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We prove prime geodesic theorems counting primitive closed geodesics on a compact
hyperbolic 3-manifold with length and holonomy in prescribed intervals, which are
allowed to shrink. Our results imply effective equidistribution of holonomy and have
both the rate of shrinking and the strength of the error term fully symmetric in length

and holonomy.

1 Introduction

Closed geodesics on a smooth and connected Riemannian manifold M act as important
geometric and dynamical invariants. Closed geodesics support periodic orbits of the
geodesic flow and in turn its invariant measures, whereas the length of the shortest
closed geodesic of M (its systole) acts as the first threshold of global geometry and
dynamics. On locally symmetric spaces, the trace formula connects closed geodesics to
the spectrum of the Laplacian (which quantizes the geodesic flow), just as elliptic ele-
ments of Fuchsian groups enter dimensions of spaces of cusp forms. In arithmetic cases,
lengths and multiplicities of geodesics can often be explicitly related to invariants such

as class numbers and regulators of indefinite binary quadratic forms. Hence, for many
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2 L. Dever and D. Milic¢evic

reasons, one seeks to understand the set of closed geodesics on M and, in particular, as

in this paper, its size and structure.

1.1 Prime Geodesic Theorems and Holonomy

We will be concerned with compact hyperbolic 3-manifolds M arising as the quotient
M ~ TI'\H® of the hyperbolic upper half-3-space by a uniform, torsion-free lattice
I' € G = PSL,C. Closed geodesics C,, on M arise from non-identity conjugacy classes
[yl in ", with primitive classes corresponding to infinitely many prime geodesics of
increasing lengths ¢(y) — oo. The celebrated Prime Geodesic Theorem, in the form with

an explicit error term, is due to Sarnak [23, Theorem 5.1] and may be stated as
71 (x) := |{ly] primitive in T : £() < x}| = Eip () + Oy, (e3+%), (1)

where the main term Ei(x) may be defined in terms of an absolutely continuous density

measure do as

x o2t e(l+v)t
Ei = dop(t), dop@) =|— de, 2
ir (%) /2 or(®), dor(t) ( - +J§ - ) (2)
and {0 < v < --- < v; < 1} correspond to the eigenvalues 1 — vjz of the hyperbolic

Laplacian A on M in (0,1) as described in Section 2.1. The set of {v;} depends on I
only and is predicted by Selberg’s conjecture to be empty for arithmetic I'. In any case,
Eip(x) ~ Ei(2x) = f22x et/tdt ~ e**/2x, recovering the general asymptotics of [19,
Theorems 3, 4] and [10, Proposition 5.4]. Moreover, (1) gives a power-saving asymptotic
for np(x, x + h) := np(x + h) — 71 (x) as long as h > e~ (1/379)%,

Attached to each closed geodesic C,, is the geometric action of the associated
e(L+i6)/2 0
0 e—(t+160)/2

shift by ¢ = £(y) along C, and a rotation around C, by the angle 6 (which corresponds to

class [y]. For y ~ ( ) with ¢ > 0 (recall that I' is uniform), this is given by a
parallel transport along C,). Thus, each C, carries two geometric invariants: the length
£(y) and the holonomy hol(y) := 6 € R/277Z; in this setting of 3-manifolds one often also
talks about the complex length Ct(y) := £(y) + it hol(y). It becomes a natural counting
question to refine the count (1) according to holonomy. The equidistribution theorem
of Sarnak-Wakayama [25, Theorem 1, Corollary 1] in the present case of a compact
3-manifold M ~ I'\H? states that, for every interval J C R/27Z,
J|

mp(x;J) = |{ly] primitive in T : £(y) € [0, x], hol(y) € J}| ~r- lz—nnr(x) (x> 00). (3)
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Ambient Prime Geodesic Theorems 3

We will be interested in asymptotics with precise control on hol(y), the “compact
part of the complex length,” in the same way as the sharp cutoff in ¢(y) in the Prime
Geodesic Theorem (1). In particular, our Theorem 6.5 proves the following effective

version of the equidistribution result (3):

J
ap(x;J) = |2—n|nr x) + Op (%73), (4)

with the implied constant independent of J. We also remark that the error term in (4) is
a pure exponential. Using dynamical methods, Margulis, Mohammadi, and Oh [20, 21,
Theorem 1.3] proved an asymptotic for 7 (x; J) with a small, unspecified power savings
in (3), for a broad class of geometrically finite, Zariski dense I' < PSL,(C), including all
lattices.

The asymptotic (4) provides power savings for the refined count with holonomy
in an interval of length |J| > e ~3+9X and is reminiscent of a prime number theorem in
arithmetic progressions with explicit level dependence. Indeed, we deduce it from the

following uniform estimate on “holonomy character sums” (see Proposition 5.1):

K, (x) i= > eml) < xS 1 n?et (n£0), (5)
[y] primitive in T:¢(y)<x

where the implied constant depends only on I'. The decomposition into pure harmonics
of holonomy in R/27Z implicit in the passage between (4) and (5) (which was also the
key implement in [25]) gives analytic access to automorphic constituents of L?(I'\G) via
the trace formula; see Section 1.2. Substantial cancellation in holonomy character sums
in (5), which quickly leads to (4), is in this sense analogous to classical bounds on sums
of Dirichlet characters with explicit conductor dependence.

Theorem 6.5 requires fine control in both £(y) and hol(y). More broadly, we
argue that, for many purposes including counting in short ranges, the two geometric
parameters £(y) and hol(y) have the same standing, and that it is most natural to talk
about the joint distribution of the pair (¢(y),hol(y)). Such a result might be called
an ambient prime geodesic theorem. In Theorem 6.12, we obtain our main result, an

asymptotic count for primitive closed geodesics on M according to the pair (£(y), hol(y)).
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4 L. Dever and D. Milicevi¢

Theorem 1.1. Let " < PSL,C be a discrete, co-compact, torsion-free subgroup. Then,

for any intervals I C [0,x] and J C R/277Z,

nr(,J) := |{[y] primitive in T : (¢(y), hol(y)) € I x J}|

do 23 e5X/3  g3%/2
:ﬂ dey-(8) o + Op (11 + 10?7 + =77 )-
X

In particular, Theorem 1.1 proves the uniform asymptotic (see Theorem 6.5 and

its Corollary 6.7)

wpd,J) = H Aoy (2) g—z +0p (€5¥/3), (6)
IxJ

which provides a power savings as long as |[I x J| > e —3+0% with § > 0, where each
interval may be short independently of each other; see Remark 6.8. Theorem 1.1 further
extends this range when both intervals I and J are short, down to as short as |I x J| >

2+9% when |I| < |J|; see Remark 6.13 for details.

e~

Joint distribution results such as our Theorem 1.1 may be seen as instances of
spectral geometry on the group quotient I'\ G, as we explain in Section 1.2. We emphasize
that our results apply regardless of whether the subgroup I' is arithmetic or not; for
asymptotics on arithmetic quotients in the length aspect, we refer to [25] as well as to
recent advances on arithmetic hyperbolic 3-manifolds [1-3]. While it would certainly
be of interest to obtain stronger error terms in ambient prime geodesic theorems on
arithmetic hyperbolic 3-manifolds, our goal here is to establish universal, baseline

results.

1.2 Spectral Geometry of I'\G, Trace Formulas, and Ambient Counting

Closed geodesics on M are often considered along with the spectrum of the Laplace-
Beltrami operator A,;, which we recall involves averages over infinitesimal balls in M
and thus naturally quantizes the dynamics of the geodesic flow on M. On a rank one
compact locally symmetric space M = I'\S, the classical spherical trace formula relates
the eigenvalues of Ay, (that is, frequencies of Ag appearing in L?(I'\S)) with lengths of
geodesics corresponding to non-identity conjugacy classes in I'. This may also be seen
as the correspondence principle of quantum mechanics, relating long-term dynamics on
M with the semi-classical (high-energy) limit of the quantized system on L?(M), or as a

noncommutative version of Fourier duality.
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Ambient Prime Geodesic Theorems 5

A key question of spectral geometry is whether isospectral manifolds (having
the same Laplacian spectrum) are also isometric. For hyperbolic 3-manifolds, the
answer is “No”: in 1980, Vignéras [28] found a pair of hyperbolic 3-manifolds that are
isospectral but not isometric; see also [11, 27]. However, Gangolli [9] showed that for a
compact hyperbolic 3-manifold, the Laplacian spectrum determines the set of lengths of
closed geodesics. While for hyperbolic surfaces the Laplacian spectrum also determines
the multiplicities of closed geodesics, in higher dimensions this is an open problem
[14, Remark 0.3]. In the converse direction, Kelmer [14] showed that the length spectrum
(including multiplicities) determines the Laplacian spectrum for compact hyperbolic
manifolds. For arithmetic hyperbolic 3-manifolds, the complex length spectrum (and in
fact, the rational length set) determines the commensurability class [5, 22].

In any case, all structure encoded in the trace formula should be reflected in
the spectral-to-geometric correspondence. In the present case of M ~ I'\PSL,C/PSU,,
regular conjugacy classes [y] are parametrized by ¢, € T/S, = {t = (§ 291 ) :zeC*}/(t~
), L%(F\PSLZC) is spanned by principal series representations 7 = ind%(xulp) indexed
by unitary characters Xop: T — S!, and the trace formulas on I'\PSL,C (Theorems 2.1,
2.2, and 2.4, below) relate roughly, up to fixed smooth weights,

I —1
Z”VVPELZ(F\G) F(Xv,p) +... Read Z[y]CF F(ty) +..., (7)

for a compactly supported smooth function F : T/S, — C and its Abel transform
F: T*/S, — C; see Section 2.2 for details. Our guiding principle, then, is to view the
spectral geometry of I'\H® as duality between the classical spherical Maass forms and
counts such as the classical Prime Geodesic Theorem (1), essentially specializing (7) to
(PSU, N T)-invariant test functions, and the spectral geometry of I'\G as the full duality,
as encoded by (7), between the entire spectrum of all PSU,-types and ambient prime
geodesic theorems such as (4) and our Theorem 1.1.

As an imperfect but convincing analogy, consider a higher rank real symmetric
space, say a compact quotient I'\G/K = T'\SL,R/SO,,, with rank r = n — 1, where
L3(T'\G/K) decomposes into a direct sum of principal series representations induced
from a character v in the dual of the Lie algebra of the maximal torus a* >~ R". Weyl's
law is a classical spectral count, central for quantum mechanics or thermodynamics, of
eigenforms in L?(I'\G/K) with Laplace eigenvalue up to a given bound, or equivalently
with [[v], < X. From the point of view of equidistribution in families of automorphic
forms [4, 16, 24], one is more broadly interested in counting representations m C
L2(I'\G/K) in a prescribed region @ € G within the ambient space G ~ ag. of all such

representations; a count with r parameters rather than just one (see [4, Proposition 7.2]).
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6 L. Dever and D. Milicevic

The natural dual question to this is to count primitive conjugacy classes [¢,] occurring
in I" not just according to their length |/ log|t, |||, but simply within prescribed regions
in the r-dimensional space [G] >~ T/S,, of all regular conjugacy classes of G (see [6]).

