
TWELFTH MOMENT OF DIRICHLET L-FUNCTIONS

TO PRIME POWER MODULI

DJORDJE MILIĆEVIĆ AND DANIEL WHITE

Abstract. We prove the q-aspect analogue of Heath-Brown’s result on the twelfth power moment
of the Riemann zeta function for Dirichlet L-functions to odd prime power moduli. Our results rely
on the p-adic method of stationary phase for sums of products and complement Nunes’ bound for
smooth square-free moduli.

1. Introduction

Analytic behavior of L-functions inside the critical strip encodes essential arithmetic information,
and statistical information about their zeros, moments, and rate of growth along the critical line is
of central importance in analytic number theory. The classical Weyl bound shows that the Riemann
zeta function satisfies

ζ
(

1
2 + it

)
�ε (1 + |t|)1/6+ε (1)

where ε > 0 is an arbitrarily small constant that may change from one instance to another through-
out this article. The widely believed Lindelöf hypothesis asserts that 1

6 can be removed from the
exponent above. The most recent progress in this direction is due to Bourgain [2], reducing the
exponent to 13

84 + ε. One avenue to understanding the behavior of the Riemann zeta function along
the critical line is through power moments, for which asymptotic formulas are only available up
to the fourth moment [8, 12]. Higher moments provide tighter control on large values, and in this
direction Heath-Brown [7] proved that, for T > 1,∫ 2T

T

∣∣ζ (1
2 + it

)∣∣12
dt�ε T

2+ε. (2)

This is a very elegant bound as it recovers (1) as a rather immediate consequence. However, (2)
is quite a bit stronger in that it immediately implies that ζ

(
1
2 + it

)
cannot sustain large values;

namely that ∣∣ {t ∈ [T, 2T ] :
∣∣ζ(1

2 + it
)∣∣ > V

} ∣∣�ε T
2+εV −12. (3)

Actually, (2) and (3) are equivalent, as is easily established via integration by parts.
Questions regarding the asymptotic behavior of ζ(1

2 + it) as t → ∞ have q-aspect analogues

concerning the central values of Dirichlet L-functions L(1
2 , χ), where χ is a primitive character

modulo q and q →∞. For an account of some of the current literature on L(1
2 , χ) and L-functions

in the t-aspect, we direct the reader to the introduction of [13]. The q-analogue of (1), the bound

L(1
2 , χ) �ε q

1/6+ε, long out of reach for generic q except for real characters to odd square-free
moduli [3], has been recently announced by Petrow–Young [14]. For certain families of Dirichlet

L-functions, however, even small improvements are known on q1/6; see [11] for a “sub-Weyl” bound

L(1
2 , χ)� q1/6−δ for prime power moduli and [9] and [17] for smooth square-free moduli.
While Dirichlet L-functions L(σ+ it, χ) are also fruitfully used with a fixed modulus q and large

|t| to study arithmetic phenomena modulo q, from an adelic point of view it is more natural to
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consider the dependence on a large conductor q as a measurement of increasing ramification, this
time at finite places, and in particular, as a pure parallel to the t-aspect, at a fixed finite place. This
explains why many tools of classical “archimedean” analytic number theory have found natural p-
adic analogues. The extent of this parallel is yet to be fully understood, and our aim is to explore
its manifestation for high moments of L-functions. Our main theorem is a q-aspect analogue of (2)
for Dirichlet L-functions to odd prime power moduli.

Theorem 1. There exists a constant A > 0 such that, for every odd prime p and every q = pn,∑
χ (mod q)

∣∣L (1
2 , χ
)∣∣12 �ε p

Aq2+ε.

We remark that Theorem 1 complements the result of Nunes [13] where q is taken to be smooth
and square-free. The structure of the proof of Theorem 1 and the main result of Nunes translate
the approach taken by Heath-Brown [7] into the context of factorable and prime power moduli. For
a detailed comparison between Heath-Brown’s and Nunes’ work, we direct the reader to the intro-
duction of [13]. Despite the similarities, the methods of evaluation and estimation of exponential
sums found throughout are quite different in the present paper. In particular, we make extensive
use of a method known as p-adic stationary phase, which we will encapsulate in Lemmata 3 and 4.

As in [7, 13], the moment estimate in Theorem 1 is a consequence of the following statement,
which is reminiscent of (3) and its relationship to (2). We will establish the following.

Theorem 2. For V > 0, define

R(V ; q) :=
{
χ primitive of modulus q :

∣∣L (1
2 , χ
)∣∣ > V

}
.

Then there exists a constant A > 0 such that, for every odd prime p and every q = pn,

|R(V ; q)| �ε p
Aq2+εV −12.

Note that Theorem 1 follows immediately from Theorem 2 via summation by parts. From the
available sharp estimates on the fourth moment of Dirichlet L-functions [6, 16], it follows that
|R(V ; q)| �ε q

1+εV −4; see section 6. Combining this and the Weyl bound for this particular class

of Dirichlet L-functions [15, 11], the range of interest in Theorem 2 is q1/8−ε 6 V 6 q1/6+ε.
The p-adic methods of this paper are very flexible. In particular, an analogue of [13, Theorem

1.2], which would sharpen Theorem 2 in the range q3/20+ε 6 V 6 q1/6−ε (but not Theorem 1)
can likely be proved with a further application of the p-adic stationary phase method to complete
exponential sums with substantially more involved phases than in (6). It would also be of interest
to investigate whether the methods of the present paper and [13] can be unified to provide a twelfth
moment bound for characters to moduli q with finitely many well-located factors as in [5] (or a
hybrid moment including the archimedean average); without imposing overly onerous factorization
conditions, though, this may require delicate estimates on complete sums with degenerate critical
points as in [5, Lemma 7].

