TWELFTH MOMENT OF DIRICHLET L-FUNCTIONS
TO PRIME POWER MODULI

DJORDJE MILICEVIC AND DANIEL WHITE

ABSTRACT. We prove the g-aspect analogue of Heath-Brown’s result on the twelfth power moment
of the Riemann zeta function for Dirichlet L-functions to odd prime power moduli. Our results rely
on the p-adic method of stationary phase for sums of products and complement Nunes’ bound for
smooth square-free moduli.

1. INTRODUCTION

Analytic behavior of L-functions inside the critical strip encodes essential arithmetic information,
and statistical information about their zeros, moments, and rate of growth along the critical line is
of central importance in analytic number theory. The classical Weyl bound shows that the Riemann
zeta function satisfies

¢ (3 +it) <. (1+[¢)1/0+ (1)
where € > 0 is an arbitrarily small constant that may change from one instance to another through-
out this article. The widely believed Lindel6f hypothesis asserts that % can be removed from the
exponent above. The most recent progress in this direction is due to Bourgain [2], reducing the
exponent to 5 + €. One avenue to understanding the behavior of the Riemann zeta function along
the critical line is through power moments, for which asymptotic formulas are only available up
to the fourth moment [8, 12]. Higher moments provide tighter control on large values, and in this
direction Heath-Brown [7] proved that, for 7' > 1,

2T
/T (& +it)|"? dt <. T (2)

This is a very elegant bound as it recovers (1) as a rather immediate consequence. However, (2)
is quite a bit stronger in that it immediately implies that ¢ (% + it) cannot sustain large values;
namely that

[ {te[T,2T]: (3 +it)| > V}]| < T*TV 12 (3)
Actually, (2) and (3) are equivalent, as is easily established via integration by parts.

Questions regarding the asymptotic behavior of ¢ (% +it) as t — oo have g-aspect analogues
concerning the central values of Dirichlet L-functions L(%, X), where x is a primitive character
modulo ¢ and ¢ — oco. For an account of some of the current literature on L(%, x) and L-functions
in the t-aspect, we direct the reader to the introduction of [13]. The g-analogue of (1), the bound
L(%, X) <e q/6+te, long out of reach for generic g except for real characters to odd square-free
moduli [3], has been recently announced by Petrow—Young [14]. For certain families of Dirichlet
L-functions, however, even small improvements are known on ¢'/%; see [11] for a “sub-Weyl” bound
L(%, x) < ¢*/69 for prime power moduli and [9] and [17] for smooth square-free moduli.

While Dirichlet L-functions L(o +it, x) are also fruitfully used with a fixed modulus ¢ and large
[t| to study arithmetic phenomena modulo ¢, from an adelic point of view it is more natural to
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consider the dependence on a large conductor ¢ as a measurement of increasing ramification, this
time at finite places, and in particular, as a pure parallel to the t-aspect, at a fixed finite place. This
explains why many tools of classical “archimedean” analytic number theory have found natural p-
adic analogues. The extent of this parallel is yet to be fully understood, and our aim is to explore
its manifestation for high moments of L-functions. Our main theorem is a g-aspect analogue of (2)
for Dirichlet L-functions to odd prime power moduli.

Theorem 1. There exists a constant A > 0 such that, for every odd prime p and every q = p",

S LG < plet
X (mod q)

We remark that Theorem 1 complements the result of Nunes [13] where ¢ is taken to be smooth
and square-free. The structure of the proof of Theorem 1 and the main result of Nunes translate
the approach taken by Heath-Brown [7] into the context of factorable and prime power moduli. For
a detailed comparison between Heath-Brown’s and Nunes’ work, we direct the reader to the intro-
duction of [13]. Despite the similarities, the methods of evaluation and estimation of exponential
sums found throughout are quite different in the present paper. In particular, we make extensive
use of a method known as p-adic stationary phase, which we will encapsulate in Lemmata 3 and 4.

As in [7, 13], the moment estimate in Theorem 1 is a consequence of the following statement,
which is reminiscent of (3) and its relationship to (2). We will establish the following.

Theorem 2. For V > 0, define
R(V;q) := {X primitive of modulus q : ‘L (%,X)‘ > V} :
Then there exists a constant A > 0 such that, for every odd prime p and every q = p",
|R(V;q)| < pg? V"2,

Note that Theorem 1 follows immediately from Theorem 2 via summation by parts. From the
available sharp estimates on the fourth moment of Dirichlet L-functions [6, 16], it follows that
IR(V;q)| <e q' V=% see section 6. Combining this and the Weyl bound for this particular class
of Dirichlet L-functions [15, 11], the range of interest in Theorem 2 is g8 <V L ¢MotE,

The p-adic methods of this paper are very flexible. In particular, an analogue of [13, Theorem
1.2], which would sharpen Theorem 2 in the range ¢%/?0*¢ < V < ¢'/6~¢ (but not Theorem 1)
can likely be proved with a further application of the p-adic stationary phase method to complete
exponential sums with substantially more involved phases than in (6). It would also be of interest
to investigate whether the methods of the present paper and [13] can be unified to provide a twelfth
moment bound for characters to moduli ¢ with finitely many well-located factors as in [5] (or a
hybrid moment including the archimedean average); without imposing overly onerous factorization
conditions, though, this may require delicate estimates on complete sums with degenerate critical
points as in [5, Lemma 7].