An ambient prime geodesic theorem in PSL,C such as our Theorem 1.1 should
similarly count primitive conjugacy classes in I' according to their full parameter,
the complex length C¢(y) € C/{£1}. In a different context, Kelmer [13, Corollary 3.1]
proved effective equidistribution of holonomy for closed geodesics on products of n
hyperbolic planes (corresponding to conjugacy classes in an irreducible co-compact
lattice ' < (PSL,R)™ that are hyperbolic at one place and elliptic at all others), including
the asymptotic joint length-holonomy count.

This analogy brings about the natural question of using the non-spherical trace
formula of Section 2.2 to count geodesics in more general regions 2 C [G], the geometric
counterpart to the spectral count of 7 € L?(I"\G) in regions of G as in [4, Proposition
7.2]. Passage to the geometric sharp cutoff count and estimates of boundary terms as
in (13) involve estimating contributions on the dual (spectral) side, extending deep into
the tempered spectrum G'*™P (in all directions), which is of more moderate growth. This
in turn involves the rate of decay of the Fourier transform x, and thus the shape of Q
and its boundary, as in classical lattice-point counting. We leave this intriguing lead for

future work.

1.3 Overview

For the sake of the reader, we now present an overview of the proof, omitting details.
Throughout, I' < PSL,C is a discrete, co-compact, torsion-free subgroup. We refer to
Section 2.1 for background on the geometry and representation theory of G = PSL,C
and its quotients.

One of the key tools we use is the non-spherical trace formula. We start with
a version of Selberg’s trace formula, explicated by Lin and Lipnowski [17, Corollary 2],
which captures both the length and holonomy of geodesics. We specialize this, on the
spectral side, to representations of a particular type and, on the geometric side, to a
particular frequency of holonomy, and obtain Theorem 2.2, which states that for every

n € Z and every smooth, even, compactly supported g: R — C,

1 00 00 1 )
2 Z(mr(ﬂv,n) +mp (7, _,)) /_Oo gwe*” du + 8y(n) /_oo gwe* du — §5¢1 (n)g(0)

()
1

= 5 VolM\&)(n*g(0) — g"(0)) + D L(yg)w(¥)g((y)) cos(nhol(y)),
d ]
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Ambient Prime Geodesic Theorems 7

where the first sum is over the unitary principal and complementary series representa-
tions 7, ., (where v € iR for principal series) occurring with multiplicities mp (7, ;)
in L2(I'\G), w(y) = e ‘"), and the last sum is over the nontrivial hyperbolic and
loxodromic conjugacy classes of I'. For purposes of counting the length spectrum,
where one is typically interested in (8) with a test function g of varying and extended
support, it is natural to combine the complementary series and identity terms into
a single integral of g against a measure do related to do; see (20)-(21). We also
explicate a complementary “odd” trace formula, sampling geodesics with a weight
h(€(y)) sin(n hol(y)) for an odd h € CX(R); see Theorem 2.4.

In particular, using the trace formula (8) with a specific g € CX(R) that
emphasizes the spectral terms with R — 1 < |v| < R + 1 with weight g@iv/27) > 1
and keeps all spectral terms non-negative, we prove in Proposition 2.5 a bound on

multiplicities of representations in an interval of fixed length:

Z mp(m, ) < vol(T\G) - (R? + n?) + Op(1). (9)
R—-1<|v|<R+1
The spectral bound (9) is a bound on local spectral densities, whose leading term agrees
with the Plancherel measure. Such a bound is a standard tool in the passage from a
smooth to sharp count of the spectrum in the proof of Weyl's law (cf. [4, Proposition
10.1]).
As the first step toward a sharp geodesic count, in Lemma 3.1 we use the trace

formula (8) to get a handle on the geometric sum

T3°1gy,) = D L)W (¥)gy,, (L)) cos(nhol(y)) (10)
[y]

with a smooth, even function 9y which approximates Xl—y.y1 and is supported on
[-y — n,y + nl. The principal series terms in (8) are then weighted with its Fourier
transform gy,n(iv/Zn), which is essentially supported up to roughly |v| « 1/n (exhibiting
Schwartz decay past this range); we estimate these terms using (9). In Lemma 3.3, we
majorize the contributions to (10) of classes with £(y) € [y — 1,y + nl by a suitable non-
negative smooth bump function on [y—27, y+2n] (whose Fourier transform again extends
to roughly < 1/75), and show with another application of (8) and (9) that these boundary
terms contribute Op(e¥n+ 1/n?) to (10). Taking the boundary length n = e77/3, we obtain
in Proposition 3.5

4
T y) = S pw(y)costnhol() = som) [ () + Op (€ +n?y) (1)
L)<y e

and a corresponding asymptotic for T,?Lin(y) (and thus T, (y) in (34)).
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8 L. Dever and D. Milicevic

Counts such as (11) arising from the trace formula naturally involve the weights
w(y) (from the Weyl discriminant) and all conjugacy classes [y], including imprimitive
ones. In Section 4 we address these two technical aspects and show they are essentially
harmless, namely, using that w(y) = e *") + 0(e2*™)) and that imprimitive classes
contribute comparatively very few (namely O (e¥)) terms to (11), we prove in Lemma 4.1

that a simpler sum SE (y) over primitive geodesics satisfies

P .
Shy) = D Ly)e ‘Wl = 1 (y) 4 Or(p). (12)
LUy)Sy

Combining (11) and (12) and using integration by parts, we obtain in Proposition 5.1,
as cited above, the estimate (5) on “holonomy character sums” K, (y). In particular,
Proposition 5.1 for n # 0 quantifies cancellation among the holonomies of primitive
geodesics with £(y) < y and shows that these are equidistributed throughout R/27Z.
While we have so far in (11), (12), and (5) emphasized the traditional sharp
cutoff £(y) < y, we in fact throughout also prove estimates for analogous smooth cutoff
quantities like S? lg, ,] and K, [g, 1, with explicit dependence on n. Moreover, we observe
structural analogies in the length and holonomy aspects, such as in the comparison of

our Lemmata 3.3 and 3.6, which state roughly that

1
> W) < ne + >, Wowe) <+ (13)

y—n<t(y)sy+n Ly)y
6o—n' <hol(y)<bo+n’

This analogy is fundamentally due to the fact that, in each case, the dual (spectral) sum
over r, ,, extends up to roughly 1/5 or 1/5’ (in the v- and n-direction, respectively) and
that the Plancherel measure shown in (9) and (23) is symmetric; see Remark 3.7.

With this in mind, in Sections 6.1 and 6.2 we prove 4 = 2x 2 asymptotic formulas
for “ambient” prime geodesic counts, beginning with the smooth count (Proposition 6.1)

of the form

P
w0y f) = D, Fhol(y)g,,Er))

[y]

1

2 o0 ey ~ v A~
=5n |, f@ /2 Gy (W) dwr(u>+or,,m(y—nz||f||1+e 1Flz,1)

(14)

for a smooth f : R/27Z — C, ||JA”||2l1 = ||]A”||1 + ||fA”||1, and 0 < n < 1y, and then for the
related counts 7 (y, f), nr(gm,J), and np(y,J) (for y > 0 and any interval J € R/2nZ),
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Ambient Prime Geodesic Theorems 9

which have sharp cutoffs in the length, holonomy, and in both aspects, respectively. In
particular, by spectrally expanding f into a Fourier series and estimating K,,(y) using

(5), in Theorem 6.2 we prove that

ed7/3

P 1 27 y n
w . f) = 3 Folo) =5 [ F@rd0- [ dor o+ 0p (171,

LUy)Sy

+ IF1 ),

which recovers [25, Theorem 1] for a fixed f. However, our explicit dependence on
f allows us to choose a smooth f; , approximating a sharp holonomy cutoff, while
maintaining explicit dependence on 7, and then estimate the terms with holonomy
within #" of the boundary of J using the second bound in (13). In exact analogy with the
passage to the sharp count in (11), we choose 1’ = e7¥/3, which leads in Theorem 6.5
to the effective count (4) for a sharp length and holonomy count, and then to its
consequence (6).

In Section 6.3, we prove asymptotic formulas that provide counts for the number
of geodesics in intervals I and J of length and holonomy, respectively. These counts
feature a combination of sharp and smooth cutoffs in the length and holonomy, in
complete parallel to Section 6.2, but with improvements in the error term when the
lengths of I and/or J are shrinking. After explicating in Lemma 6.9 an asymptotic
analogous to (14) for the count - (g;,,f;,) with suitable smooth length and holonomy

cutoffs, we derive as Corollary 6.10 the upper bound

e e L1 e
D 1<y T+ + 1)~ + — log" — + —, 19
Ly)el d i ! !
hol(y)eJ

foreveryI C[0,y],J CR/2nZ and 0 <1 < 1y, 0 < n' < 27. This is a (normalized; recall
that w(y) ~r e *0")) ambiental analogue of (13), where we additionally profit in the first
term when lengths and holonomies are sampled from short intervals. Then, we estimate
the smooth count using Lemma 6.9 and bound the ambiguous regions with (15), which

leads to Proposition 6.11 and our main result, Theorem 1.1.

1.4 Notation

We write f = 0O(g) or f < g to mean that |f| < Cg for some constant C > 0, which may be
different from line to line and is absolute unless explicitly indicated with a subscript.
We also write f < g to denote that f <« g < f, and f ~ g to denote that limf/g = 1,

where the direction of the limit is clear from the context, again with dependencies of
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10 L. Dever and D. Mili¢evi¢

implied constants and rate of convergence only as indicated. (No confusion should arise
with the usage of ~ to also denote conjugate elements in a matrix group.)

We use the convention f &) = fR f(x)e 27X d¢ to denote the Fourier transform
of a Schwartz function f, and we choose the normalization f (n) = fR JonZ. f(x)e"i"* dx for
the Fourier coefficient of a periodic function f on R/277Z. We also use the shorthand
notation log*(x) := log(x + 2) for x > 0. Finally, we write §,(n) for the Kronecker
delta-function, that is, §,(n) = 1 if n = a and 0 otherwise (including writing §,,(n)

as shorthand for whether n = +1 or not).

2 Non-spherical Trace Formulas and Weyl's Law
2.1 Background on Groups and Representations

Let G = PSL,C, and let T be a discrete, torsion-free, co-compact subgroup of G.
The group G = PSL,C is in one-to-one-correspondence with the group of orientation-
preserving isometries of the 3-dimensional, hyperbolic upper half space H?, which we
describe shortly. We are primarily concerned with the geometry of the fundamental
domain M = I'\H?, which is a compact hyperbolic 3-manifold, and its covering I'\G.
In this section, we collect some background material about the group G, its geometric
action on H3, the geometry of M, and the representation theory of L?(G) and L?>(I'\G).
The group PSL,C has the Iwasawa decomposition G = UAK, where

U 1z +iyeC eR A e/2 0 eR
= 1Z=Xx++1 , X, , = u '
0 1 Y Y 0 e W2

K =PSU, = {( aB 'B):a,,B eC, lal*+|81* = 1] /{£1}.

o

Here, UA is a Borel subgroup of G with the unipotent subgroup U and with A a maximal
torus in G, and K is a maximal compact subgroup of G. The Haar measure on each of
these subgroups is unique up to a constant multiple. We choose the Euclidean measure
dxdy on U, du on A and the volume 1 Haar measure dk on K. This induces a Haar
measure on G.