Overview: For the benefit of the reader, we present a conceptual overview of the proof, ignoring
non-generic cases, coprimality conditions, qε factors, and so on; in particular, we use f 4 g to denote
|f | �p,ε q

εg and f ∼ g for f 4 g 4 f . We fix a divisor q1 | q, and consider the short second moment

S2(χ) :=
∑

ψ1 (mod q1)

∣∣L (1
2 , χψ1

)∣∣2 . (4)

We will later choose roughly q1 ∼ V 2, so that the expected sharp bound S2(χ) 4 q1 essentially
matches the contribution of a single summand |L(1

2 , χ)| ∼ V .
Using the approximate functional equation and executing the ψ1-average leads to weighted dyadic

sums over n ∼ N 4 q1/2 of terms of the form χ(n + hq1)χ(n), which are Q1 = (q/q1)-periodic.
We apply Poisson summation, incurring the dual variable j 4 Q1/N and the “trace function”
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Kχ(j, h;Q1), which is shown in (19) and generically depends on jh 4 q/q2
1. The upshot of this

analysis is Proposition 1, which bounds S2(χ) roughly by

q1

(
1 +Q

−1/2
1

∑∗

|m|4q/q21

Kχ(m;Q1)A(m)

)
, (5)

with somewhat messy arithmetic coefficients A(m) 4 1.
In Lemma 6, we show that the complete exponential sum Kχ(m;Q1) exhibits square-root cancel-

lation. This alone yields the upper bound S2(χ) 4 q1 + (q/q1)1/2, which is sharp for q1 < q1/3 and

recovers the Weyl subconvexity bound L(1
2 , χ) 4 q1/6 (essentially by Weyl differencing followed by

completion, as in [11]).

For purposes of Theorems 1 and 2, we must consider values q1/4 4 q1 4 q1/3, in which case the

weighted sum of trace functions in (5) is of length Q
1/2
1 4 q/q2

1 4 Q
2/3
1 . Weights A(m) make it

difficult to directly estimate the sum. Instead, the key idea is sort of a large sieve: we argue that
(roughly speaking, and as q1 gets smaller) the vectors (Kχ(m;Q1))m are typically approximately
orthogonal for different χ, and thus it is hard for too many of them to avoid cancellation with a
single vector (A(m))m. The approximate orthogonality boils down to cancellations in incomplete
sums of products ; since the length is over the square-root of the conductor, we apply the method of
completion, incurring an additive twist. Proposition 2, our key arithmetic input, shows square-root
cancellation in sums of products of rough form∑∗

u (mod Q)

K±χ (u;Q1)K±χ′(u;Q1)e(−uv/Q) 4 Q1/2. (6)

Here, the modulus Q | Q1 drops with the conductor of χχ′ (essentially the distance between χ and
χ′ in the dual topology), and we must first separate Kχ into two oscillatory components K±χ (as
often happens with Bessel functions; see also [1, §9]). Lemma 6 and Proposition 2 form the heart
of the paper and are proved by a consistent application of the p-adic method of stationary phase
to exponential sums with p-adically analytic phases, including characters to prime power moduli;
see section 2.

Proceeding with the large sieve idea, we estimate the the sum of S2(χψ) in (5) over an arbitrary
set Ψ of characters ψ modulo some q2 | q (with q1 | q2) by applying the Cauchy–Schwarz inequality
to the m-sum and bounding sums of products of K±χψ(m;Q1) using (6). This shows in Proposition 3

that ∑
ψ∈Ψ

S2(χψ) 4
((
q1 + q

1/4
1 q

1/4
2

)
|Ψ|+ q1/2|Ψ|1/2

)
. (7)

The bound (7) imposes a restriction on the size |Ψ| as long as each S2(χψ) is slightly bigger than

q1 + q
1/4
1 q

1/4
2 . In section 6, we first fix χ and choose Ψ to be the set of characters modulo q2 for

which one of |L(1
2 , χψψ1)| in (4) exceeds V , with q1 = q−εV 2 and q2 = q3

1, obtaining |Ψ| 4 qV −4.
From here it is a matter of bookkeeping to Theorem 2 and hence Theorem 1.

Notation: Throughout the paper, ε > 0 indicates a fixed positive number, which may be
different from line to line but may at any point be taken to be as small as desired. As usual, f � g
and f = O(g) indicate that |f | 6 Cg for some effective constant C > 0, which may be different
from line to line but does not depend on any parameters except as follows. In this introduction, all
implied constants in� and O are absolute, except that they may depend on ε > 0 if so indicated as
in�ε. In the rest of the paper, we allow the implied constants (but suppress this from notation) to
depend on both the odd prime p and ε > 0. All dependencies on p are easily seen to be polynomial,
leading to the statements of Theorems 1 and 2; we do not make an effort to optimize the value of
A > 0.
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We denote the cardinality of a finite set S by |S|; we use the same notation for the Lebesgue
measure, with the meaning clear from the context. As is customary in analytic number theory, we
also write e(z) = e2πiz.

Acknowledgements: The authors would like to thank an anonymous referee for their careful
reading and constructive suggestions, which helped us improve the paper in several places.

2. Preliminaries

2.1. Approximate functional equation. A ubiquitous tool in the analysis of L-functions inside
the critical strip is the approximate functional equation (see [10, §5.2]). This equation has various
manifestations depending on context and purpose. A typical form of this equation in the context
of bounding central values states that one may recover the size of L(1

2 , χ) by inserting s = 1
2 into

the associated Dirichlet series which is essentially truncated at q1/2 via a suitable smooth weight
function. For our purposes, the following lemma is convenient, which follows by applying a dyadic
partition of unity to [10, Theorem 5.3].

Lemma 1. Let χ be a primitive Dirichlet character modulo q. Then,∣∣L(1
2 , χ
)∣∣2 � log q

∑
N6q1/2+ε

N dyadic

∣∣∣∣∣ 1√
N

∑
n

χ(n)VN (n)

∣∣∣∣∣
2

+ q−100,

where VN is a smooth function depending only on N and q, whose support is contained in [N/2, 2N ]

and whose derivatives satisfy V
(j)
N �j N

−j for every j ∈ N.