Overview: For the benefit of the reader, we present a conceptual overview of the proof, ignoring
non-generic cases, coprimality conditions, ¢° factors, and so on; in particular, we use f < g to denote
|f| <peggand f~gfor f < g=< f. Wefix adivisor ¢1 | ¢, and consider the short second moment

S0 = >, L) (4)

Y1 (mod q1)

We will later choose roughly ¢q; ~ V2, so that the expected sharp bound Sa(x) < ¢1 essentially
matches the contribution of a single summand |L(3, x)| ~ V.

Using the approximate functional equation and executing the 1;-average leads to weighted dyadic
sums over n ~ N < ¢'/? of terms of the form x(n + hq1)x(n), which are Q1 = (q/q1)-periodic.
We apply Poisson summation, incurring the dual variable j < @Q1/N and the “trace function”
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K, (j,h;Q1), which is shown in (19) and generically depends on jh =< ¢/q}. The upshot of this
analysis is Proposition 1, which bounds Sa(x) roughly by

a1+ X Km@am) (5)

Im|<q/q?

with somewhat messy arithmetic coefficients A(m) < 1.

In Lemma 6, we show that the complete exponential sum K, (m; Q1) exhibits square-root cancel-
lation. This alone yields the upper bound So(x) < 1 + (¢/q1)"/2, which is sharp for q; = ¢'/? and
recovers the Weyl subconvexity bound L(%, x) < ¢'/% (essentially by Weyl differencing followed by
completion, as in [11]).

For purposes of Theorems 1 and 2, we must consider values ql/ 1<q < ql/ 3_in which case the
weighted sum of trace functions in (5) is of length Qi/z < q/¢ < Qf/g. Weights A(m) make it
difficult to directly estimate the sum. Instead, the key idea is sort of a large sieve: we argue that
(roughly speaking, and as ¢ gets smaller) the vectors (K, (m;Q1))m are typically approximately
orthogonal for different x, and thus it is hard for too many of them to avoid cancellation with a
single vector (A(m)),,. The approximate orthogonality boils down to cancellations in incomplete
sums of products; since the length is over the square-root of the conductor, we apply the method of
completion, incurring an additive twist. Proposition 2, our key arithmetic input, shows square-root
cancellation in sums of products of rough form

Z* Kf(u;Qﬂme(_uv/Q) <Q1/2. (©)

u (mod Q)

Here, the modulus Q | Q1 drops with the conductor of xx’ (essentially the distance between x and
X’ in the dual topology), and we must first separate K, into two oscillatory components K% (as
often happens with Bessel functions; see also [1, §9]). Lemma 6 and Proposition 2 form the heart
of the paper and are proved by a consistent application of the p-adic method of stationary phase
to exponential sums with p-adically analytic phases, including characters to prime power moduli;
see section 2.

Proceeding with the large sieve idea, we estimate the the sum of Sy(x%) in (5) over an arbitrary
set W of characters 1) modulo some ¢ | ¢ (with g1 | g2) by applying the Cauchy—Schwarz inequality
to the m-sum and bounding sums of products of K ;ﬁ (m; Q1) using (6). This shows in Proposition 3
that

S Sax) < ((ar + a1 a3/ )] + g0 /2) ()
pew

The bound (7) imposes a restriction on the size | V| as long as each So(x1)) is slightly bigger than
q1 + q%/ 4q§/ 1 In section 6, we first fix xy and choose ¥ to be the set of characters modulo ¢o for
which one of ]L(%,anblﬂ in (4) exceeds V, with q1 = ¢°V? and ¢z = ¢3, obtaining |¥| < ¢V %

From here it is a matter of bookkeeping to Theorem 2 and hence Theorem 1.

Notation: Throughout the paper, ¢ > 0 indicates a fixed positive number, which may be
different from line to line but may at any point be taken to be as small as desired. As usual, f < g
and f = O(g) indicate that |f| < Cg for some effective constant C' > 0, which may be different
from line to line but does not depend on any parameters except as follows. In this introduction, all
implied constants in < and O are absolute, except that they may depend on € > 0 if so indicated as
in <. In the rest of the paper, we allow the implied constants (but suppress this from notation) to
depend on both the odd prime p and £ > 0. All dependencies on p are easily seen to be polynomial,
leading to the statements of Theorems 1 and 2; we do not make an effort to optimize the value of
A>0.
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We denote the cardinality of a finite set S by |S|; we use the same notation for the Lebesgue
measure, with the meaning clear from the context. As is customary in analytic number theory, we
also write e(z) = 7%,

Acknowledgements: The authors would like to thank an anonymous referee for their careful
reading and constructive suggestions, which helped us improve the paper in several places.

