 46
False Positive 5 9 7 3 2 1 15 9
True Negative 571 557 523 584 588 589 533 489
False Negative 13 12 18 5 7 7 28 56
Accuracy 97.00% 96.50% 95.83% 98.67% 98.50% 98.67% 92.83% 89.17%
Precision 68.75% 70.97% 88.14% 72.73% 60.00% 75.00% 61.54% 83.64%
Recall 45.83% 64.71% 74.29% 61.54% 30.00% 30.00% 46.15% 45.10%
F1 Score 55.00% 67.69% 80.62% 66.67% 40.00% 42.86% 52.75% 58.60%
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Fig. 5. Real versus estimated data points in NO, concentration (The threshold
of 0.47 shown as a horizontal dashed line corresponds to the mean of the
dataset + two standard deviations, which we defined as the threshold for
determining the classification of a high-concentration event as explained in
Section 2.2.2).

classification prediction performed marginally better than indirect
classification for all pollutants except O3. However, if precision is used
as the primary metric, indirect classification performs marginally better
than direct classification. In essence, this shows that indirect classifi-
cation has a tendency to underpredict event concentrations, thus leading
to more false negatives than direct classification. Indirect classification
is better at predicting normal concentrations because it has greater
precision. Notably, indirect classification is better for predicting Os,
CH30, and TVOC high concentration events because the percentage of
HCEs are greater than training (see Table 3). The reason, however, for
this phenomenon is unknown.

4. Conclusions, limitations and future work

This work provides a case study, among the first of its kind, of the use
of machine learning models to predict time series of indoor pollutant
concentrations, and predict high concentration events. It also gives some
information about the usefulness of one pollutant sensor signal for
aiding in the prediction of another pollutant’s concentration. The pri-
mary conclusions gathered from this study are (1) compared to a simple
rolling average, machine learning methods decreased error in prediction
by over an order of magnitude. The best performing ML models pre-
dicted around 90% of the variance in time series data for most pollut-
ants, (2) LSTM was the most accurate predictive model of those we
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tested. The GB and RF models were significantly overfitted to the
training data. (3) As is understood by most researchers and reported in
other works, the low-cost HCHO and TVOC sensors used in this work
offered less useful information than sensors used to measure other
airborne pollutants of concern in indoor environments. The predictions
of those same sensor signals performed substantially worse than those
for other pollutants, (4) this work did not show any evidence that
sensing one pollutant to aid in prediction of a different pollutant added
any improvement to the prediction. However, it appears that time of day
and day of week aid considerably in prediction of indoor pollutant
concentrations and should likely be included as inputs in any predictive
algorithm for indoor pollutant concentrations, (5) while we tried two
different methods for predicting when high-concentration events would
occur, none were able to accurately classify more than 80% of high-
concentration events (NO2 using direct classification). Other pollutant
events were only predicted correctly 40% of the time, and (6)

Several limitations to this study exist. First, the models were built
from five months of data covering the winter and spring seasons. While
the nature of the use type of the building does not necessarily imply a
large variation in occupancy patterns or other variables over the course
of the year (such as in an academic building for example), there are
likely to be different patterns in the air quality data in different seasons.
This may mean that models developed in this work will be less appli-
cable in other seasons. We are in the process of generating a much larger
data set in many commercial buildings for establishing the robustness of
these models more generally.

Another significant limitation of the current work is in the type of
building in which the sensors were deployed. As stated, only a single
commercial building (mostly office space) was used in this case study.
Other types of buildings are likely to have different approaches that are
more relevant. For example, Tang et al. (2020) [63] deployed similar
sensors in residences and quite different results. The Random Forest
method proved much more useful in residences than it did in the current
work, and success in high-concentration event prediction was signifi-
cantly greater than in the current work. There are many differences
between this work and the work of Tang, including a factor of approx-
imately 50 in the size of the datasets used and the fact that research
grade instruments were used in Tang, and the Tang experiments were
conducted in residences with presumably more regular patterns. This
may explain to some degree why the LSTM method was more applicable
in the current work, given the smaller amount of data.

In addition, in order that our work has near-term practical applica-
bility, our focus with respect to sensors is to use low-cost, easily avail-
able sensors rather than specialized, more expensive sensors that may
not be widely affordable. As different and higher-resolution types of
sensors become affordable, appropriate machine learning models may
differ from those in the current work.