2.2. p-adically analytic phases. Among the key features of our treatment of exponential sums
will be: (i) the consistent interpretation of oscillating terms (such as characters) as exponentials
with phases that are p-adically analytic functions and (ii) the analysis thereof. For a rigorous
treatment of these concepts, we refer to [11, §2]. Recall that a p-adically analytic function f on
a domain D ⊆ Zp is locally expressible, around each point a ∈ D, in a p-adic ball of the form
{x ∈ Zp : |x − a|p 6 p−%} ⊆ D (% ∈ Z>0) as the sum of its p-adically convergent Taylor power
series. We let rp(f ; a) denote the largest such p−% (which is not quite the same as the p-adic radius
of convergence) and rp(f) = infa∈D rp(f ; a) > 0; in all phases we will encounter, rp(f) > p−1 will
hold. It is not hard to see that rp(f

′; a) > rp(f ; a).
We will make extensive use of the p-adic logarithm, which for simplicity we define on 1 + pZp.

Recall that, throughout the paper, p is an odd prime.

Definition 1. The p-adic logarithm, logp : 1 + pZp → pZp is the analytic function given as

logp(1 + x) :=
∑
k>1

(−1)k−1x
k

k
.

Access to the above is critical due to the following lemma, with roots in Postnikov [15] and which
we quote from [11, Lemma 13].

Lemma 2. Let χ be a primitive character modulo pn. Then there exists a p-adic unit A such that,
for every p-adic integer k,

χ(1 + kp) = e

(
A logp(1 + kp)

pn

)
. (8)

Lemma 2 allows us to explicate the phase of any exponential of the form χ(1 + kp)e(f(k)/pn)
when χ is a character modulo pn.

It will be necessary to handle solutions to quadratic equations over Zp, which requires the use of
p-adic square roots. For p an odd prime and x ∈ Z× 2

p , the congruence u2 ≡ x (mod pκ) has exactly
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two solutions modulo every pκ, which reside within two p-adic towers and limit to the solutions of
u2 = x as κ → ∞. We denote these solutions ±x1/2. For ( · )1/2 : Z×2

p → Z×p to be well-defined,

a choice of square root for each y ∈ (Z/pZ)×2 must be made. This set of choices propagates to

Z×2
p and represents one of the 2(p−1)/2 branches of the p-adic square root. A thorough treatment of

p-adic square roots can be found in [1, §2]; we content ourselves with summarizing two properties
of import to us.

Each branch x1/2 of the square root is an analytic function expressible by a convergent power

series in balls of radius rp > p−1. Specifically, on 1 + pZp, the binomial expansion

(1 + xp)1/2 =
∑
k>0

(
1/2

k

)
(xp)k (9)

gives the branch with values in 1 + pZp (as seen by formally squaring the right-hand side), which is
in fact an automorphism of 1 + pZp. For an arbitrary u ∈ Z×2

p , a simple argument modulo p shows
that

(u+ xp)1/2 = u1/2(1 + xup)1/2 (10)

where u denotes the p-adic inverse of u. While ( · )1/2 cannot in general be expected to be multi-
plicative, (10) gives it both a pseudo-morphism rule and a power expansion. Moving forward, we fix

a branch to be used throughout, drop the ( · )1/2 notation and simply write ( · )1/2 or use a radical

symbol for our chosen branch, using caution to only use (9), (10), and
√
m

2
= m when exercising

the usual archimedean exponent rules. For future reference, we note that, for all u, u′ ∈ Z×2
p ,

ordp(
√
u−
√
u′) = ordp(u− u′). (11)

2.3. p-adic method of stationary phase. The following pair of lemmata establishes what is
known as the p-adic method of stationary phase (see, for example, [11, §4], [1, §7]), allowing one to
evaluate complete sums involving such exponentials. They are the proper p-adic analogues of the
classical method of stationary phase for exponential integrals of the form

∫
R g(x)e(f(x)) dx with a

suitable smooth phase f and weight g, which generically proceeds in two principal steps: (i) showing
that ranges where |f ′| is not suitably small are negligible, and (ii) close to each non-degenerate
stationary point x0 of the phase f , approximating f quadratically, with resulting Gaussian-type
integrals evaluating to about g(x0)e(f(x0))/

√
|f ′′(x0)| (see [4]).

Lemma 3. Let p be an odd prime, 1 6 ` 6 n be integers, and f : Z×p → Zp be an analytic function

invariant modulo pn under translation by pnZp. If rp(f) > p−` and pk`f (k)(x)/k! ≡ 0 (mod pn) for
all x ∈ Z×p when k > 2, then∑∗

x (mod pn)

e

(
f(x)

pn

)
=

∑∗

x0 (mod pn)

f ′(x0)≡0 (mod pn−`)

e

(
f(x0)

pn

)
.