2. PRELIMINARIES

2.1. Approximate functional equation. A ubiquitous tool in the analysis of L-functions inside
the critical strip is the approximate functional equation (see [10, §5.2]). This equation has various
manifestations depending on context and purpose. A typical form of this equation in the context
of bounding central values states that one may recover the size of L(%, X) by inserting s = % into
the associated Dirichlet series which is essentially truncated at ¢!/2 via a suitable smooth weight
function. For our purposes, the following lemma is convenient, which follows by applying a dyadic

partition of unity to [10, Theorem 5.3].

Lemma 1. Let x be a primitive Dirichlet character modulo q. Then,

2
1
LG <logg 30 o= S x| +a7,
N<q1/2+5 N n
N dyadic

where Vi is a smooth function depending only on N and q, whose support is contained in [N/2,2N]
and whose derivatives satisfy V]E[J) <j N7 for every j € N.

2.2. p-adically analytic phases. Among the key features of our treatment of exponential sums
will be: (i) the consistent interpretation of oscillating terms (such as characters) as exponentials
with phases that are p-adically analytic functions and (ii) the analysis thereof. For a rigorous
treatment of these concepts, we refer to [11, §2]. Recall that a p-adically analytic function f on
a domain D C Z, is locally expressible, around each point a € D, in a p-adic ball of the form
{x € Zy : |x—alp <p7°} C D (0 € Zxp) as the sum of its p-adically convergent Taylor power
series. We let 7,(f;a) denote the largest such p~¢ (which is not quite the same as the p-adic radius
of convergence) and r,(f) = infaep rp(f;a) = 0; in all phases we will encounter, r,(f) > p~! will
hold. It is not hard to see that r,(f’;a) > r,(f;a).

We will make extensive use of the p-adic logarithm, which for simplicity we define on 1 + pZ,.
Recall that, throughout the paper, p is an odd prime.

Definition 1. The p-adic logarithm, log,, : 1 + pZ, — pZ,, is the analytic function given as
k

T
log, (1 +z) := Z(—l)k 1?.
k>1

Access to the above is critical due to the following lemma, with roots in Postnikov [15] and which
we quote from [11, Lemma 13].

Lemma 2. Let x be a primitive character modulo p™. Then there exists a p-adic unit A such that,
for every p-adic integer k,

Alog, (1 + kp)
o)

Lemma 2 allows us to explicate the phase of any exponential of the form x (1 + kp)e(f(k)/p™)
when y is a character modulo p”.

It will be necessary to handle solutions to quadratic equations over Z,, which requires the use of
p-adic square roots. For p an odd prime and z € Z, 2 the congruence u? = z (mod p*) has exactly

x(1+kp)=€<
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two solutions modulo every p”, which reside within two p-adic towers and limit to the solutions of
u? =z as kK — oo. We denote these solutions 219, For (-)1s : Z;2 — Z, to be well-defined,
a choice of square root for each y € (Z/pZ)*? must be made. This set of choices propagates to
Z;Q and represents one of the 2(°~1/2 branches of the p-adic square root. A thorough treatment of
p-adic square roots can be found in [1, §2]; we content ourselves with summarizing two properties
of import to us.

Each branch z;/, of the square root is an analytic function expressible by a convergent power

series in balls of radius r, > p~ 1. Specifically, on 1 + pZy, the binomial expansion

(a2 = 3 (1) ()

k=0

gives the branch with values in 14 pZ, (as seen by formally squaring the right-hand side), which is
in fact an automorphism of 1+ pZ,. For an arbitrary u € Z;Q, a simple argument modulo p shows
that

(u+ap)1yp = uy)p(l+ xup)'/? (10)
where 7 denotes the p-adic inverse of u. While (-);/, cannot in general be expected to be multi-
plicative, (10) gives it both a pseudo-morphism rule and a power expansion. Moving forward, we fix
a branch to be used throughout, drop the (- ); /o notation and simply write (- )1/2 or use a radical

symbol for our chosen branch, using caution to only use (9), (10), and Vm* = m when exercising
the usual archimedean exponent rules. For future reference, we note that, for all u,u’ € Z;;Q,

ord,(vu — V') = ordy(u — u'). (11)

2.3. p-adic method of stationary phase. The following pair of lemmata establishes what is
known as the p-adic method of stationary phase (see, for example, [11, §4], [1, §7]), allowing one to
evaluate complete sums involving such exponentials. They are the proper p-adic analogues of the
classical method of stationary phase for exponential integrals of the form [ g(x)e(f(x)) dz with a
suitable smooth phase f and weight g, which generically proceeds in two principal steps: (i) showing
that ranges where |f’| is not suitably small are negligible, and (i) close to each non-degenerate
stationary point xg of the phase f approximating f quadratically, with resulting Gaussian-type

integrals evaluating to about g(zo)e(f(zo))/+/|f"(x0)| (see

Lemma 3. Let p be an odd prime, 1 < £ < n be integers, and f : Zy — Ly be an analytic function
invariant modulo p™ under translation by p"Z,. If rp(f) > p~¢ and pF' fF)(2)/k! = 0 (mod p*) for
all x € Z]f when k > 2, then