The quotient G/K may be identified with the upper half space H® = {z + ir :
z € C,r > 0}, a 3-dimensional hyperbolic space with the hyperbolic metric ds =
(Idz|®> + (dr)?)/2 /r. The action of G by left multiplication induces an action of G on H3

by orientation-preserving isometries (preserving the hyperbolic metric), which may also
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Ambient Prime Geodesic Theorems 11

be described in terms of (z, r)-coordinates; see [8, Section 1.1]. In fact, the group G is in
one-to-one-correspondence with the group of orientation-preserving isometries of H°.
Elements of G can be classified into identity, parabolic, elliptic, hyperbolic, and
loxodromic, each with a distinct type of geometric action on H3. Parabolic elements are
conjugate to an element of the unipotent group U described above. All other elements

are diagonalizable. Every diagonalizable element y € G is conjugate to some

t, € T := 0 o uti0)2 ‘uelR, 0 eR/2n7Z¢ .

We will also refer to a matrix of this form as typ-Ifu=0,theny is elliptic; if 6 = 0, then
y is hyperbolic. All other elements are said to be loxodromic, and this term is sometimes
also applied to hyperbolic elements. Note that we can conjugate t, by ((1) *01) to swap the
diagonal elements; therefore, we can and do choose the length/holonomy pair to have
non-negative length.

If y is hyperbolic or loxodromic, it has two fixed points on the boundary aH?3 U
{oo} = C and acts on H3 by a shift along the geodesic connecting these two fixed points
by the length ¢(y) = u, followed by a rotation around the same axis by the holonomy
hol(y) = 6. We also talk about the complex length C¢(y) = u + i6. A hyperbolic or
loxodromic y € I' corresponds to a closed geodesic in I'\H®. Since I is discrete, I'\H3
contains a geodesic of minimum length, which we refer to throughout the paper as 1 (I).

The group T of diagonal elements of G has a Haar measure dudf/2x. For v € C

and p € Z, define the character y,, , on T by

e(u+it)/2 0 Cipo
__ puv+ip
Xvp 0 e—w+rin)2 | | € ' (16)

This is a unitary character for v € iR.

The classification of irreducible, unitary representations of G = PSL,C is
classical. Let &, , denote the representation of G obtained by extending the character
Xv,p to B = UT trivially along U and then inducing unitarily to G. The unitary irreducible
representations of G are then as follows:

e the trivial representation;

e the unitary principal series representations =, ,, for v € iR and p € Z;

v,p’
e the complementary series representations =, 5, for0 < v < 1.
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12 L. Dever and D. Mili¢evi¢

The only equivalences among the above irreducible representations of G are that

~

m,p = 7m_,_p [15, Theorem 16.2]. For a complete description of the principal and
complementary series representations including the G-invariant inner product, see [15,
§I1.4],[17, §2.4.1].

Let L?>(I'\G) be the space of square-integrable functions on I'\G. The group G

acts on L?(I'\G) by the right-regular representation. Then, we have the decomposition

LXM\G) = @neé mp ()7, (17)

where G is the set of irreducible, unitary representations of G and the non-negative
integer mp () is the multiplicity of 7 in L?(I'\G). Since I' is co-compact, the non-
vanishing terms in (17) form a countable sum that may (after the trivial representation)

be double indexed by 7,; >~ 7 where, for every p € Z, |v,;| — oo (j — 00).

VoD

Decomposition (17) intpé)l;rreducible representations is fundamentally connected
to the theory of automorphic forms. Each representation = appearing in L*(I'\G)
corresponds to an irreducible representation space V.. The Casimir element of G acts
on V_ by scalar multiplication, and V is spanned by I'-automorphic functions. For an

explicit description, see [18, Chapter 8].

2.2 Non-spherical Trace Formulas

For a co-compact discrete subgroup I' < G, the Selberg trace formula relates spectral
information about the multiplicities of representations in L?(I'\ G) to geometric informa-
tion about elements of I". This formula results from computing the trace of the resolvent
operator in two ways.

When the underlying kernel is bi-K-invariant, this recovers the classical Selberg
trace formula on the compact hyperbolic manifold M = I'\G/K. For example, in the
present rank one case G = PSL,C, the trace formula [8, Theorem 5.1] (after removing
the Eisenstein, parabolic, and elliptic terms) relates the spectrum of the Laplacian on
L2(M) with the lengths of closed geodesics on M; see also [12, Theorem 10.2] for the more
familiar case G = SL,yR.

Full control over the holonomy of geodesics on M requires a trace formula on
I'\G. The following trace formula was explicated by Lin and Lipnowski for compact,

hyperbolic 3-manifolds. We refer to Section 2.1 for notations.

Theorem 2.1 (Lin-Lipnowski [17, Corollary 2]). Let ' < PSL,C be a discrete, co-

compact, torsion-free subgroup. Then, for every smooth, compactly supported function
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Ambient Prime Geodesic Theorems 13

F: T — Csuchthat F(t) = Ft™1),

A 1
> e O + /T DY Y2F () dt
v.p

L vol(r\G)(i + i)F‘ +> Uy IDE V2R,
27 ouz = 962/ li=1 ™ 0 14 v

where F(x) = [, F(t)x~!(t) dt is the Abel transform and D(t,) = (1 —e“)%(1 —e=Cl0)2
is the Weyl discriminant. The first sum is over unitary principal and complementary

series representations rx, ,, and mp(x, ,) refers to the multiplicity of a representation

v,p’

T, p in L?>(I'\G). The latter sum is over the nontrivial conjugacy classes [y] of T', and
£(y,) refers to the length of the geodesic corresponding to the primitive element y, that

generates y.

Strictly speaking, there are two elements, y, and y, !, which generate y; however,
L(yy) = Z(yo_l), and so here and henceforth, we ignore this distinction.

Lin and Lipnowski used Theorem 2.1 with F(¢, ) = g(u) cos(f), where g is even,
smooth, and compactly supported, and evaluated the above equation to isolate the
representations r, ,;, which in turn gives a handle on the first eigenvalue of the Hodge
Laplacian acting on coexact 1-forms. From a more analytic perspective, irreducible
representations of K = PSU, are classified as (2¢ + 1)-dimensional representations

7, (¢ > 0), and according to the right K-action we have the decompositions 7, ,|x =

D2 7 and
L2(N\G) = @ZOLZ(F\G)(. (18)

In the following two theorems, we similarly specialize Theorem 2.1 to isolate mul-

tiplicities of representations n C L?>(I'\G) whose lowest K-weight vectors occur

v+
in a fixed component LZ(F\G)lpl. ;heorems 2.2 (which we adapt from [7]) and 2.4 are
the “even” and “odd” trace formulas and should be compared with [25, Theorem 6.5].
Indeed, the intrinsic symmetry in Theorem 2.1 imposes two equalities among the four
quantities mp (7, ,,), so that two trace formulas provide for the fullest possible
spectral resolution in (18). Note that p = 0 corresponds to the familiar spherical Maass
forms on I'\H?, in which case Theorem 2.2 recovers the classical spherical trace formula

[8, Theorem 5.1] for compact hyperbolic 3-manifolds.
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14 L. Dever and D. Mili¢evi¢

Theorem 2.2. Let I < PSL,C be a discrete, co-compact, torsion-free subgroup, and let

n € Z. Then, for every smooth, even, compactly supported functiong: R — C,

1 o0
2 Z(mr(”u,n) +mp(7, ) Loo gwe du

00 1 .
+89(n) / g(u) e du — 55il(n)g(0)

(19)
1 2 1"
= EVOI(F\G)(H 9(0) — g (0))
+ D L)l — eS0T — eT BT g(e(y)) cos(n hol(y)).
[yl
The first sum is over unitary principal (for n = 0, also complementary) series

representations n, ., mp(m, ) refers to the multiplicity of a representation =, ., in
L2(I'\G), and §,, 8, are as in Section 1.4. The latter sum is over the nontrivial hyperbolic
and loxodromic conjugacy classes [y] of I', and £(y,)) refers to the length of the geodesic

corresponding to the primitive element y, which generates y.

Remark 2.3. The left-hand side in Theorem 2.2 may be rewritten as

o [ gtw dwiw)
1 v 1 (20)
+ 5 2 ey )+ mp(r, )3 (52) = 330 M),

veiR

where the sum is now only over unitary principal series representations m, ,, with v €

iR (including for n = 0), and @ is the absolutely continuous measure on R given by

dojf(u) = (eu + Z mr(nvlo)e””) du, (21)

ve(0,1)

with the latter sum being over the complementary spectrum r, , occurring in L2(I\G).
The form (20) is particularly well suited to geodesic counting, with @ acting as the
density of the length spectrum [y] of T' (not necessarily primitive and weighted by
L(yo)w(y) with w(y) <p e *®) as in (19) and (25)).
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Ambient Prime Geodesic Theorems 15

Proof. Consider the function F,, : T — C defined as F,(t,4) = g(u)cos(nf). This
is a smooth, compactly supported function on T invariant under inverses. Therefore,
Theorem 2.1 applies to F,; we will explicate each term.

On the spectral side,

" 1 00 2 ) .
Fn(Xu_,Il)) — E/ /0 g(u) (euv+l(p+n)9 + euv+z(p—n)6) do du
—00
1 00 2r .
== / g(u)e““( / (€' P 4 lp=mf) de) du.
an ) 0

Therefore, for n # 0, ﬁ'n(x;in) = £ [°2, g(we* du, and 13'0()(;5) = [%,9we™ du. If

p # £n, then ﬁ'n (X, é) = 0. The contribution of the trivial representation is

1 1 o) 21 . )
5/ |D(t;'19)|1/2Fn(tu,9) dt, = 4—/ / le“T|1 — e_(““@)\zg(u) cos(n@) d6 du
T T J-—c0JO
1 oo 2
= —/ / (e* +e ¥ —2cosh)g(u)cos(nh) dd du  (22)
4r J oo Jo

= (So(n)/<>o g(u)coshudu — %(Sil(n) /oo gw) du,

by orthogonality. Note that ffooo g(u)coshudu = ffooo g(u)e* du since g is even.
On the geometric side, the contribution of the nontrivial hyperbolic and loxo-

dromic elements is
LD TH2E,(8,) = Lyp)|1 — €5V — e T g(e(y)) cos(mhol(y)).

For the contribution of the identity element on the geometric side, we have

2 82

1 1 .,
-0 vol(r\c;)(m + 872)g(u) cosnp)| = oo vol(M\&®(n2g(0) — g"(0)). m

Now that we have a formula for the sum of multiplicities m(r, ,,) + mp (7, _,),
we also require an understanding of the difference in these multiplicities (both subject

to the symmetry =, ,, = 7_, ). This can be achieved by capturing both the length and

—v,—

the holonomy with an odd function.
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16 L. Dever and D. Mili¢evi¢

Theorem 2.4. LetT < PSL,C be a discrete, co-compact, torsion-free subgroup, and let

n € Z. Then, for every smooth, odd, compactly supported function & : R — C,

1. o0
ELZ(mF(JTV'n) —mp(m, ) / h(w)e* du

=D Uyl — P71 — e T h(e(y)) sin(n hol(y)),
[yl

where the terms are defined as in Theorem 2.2.