Proof. Expanding f(x) around x0 gives f(x0 + tp`) =
∑

k≥0 f
(k)(x0)(tp`)k/k!. With this, observe∑∗

x (mod pn)

e

(
f(x)

pn

)
=

1

pn−`

∑∗

x0 (mod pn)

∑
t (mod pn−`)

e

(
f(x0) + f ′(x0)tp`

pn

)
where the inner sum contributes pn−`e(f(x0)/pn) when f ′(x0) ≡ 0 (mod pn−`) and vanishes other-
wise. �

Lemma 3 reduces a complete exponential sum to p-adic neighborhoods in which |f ′(x)|p is small.
The following lemma is a further refined statement that explicitly evaluates these localized sums
and is suited for exponential sums that we will encounter in the proof of Lemma 6.
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Lemma 4. Let p be an odd prime, n > 2, and f : Z×p → Zp be an analytic function satisfy-

ing the hypotheses in Lemma 3 for ` = dn/2e. Let X ⊆ (Z/pnZ)× denote the solution set of

f ′(x0) ≡ 0 (mod pbn/2c), and assume that, for all x0 ∈ X, rp(f ;x0) > p−bn/2c, f ′′(x0) ∈ Zp, and

pbn/2ckf (k)(x0)/k! ≡ 0 (mod pn) for k > 3. Then, X is invariant under translation by pbn/2cZ,

and, for an arbitrary set of representatives X̃ for X/pbn/2cZ,∑∗

x (mod pn)

e

(
f(x)

pn

)
= pn/2

∑
x0∈X̃

e

(
f(x0)

pn

)
∆f (x0; pn),

where all summands are independent of the choice of X̃, and, writing f ′(x0)◦ := f ′(x0)/pbn/2c and( ·
p

)
for the Legendre symbol,

∆f (x0; pn) =


1, 2 | n;

ε(p)
(2f ′′(x0)

p

)
e
(
−2f ′′(x0)f ′(x0)2◦

p

)
, 2 - n, p - f ′′(x0);

√
p1p|f ′(x0)◦ , 2 - n, p | f ′′(x0),

ε(p) =

{
1, p ≡ 1 (mod 4);

i, p ≡ 3 (mod 4).

Proof. The translational invariance of X modulo pbn/2cZ is clear from our hypotheses and the
expansion of f ′(x0 + tpbn/2c) at each x0 ∈ X. Application of Lemma 3 with ` = dn/2e together

with an expansion of f around each x0 ∈ X̃ gives∑∗

x (mod pn)

e

(
f(x)

pn

)
=
∑
x0∈X̃

∑
t (mod pdn/2e)

e

(
f(x0 + tpbn/2c)

pn

)

= pbn/2c
∑
x0∈X̃

e

(
f(x0)

pn

) ∑
t (mod pn−2bn/2c)

e

(
f ′(x0)◦t+ 2̄f ′′(x0)t2

pn−2bn/2c

)
.

For n even, the inner sum is trivial and the desired result follows. If n is odd, the contribution
from p | f ′′(x0) is clear, while, for p - f ′′(x0), completing the square yields for the inner sum

e

(
−2f ′′(x0)f ′(x0)2

◦
p

) ∑
t (mod p)

e

(
2̄f ′′(x0)t2

p

)
= ε(p)

√
p

(
2̄f ′′(x0)

p

)
e

(
−2f ′′(x0)f ′(x0)2

◦
p

)
,

by the classical evaluation of the quadratic Gauss sum. This finishes the proof. �

Remark 1. The general (if somewhat cumbersome) conditions in Lemma 4 are easily satisfied,

say, for every analytic function f : Zp → Zp with rp(f) > 1/p and f (j)(Zp) ⊆ Zp for all j > 0. The
same is true for Lemma 3 with ` > n/2.

In Lemma 4, in the odd nonsingular case 2 - n, p - f ′′(x0), we see that f ′(x0 + tpbn/2c) ≡ 0

(mod pdn/2e) for exactly one t (mod p); picking such a representative x̃0 := x0 + tpbn/2c ∈ X̃, we

have more simply ∆f (x̃0; pn) = ε(p)
(2f ′′(x̃0)

p

)
.

Remark 2. Versions of Lemmata 3 and 4 exist for sums over other subsets of residue classes
x (mod pn), where the phase f may have as domain a finite union of translates of pλZp, with λ 6 `
in Lemma 3 and λ 6 n/2 in Lemma 4. The proofs of these parallel statements are the same; indeed,
they only require that the sum be over a set of residues invariant under translation by a suitable
p`Zp with ` > λ and rp(f) > p−`. Specifically, the proof of Proposition 2 will require Lemma 3 to be
applied over quadratic residues and non-residues modulo pn. Lemmata 3 and 4 also hold for sums
of the form

∑
g(x)e(f(x)/pn) where g is invariant under translation by p`Zp.

In practice, we will apply Lemmata 3 and 4 in situations where explicitly writing the exponent
of q = pn gets notationally cumbersome. To represent what are essentially square roots in these
cases, we define

rt∗(p
n) := pbn/2c and rt∗(pn) := pdn/2e.
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2.4. Completion. While Lemmata 3 and 4 provide powerful tools for evaluating the types of
complete exponential sums that will be found throughout, we will eventually encounter those which
are incomplete. In anticipation of this, we introduce the next lemma which prepackages a technique
known as completion.

Lemma 5. Suppose f is an arithmetic function with period Q. Then∑
m6M

f(m)� 1

Q

∑
v (mod Q)

∣∣f̂(v)
∣∣ ·min

{
M, ‖v/Q‖−1

}
, f̂(v) :=

∑
u (mod Q)

f(u)e

(
−uv
Q

)
,

where ‖x‖ is the distance from x to the nearest integer.

Proof. Splitting the sum into residue classes modulo Q yields∑
m6M

f(m) =
∑

u (mod Q)

f(u)
∑
m6M

1

Q

∑
v (mod Q)

e

(
(m− u)v

Q

)
=

1

Q

∑
v (mod Q)

f̂(v)
∑
m6M

e

(
mv

Q

)
.

The bound ∑
m6M

e

(
mv

Q

)
� min{M, ‖v/Q‖−1}

on the sum of a geometric sequence completes the proof. �

3. Short second moment

As before and throughout, p will be an odd prime and q some prime power pn for n a positive
integer. Further consider

p 6 q1 6 q2 < q, (12)

where the qi are also powers of p. A central object to our proofs, as in [7, 13], is the short second
moment. In the q-aspect, this will be a power moment which samples from a q1-neighborhood
around some fixed primitive character χ (mod q). This analogy is particularly natural from a
p-adic point of view, as the (Pontrjagin) dual group of Z∗p carries the natural dual topology, with
respect to which these correspond to actual small neighborhoods of χ. We denote

S2(χ) :=
∑

ψ1 (mod q1)

∣∣L (1
2 , χψ1

)∣∣2 .
We will eventually analyze the size of short moments on average, but first must gather information
on S2(χ) itself.