Z* €<f(95)> _ Z* e(f($0)>'
" n p"
z (mod pm) zo (mod p™)
f'(z0)=0 (mod p™—*)
Proof. Expanding f(x) around xq gives f(zq + tp’) = Zk>0f )(z0)(tp®)* /k!. With this, observe
* f($)> 1 * ( zo) + f'( 960)@)
el — | =—
> oe(I)-h %

z (mod p™) zo (mod p™)t mod pr—t)

where the inner sum contributes p"~‘e(f(xq)/p") when f'(xg) = 0 (mod p"~*) and vanishes other-
wise. 0

Lemma 3 reduces a complete exponential sum to p-adic neighborhoods in which | f’(z)|, is small.
The following lemma is a further refined statement that explicitly evaluates these localized sums
and is suited for exponential sums that we will encounter in the proof of Lemma 6.
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Lemma 4. Let p be an odd prime, n > 2, and f : Z; — Z, be an analytic function satisfy-
ing the hypotheses in Lemma 3 for £ = [n/2]. Let X C (Z/p"Z)* denote the solution set of
f'(z0) = 0 (mod pl™/2), and assume that, for all zg € X, rp(f;20) = p~ ™2, f"(x0) € Zp, and
pl/2E £ (B) () /k! = 0 (mod p") for k > 3. Then, X is invariant under translation by p™/?)7Z,
and, for an arbitrary set of representatives X for X/pL”/QJZ,

Z* e (ig?) =p"/? Z e (f}(;o)) Aj(zo;p"),
z (mod p™) zoeX

where all summands are independent of the choice of X, and, writing f'(z0)o := f'(x0)/p™? and
(15) for the Legendre symbol,

L, 2| m
" g ) ()2 1, p=1 (mod 4);
Af(zo;p") = E(p)(QfZg 0))6( 2f"( %)f( 0)0) . 2 npt f(z0);  e(p) = {Z s EmOd 4;
VP /(oo 2¢n,p | f"(x0),

Proof. The translational invariance of X modulo pl"/2/Z is clear from our hypotheses and the
expansion of f'(zo + tpl™/2]) at each g € X. Application of Lemma 3 with ¢ = [n/2] together
with an expansion of f around each zg € X gives

© o (J@)Y _ ( fo+ il
O o S e

z (mod pn) zoeX t (mod pln/21)

n f f(x0)ot + 2f" (x0)t?
) 8 ()
roEX

t (mod pn—2|_n/2j )

For n even, the inner sum is trivial and the desired result follows. If n is odd, the contribution
from p | f"(x0) is clear, while, for pt f”(x¢), completing the square yields for the inner sum

(T ) 5 (Y g () (B ),

p : (oot ) P p p

by the classical evaluation of the quadratic Gauss sum. This finishes the proof. U

Remark 1. The general (if somewhat cumbersome) conditions in Lemma 4 are easily satisfied,
say, for every analytic function f : Z, — Z, with r,(f) > 1/p and f(j)(Zp) C Zy, forall j > 0. The
same 1is true for Lemma 3 with ¢ > n/2.

In Lemma 4, in the odd nonsingular case 2 1 n, p 1 f"(xo), we see that f'(xg + tpl™2)) =0

(mod pI™/21) for exactly one t (mod p); picking such a representative &g = xo + tpl™/2) € X, we
have more simply Ay(Zo;p") = e(p)(W).
Remark 2. Versions of Lemmata 3 and 4 exist for sums over other subsets of residue classes
x (mod p™), where the phase f may have as domain a finite union of translates ofp’\Zp, with A </
in Lemma 3 and A < n/2 in Lemma 4. The proofs of these parallel statements are the same; indeed,
they only require that the sum be over a set of residues invariant under translation by a suitable
pEZp with £ > X and rp(f) > p~t. Specifically, the proof of Proposition 2 will require Lemma 3 to be
applied over quadratic residues and non-residues modulo p". Lemmata 3 and 4 also hold for sums
of the form 3" g(x)e(f(z)/p™) where g is invariant under translation by p'Z,.

In practice, we will apply Lemmata 3 and 4 in situations where explicitly writing the exponent
of ¢ = p” gets notationally cumbersome. To represent what are essentially square roots in these
cases, we define

rt, (p") == pl"? and rt*(p") = pl™/?l,
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2.4. Completion. While Lemmata 3 and 4 provide powerful tools for evaluating the types of
complete exponential sums that will be found throughout, we will eventually encounter those which
are incomplete. In anticipation of this, we introduce the next lemma which prepackages a technique
known as completion.