Proof. This time we consider the function H, : T — C given by H,(t,,) =
h(u) sin(nf). This is a smooth, compactly supported function on T invariant under
inverses. Therefore, Theorem 2.1 applies to H,,, and we explicate all terms. As for the

spectral terms, we compute
00 2 .
H,(x, ) = / H,(t, ,)e" P do du
2n J_s Jo '

_ 1. 7 1 i(p+n)o i(p—n)o

By orthogonality, this vanishes unless p = +n # 0, in which case

A 1 1../10v A 1 zv

Thus, the spectral terms contribute %izv(mr(nv'n) - mr(nv'_n))fl(iv/Zn), as advertised.
The terms corresponding to the trivial representation and the identity element
vanish. Indeed, using the evaluation (22) from the proof of Theorem 2.2 (which in

1/2

particular shows that |D(t, ,)|"/“ is an even function of 6),

1 1 00 2
—/ ID(t;, ) 1M2H,, (t, 0) Aty 5 = —/ / (e* + e % —2cos6)h(u) sin(nd) do du = 0,
2 Jr / I / ar J_ Jo

while

2 2

1 d
— 5= volN\G) (5 + =

—5)hWsinmo)| =0, -

220z 8unp €| uo Jasn ab9)j0) Jme ukig Aq 9051 8€9/8700BUI/UIWI/EE0 | 01 /10P/3[o1EB-80UBAPE/UIWI/WOD dNoolwapese//:sd)y Wol) papeojumod



Ambient Prime Geodesic Theorems 17
2.3 Plancherel Measure and Bounds on Spectral Densities

Selberg’s trace formula gives a handle on the distribution of the spectrum as the spectral
parameters (such as the Laplace eigenvalue) increase, which on quotients of a group
such as G = PSL,C is guided by a fixed Plancherel measure, depending on G only and
supported on the tempered spectrum of L?(G). In the present situation, keeping in mind
the classification from Section 2.1, let Kpl be the absolutely continuous measure on

iR x Z given by
1 2 2
duapi(v,1) = 5 (VP + %) dvl. (23)

Then, the identity term in Theorem 2.2 may be rewritten (using Fourier inversion) in the

form

1 o0
vol(MG) - / ( / g(u)e“”du)(dupl(v,m+dupl<v,—n)),

iR -

which should be compared to the cuspidal term (the first sum on the left-hand side of
(19)) and may be understood as the leading (or global) term in its geometric expansion,
accounting for the spectral density of G, and similarly in Theorem 2.1.

All we need for our application to Theorem 1.1 is a uniform estimate on the
cardinality of the spectrum in a short window (a familiar step in the derivation of Weyl's
law). In this section, we use the even trace formula from Theorem 2.2 to prove such
a local bound for the density of a particular representation type. We emphasize that,
while the implied constants in Proposition 2.5 depend on the discrete subgroup I', they

are independent of n.

Proposition 2.5. Let I' < PSL,C be a discrete, co-compact, torsion-free subgroup.
Then, for every n € Z and R € R, the multiplicities m(r, ,) of representations =, ,
in L2(I'\G) satisfy

> mp(r,,) K vol(N\G) - dug (v, 1) + O (1)
R-1<[V<R+1 R-1<|v|<R+1

= vol("'\G) - (R? + n?) + Op(1).
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18 L. Dever and D. Mili¢evi¢

Proof. Let g be a smooth, even, non-negative, compactly supported function such that
g(t) > 0forall t € RUIR, as well as g(t) > 1 for |t| < 1/(27). Consider the function

gr(x) = 2 cos(Rx)g(x).

Its Fourier transform gg(t) = g(t — R/2n) + g(t + R/2n) has the property that gz(t) > 1
for R — 1 < 27|t| < R+ 1. Therefore, we have the bound:

> mp(r,,) < D mp(w, )driv/2m) + Op(1).
R—-1<|v[<R+1 v

By Theorem 2.2, the right-hand side of this estimate equals

S 1 N 1 1
—8p(n) / gr(we" du + Eéil(n)gR(O) + Evol(F\G)(nzgR(O) —9gr(0)

+ D Uyl = ST — e C g (e(y)) cos(mhol y) + Op(1).
[yl

The first two terms contribute O(1). For the fourth term, gy is a compactly supported
function with suppgr € suppg and |gg| < |g|, so this sum contains Op(1) terms and

contributes Op(1). Further, we calculate that
gk (x) = 2 cos(Rx)g" (x) — 4R sin(Rx)g' (x) — 2R? cos(Rx)g(x),

so that the third term contributes 1 vol(I'\G) - (n? + R?)g(0) — g"(0)) < vol(I'\G) - (R? +
n2 + 1). Thus,

> mp(r,,) K vol(T\G) - (R® + n? + 1) + Op(1),
R-1<v|KR+1

which completes the proof since the remaining claims are immediate. |
An immediate corollary of Proposition 2.5 is the following:

Corollary 2.6. LetT < PSL,C be a discrete, co-compact, torsion-free subgroup. Then,

for every n € Z and R > 1, the multiplicities m(x, ,) of representations =, ,, in L2(I'\G)
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Ambient Prime Geodesic Theorems 19

satisfy

> mp(r, ) < vol(N\G) - (R® + n®R) + Or(R).
VISR

3 Sampling the Length Spectrum Using the Trace Formula

In this section, we prove estimates on certain sums that naturally appear on the
geometric side of the trace formulas in Theorems 2.2 and 2.4 when one is interested
in sampling geodesics C, on M, controlling their length ¢(y) close to or up to a specific
length y and detecting their holonomy with a character ehol(),

For suitable even and odd sampling functions g,h : R — R, respectively,

Theorems 2.2 and 2.4 give a handle on sums

T%lg) = D L(vp)g(L(y)w(y) cos(mhol(y)),
[yl

Trszin[h] — ZK(VO)h(g(y))W(y) sin(n hol(y)),
[yl

where the sums are over the nontrivial hyperbolic and loxodromic conjugacy classes [y]
of ', £(y,) refers to the length of the geodesic corresponding to the primitive element y,,

which generates y, and
w(y) =1 — "1 — e W71, (25)

Let ¢ : R — Ry, be a fixed, smooth non-negative function that is compactly

supported on [—1, 1] and satisfies |||, =1 and ¢ > % on [—%, %], and for n > 0, define
1 t
v, = () (26)
For y > 0, define the sampling functions g, ,, h, , : R — R as convolutions
Gy = Vo * Ay pte Py = V> (Kiey p1 - 881)- (27)

In Section 3.1, we use the non-spherical trace formulas of Theorems 2.2 and 2.4 to prove

estimates on T;,°%[g, ,] and T,Slin[hy,n]. In Section 3.2, we execute the passage from these
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20 L. Dever and D. Mili¢evi¢

smooth counts to the sharp counts

TS (y) =Tyl = D, Lrg)w(y)cos(nhol(y)),
Ly)Sy
_ ‘ (28)
T (y) = Ty Xy - 8801 = D £(yg)w(y) sin(mhol(y)).
L)y

3.1 Trace Formula Estimates

In this section, we use Theorems 2.2 and 2.4 to prove in Lemma 3.1 estimates on the

smooth counts T;;**[g, | and T,Slin[hy,n] defined in (24).

Lemma 3.1. LetI < PSL,C be a discrete, co-compact, torsion-free subgroup, let n € Z,
and let y,n > 0. Then, the sums Tﬁoslgy'n] and Trslin[hy,n] defined in (24), with Gy and hy,n
as in (27), satisfy

o0 1 1
T5°%1gy ] = 8p(n) [W 9y, (W) dor(w) + Or, (F +1+ nz)(log* . + y)) .

. 1 1
Ty "lhy, ] = Or (F + 1+ nz)(log* ; + y)) '

where @' is as in (21) and log* x = log(2 + x).

Proof. Using Theorem 2.2 for Gy in the form (20), we know that

00 1 P '
Tg,, .1 — 8o(10) / Iy (W dof (W) = 5 3 (mr(w, ) + mf(”v'-””gy'"%)
—00 veiR (29)

1 A 1 /!
— 58410y, (0) = o vol(M\G) (g, (0) - gy, (0)).

With our choice of g, ,, the right-hand side of (29) equals

% S (Gt ) + mr(nvﬁn))gm(;_;) s (Y + O(vol(F\G) (n2 + %))

veiR

(When 5 < y, the error term O(vol(I'\G)/n?) is not needed here, since then ggﬁyn(O) =0

however, we incur this term later regardless.)
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For the spectral contribution, we first compute that the Fourier transform for
v=it(teR)is

on(52) 2022

Using the Schwartz bound |1ff(—nt/2n)| <y, 1/(1 + n|t])™ with (say) m = 3, we obtain

1 s (1 j (1) sintr)
Ezmr(”v,in)gy,n(;_;):( S+ D+ D> )mr‘(ﬂit,:tn)W(z_Zt)slnitY)

v=it o<ltl<1  I<ItS/n [t>1/n

1
Ly Z mr (nit,in) + Z E Z ml"(nit,in)

og|t|<1 1<k<1/n  k<|t|<k+1

1 1
+ Z X 0k)? Z Mp (T 4p)-

k>1/n k<|t|<k+1

Bounding the multiplicities m.(r, 1) using the uniform local bound of Propo-

sition 2.5, we find that the above is

n? 1 n?
< VOI(F\G)[YG +n?) + Z (k-l— ?) + Z (7]3? + 173_]64)]

kg% k>%
oy 3 1+ S
r\y k n3k4
1<k<1/n k>1/n

1 1 1
<L vol(IM\G) [y(l +n?) + o n’log* ;] + Oy (y +log* ;).

Putting everything together completes the proof for the even case.
The odd case is completely analogous and in fact easier, since the trace formula
from Theorem 2.4 has only the principal series spectral and non-identity geometric

terms. Indeed, we compute that

by () = 0 () S,

so that using the Schwartz bound |y (—nt/27)| <,, 1/(1 + n|t)™ and |sin®(ty/2)/it| <
min(ty?, 1/t) < min(y, 1/t), the estimates proceed as above. |

Remark 3.2. Theorems 2.2 and 2.4 allow for good control over the dependence in T,

as we show in Proposition 2.5 and then using this result in the proof of Lemma 3.1.
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22 L. Dever and D. Mili¢evi¢

For example, the dependence in the leading terms is often guided by vol(I'\G) only. This
is a very important feature when the group I' varies or where uniformity in I is required
(say, for a varying level in a congruence group). Since I is fixed for us, from now on we

combine all dependence on I', as in the statement of Lemma 3.1 and beyond.

3.2 Passage to Sharp Cutoff in Length

In this section, we pass from the smooth counts for T7*[g,, ] and T,Slin[hy,n] of Lemma 3.1
to a sharp count for T;°°(y) = T;°°[x_, 4] and T3 (y) = Tp™([x;_,, - sgnl as shown in
(28). This passage requires further use of Theorems 2.2 and 2.4 as well as taking n > 0
small in Lemma 3.1, which typically ends up being the main source of the error terms.
The passage to the sharp geodesic count relies primarily on estimating contri-
butions from classes in the transition zone y — n < £(y) < y + n, which contains the
range where gm(ﬁ(y)) # X—yyl- This is achieved in the following key lemma, which is

the geometric side analogue, in the length aspect, of Proposition 2.5.