3.1. Executing the short second moment. We immediately apply Lemma 1 to S2(χ). This
yields

S2(χ)� qε
∑

ψ1 (mod q1)

∑
N6q1/2+ε

N dyadic

∣∣∣∣∣ 1√
N

∑
n

χψ1(n)VN (n)

∣∣∣∣∣
2

+ q−99

� qε

N

∑
ψ1 (mod q1)

∣∣∣∣∣∑
n

χψ1(n)VN (n)

∣∣∣∣∣
2

+ q−99 (13)

for some N 6 q1/2+ε by exchanging order of summation and choosing the summand which max-
imizes the inner sum. Denote the sum in (13) without the error term and qε factor as B(N).
Expansion and orthogonality of characters gives

B(N)� q1

N

∑
n≡n′ (mod q1)

χ(n′)χ(n)VN (n′)VN (n).
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We note the similarity of the resulting sum (the sum of squares of short p-adic averages, a reflection
of the ψ1-average via Parseval’s identity) to those encountered with Weyl differencing in the context
of factorable moduli (see, for example, [11, §5]), and we proceed similarly.

Recall that VN � 1 with support contained in [N/2, 2N ]. The diagonal terms corresponding to
n = n′ contribute O(q1) to B(N). The addition of this to the remaining pairs (n′, n) gives

B(N)� q1 +
q1

N
Re
∑
h≥1

∑
n≥1

χ(n+ hq1)χ(n)VN (n+ hq1)VN (n), (14)

since each (n′, n) appears above or can be accounted for by conjugation. Denote the inner sum in
(14) as Shq1(N ;χ). Since χ(n+ hq1)χ(n) is periodic modulo Q1 = q/q1, we may write

Shq1(N ;χ) =
∑∗

r (mod Q1)

χ(r + hq1)χ(r)
∑
j

VN (r + jQ1 + hq1)VN (r + jQ1). (15)

We will apply Poisson summation to the inner sum in Shq1 . Examination of∫
R
VN (r + xQ1 + hq1)VN (r + xQ1)e(−jx) dx (16)

= Q−1
1 e(rj/Q1)

∫
R
VN (y + hq1)VN (y)e(−jy/Q1) dy

shows that the Fourier transform in (16) is

Q−1
1 e

(
rj

Q1

)
Ŵhq1(j/Q1) where Whq1(y) := VN (y + hq1)VN (y). (17)

Using (13) through (17) together with Poisson summation yields

S2(χ)� qε
(
q1 +

q1

N
Re
∑
h≥1

Q
−1/2
1

∑
j

Ŵhq1(j/Q1)Kχ(j, h;Q1)

)
, (18)

where, for q̃ a proper divisor of q, we define

Kχ(a, b; q̃) := q̃−1/2
∑∗

r (mod q̃)

χ
(
r + b(q/q̃)

)
χ(r)e(ar/q̃). (19)

In particular, for (m, q̃) = 1, we also write Kχ(m; q̃) := Kχ(1,m; q̃) = Kχ(m, 1; q̃), so that

Kχ(m; q̃) = q̃−1/2
∑∗

r (mod q̃)

χ
(
1 + (q/q̃)r

)
e(mr̄/q̃). (20)

This sum (which takes on the role of trace functions from the context of square-free moduli [13])
is of central importance to our arguments. We summarize some of its important properties in
Lemma 6 in section 4, below. In this section, we will only require the elementary reduction and
vanishing claim (25).

By the support of VN , we may actually take h� N/q1 in (18). We will soon identify the range
j that is essential to (18). Once this range becomes finite, we will configure our bound in a way
that highlights the main object of our study.

3.2. Establishing the bound on S2(χ). We first show that the contribution to (18) from j = 0
may be neglected. By Lemma 6 below,

Kχ(0, h;Q1) =


Q

1/2
1 (1− p−1), Q1 | h;

−Q1/2
1 /p, Q1/p ‖ h;

0, otherwise.
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The contribution from j = 0 to (18) is then

qεq1Q
−1/2
1 Re

∑
16h�Nq−1

1

N−1Ŵhq1(0)Kχ(0, h;Q1)� qεq1

∑
16h�Nq−1

1
Q1|hp

1� qε
N

Q1
. (21)

Repeated use of integration by parts shows

Ŵhq1(y)�m N

(
1

Ny

)m
for every positive integer m. From this bound, h � N/q1, and the trivial bound on Kχ(j, h;Q1),
the contribution to (18) from |j| > qεQ1/N is O(q−100). Using (18) and (21), we find

S2(χ)� qε
(
q1 +

q1

Q
1/2
1

Re
∑

0<h�N/q1

∑
0<|j|�qεQ1/N

N−1Ŵhq1(j/Q1)Kχ(j, h;Q1)

)
. (22)

According to Lemma 6, noting that (Q2
1/p) - jh� qεQ1/q1, we may rewrite the double sum above

as ∑
pη�q1/2+εq−1

1

∑∗

h′�N(q1pη)−1

∑∗

0<|j′|<qεQ1(Npη)−1

N−1Ŵh′pηq1(j′pη/Q1)Kχ(j′pη, h′pη;Q1)

=
∑

pη�q1/2+εq−1
1

pη/2
∑∗

|m|�q1+ε(q21p2η)−1

Kχ(m;Q1/p
η)

∑
h′|j′|=m

h′�N(q1pη)−1

|j′|<qεQ1(Npη)−1

N−1Ŵh′pηq1(j′pη/Q1). (23)

Denoting the inner sum of (23) as A(m; pη), the above becomes∑
pη�q1/2+εq−1

1

pη/2
∑∗

|m|�q1+ε(q21p2η)−1

Kχ(m;Q1/p
η)A(m; pη), (24)

where A(m; pη) � mε by the divisor bound. The key thing is that these noisy coefficients do
not depend on χ, which will allow us to remove them via an application of the Cauchy–Schwarz
inequality in section 5. Combining (22) through (24) we obtain Proposition 1.