Lemma 5. Suppose f is an arithmetic function with period (). Then

1 : - Iy -
Sim<g X (@l wn(Lp/QI), fo= Y fwe (Q>,

m<M v (mod Q) u (mod Q)

where ||x|| is the distance from x to the nearest integer.
Proof. Splitting the sum into residue classes modulo @ yields

ol R S S R (= B

m<M u (mod Q) m<M v (mod Q)
The bound

>, 5)

v (mo

> e () < minar, Jo/Ql '}

m<M
on the sum of a geometric sequence completes the proof. O

3. SHORT SECOND MOMENT

As before and throughout, p will be an odd prime and ¢ some prime power p" for n a positive
integer. Further consider
p<qa<q<g, (12)
where the ¢; are also powers of p. A central object to our proofs, as in [7, 13], is the short second
moment. In the g-aspect, this will be a power moment which samples from a gi-neighborhood
around some fixed primitive character y (mod ¢). This analogy is particularly natural from a
p-adic point of view, as the (Pontrjagin) dual group of Z,, carries the natural dual topology, with
respect to which these correspond to actual small neighborhoods of x. We denote

2
S0 = Y |L (3
Y1 (mod q1)
We will eventually analyze the size of short moments on average, but first must gather information
on Sa(x) itself.

3.1. Executing the short second moment. We immediately apply Lemma 1 to S2(x). This
yields

2
so<e Y% jN S xta (Vi (n)| +q
1 (mod q1) Nggl/2+e n
N dyadic
- 2
<L Y x| +a7 (13)
W1 (mod q1) | m

for some N < ¢'/2*¢ by exchanging order of summation and choosing the summand which max-
imizes the inner sum. Denote the sum in (13) without the error term and ¢ factor as B(N).
Expansion and orthogonality of characters gives

BV <5 > xRV () Va(n).

n=n’ (mod q1)
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We note the similarity of the resulting sum (the sum of squares of short p-adic averages, a reflection
of the 1)1-average via Parseval’s identity) to those encountered with Weyl differencing in the context
of factorable moduli (see, for example, [11, §5]), and we proceed similarly.

Recall that Viy < 1 with support contained in [N/2,2N]. The diagonal terms corresponding to
n = n’ contribute O(q1) to B(N). The addition of this to the remaining pairs (n’,n) gives

B(N) < g1+ - Re Y > x(n+ han)x(n) Vi (n + hay) Vi (), (14)
h>1n>1

since each (n’,n) appears above or can be accounted for by conjugation. Denote the inner sum in
(14) as Shq, (N;x). Since x(n + hgi)x(n) is periodic modulo Q1 = ¢/q1, we may write

Sh(N:X) = D x(r+ha)x(r) Y V(e + Q1 + han) Vi (r + Q1) (15)
r (mod Q1) J

We will apply Poisson summation to the inner sum in Sj,,. Examination of
/ Vn(r+xQ1 + hq1)Vn(r + 2Q1)e(—jx) dz (16)
R

= Qle(rj/Qu) /R Vi (y + han) Vi (9)e(—iy/ Q1) dy

shows that the Fourier transform in (16) is

_ i\ o =
Q' () o 5/Q0) where Wi () = Viy -+ han) TN ) (7)
Using (13) through (17) together with Poisson summation yields
qn —-1/2 T .
$a00) < (a0 + 5 Re S Q72 Y Wi (/QK (i @0) ) (18)

h>1 j
where, for ¢ a proper divisor of ¢, we define
Ky(a,b;9) =g "7 > x(r+0b(g/d)xX(r)elar/q). (19)
r (mod §)
In particular, for (m,§) = 1, we also write K, (m;q) := K,(1,m;q) = K,(m, 1;§), so that
Km;q) =g ' > x(1+ (g/d)r)e(m/q). (20)
r (mod §)

This sum (which takes on the role of trace functions from the context of square-free moduli [13])
is of central importance to our arguments. We summarize some of its important properties in
Lemma 6 in section 4, below. In this section, we will only require the elementary reduction and
vanishing claim (25).

By the support of Vi, we may actually take h < N/q; in (18). We will soon identify the range
Jj that is essential to (18). Once this range becomes finite, we will configure our bound in a way
that highlights the main object of our study.

3.2. Establishing the bound on S3(x). We first show that the contribution to (18) from j =0
may be neglected. By Lemma 6 below,

a—p), Qulh;
K (0,1:Q1) = { QY p, Q1/p || b;
0, otherwise.
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The contribution from j = 0 to (18) is then

F0Qr M Re 3 NTWin(OK0mQ) < da Y 1<agn (2]
1<h<Ngy! 1<h<Ngy!
Q1lhp

Repeated use of integration by parts shows

o 1 \™
Whey (y) <m N <Ny>

for every positive integer m. From this bound, h <« N/qi, and the trivial bound on K, (j, h; Q1),
the contribution to (18) from |j| > ¢°Q1/N is O(g!%). Using (18) and (21), we find

52<x><<q8(q1+6;1/2Re 3 3 N*W;quu/QQKX(j,h;Ql)). (22)

1 0<h<N/q 0<|j|< ¢ Q1/N

According to Lemma 6, noting that (Q?/p) { jh < ¢°Q1/q1, we may rewrite the double sum above
as