Lastly, sensor signals were predicted based only on global data such
as outdoor weather and time of day, and the time series of data from the
single sensor suite in question. An improvement might be made by using
a “network” approach where one sensor signal is predicted using inputs
from multiple sensors distributed throughout the building, and also by
including variables such as rates of change of sensor signals (as done in
Tang et al.). Future work will explore these improvements. It should be

Table 7
Confusion matrix values for indoor pollutants in terms of classification LSTM method.
CO, NO, 03 PM; PM,5 PM;o CH,0 TVOC

True Positive 14 27 48 9 4 5 20 42
False Positive 12 15 7 8 14 25 26 15
True Negative 564 551 523 579 576 566 522 483
False Negative 10 7 22 4 6 4 32 60
Accuracy 96.33% 96.33% 95.17% 98.00% 96.67% 95.17% 90.33% 87.50%
Precision 53.85% 64.29% 87.27% 52.94% 22.22% 16.67% 43.48% 73.68%
Recall 58.33% 79.41% 68.57% 69.23% 40.00% 55.56% 38.46% 41.18%
F1 Score 56.00% 71.05% 76.80% 60.00% 28.57% 25.64% 40.82% 52.83%
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noted that these datasets will be made publicly available to researchers
when they are available.

We are also currently exploring the use of machine learning tech-
niques that generate data — such as Generative Adversarial Networks
(GANSs) - along with more sophisticated techniques such as bi-directional
LSTM that better preserve the spatiotemporal nature of the data as well
as Gated Recurrent Units (GRU) that are more efficient with respect to
computation. Early results from this approach appear to be promising,
but significant additional work is needed. In addition, we are in the
process of instrumenting our own built environment through a recently
awarded grant so that we can build our own datasets over time. These
datasets will be made publicly available to researchers when they are
ready.
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While an in-depth review of commercially available sensors is beyond the scope of this particular paper, we have added a brief summary of the
more popular commercial sensors in to give the reader an overview of available products, their reported capabilities, and approximate cost.

Table Al

Survey of some available low-cost air quality sensors and studies investigating their performance in laboratories and indoor environments. Prices were current in 2021

and may be out of date.

Manufacturer Models Cost [$] Measurements Communication
Wicked Device Air Quality Egg 180 Particles, RH,P,T, gases optional D,E,W
HabitatMap AirBeam2 249 Particles, RH, T B,W, C
AirThinx AirthinxIAQ 699 Particles, T, P, TVOC, CO2, RH, HCHO B,W,C
IQAir AirVisual Pro 269 Particles, CO2,T, RH D,W
Awair Element 149 Particles, T, RH, CO2, TVOC W, B

Omni Particles, T, RH, CO2, TVOCs, Light, Noise
CairPol Cairclip 1130 Varies C
Dylos DC1100 240 Particles, Serial: +-40$
Foobot Home 199 T, RH, TVOC w
Purple Air PA-II (PA-1) 249 Particles Ser, W, SD + 30$
Shinyei PMS1 1000 Particles E
Speck 149 Particles, RH USB, W
TSI BlueSky 400 Particles, T, RH Ser, SD

RH-Humidity; P-Barometric Pressure; T-Temperature; CO2-Carbon dioxide.
TVOCs-Total Volatile Organic Compounds; HCHO-Formaldehyde.
B-Bluetooth; C-Cellular; D-On board display; E-Ethernet; MSD-Micro SD; MUSB-Micro USB; W-Wifi; elec-simple electrical.

Appendix B. Results of interpolation for missing data

Results from interpolation of the missing data with four different methods, Rolling Average with seven data points, Random Forest, Gradient
Boosting, and LSTM, are shown below. Cross validation was applied here to allow for better comparison of the methods. Rolling average was the least
accurate method with MSE:s for training ranging from 0.013 to 0.033. The rolling average method does not allow for a validation split, so no MSE for
validation loss was calculated for this method.

With Random Forest, results on the training set exceeded that of all other methods, including LSTM. Training MSEs ranged between 0.001 and
0.006. However, results on the validation set indicated that the method didn’t perform as well with the new data. Validation MSEs had higher values,
ranging between 0.003 and 0.015. This indicates some degree of overfitting for this technique, as it performs excellently on the data it was trained on,
with less useful results on other previously unseen data.

Gradient Boosting was less accurate than Random Forest with training MSEs between 0.004 and 0.015. The validation MSEs ranged between 0.006
and 0.02. LSTM had comparable results to Random Forest. Training MSEs from interpolating data using LSTM ranged between 0.001 and 0.007.
Validation MSEs ranged from 0.001 to 0.003. This indicates that the LSTM methods did not experience overfitting as Random Forest did, while still
retaining a high degree of accuracy, making it the method of choice. Table A1 displays all the training and validation MSEs obtained for CO2, NO2 and
0s.
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Table B1
Missing data results
Cross Validation Method CO, NO, O3
Average [0.013625] [ 0.021807] [0.032612]
{N/A} {N/A} {N/A}
Random Forest [0.000575] [0.00172] [0.00137]
{0.003734} {0.012139} {0.014704}
Gradient Boosting [0.00453] [0.00933] [0.01511]
{0.006918} {0.011387} {0.019305}
LSTM [0.0016] [0.00611] [0.00605]
{0.0014} {0.0023} {0.0023}

[Training Mean Squared errors].
{Cross Validation Mean Squared errors}.