Proposition 1. Let q1 and q be subject to the conditions in (12). Then there exist coefficients
A(m; pη)� mε such that, for every primitive character χ (mod q),

S2(χ)� qεq1

(
1 +Q

−1/2
1 Re

∑
pη�q1/2+εq−1

1

pη/2
∑∗

|m|�q1+ε(q21p2η)−1

Kχ(m;Q1/p
η)A(m; pη)

)
,

where Kχ(m;Q1/p
η) are as in (19).

4. Exponential sum estimates

In this section, we evaluate and estimate complete exponential sums to prime power moduli. Our
principal tools are the p-adic stationary phase method Lemmata 3 and 4. In Lemma 6, we consider
the complete exponential sum Kχ(j, h; q̃) introduced in (19) and show that it can be expressed in
terms of explicit exponentials K±χ (m; q̃) with p-adically analytic phases. Then, in Proposition 2, we

show square-root cancellation in complete sums of products of K±χ (m; q̃) including additive twists.
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4.1. Evaluation of Kχ(m; q̃). In the following lemma, we explicitly evaluate the complete expo-
nential sum Kχ(j, h; q̃).

Lemma 6. Let q̃ be a proper divisor of q and, for every j ∈ Z, let pηj = (j, q̃). Then, the sum
Kχ(j, h; q̃) defined in (19) satisfies

Kχ(j, h; q̃) =


pη/2Kχ(jh/p2η; q̃/pη), η = ηj = ηh, q̃ 6= pη;

q̃1/2(1− p−1), ηj = ηh = ηq̃;

−q̃1/2/p, ηj + ηh = 2ηq̃ − 1;

0, otherwise.

(25)

Further, let A be an integer such that (8) holds for χ, and assume that q̃ > p2. Then, for (m, q̃) = 1,

Kχ(m; q̃) = K+
χ (m; q̃) +K−χ (m; q̃), (26)

where

K±χ (m; q̃) =

{
∆θ(s±(m/A; q̃); q̃)e (Ag±(m/A; q̃)/q̃) ,

(
Am
p

)
= 1;

0, otherwise,

where, for
(
m
p

)
= 1,

g±(m; q̃) = (q̃/q) logp
(
1 + (q/q̃)s±(m; q̃)

)
+m/s±(m; q̃),

s±(m; q̃) = 1
2

(
mq/q̃ ±

√
(mq/q̃)2 + 4m

)
,

(27)

θ is the phase associated to Kχ(m; q̃) in (20), and ∆θ is as described in Lemma 4.

Proof. We first establish (25). Write h ≡ h′pηh (mod q̃) and j ≡ j′pηj (mod q̃) where p - h′j′, and
set η = min{ηj , ηh}. If pη 6= q̃, then by the substitution r 7→ j′r for the variable of summation in
(19) and a reduction to a sum over residues modulo q̃/pη we have

Kχ(j, h; q̃) = q̃−1/2pη
∑∗

r (mod q̃/pη)

χ

(
1 +

q

q̃/pη
pηh−ηrj′h′

)
e

(
pηj−ηr

q̃/pη

)
. (28)

In particular, this proves the first case of (25). The second case, when pη = q̃, follows from a trivial
evaluation of the definition (19).

We now assume ηj 6= ηh. For ηj +ηh = 2ηq̃−1, the situation quickly boils down, directly or with
an application of (8), to

Kχ(j, h; q̃) = q̃−1/2(q̃/p)
∑∗

r (mod p)

e(r/p) = −q̃1/2/p.

In any other event, let φ be the phase associated to (28) where

φ(k)(x) = (−1)k−1(k − 1)!

(
A

(
pηh−ηj′h′

1 + xj′hq/q̃

)k (
q

q̃/pη

)k−1

− kpηj−ηx−(k+1)

)
(29)

for k > 1 and x ∈ Z×p by (8). From (29), it is easy to see that φ(k)(x)/(k − 1)! ∈ Zp for x ∈ Z×p .
Moreover

(rt∗(q̃/pη))k/k ≡ 0 (mod q̃/pη)

for all k > 2, so that (rt∗(q̃/pη))kφ(k)(x)/k! ≡ 0 (mod q̃/pη) for all x ∈ Z×p and all k > 2. Thus

φ satisfies the hypotheses of Lemma 3 with p` = rt∗(q̃/pη). Since in this case rt∗(q̃/p
η) > p

and exactly one of ηh and ηj equals η, we find that Kχ(j, h; q̃) must vanish since no solutions to
φ′(x) ≡ 0 (mod p) exist in (Z/pZ)×. This completes the proof of (25).
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Next, for A, (m, q̃) = 1, and q̃ > p2 as stated, the phase θ associated to Kχ(m; q̃) in (20) agrees
with the phase φ in (28) and (29) with h = 1, j = j′ = m, and ηj = ηh = η = 0 (substituting
r 7→ mr); in particular,

θ′(x) =
A

1 + xq/q̃
− m

x2
and θ′′(x) = − Aq/q̃

(1 + xq/q̃)2
+

2m

x3
.