* * = . .
> > > N Whipng, (9" /Q1) K (§'p", W'p™; Q)
gt/ 2reqrt KN (q1p) Tt 0< |5’ |<q= Q1 (Np")~?
= Y 2 X Ex(m;Qu/p") > N "W, (5'97/Q1). (23)
pr<qt/>teq! Im|<q'*e(g7p?) 1 Wj'l=m

B <N(q1p")~*
l7'1<qfQ1(Np")~1

Denoting the inner sum of (23) as A(m;p"), the above becomes

S YT K (s Qu/p") Amip"), (24)

pr<qt/2teg ! Im|<q"*= (qfp*") !

where A(m;p") < mf by the divisor bound. The key thing is that these noisy coefficients do
not depend on y, which will allow us to remove them via an application of the Cauchy—Schwarz
inequality in section 5. Combining (22) through (24) we obtain Proposition 1.

Proposition 1. Let g1 and q be subject to the conditions in (12). Then there exist coefficients
A(m; p) < mF such that, for every primitive character x (mod q),

So(X) < @1 (1 +QPRe Y p? S Km Q1/p”)A(m;p")>,

p<qt/2regrt Im|<qt+e (gp?n) !

where Ky (m; Q1/p") are as in (19).

4. EXPONENTIAL SUM ESTIMATES

In this section, we evaluate and estimate complete exponential sums to prime power moduli. Our
principal tools are the p-adic stationary phase method Lemmata 3 and 4. In Lemma 6, we consider
the complete exponential sum K, (j, h; ¢) introduced in (19) and show that it can be expressed in
terms of explicit exponentials K f (m; q) with p-adically analytic phases. Then, in Proposition 2, we
show square-root cancellation in complete sums of products of K;E (m; q) including additive twists.
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4.1. Evaluation of K, (m;q). In the following lemma, we explicitly evaluate the complete expo-
nential sum K, (4, h; G).

Lemma 6. Let G be a proper divisor of q and, for every j € Z, let pi = (j,4). Then, the sum
K, (4, h; q) defined in (19) satisfies

PR\ (Gh/pPG/p"), n=mj=nn, 4 £ 07

~1/201 _ —1 o — e

R g/=(1=p), nj = Nn = Ng;

KX(.?; ha Q) - ~1/2 ! _ ! . (25)
—q/*/p, nj +1h =205 — 1;
0, otherwise.

Further, let A be an integer such that (8) holds for x, and assume that § > p?. Then, for (m,§) = 1,
Ky (m;q) = K (m;§) + K (m; ), (26)
where

Ag(s£(m/A;q); G)e (Ag(m/A;4)/q), (ATm) =1
0, otherwise,

K (m; q) :{

where, for (%) =1,

g9+(m; q) = (4/q) log, (14 (¢/@)s+(m; §)) + m/s=(m; q),
s+(m; ) = §(mq/q + /(mq/q)* + 4m),

6 is the phase associated to K, (m;q) in (20), and Ay is as described in Lemma 4.

(27)

Proof. We first establish (25). Write h = h'p"* (mod ¢) and j = j'p (mod ¢) where p { h'j’, and

set n = min{n;, ny}. If p" # ¢, then by the substitution r +— j’r for the variable of summation in
(19) and a reduction to a sum over residues modulo ¢/p" we have

. N . * q o pnrny
KyGhsd)=a %" Y. X <1 + " ”m’h’> e ( ) : (28)

a/ph
r (mod d/p") alp

In particular, this proves the first case of (25). The second case, when p" = g, follows from a trivial
evaluation of the definition (19).

We now assume 7, # 1. For n; +n, = 2173 — 1, the situation quickly boils down, directly or with
an application of (8), to

Ky(G.hi@) =G Y2(a/p) Y, elr/p)=—=3"/p.
r (mod p)
In any other event, let ¢ be the phase associated to (28) where
U AN k=1
¢ (z) = (1) (k—1) ( 1+ 25haji) \G Pl (29)

for k > 1 and x € Z; by (8). From (29), it is easy to see that o) (2)/(k —1)! € Z,, for x € Ly
Moreover

(rt*(@/p")* /k = 0 (mod G/p")
for all k > 2, so that (rt*(g/p"))*¢™ (z)/k! = 0 (mod G/p") for all z € Z and all k > 2. Thus
¢ satisfies the hypotheses of Lemma 3 with p¢ = rt*(G/p"). Since in this case rt.(G/p") > p

and exactly one of 7, and 7; equals 1, we find that K, (j, h;¢) must vanish since no solutions to
¢'(x) =0 (mod p) exist in (Z/pZ)*. This completes the proof of (25).
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Next, for A, (m,§) = 1, and § > p? as stated, the phase @ associated to K, (m;q) in (20) agrees
with the phase ¢ in (28) and (29) with h = 1, j = j/ = m, and n; = n, = n = 0 (substituting
r +— mr); in particular,