Lemma 3.3. LetI' < PSL,C be a discrete, co-compact, torsion-free subgroup, and let

y,n > 0. Then,

y+2n

S tpwy) < /

1
dww) + Op (=5 +1), (30)
y-n<ey)<y+ y=2n 1

where w(y) is as in (25) and = is as in (21).

Proof. We will sample the geodesics in the range ¢(y) € [y — n,y + n] using an even,

majorant function

Fpoy@®) = w(Xz_ny) +1/f(X2t’y), (31)

with a smooth, non-negative bump function  as in (26). By the definition of ¥, f; 5, :
R — R is a smooth, even, non-negative, absolutely bounded function supported on [y —

2n,y + 25l and satisfyingfy,z,7 > 1 on +[y —n,y + nl, so that

D W) K D )W)y 2, E()).

y—n<(y)<y+n [yl
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Using the even trace formula of Theorem 2.2, with n = 0 and in the form (20), we

obtain

D LGIWI Iy 2 (L)
[yl
1

:L fY,Zﬂ(u) dZD'lf(U) + Z my (nuyo)fy,Zn (21_:[) + 27

veiR

vol(F\G)f;,’yzn(O).

Note that, at this point, we are only using the familiar spherical trace formula. We
estimate the first term using f;, ,, < 1 and the support condition on f} ,,. The third term
may be absorbed in Op(1/5?). (In fact, in a typical application with n < y/2, this term
vanishes.)

For the principal series representations m;, (¢ € R), the Fourier transform
fylz,?(t) =4y cos(2nty)1@(2nt) satisfies the Schwartz bound |]A”y,2,7(—t/2n)| < /(1 +nlthr
Bounding the multiplicities mp(m; o) using the uniform bound of Proposition 2.5, we

may finally bound the contribution of the principal series representations as

ny,z,7<—t/2n)mr<nit,o>=( >+ Z) > fyan(—t/2myme ()

v=it 0<k<l/n k>1/n" k<|t|<k+1

1 11
<pn D, KDt — 3 5 <+
0<k<1/n k>1/n n

Combining everything completes the proof. |
Remark 3.4. In the typical regime for the application of Lemma 3.3, when n « 1 «

y — n, we have in (30) simply w(y) < e *?) and |dw;(u)/du| < €%, so that Lemma 3.3
states that

1
> L) < ey(ney + F)'

y—n<l(y)<y+n

This will be the case, in particular, in the proof of Proposition 3.5.
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24 L. Dever and D. Mili¢evi¢

Proposition 3.5. LetI' < PSL,C be a discrete, co-compact, torsion-free subgroup, and

let n € Z. Then, for every y > 0, the sums TS°(y) and TS (y) defined in (28) satisfy

y
T () = 50(n) / dw(w) + O (/3 + n2y),
-y

TS0 (y) = O (6273 + n?y).

Proof. We will use Lemmata 3.1 and 3.3, with a parameter n > 0 to be suitably chosen
momentarily. According to the definition (27), we have that the functions g, , and x;_,

agree outside the set [y — n,y + nl, on which 19y,n — Xi—y.y1l = O(D). Therefore,

T (y) — Te%[g,,,1| = | D €00) (y., €)= Xi_y 1 (€)W (y) cos(nhol(y))

vl

< D tw.

y—n<Ly)<y+n

Therefore, using Lemmata 3.1 and 3.3, we find that

y
TS () — 8o(1) / de (u)
4

< T3 (y) — T®lg,,, )| +

T,‘fﬁs[gyfn] —6p(n) / 9y, (W deoyt (w)
+8p(1) / Gy, (W) = X_y, (W) deof(w)

y+2n 1 ) 1
<</ dWF(u)+0r(—2+(1+n)(log*—+y)+n).
y—27 n n

The statement of Proposition 3.5 is vacuously true for y = O(1), so we may
assume that y > 1. As already mentioned in Remark 3.4 and is clear from the definition

(21), dof*(u)/du < e* for u > 0 (or u = O (1)). We will choose n < 1; then,

y+2n
/ dof(u) < ner.
y=2n

The admissible choice = e77/3 optimizes the error terms and yields Proposition 3.5 for

COs
TS,
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Similarly, if we additionally require 25 to be less than the minimal geodesic

length nq(I"), we can show that

|szm(Y) - Twszin[hyrn” < z trowy).
y—n<L(y)<y+n

and the proof is identical from here on. |

3.3 Passage to Sharp Cutoff in Holonomy

In this section, we prepare the ground for passage to the sharp count in holonomy. The
path to the sharp count is again the geometric counterpart to Proposition 2.5, but this

time in the holonomy aspect.

Lemma 3.6. LetI' < PSL,C be a discrete, co-compact, torsion-free subgroup, and let
y>0,0, €R,and 0 < 5’ < 27. Then,

Yy

> Lygw(y) < 1 /

)<y Y
Oo—1n'<hol(y)<Oo+n’

et (w) + Oy (nl,z) (32)

where w(y) is as in (25) and =" is as in (21).

Proof. SinceT is discrete, the claim is vacuously true for y < ny(I'), so we may assume

that y > no(I'). Consider a majorant function f, ,, : R/27rZ — R given by

fuart0 = Z [ (ST ) o (FE )]

where ¢ is a smooth, non-negative bump function as in (26). This is simply a 27 Z-
periodization of the majorant (31) used in the proof of Lemma 3.3; it is a smooth, even,
non-negative absolutely bounded function supported on +[6, — 21,6, + 2n'] + 27Z and
satisfying fy, », > 1 on %6, —n’, 0 +n'l1+ 27 Z. Since the non-negative sampling function

9yr11 = Y1 * X_y—1,p+1) 8iven in (27) also satisfies g, ; > 1 for [-y, yl, we have

> LW () < D LW )Gy s 1 )y 2y (O1()).

Ly)y [yl
6o—n' <hol(y)<bo+n’
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26 L. Dever and D. Mili¢evi¢

Using the cosine Fourier expansion for f, , ., shows that, after a standard

unfolding calculation, the right-hand side equals

4 / n /
> LW )Gy (L) - 5 D cos(mep)y () cos(mhol(y))
[yl meZ

n s n'm
= 7 Z COS(meo)w(T)Tfr?s[gy_i_l’l]r

meZ

using the definition (24). Applying Lemma 3.1 and the Schwartz estimate [ (n't)m) <
1/(1 + n'|th* with (say) k = 4, this sum evaluates as

2?]71&(0) /_OO Iy+11 W dop ) + OF(T’I/ > ’&('7 m)’(l + mZ)Y)

meZz i
L [yr2 ) ) m?
<<n/ dwli‘(u)+01~(ny|:l+ > miy > ,—4})
—y-2 1< , L (f'm)
sm<1/n m>1/n
N Y
<n / dop(u) 4 Op (Tz)'
-y n
which completes the proof. |

Remark 3.7. The reader will notice that this device for passage to sharp count in
holonomy requires the use of Lemma 3.1 (and thus Theorem 2.2) with large n. This
mirrors the fact that the passage to sharp count in length requires the use of Lemma 3.1
with small # > 0, which in turn relies on using Theorem 2.2 with large spectral
parameter v. In both cases, the proof boils down to estimates on the density of the
automorphic spectrum 7, ,, with spectral parameters increasing in different directions;
these are in turn provided by Proposition 2.5 which works over any ball of spectral
parameters of radius O(1). This structural parallel underlies the agreement between

our results in the length and holonomy aspects.
4 Primitivity and Weights

For y > 0 and n € Z, consider the sums

. P .
Sp(y) = > (e ttinboly o ghiyy = X g (y)e I Hinhely, (33)
462594 LUy)Sy
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Ambient Prime Geodesic Theorems 27

where the summation is over the nontrivial conjugacy classes [y] of T', and (here
and throughout) the superscript © indicates that summation is restricted to primitive
nontrivial conjugacy classes. The sum S (y) is of primary interest for counting primitive
geodesics with control on holonomy.

On the other hand, an application of trace formula as in Section 3 (see (28) and
Proposition 3.5) naturally gives a handle on sums such as T, (y) and its cousin Tﬁ(y)
defined by

. P .
T,(y)= Y. Lpw)e™™@V  Thy) = D" t()yw(y)e™ ), (34)
L)<y Ly

where y, is the primitive hyperbolic or loxodromic element that generates y and the
weight w(y) < e ‘") is as in (25). The main result of this section, Lemma 4.1 shows that
all four sums defined in (33) and (34) agree up to a very small error term. In Lemma 4.3,

we record a similar result for sums with a more general length cutoff.

Lemma 4.1. LetI' < PSL,C be a discrete, co-compact, torsion-free subgroup, and let
y > 0, n € Z. Then, the sums defined in (33) and (34) satisfy:

SP(y) = S,(¥) + Or (), (35)

SP(y) = TE(y) + Or(y), (36)

TE(y) = T, (y) + O (), (37)
and, consequently,

SE(y) =T, (¥) + Or(¥). (38)

Remark 4.2. The bound (38), which follows from (36) and (37), can be thought of as
a statement about removal of unwieldy weights w(y) and imprimitive classes from
T, (y). Since our bounds on T,(y) in Proposition 3.5 are exponential in y (in particular,
To(y) =< €¥), Lemma 4.1 shows that the error terms introduced by these maneuvers are
very small in comparison, and also that (cf. (35)) all our statements hold if extended to
include imprimitive geodesics. The sources of leading error terms in all our principal
results are elsewhere, notably in the passage from smooth to sharp cutoff.

Lemma 4.1 is similar, both in spirit and quantitative strength, to the relations
between Chebyshev's functions in the proof of the Prime Number Theorem. The estimate
SP(y) = S,,(y) + O (y) should be compared to the classical estimate | (x) — 0(x)| < x*/2
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28 L. Dever and D. Mili¢evi¢

for ¥ (x),0(x) ~ x as x — oo, bearing in mind the weights £(y)e *®) in (33). If those
weights were removed by summation by parts as in the proof of Proposition 5.1, the
corresponding unweighted sums (say S,(y) and Sk(y) = K, (y) in (41)) would satisfy
1S, @) — SE()| <, ¥ as compared to the main term S5 (y) ~ €%/ /2y.

Essential ideas for Lemma 4.1 are due to Sarnak-Wakayama [25, Lemmata
7.1, 7.2]. As for us, a key element of their proof of the equidistribution result (3) is
to approximate SE(y), which appears in the spectral (Fourier) decomposition of the
sum over primitive conjugacy classes, by T, (y), which can be approximated by the
hyperbolic/loxodromic term in the non-spherical trace formula with an appropriate
choice of test function. For a general rank one locally symmetric space of finite volume
and negative curvature, Sarnak and Wakayama show that all four sums (33)—(34) have
the same asymptotic growth, with a subexponential error term. Lemma 4.1 explicates

and sharpens this error term in the context of compact hyperbolic 3-manifolds.