We will use Lemma 4. If
(
Am
p

)
= −1, there are no solutions to θ′(x0) ≡ 0 (mod rt∗(q̃)) by

an obstruction modulo p, so that Kχ(m; q̃) = 0 in this case. Otherwise, solving the equation

θ′(x0) = 0 yields x0 = s±(m/A; q̃). Upon noting that θ′′(x0) ≡ 2mx−3
0 6≡ 0 (mod p), an application

of Hensel’s lemma gives exactly two unique solutions to the congruence above, proving (26). �

4.2. Sums of products. As we input Proposition 1 into estimating short second moments in
aggregate over sets of characters, we will incur incomplete sums of products of trace functions
Kχ(m; q̃) evaluated in Lemma 6, with two different characters χ. Specifically, the inner sum in
(32) will be estimated using the method of completion, Lemma 5. In preparation for this, in this
section we prove the following proposition.

Proposition 2. Let q̃ > p2 be a proper divisor of q and Kχ(m; q̃) be as in (20). Further, let χ and
χ′ be two primitive Dirichlet characters modulo q with associated units A and A′ as in (8). Denote
δq(χ, χ

′) = (q/p,A−A′) and Q = q̃/(q̃, δq(χ, χ
′)). Then:

(a) for Q > p, the expression K±χ (m; q̃)K±χ′(m; q̃) is Q-periodic and satisfies, for every v ∈ Z,∑∗

m (mod Q)

K±χ (m; q̃)K±χ′(m; q̃)e

(
−mv
Q

)
� Q1/2; (30)

(b) for Q > p2, the left-hand side of (30) vanishes unless |v|p = 1;

(c) for Q = 1, K±χ (m; q̃)K±χ′(m; q̃) = 1(Am/p)=1.

Proof. Evaluation (26) expresses K±χ (m; q̃) in terms of exponentials with p-adically analytic phases.
Thus, as in sections 2.2–2.3 and the proof of Lemma 6, we continue to treat the phases in complete
exponential sums such as (30) as p-adically analytic functions on their respective domains. Since
p-adic differentiation and power series will be involved, for the duration of this proof, we will use
notation K±χ (u; q̃) so as to avoid any visual suggestion that the arguments of these phases may only
be rational integers.

By Lemma 6, the sum on the left-hand side of (30) vanishes unless AA′ ∈ Z×2
p ; we assume this

henceforth and restrict the sum (as we may) to primitive classes u (mod Q) such that (u/Ap ) = 1.

Further, let θχ and θχ′ be phases associated to Kχ(u; q̃) and Kχ′(u; q̃) as in (20), respectively. Then,

by Lemma 6, we have for (u/Ap ) = 1

K±χ (u; q̃)K±χ′(u; q̃)

= ∆θχ(s±(u/A; q̃); q̃)∆θχ′ (s±(u/A′; q̃); q̃)e

(
Ag±(u/A; q̃)−A′g±(u/A′; q̃)

(q̃, δq(χ, χ′))Q

)
where, for fixed χ and χ′, the product of the ∆ factors depends only on the class of u (mod p), as is
readily verified using θ′χ(x0,A) = 0 and θ′′χ(x0,A) ≡ 2ux−3

0,A (mod p) with x0,A = s±(u/A; q̃) from the

proof of Lemma 6. This proof also shows that g±(u; q̃), a function analytic on its domain Z×2
p , is

invariant modulo q̃ under translation by q̃Zp. Moreover, a moment’s reflection on the definition (27)
combined with (10) and (9) shows that for u ∈ Z×2

p both s±(u; q̃) and g±(u; q̃) may be expanded

into a convergent power series in
√
u with coefficients in Zp. From this and (11) it follows that, for

u ∈ AZ×2
p ,

Ag±(u/A; q̃)−A′g±(u/A′; q̃) = (q̃, δq(χ, χ
′)) · σ(u)



12 DJORDJE MILIĆEVIĆ AND DANIEL WHITE

is divisible by (q̃, δq(χ, χ
′)) and invariant modulo q̃ under translation by QZp (for Q > p). This es-

tablishes the periodicity claim and (c) follows from the definition of ∆θ, noting that A ≡ A′ (mod p)
in this case.

As for the estimate (30), the case Q = p is trivial since we are taking p� 1, so we assume that
Q > p2. We will be interested in applying Lemma 3 and Remark 2 with pn = Q, phase σ, and
p` = rt∗(Q). Since s±(u/A; q̃) solves θ′(x0) = 0 in the proof of Lemma 6, we observe

d

du
Ag±(u/A; q̃) =

{
∂

∂u
+

∂

∂s±
· ds±(u/A; q̃)

du

}
Ag±(u/A; q̃) =

1

s±(u/A; q̃)
,

so that, by rationalizing denominators,

σ′(u) =
±1/2

δq(χ, χ′)

(√
(q/q̃)2 + 4A/u−

√
(q/q̃)2 + 4A′/u

)
− v.

Expanding the difference of roots above according to (10) and (9) yields the quantity∑
k>0

(
1/2

k

)
(q/q̃)2k

(
(4A/u)1/2(u/4A)k − (4A′/u)1/2(u/4A′)k

)
,

which, along with (11), shows that the sum in (30) with phase σ satisfies the appropriate conditions
in Lemma 3 (keeping in mind Remark 2). From here and (11), we see that the sum in (30) vanishes
unless |v|p = 1, as solutions to the stationary phase congruence σ′(u) ≡ 0 (mod rt∗(Q)) could

not exist otherwise. Since α1/2β1/2/(αβ)1/2 ∈ {±1} for every α, β ∈ Z×2
p , any solutions to the

stationary phase congruence must satisfy one of the four congruences

δq(χ, χ
′)−1

∑
k>0

(
1/2

k

)
(q/q̃)2k

(
ε1 (u/4A)k − ε2(A′/A)1/2(u/4A′)k

)
≡ v (u/A)1/2 (mod rt∗(Q))

with εi ∈ {±1}, where in fact ε1 = ε2 unless, possibly, δq(χ, χ
′) = 1. Each of these four congruences

is polynomial in (u/A)1/2 modulo rt∗(Q), satisfies the hypotheses of Hensel’s lemma, and reduces

to a non-degenerate linear congruence in (u/A)1/2 modulo p. Thus there are O(1) solutions modulo
rt∗(Q) to the stationary phase congruence. The proposition then follows. �

5. Short second moment estimates

Proposition 1 provides an individual bound for the short second moment S2(χ) in terms of
averages of the arithmetic function Kχ(m; q̃). In this section, we leverage this result and the
estimates on exponential sums from section 4 to prove in Proposition 3 our penultimate result, an
aggregate bound on the short second moment over a collection of characters modulo q2.