A Aq/q 2
Paym A ey AT
l+wzq/q w (I+zq/q)?* =
We will use Lemma 4. If (ATm) = —1, there are no solutions to € (xg) = 0 (mod rt.(q)) by

an obstruction modulo p, so that K, (m;¢) = 0 in this case. Otherwise, solving the equation
0'(20) = 0 yields xg = s+(m/A;G). Upon noting that 6" (z¢) = 2max> # 0 (mod p), an application
of Hensel’s lemma gives exactly two unique solutions to the congruence above, proving (26). ([l

4.2. Sums of products. As we input Proposition 1 into estimating short second moments in
aggregate over sets of characters, we will incur incomplete sums of products of trace functions
K, (m;q) evaluated in Lemma 6, with two different characters x. Specifically, the inner sum in
(32) will be estimated using the method of completion, Lemma 5. In preparation for this, in this
section we prove the following proposition.

Proposition 2. Let G > p? be a proper divisor of q and K, (m;q) be as in (20). Further, let x and
X' be two primitive Dirichlet characters modulo q with associated units A and A" as in (8). Denote

330, X") = (¢/p, A= A) and Q = 4/(4,64(x, X)) Then:
(a) for Q = p, the expression Ki(m q)K 2 (m; §) is Q-periodic and satisfies, for every v € Z,

S KEm K (mide (fg“)) < Q' (30)
m (mod Q)

(b) for Q > p?, the left-hand side of (30) vanishes unless |v|, = 1;
(¢) for Q =1, Kf(m; ) K5 (m;4) = 1(am/p)=1

Proof. Evaluation (26) expresses K f(m; ¢) in terms of exponentials with p-adically analytic phases.
Thus, as in sections 2.2-2.3 and the proof of Lemma 6, we continue to treat the phases in complete
exponential sums such as (30) as p-adically analytic functions on their respective domains. Since
p-adic differentiation and power series will be involved, for the duration of this proof, we will use
notation K )j([ (u; 4) so as to avoid any visual suggestion that the arguments of these phases may only
be rational integers.

By Lemma 6, the sum on the left-hand side of (30) vanishes unless AA’ € ZXQ, we assume this

henceforth and restrict the sum (as we may) to primitive classes u (mod @) such that (ué A) =1
Further, let 6, and 0,/ be phases associated to K, (u; ¢) and K,/ (u;q) as in (20), respectively. Then,

by Lemma 6, we have for (“;)A) 1

K3 (w3 ) K (3 0)
= Ay, (s+(u/A;9); (j)A@X/(Si(u/AI; D e <Agi(U/(x‘;; gz(; z;l(gi(?u//l ;Q))

where, for fixed y and x/, the product of the A factors depends only on the class of u (mod p), as is
readily verified using 0} (zo,4) = 0 and 0} (x0.4) = 2uw&?4 (mod p) with zo 4 = s+(u/A;§) from the
proof of Lemma 6. This proof also shows that g4 (u;q), a function analytic on its domain Z;2, is
invariant modulo ¢ under translation by ¢Z,. Moreover, a moment’s reflection on the definition (27)
combined with (10) and (9) shows that for u € ZX* both s+(u;q) and g+(u;§) may be expanded
into a convergent power series in \/u with coefficients in Z,. From this and (11) it follows that, for
u € AZ;z,

Ags(u/A;q) — A'gx(u/A’;q) = (G, 04(x; X)) - o(u)
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is divisible by (g, d4(x, x’)) and invariant modulo ¢ under translation by QZ, (for @ > p). This es-
tablishes the periodicity claim and (¢) follows from the definition of Ay, noting that A = A’ (mod p)
in this case.

As for the estimate (30), the case @ = p is trivial since we are taking p < 1, so we assume that
Q > p?. We will be interested in applying Lemma 3 and Remark 2 with p” = @Q, phase o, and
p’ = rt*(Q). Since s+ (u/A; §) solves @'(xg) = 0 in the proof of Lemma 6, we observe

d . 3} 0 dsx(u/A;q) - 1
2 Aq) = < : A Af) = ——
du 9% (u/4; ) {Ou + sy du g=(u/4;) s+(u/A;q)’
so that, by rationalizing denominators,
+1/2

o' (u) =

5,(x: X)) W (a/@)? +4A/u =/ (q/3)* + 4A’/u> o

Expanding the difference of roots above according to (10) and (9) yields the quantity

S (1) @ (@A Hupaa - @ e any),

k>0

which, along with (11), shows that the sum in (30) with phase o satisfies the appropriate conditions
in Lemma 3 (keeping in mind Remark 2). From here and (11), we see that the sum in (30) vanishes
unless |v[, = 1, as solutions to the stationary phase congruence o’(u) = 0 (mod rt.(Q)) could
not exist otherwise. Since a'/28Y2/(aB)'/? € {£1} for every a,f € Z;?, any solutions to the
stationary phase congruence must satisfy one of the four congruences