Appendix C. Predicting time series concentrations

Figure C1 shows the results of the 1 h ahead predictions in graphical format, for both training and testing datasets, for each pollutant predicted.
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Fig. C1. Normalized Real Data against Normalized Estimated Data for pollutants’s Best Output

Tables C1 and C2 show results of the 2- and 3- hour ahead predictions in terms of Training MSEs (shown in []); Training Adjusted R? (shown
without brackets); Testing MSEs (shown in {}); and Testing Adjusted R? (shown in ()). The evaluation metrics for the best performing methods are
shown in bold, with LSTM being the best method in all cases for both 2-h and 3-h ahead predictions. Figure C2 shows the same information graphically.
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Table C1
2 Hours-ahead indoor pollutant prediction
Method CO, NO, 03 PM; PMays PMjg
Average [0.046128] [0.046224] [0.037694] [0.015479] [0.014615] [0.014293]
5.60% 21.78% 44.61% 70.22% 68.70% 67.39%
{0.033901} (0.09%) {0.039499} (22.33%) {0.067006} (3.14%) {0.004981} (31.40%) {0.003951} (32.07%) {0.005066} (27.16%)
Random Forest [0.000563] [0.000582] [0.000270] [0.000497] [0.000393] [0.000386]
97.94% 97.03% 98.96% 98.66% 98.43% 98.52%
{0.005347} (72.60%)  {0.006392} (71.57%)  {0.021489} (40.28%)  {0.015214} (6.31%) {0.010788} (-10.87%)  {0.010981} (—4.78%)
Gradient Boosting [0.004283] [0.002898] [0.003412] [0.005119] [0.003569] [0.003774]
84.33% 85.19% 86.80% 86.16% 85.76% 85.49%
{0.007200} (63.11%) {0.008710} (61.26%) {0.019364} (46.19%) {0.016865} (—3.85%) {0.011498} (—18.16%) {0.011279} (—7.63%)
LSTM [0.004589] [0.003611] [0.002901] [0.004003] [0.002779] [0.002823]
83.33% 81.71% 88.56% 89.18% 88.92% 89.15%

{0.005526} (71.45%)

{0.007527} (65.84%)

{0.007539} (79.20%)

{0.002884} (81.41%)

{0.001777} (80.89%)

{0.002084} (79.14%)

[Training Mean Squared errors].
Training Adjusted R.2.
{Testing Mean Squared errors}.

(Testing Adjusted R?).
Table C2
3 Hours-ahead indoor pollutant prediction
Method CO, NO, 03 PM; PMas PM;o
Average [0.052349] [0.050104] [0.041299] [0.055857] [0.015946] [0.015664]
1.68% 15.77% 38.47% 5.94% 65.20% 63.83%
{0.038298} (1.00%) {0.042231} (16.80%) {0.074096} (0.35%) {0.039203} (0.34%) {0.004304} (27.45%) {0.005539} (22.44%)
Random Forest [0.000567] [0.0005771 [ 0.000276] [0.0005071 [0.000408] [0.000430]
97.27% 97.05% 98.93% 98.62% 98.36% 98.34%
{0.006118} (68.51%) {0.007979} (64.41%) {0.020530} (43.02%) {0.015168} (6.64%) {0.008258} (15.17%) {0.008994} (14.22%)
Gradient Boosting [0.004859] [0.003859] [0.003421] [0.005089] [0.003597] [0.003869]
82.23% 80.29% 86.75% 86.17% 85.58% 85.05%
{0.008518} (56.15%) {0.010475} (53.27%) {0.019218} (46.67%) {0.015808} (2.70%) {0.009193} (5.57%) {0.010855} (—3.54%)
LSTM [0.00838] [0.008380] [0.003791] [0.005723] [0.003358] [0.003504]
69.55% 69.55% 85.03% 84.54% 86.61% 86.54%

{0.008454} (56.33%)

{0.008454} (56.33%)

{0.01057} (70.88%)

{0.004398} (71.68%)

{0.002552} (72.57%)

{0.002781} (72.18%)

[Training Mean Squared errors].
Training Adjusted R.2.

{Testing Mean Squared errors}.
(Testing Adjusted RZ).
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