Proposition 3. Let q1, q2, and q be subject to the conditions in (12). Let χ be any primitive
character modulo q, and let Ψ be any set of Dirichlet characters modulo q2. Then∑

ψ2∈Ψ

S2(χψ2)� qε
((
q1 + q

1/4
1 q

1/4
2

)
|Ψ|+ q1/2|Ψ|1/2

)
.

Proof. We will use Proposition 1; in its notation, we may assume that Q1/p
η � q1/2−ε > p2, as

Proposition 3 is trivially true for q � p4. Decomposing Kχ(m;Q1/p
η) as K+

χ +K−χ as in Lemma 6,
Proposition 1 gives us∑

ψ2∈Ψ

S2(χψ2)� qε
(
q1|Ψ|+ q

3/2
1 q−1/2

(
T+(Ψ) + T−(Ψ)

))
, (31)

where
T±(Ψ) := Re

∑
ψ2∈Ψ

∑
pη�q1/2+εq−1

1

pη/2
∑∗

|m|�q1+ε(q21p2η)−1

K±χψ2
(m;Q1/p

η)A(m; pη)
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and A(m; pη)� mε. Application of the Cauchy–Schwarz inequality produces the bound

T±(Ψ) 6
q1/2+ε

q1

( ∑
ψ2,ψ′2∈Ψ

∑
pη�q1/2+εq−1

1

p−η
∑∗

|m|�q1+ε(q21p2η)−1

K±χψ2
(m;Q1/p

η)K±
χψ′2

(m;Q1/pη)

)1/2

.

(32)
By Proposition 2, the inner summand above is periodic modulo

Qη,ψ2,ψ′2
=

Q1/p
η

(Q1/pη, (q/q2)δq2(ψ2, ψ′2))

whenever Qη,ψ2,ψ′2
> p2. Moreover, in this case, any complete segments of the inner sum in (32)

vanish, and an application of Lemma 5 and Proposition 2 to any remaining incomplete segment
gives that ∑∗

|m|�q1+ε(q21p2η)−1

K±χψ2
(m;Q1/p

η)K±
χψ′2

(m;Q1/pη)� qεQ
1/2
η,ψ2,ψ′2

.

When Qη,ψ2,ψ′2
6 p, we bound the inner sum of (32) trivially. The second to inner-most sum of

(32) is therefore asymptotically bounded above by

∑
pη�q1/2+εq−1

1

Qη,ψ2,ψ′2
>p2

qεQ
1/2
η,ψ2,ψ′2

pη
+

∑
pη�q1/2+εq−1

1
Qη,ψ2,ψ′2

6p

q1+ε

q2
1p

3η

� qε
(

q2

q1δq2(ψ2, ψ′2)

)1/2

+ q1+ε min

(
q1δq2(ψ2, ψ

′
2)3

q3
2

,
1

q2
1

)
,

where in fact the second term only enters if δq2(ψ2, ψ
′
2) � q2q

−(1/2+ε). Inserting the above into
(32), we obtain

T±(Ψ)� q1/2+ε

q1

(
q

1/4
2

q
1/4
1

|Ψ|+ q1/2

q
1/2
1

|Ψ|1/2
)
.

Inserting this bound into (31), we complete the proof of Proposition 3. �

6. Proof of Theorem 2

Let ε be an arbitrary, small positive real number. We will begin by defining the sets

R2(V ;χ) := {χ2 (mod q2) : χχ2 ∈ R(V ; q)}
and Ψ(V ;χ) := {ψ2 (mod q2) : ψ1ψ2 ∈ R2(V ;χ) for some ψ1 (mod q1)}.

Clearly we may assume that q is a sufficiently high power of p. Asymptotics of the fourth moment
of Dirichlet L-functions due to Heath-Brown [6] and later improved by Soundararajan [16] imply
that ∑

χ (mod q)

∣∣L (1
2 , χ
)∣∣4 � q1+ε,

from which it follows that |R(V ; q)| � q1+εV −4. This suffices to handle the case when V 6 q1/8+2ε.
On the other hand, by the Weyl bound for Dirichlet L-functions to prime power moduli due to
Postnikov [15] (see also [11]), |R2(V ;χ)| = 0 for V > q1/6+ε.

Consider now the values of q1/8+2ε 6 V 6 q1/6+ε. We combine the observations

|R2(V ;χ)| 6 1

V 2ϕ(q1)

∑
ψ2∈Ψ(V ;χ)

S2(χψ2) and |Ψ(V ;χ)| 6 ϕ(q1)R2(V ;χ),
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with Proposition 3 and the choices V 2q−3ε 6 q1 6 V 2q−2ε and q2 = q3
1. With these choices, we

obtain

|R2(V ;χ)| � qε

V 2ϕ(q1)

(
q1ϕ(q1)|R2(V ;χ)|+ q1/2ϕ(q1)1/2|R2(V ;χ)|1/2

)
� q−ε|R2(V ;χ)|+ q1/2−ε

q
3/2
1

|R2(V ;χ)|1/2,

from which in turn it follows that

|R2(V ;χ)| � q1+ε

q1V 4
.

As a consequence,

|R(V ; q)| = 1

ϕ(q2)

∑∗

χ (mod q)

|R2(V ;χ)| � q2+εV −12,

which completes the proof of Theorem 2, and hence of Theorem 1.
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