_ 1/2 ~
)Y (M) @/ e faa) - a4V P ua0)) = 0 /)2 (mod 12.(Q)
k>0
with ¢; € {£1}, where in fact €; = €3 unless, possibly, d4(x, x’) = 1. Each of these four congruences
is polynomial in (u/A)'/? modulo 1t.(Q), satisfies the hypotheses of Hensel’s lemma, and reduces
to a non-degenerate linear congruence in (u/A)"/? modulo p. Thus there are O(1) solutions modulo
rt,(Q) to the stationary phase congruence. The proposition then follows. ]

5. SHORT SECOND MOMENT ESTIMATES

Proposition 1 provides an individual bound for the short second moment Sy(y) in terms of
averages of the arithmetic function K, (m;q). In this section, we leverage this result and the
estimates on exponential sums from section 4 to prove in Proposition 3 our penultimate result, an
aggregate bound on the short second moment over a collection of characters modulo g¢o.

Proposition 3. Let q1, q2, and q be subject to the conditions in (12). Let x be any primitive
character modulo q, and let ¥ be any set of Dirichlet characters modulo qa. Then

> Salxie) < ¢ (((h + )|+ qmﬂ’!“) :
o EW

Proof. We will use Proposition 1; in its notation, we may assume that Q;/p”7 > g2 > p? as
Proposition 3 is trivially true for ¢ < p*. Decomposing K, (m;Q1/p") as K; + K, as in Lemma 6,
Proposition 1 gives us

> Sexwe) < o (@] @]+ 72T (W) + T () ), (31)
o eV

where .
T%(¥) := Re Z Z p"/? Z K)wa(m;Ql/p”)A(m;p”)

P2EV pnql/24eq! Im|< g+ (qFp?) !
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and A(m;p") < mf. Application of the Cauchy—Schwarz inequality produces the bound

1/2+s N 1/2
T(¥) < <Z > op > wag(m;Ql/p”)Kf%(m;Ql/p")) :

Y25 €W prql/2teg ! Im|<q = (gfp?*) 7"

(32)
By Proposition 2, the inner summand above is periodic modulo
0 o Q1/p"
e T (Qu/p7, (4/42)0g, (2, 1))

whenever Qnﬂﬂzﬂbé > p%. Moreover, in this case, any complete segments of the inner sum in (32)
vanish, and an application of Lemma 5 and Proposition 2 to any remaining incomplete segment
gives that

* 1/2
S K, miQupKL, (miQu/p) < Q)7 L
Im|<q' e (qfp?") !
When Qmw%wé < p, we bound the inner sum of (32) trivially. The second to inner-most sum of
(32) is therefore asymptotically bounded above by

enl/2
Z q Qﬁﬂﬁzﬂ/)é . Z CJHE

P qip®
pI<ql/teg ! Pt/ et
Qg 0, 2P Qi P

1/2
< < 2 > / 4 ¢ min <Q15q2(¢2,¢2) 1>
Q15q2 (1/1271%) Q2 Q% ’

where in fact the second term only enters if g, (12, 15) > g2q~/2%9) Inserting the above into
(32), we obtain

N q1/2+a q;/ll o
() < 1l + 1/2\\11\/
q1 q; q;

Inserting this bound into (31), we complete the proof of Proposition 3. O

6. PROOF OF THEOREM 2

Let € be an arbitrary, small positive real number. We will begin by defining the sets

Ry(V;x) := {x2 (mod ¢2) : xx2 € R(V;q)}
and  W(V;x) = {¢2 (mod g2) : Y192 € Ra(V; x) for some 9 (mod ¢1)}.

Clearly we may assume that ¢ is a sufficiently high power of p. Asymptotics of the fourth moment
of Dirichlet L-functions due to Heath-Brown [6] and later improved by Soundararajan [16] imply

that
SoLG| <a
« (ot 0

from which it follows that |R(V;q)| < ¢'t¢V %, This suffices to handle the case when V < ¢'/8+%.
On the other hand, by the Weyl bound for Dirichlet L-functions to prime power moduli due to
Postnikov [15] (see also [11]), |Ra(V; x)| = 0 for V > ¢'/0+¢,

Consider now the values of ¢*/812¢ < V < ¢1/6%¢. We combine the observations

1
Ra(Vix)| € 55— > Salxte) and [U(V;x)| < olq)Ra(V;x),
v (P((H) P2 eW(Vix)
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with Proposition 3 and the choices V273 < ¢1 < V?¢% and ¢ = qij’. With these choices, we

obtain
qE
|Ra(V;x)| < VEola) (qw(m)le(V; X)| + ql/gso(qﬁl/gle(V;x)ll/Q)
q1/2—5 19
< g R (Vi x)| + 575 [Ra (Vi X)) 2,
4
from which in turn it follows that
q1+5
Ry (V; -
‘ 2( ’X)| << C_I1V4
As a consequence,
1 * 2tey,—12
R(Vig) = —— > [Ra(Vi)| <@V 7,
vla2) X (mod q)

which completes the proof of Theorem 2, and hence of Theorem 1.
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