Proof. Note that since I' is discrete, there is a minimum geodesic length 7,(I"). When
y < (), all of the sums (33)—(34) vanish, and Lemma 4.1 holds vacuously; thus, we
may assume that y > ().

We will require, for k > 2 and y > 0, an estimate on the sum J; (y) defined by

P
T(y) = D ty)e 0,
Ly)<y

Since w(y) =< e ™), Proposition 3.5 with n = 0 shows that

P
Ty = D tye ) < e
L)<y

In fact, a more precise bound J*(y) <« e¥ + Op (e%y + e”ly), with v; as in (1) and to be
omitted if I' admits no complementary spectrum, follows from Proposition 3.5 with
n = 0 or (essentially) from the Prime Geodesic Theorem (1), but we will not need this.

Using integration by parts,

v+
Jk(y) — / e—(k—l)t d..]*(t) — e—(k—l)tJ*(t)
no()~

v+ y
+ (k- 1)/ J*(te kDt gt
no(0)~ no(T) (39)

&5 8,(k)y + e Ko@),
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where §, is as in Section 1.4. With the estimate (39) at our disposal, we proceed to prove
(35)—(37).

Proof of (35): Suppose 7 € I' is not primitive; then, 7 = ¥ for some primitive y € " and
k > 2. The length and holonomy are E(yk) = ki(y) and hol(yk) = khol(y), respectively.

Therefore,

P ,
1S, (¥) = SRl = ‘ > > kg(y)efkﬁ(y)ﬂknhol(}/)‘
k=2 t()<y/k

<SS e =S kb,

k=2 t(y)<y/k k>2

where in fact the sum truncates at k < y/ny(I'). Using the estimate (39), we find that

1S,(¥) = SE()| < D ki (y/k) = Op(y),
k>2

as required.
Proof of (36): First, we have that

P .
Tﬁ(y) — Sfl(y) = Z E(V)(W(y) _ e—E(y))emhol(y).
Ly)sy

To simplify, observe that

w(y) =|1— e(ce()/)rlu _ e*(CE(V)rl — efe(}’)ll _ e*(ce(}')rz

— e—Z(V)(l + Or(e—f()/)))‘
Therefore, using again the estimate (39),

P
ITh(y) = Sh()l K¢ D eV =5y <r v.
Ly)<y

Proof of (37): As in the proof of (35), we have

P .
T,y — Tﬁ(y) = Z Z ﬁ(y)w(yk)elknh"l()’)_
k=2 t(y)<y/k
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Since w(y¥) = e %™ (1 4 O (e ™)), we thus have that

T, -Tp <r > > e ) =3 J(y/k) = Op(y),

k=2 L(y)<y/k k>2
as in the proof of (35). |

For future reference, we also include a version of Lemma 4.1 with more arbitrary
(such as smooth) cutoffs. This presents no serious distinction, as the proof of Lemma 4.1
uses the cutoff only to control the set of geodesics entering the estimates, followed by
term-wise estimates. For n € Z and a bounded, compactly supported functiong: R — R,

define

Splgl = ZP 0(y)g(E(y))e— () +inholy
[y]

T,lgl = > Llypgt(y)wiy)e™ 7,
[y]

(40)

with notation as in (33) and (34). The following lemma shows that these two sums are

also comparatively very close.

Lemma 4.3. LetI' < PSL,C be a discrete, co-compact, torsion-free subgroup, and let
g : R — R be a bounded function supported in [~y, y]. Then, the sums Sf[g] and T, [g]
defined in (40) satisfy

SPigl = T,lg] + O (llgll . ¥)-

Proof. Defining S, [g] and TZ[g] in the obvious way, we find that

el = 1l = | (- 57), ovsteiyywiena

< ||g||oo(Z—Zp)é(y)gyayo)w(y).

From here, an identical proof to the proof of (37) in Lemma 4.1 shows that

T,lg] — TPlg] < 191l
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The proofs that all four sums S,lgl, Stlgl, Tflg), and T,lg] are within Op(||lglly) of
each other follow in the same way by bootstrapping the proof of Lemma 4.1, mutatis

mutandis. [ |

5 Holonomy Character Sums

In this section, we prove estimates on the “holonomy character sums”

P . P .
K,lg, 1= D g,,E@)e™™, K (y)= D enhol), (41)
[yl Ly)y

where y,n > 0, the cutoff function 9y is as in (27), and the summation is over all
nontrivial primitive hyperbolic and loxodromic conjugacy classes [y] of T'.

The sums K,lgy,] and K, (y) capture the primitive length spectrum of I" with a
smooth and sharp cutoff up to around y > 0, respectively, weighted by characters x,,,
(see (16)) on the holonomy group T N PSU, =~ R/2xZ. They play an analogous role to that
of Dirichlet character sums in the context of the Prime Number Theorem in Arithmetic
Progressions; in particular, asymptotics for the sum K,(y) recover the Prime Geodesic
Theorem, whereas for n # 0 the sums K,,(y) feature substantial cancellation, as shown

in the following proposition.

Proposition 5.1 (Holonomy character sums). Let I' < PSL,C be a discrete, co-
compact, torsion-free subgroup, and let y > 0, n € Z, and 0 < n < ny. Then, the sums
K,lg, ,] and K, (y) defined in (41) satisfy

00 1
K,lg,,,] = 8o(n) /2 9y, (W) o (W) + Op., (eY (W +n?+ 1))

S5y/3 (42)

y
K (y) = 85(n) / door ) + Op (S + e,
2

where §; and @ are as in Section 1.4 and (2).

Proof. We begin with K,,(y), which is technically simpler. Recall the sum SE (y) defined

in (33). Combining Proposition 3.5 and Lemma 4.1, we may write

P . )4
Shy) = D Ly)e ‘OHnhl®) = 5,(n) / dorfi(u) + 55 (1),
(y)<y r

sh(y) = O (e?Y/3 + n?y). 43)
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Since I' is discrete, there is a minimum geodesic length 7y(I'). With an eye toward
summation by parts, we first rewrite K,,(y) as an integral, separating out the principal

part:

t

y+ e y+ et d t y+ et
K,(y) = / ?dsi(t) = §y(n) / P / devf (w) dt + / ?dsZ(t). (44)
no(M— no(M)— -t no(M—

Recalling (2) and (21), the first term equals

dw; e(l —Vp)Yy

do(m)

v et (dwl’f
du

Y
) dt = So(n)/ dor(uw) + Or(log*y+ ) (45)
2

u=t du lu=—t

no@) t

recalling from (21) the definition of dw* and from (2) the notation 1 — vj2 for the
exceptional eigenvalues of the Laplacian, with 0 < vy < --- < v; < 1 (and we set formally
vy = 1if k = 0). Using integration by parts and the estimate (43), the second term in (44)
is

t

?Sﬁ(t)

y+ y et et eSy/S
— — — )P dt <
/,7 ( t t2) n oy

no(I')— o(I")

)4 eEt/S
+n%e’ + / (—
no(I")

2

+ nzet) de

(46)
eSy/S

<r +n?e’.
Combining (45) and (46) gives the desired asymptotic for K, (y).

Now, we turn to K,[g, 1. This case presents a minor technical difficulty in that
the first step in summation by parts (44) does not work as cleanly. To address this, we
rework the proof of Lemma 3.1 by adjusting the choice of the test function g, , from (27)
to a slightly different test function 9% R — Cgiven, for0 <n<ny<tand i €[0,1] as

follows:

Uy @) =, (0™, gr, = Xga* Vi + Ko * Yy (47)

where ¢, is as defined in (26). We remark that the asymptotic for Kn[gy,n] in (42) holds
trivially for y = O(1) (due to the discreteness of I'), so from now on we may assume that

¥ > 1y. We compute, using the Schwartz bound for v,

R A . eiZninS _ e:Ferité . ink
G ® = 2, Rty @V O =3, (ne£27)

<,y min (t, i ;)
70 &7 &1l DY
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The function g%’n : R — R defined in (47) is smooth, even, and compactly
supported, so it may be used in the trace formula of Theorem 2.2. It also satisfies
t,(0) = 2(t + ¥ (inh/27), g},(0) = 29 (in/2m) = 0,,(1), (g},)"(0) = 0. Running the
proof of Lemma 3.1 with gﬁln in place of g, , gives

% 1 1
T;;"S[g%,,,] = 80(n)/ g%,n(u) doy'(u) + Or (n_2 +(1+ nz)(log* o + t)) . (48)

Defining analogously h}, = x(_, 4% ¥ — X(_,; * ¥ » We find as in Lemma 3.1 that
sinfy, A 1 2 * 1
T3P, ) = Oy (o7 + (141 )(1og ot t) (49)

and note that b}, = g;, - sgn outside [—27, 21,].
Note that ||g)t\,n||Oo < 2y (inh/27m) = 0,,(1) and suppg%,,7 C [-t—n,t+ 7], and recall

the sum S;[g;,] defined in (40). Combining (48), (49), and Lemma 4.3, we may write
P ; o

Splgi, ) = D gt Ey)e WHmED = 5o (n) / 9%, doof W + shlgs, |,
[yl o

1 1
Pr r 1 _ 2 *
sn[gt,,,] = OF,no (’7_2 +(1+n )(log ; + t)) . (50)
From the definition (47), we have that

(dg},/dO(0) = v —t) + ¥, (€ + D)

=y, — !0 +y (£ + e D,
Therefore,

- i4 d
Rilgy,li= [ &5 Shgl,)de =Kilgy )+ O (1), 51)

no+

where

P .
K:Ll[gYJI] = Z E(V)gy,,,(E(y))e()‘—l)i()/)ﬂnholy
]

and the O, (1) term accounts for classes [y] with £(y) < 27, (in particular, this

harmless term may be omitted if , < %no(r‘)). Following the argument in (44), we
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separate the integral representing I?}l lgy,,] as

Yy

- Y d [ d
Kﬁtgy,n1=50<”>/ d_t/ g%,nw)dwlf(u)d”/ L& qpsnlgin d,
no —0 no

where the first term equals, with notation as in (45),

e()tka)y
) (52)

o
8o(m) /2 gy ,(we dof(u) + Or (y + L e

For the second term, we use integration by parts and estimate (50) to find that it

equals

ekts.fl[g)\ ]

i

d Y bt Ay 1 2 « 1
. —A i splgt,le’ dt <, e _772 +1+n )(log ; +y) . (53)
10

0

Combining (51), (52), and (53) gives an asymptotic for K,Al[gyyn]. Finally, we recover

the desired sum K, [g, | defined in (41) as

P . 1 1
K,lg, 1= > el”h“mgy,,,(e(y))ay)eW[ /O e di + —Z(y)}
[y]

1 4
_ A i
- /0 K3lgy,,)d + O, ( : )
o e¥ (1 2 o1
= 50(n)/2 9y, (W dor(u) + Or 7 77_2 +1+n )(log ; + y) , (54)

keeping in mind the definition (2), and using, for example, the already proved asymptotic
(55) for K (y) at the second step. We may assume that log*(1/n) = Op(y) since otherwise
(in light of (2) and (55)) the error term for K,[g, ] in (42) clearly dominates all other
terms. With this, (54) completes the proof of Proposition 5.1. |

Remark 5.2. As already remarked, Proposition 5.1 contains as a special case the Prime
Geodesic Theorem in the form

e5Y/3

y
p(y) = Ko(y) = / deor(u) + Or( ) (55)
2
which we record here for future reference.
It is also instructive to consider how the asymptotic obtained in Proposition 5.1
for Kn[gm] evolves as n > 0 varies from n of constant size, a case we may think of as a

model of summation with a smooth cutoff in length on a O(1) scale, down to n = e7¥/3,
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which essentially corresponds to the sharp cutoff in K, (y) (cf. proof of Proposition 3.5).

For n = n, of constant size, Proposition 5.1 states that
* 2
KalGy 0] = 30() [~ G100t A + Op (0% + i) (56
2

Thus, for a fixed n # 0, the sum K,lg, , ] consisting of ~ €%’ /2y terms of unit
size exhibits essentially square-root cancellation as y — oo. In fact, power-saving
cancellation in K,[g,, ] and K,,(y) persists in the range n < e!/2797, a statement which
should be compared with the range of uniformity in the prime number theorem for
arithmetic progressions to large moduli.

As 1 decreases and the cutoff in K,[g, ] becomes steeper, the first error term
(which is independent of n) becomes more pronounced and, for = e ¥/3, essentially
recovers the first error term in the asymptotic for the sharp count K, (y). This term,
which dominates for a fixed n € Z and y — o0, is rooted in the passage to the sharp
count. The second error term detects for large n € Z the influence of the oscillating

holonomy factor e?hol),

6 Ambient Prime Geodesic Theorems

In this section, we prove our principal results providing counts for prime geodesics on
M with control on their length and holonomy simultaneously.

The first of the two main results of this section is the Ambient Prime Geodesic
Theorem (Theorem 6.5), which features a sharp cutoff both in length 4(y) < y and
holonomy, as in (4). For many analytic purposes, including the existence and properties
of various limiting distributions (see, e.g., Corollary 6.3 of Theorem 6.2), smooth cutoff
results suffice. Since the passage to the sharp count is the leading contributor to
error terms, and to emphasize the parallel between length and holonomy aspects, we
provide 4 = 2 x 2 propositions in Sections 6.1 and 6.2, featuring each combination of
smooth/sharp counts in length/holonomy, with explicit error terms depending on the
steepness of the smooth cutoff. Further, in the concluding Section 6.3, we consider the
short-range ambient counting problems and show how a consistent ambiental passage
from smooth to sharp counting leads to stronger corresponding short-range counts with
smooth/sharp cutoffs, including our second main result, Theorem 6.12.

To effectuate the transition from a smooth to sharp cutoff in holonomy, we will
use, for an arbitrary interval J C R/27Z and 0 < n’ < 27 the function Sy R/2nZ — R
given by

Frp@®=>" /J Y, (t+ 2n — 0) do, (57)

nez
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with ¢, as in (26). In other words, f; ,, is the 27 Z-periodic convolution x;*,, and plays
for holonomy the role of g, , and h, , of (27) for lengths. In particular, fi, ¢,/ is a smooth,
non-negative cutoff function of height 1, which is supported on [0 —n’,0" + '] + 27 Z and
agrees with x, ,q outside the set ([0 — ", 0 +n'1U0" — 7,0 + ') + 27 Z.

6.1 Smooth Count

We prove our prime geodesic theorems in holonomy classes by spectrally decom-
posing the holonomy and then invoking estimates on holonomy character sums in
Proposition 5.1. We observed in Proposition 5.1 and Remark 5.2 that, when lengths are
weighted with a smooth function Gy with not too small n > 0 (say, of fixed size), so that
the cutoff is not too steep, one obtains strong asymptotics for holonomy character sums
with very modest error terms, such as essentially square-root cancellation in (56).

Our first proposition is the baseline count for sampling geodesics with a
smooth function in both the length and the holonomy. For cutoffs of fixed steepness
(equivalently with fixed “uncertainty windows,” which we denote by 5,7 > 0) in both
the length and the holonomy, Proposition 6.1 features an error term of essentially
square-root strength, well sharper than the sharp cutoff counts in either direction in

Proposition 6.4 and Theorems 6.2 and 6.5 below.

Proposition 6.1. Let I' < PSL,C be a discrete, co-compact, torsion-free subgroup.

Then, for every smooth function f : R/27Z — C and every y > 0 and 0 < n < ng,

P
70 Gy, f) 1= D fhol(y)g,,,(t(y))
[y]
2

1 o0 ey . o
2 [, T /2 gy,n(wdwr(u)+0r,,70(y—nz||f||1+eV||f||2,1)

1 27

ar o L@ 70y, + Or g, (@),

where o is as in (2) and ||]Ac||2'1 = ||f||1+||ﬁ||1. In particular, for every interval J C R/2xnZ,
0 <n'<2r, andf;, :R/27Z — R as in (57),

]| o° eYy 1 eY
7 Gy, Sy ) = E/z 9y y(Wdor(w) + Or (W log® i * W)

Proof. Using the Fourier expansion f(0) = (1/2x) Znezf(n)eing and applying Proposi-

tion 5.1 to estimate the resulting holonomy character sums Kn[gm] defined in (41), we
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find that
P 1 P 5o\ _inholy _ 1 2
Z fhol(y)gy,, () = o Z P (26%) z fnye = - Z FK,lg,,]
[y] [y] nez neZz
1 - A v 1 9
= 5 (O (Gy,;) + Or g Z#;)If(n)le (W +n?+1)),

which completes the proof for a general smooth f : R/2nZ — C, keeping in mind that
mr(9y,,) = Kolgy,,| and Proposition 5.1. For the specific function f; . defined in (57), we

compute its Fourier coefficients by the usual unfolding argument as

—ind’ _ e—inG

Frp ) = £yl ('n) = ————— ('),

where J = [0, 0’]. Using the Schwartz estimate |1}(77’n)| <L 1/ + n'|n)¥, we can bound

; ¥ ('n)| 1 1 1
> 1yl KW+ —— < 2 —+ 2 g <log’—,
neZ n#0 n<1/y Sy n
(58)
2N F n 12 n 1
DA+, <+ D nlvaml< Y nt+ D P
nez n#0 n<l/y n>1/y
This completes the proof. |

6.2 Passage to Sharp Counts and Prime Geodesic Theorems

In this section, we replace the smooth cutoff in Proposition 6.1 by a sharp cutoff in
one or both of the length and holonomy. Theorem 6.2 features the familiar sharp cutoff
in length, a hallmark of a traditional Prime Geodesic Theorem, and implies effective
equidistribution of holonomy in short intervals of length. To stress the conceptual
symmetry between the two parameters, we also prove Proposition 6.4, an asymptotic
count with a sharp cutoff in holonomy and smoothly sampled length. Finally, in
Theorem 6.5 and its Corollary 6.7, we prove ambient prime geodesic counts with a sharp

cutoff in both length and holonomy.
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Theorem 6.2. LetI' < PSL,C be a discrete, co-compact, torsion-free subgroup, and let

f :R/277Z — C be an arbitrary smooth function. Then, for y > 0,

1 2 y N 5y/3 ~
m )= X fbolyn =5 [ @@ [ dwew +op (1715 + 1 1he?)
21 0 2 y
L)y
1 2 5y/3
-0 | f(@)d@-nr(y)-i-oryf(e )

where oy is as in (2). In particular, for every interval J € R/27Z, 0 < n’ < 27, and
fry it R/27Z — R as in (57),

J
ey fry) = %”F(Y) + Or(

Proof. Using the Fourier expansion f(0) = (1/27) >,z fm)e® and applying Propo-
sition 5.1 to estimate the resulting holonomy character sums K,,(y) defined in (41), we
find that

P 1 P 7 inho 1 7
D fMoly) = o— >0 > el = — 3 FmK, y)
Ly)y Ly)Sy nek nez
1 - 5y/3 . "
= s FOmm +0r (5= X i+ 3 n?fml),
n#0 n#0

which completes the proof for a general smooth f : R/27Z — C, keeping in mind (55).

The final claim follows by specializing these bounds to f; , and using estimates (58). B

For a fixed smooth f : R/2xZ — C, Theorem 6.2 recovers [25, Theorem 1]
in the present setting of compact hyperbolic 3-manifolds. An immediate corollary of
Theorem 6.2, coupled with the Prime Geodesic Theorem (55), is the following equidistri-

bution statement.

Corollary 6.3 (Equidistribution of holonomy). Let I' < PSL,C be a discrete, co-
compact, torsion-free subgroup. Then, the holonomy of geodesics on I'\H® of length
£(y) < y is equidistributed in R/27Z as y — oo. In fact, given any collection of intervals

I, =y, v, 0 <y, <y,) satisfying |I,,| /e "/3 — o0,

1 weak* 1
i > Smolyy —— 5 30r/2nz (M — 00).
i) e, i
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Now we transition from a smooth function on the holonomy to a sharp cutoff,
while still using a smooth function on the length. We do so using the smooth cutoff

function f; ,, defined in (57) and then optimizing the choice of n.

Proposition 6.4. Let I' < PSL,C be a discrete, co-compact, torsion-free subgroup.

Then, for every interval J = [0,0'] € R/2nZ and every y > 0 and 0 < n < 15,

P lJ| [ ev/3 e
TGy d) = D Gy L) = o / Gy (@) A @) +Or (T + 1)
hol(y)eJ 2
|J] eSY/3 ey
= Z”F@y,n) + OF,no( y2r3 + 77_2)

Proof. Our starting point is Proposition 6.1, with a parameter 0 < n’ < 27 to be

suitably chosen soon, which yields the estimate

1 eY

|J| [ er
p (gy,n'fJ,n’) =or , gyln(u)dwl-(u) +Or 0 (W log ? + F)

According to definition (57), the smooth cutoff function fj,, for J = [0,0'] agrees with
xy outside the set (0 — 7,0 +n'TU" —7n',0" + n']) + 27Z, on which |f;, — x;| = O(1).
We also recall that, according to definition (27), the cutoff function g, , is supported on

[-y — n,y + n] and satisfies gyl < 1. Therefore,

‘n[‘(gy,nr‘]) - jTF(ngn’erU/)‘ =

S 0 —fJ,no(hol(y))gy,n(z(y»‘

[y]

< 37 14 ST

Ly)Sy+n Ly)Sy+n
6—n'<hol(y)<0+n"  0'—n'<hol(y)<0'+7/

The latter terms are of the form ready to be estimated using Lemma 3.6, which for every
0 € R/2nZ yields

eY"F’] 2y eY

, €
> W) K 1/ + 7 (59)

ZP 1<

Ly)<Sy+n Ly)<Sy+n
6—n'<hol(y)<6+n' 6—n'<hol(y)<6+n'
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Using Proposition 6.1 and the input from Lemma 3.6 in the form (59), we have
that

(60)

Y
7@y D) = g | Gy derp(w)

< |7TI‘(gy,7]’J) - ”F(gy,n'fJ'ﬂ’) +

J o

< il + ad + ad log*
nN—+—=+— —.
o y n/z Y772 77/

Taking the admissible choice ' = min(y!/2e7¥/3, 27) completes the proof of the first
claim, since for y = O(1) the left-hand side is trivially O , (1).

The second claim follows immediately, keeping in mind that by Proposition 5.1

T Gy,n) = Kolgy 1 = /2 Gy, dor (W) + Or (W - ey),

or alternatively by adapting the use of Proposition 6.1 in (60). |

Our main result, the following Theorem 6.5, features a sharp cutoff in both
length and holonomy. Such a theorem can be proved by passing from the remaining
smooth to sharp cutoff in either Theorem 6.2 or Proposition 6.4; we choose the former

route.

Theorem 6.5 (Ambient Prime Geodesic Theorem). LetI < PSL,C be a discrete, co-

compact, torsion-free subgroup. Then, for every y > 0 and every interval J € R/277Z,

mr(y, ) = [{ly]¥ : €(y) <y, hol(y) e J}|

d¢ i
=[] a4+ 0p(e77) = re )+ Op(e77),
[2,yIxJ

where o is as in (2).

Proof. We begin with Theorem 6.2, with a parameter 0 < ' < 27 to be suitably chosen
soon. Recall from (57) that the smooth cutoff function f; ,, for J = [0, 0'] agrees with x;
outside the set ([0 —n",0 +n'1U[0" —»',0" +n']) + 27 Z, on which |f; ,, — x;| = O(1). Arguing
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as in the proof of Proposition 6.4, we find using Lemma 3.6 that
P P
< > 1+ > 1

Uy)y Ly)Sy
6—n'<hol(y)<6+n"  6'—n'<hol(y) <O+

‘T[]"(Y/J) - JT]"(Y!fJ,n’)

124 ey ¥
< = > Ly)Wy) Lpif —+—=.  (61)
Y <y yoon
6—n'<hol(y)<O+1'
or 6'—n'<hol(y) <6’ +1'

Using Theorem 6.2 and the input from Lemma 3.6 in the form (61), we have that

e (y, J) — ﬂ dwr(u)(zi—i‘

[2,y1xJ
|J]
< |7TF(YIJ) - ﬂ[‘(y:f],n’) + ”r(Y,fJ,n/) - E 2 ]dwr(u)
B%
R - 35y/31 . 1
LN —+—075+ og” —
Py Tzl oy n

Taking the admissible choice n” = min(e™¥/3,27) completes the proof, noting that for
y = 0(1) the left-hand side is O (1), and keeping in mind (55). |

Remark 6.6. Observe that Proposition 6.4, which features a sharp cutoff in holonomy
and a smooth cutoff in length, parallels Theorem 6.2, which has a smooth cutoff in
holonomy and a sharp cutoff in length. This strengthens the perspective that length
and holonomy should be counted as a pair. Compared with the smooth cutoff in
Proposition 6.1, the smooth to sharp transition in either direction yields a significant
contribution to the error term; however, the further passage to a sharp cutoff in both
directions in Theorem 6.5 leads to minimal or no increase in the error term.
Conceptually (and tracing through the proofs confirms this rigorously), this is so
because using smooth functions (27) and (57) to approximate sharp cutoffs essentially
mimics what would be the use of Theorem 2.1 with an (ineligible) sharp cutoff test
function xy(t) for a target rectangle R € R x (R/27Z) of length and holonomy. The effect
of a smooth cutoff of wall length n <« 1 in one direction is that the essential support (in
the sense of Schwartz decay) of the Fourier transform extends up to < 1/ in the dual-
spectral direction. Since typically )’(E(xu'p) =g ((1+|v))(1+|p]))~!, the contribution of the
principal series terms is guided roughly (up to logarithmic factors) by the supremum of

the Plancherel measure (23) over the said spectral support, which is in turn symmetric
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in spectral parameters v and p and does not increase if the support extends in both

parameters rather than just one.

Already as an immediate consequence of Theorem 6.5, we obtain the following
ambient short-range count for primitive geodesics on M, with the length and holonomy
simultaneously restricted to short intervals. We will further improve upon this asymp-

totic in Theorem 6.12.

Corollary 6.7. LetI < PSL,C be a discrete, co-compact, torsion-free subgroup. Then,
for any intervals I = [y’,y1 (0 < ¥’ < y) and J C R/277Z,

mr(,J) = [{ly1F : (€(y), hol(y)) € I x J}|

deo
=IHJ dop (u) o — + Or(e%7/3).

Remark 6.8. Corollary 6.7 provides an exponent-saving asymptotic for =~ (I, J) as long
as |I x J| > e"1/3+9Y for some § > 0. We emphasize that the lengths |I| and |J| may be
short independently of each other in any regime satisfying this combined lower bound.

When Corollary 6.7 gives an asymptotic, this may be rewritten (with obvious
shorthand notation) as np(I,J) ~p #p() - |J|/(2x) ~p Eip({) - |J|/(27), which can in
turn be restated as an effective equidistribution statement for either the lengths or the

holonomies in shrinking intervals of lengths, holonomies, or both.

6.3 Ambient Prime Geodesic Theorems for Shrinking Intervals

Results of Section 6.2 establish structural parallels between the length and holonomy
aspects in geodesic counting and indicate that the “ambiental” joint count of primitive
classes [y] € I[I'l according to the pair (£(y),hol(y)) is perhaps the most natural
counting object. In this section, we demonstrate how consistently executing “ambiental”
passage from smooth to sharp count leads to ambient prime geodesic theorems, which
improve upon the results of Section 6.2 when both intervals of length and holonomy are
shrinking. To emphasize the symmetry and analogy to Section 6.2, in Proposition 6.11
we prove counts that are smooth (but possibly steep) in one of the parameters and sharp
in the other, and in Theorem 6.12 our headline count that is sharp in both aspects.

For the smooth length cutoff, we use

g[,n = ‘(//n * (X[ + X_I)r (62)
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where V¥, is defined as in (26) and x; and x_; are characteristic functions, to sample the
geodesics with length in an interval I C [0, y]. For the smooth holonomy cutoff on an
interval J € R/27Z, we use the function fJ,n, defined in (57), which is the periodization
of Vy* Xy Further, forI = [a, b] and n > 0, we will write I = [a—n, a—i—n],I,;L =[b—n,b+n],
andI, =I, UIUL  =la—n,b+nl

To begin, we modify a consequence of Proposition 6.1 to obtain a smooth count

in both the length and holonomy aspects.

Lemma 6.9. Let I’ < PSL,C be a discrete, co-compact, torsion-free subgroup. Then,
for every two intervals I = [y’,y] (0 < y’ < y) and J € R/2nZ, and every 0 < n < 1, and
0 <n < 2m,

|J| [ e¥ 1 e
ﬂr(g[,n,fj,n') = Z/z gz,n(u) do(u) + OFyno (W log* W + 7772),

where g;, and f;, are smooth cutoff functions defined in (62) and (57), and @ is the

density (2).

Proof. The result follows immediately from subtracting two instances of Proposition

6.1, noting that g; , = Gy = Iy - |

The following corollary, which may be thought of as the ambient analogue of
Lemmata 3.3 and 3.6, will be used to give an upper bound on the boundary terms
when transitioning from a smooth to a sharp cutoff. In our typical application of
Corollary 6.10, at least one of the intervals I and J will be very short, and we pick

n = min(|I], 7o) or n' < |J|.

Corollary 6.10. LetT < PSL,C be a discrete, co-compact, torsion-free subgroup. Then,

for every two intervals I = [y’,y] (0 < ¥y’ < y) and J C R/27Z, we have

e ¥ | 4
(L) Ly o T+ I+ 1) — 4+ —5 log" = + —5
r o Yy o yn noon

for every choice of 0 < n <y and 0 < n’ < 27.

Proof. It is clear from definitions (57) and (62) that x;y_; < g5, and xyy2.2 < fs -
, o

Combining this observation with Lemma 6.9, and keeping in mind that 91, is supported
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inside I, U (—I,), we obtain

nr,J) < nf‘(g],]n f_]/n/)

< lJ""/oo W) @) + 2 log* L + &
/i) - A 45
Coo 2 [, Il r 2 8 T
2y 4 y
e e 1 e
<p ., (I +n(J +1)— + —log* = + —. [ ]
I'no y Y172 n/ n/z

In the following proposition, we pass from the smooth result of Lemma 6.9 to
asymptotic counts of geodesics with a sharp cutoff in one of the length and holonomy
parameters, retaining a smooth cutoff in the other. We pass to the sharp count using
Corollary 6.10, which involves finding an upper bound in the two rectangular regions
of ambiguity with at least one short side length, and thus improves on the error term

compared with Theorem 6.2 and Proposition 6.4 (see Remark 6.13 below).

Proposition 6.11. LetI < PSL,C be a discrete, co-compact, torsion-free subgroup, and

let @ be the density (2). Then, for any intervals I =[y’,y] (0 < ¥ < y) and J C R/27Z:

(a) ForeveryO < n' <27 and forfJ'n/ as in (57),

p (L fy ) = > fy(Bol(r)

Ly)el

|J|/dwr(u)+0r((|J|+n)2/3 ; (1 0g —)1/3+§—2)~

(b) For every 0 < n < g and for g; , as in (62),

TG )= D Gry )

hol(y)eJ

W
2

91, (W) dop-(w) + orr,]o((m L 2RE y2/3 n F)

Proof. ~We approximate n(I,f;,) using the smooth cutoff count =(g;,.f;,), with
0 < n < ng to be suitably chosen later. These counts differ at most by the number of

primitive classes [y] with (¢(y), hol(y)) € I, v I,J[) x J,. By Corollary 6.10, we have the
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bound

|7T]"(IrfJ,r]’) - n]"(g[ynlf_],n/)' g JTF(In_lJn’) +7TF(I+IJ7]’)

eZY ey (63)

o 1071+ + 2 Togr 4
n nN—+— =+

F.no y yn? w2

Combining the estimate of Lemma 6.9 for 7-(g; . f;,) with the estimate (63) on

the region of ambiguity, we have that

|J| [ d , e? eyl*l e¥
M) = g [ 9@ wr(u)+0r,no(ﬂ(|J|+ﬂ)7+W og 7+,72)

= ﬂ/ do(u) + Of (n(lJl + n’)ez—y + e log* 1 + i)
27 J; o y v n

Taking, say, 1, = 1, the essentially optimal choice n = min (e7¥/3(log* %)1/3/(|J|+
n")1/3,1,) completes the proof of (a).

The proof of (b) is similar: approximating nr(g;,,J) with the smooth count
p (gI,n,fJ'n,), with 0 < ' < 27 to be suitably chosen later, we have that e gy, ) —
p (gLn,fJ'n/)l < 7y (In,J;) + 7 (In,J;C), so that combining Corollary 6.10 and Lemma 6.9

we conclude
|J| /°° e?Y ¥ 1 e
J) = — d 0 I —+ —log"— +—).
TG d) = g || 900 Q@)+ Op (1= 4 7 Tog” 45 )
Choosing ' = min (y!/3e7¥/3/(I| + n)1/3, 27r) completes the proof. [ |

Finally, we present our main theorem, which provides a count of length and
holonomy in intervals I and J, respectively. When I = [0, y] and J is fixed, this recovers
Theorem 6.5. However, when the lengths of I and J are shrinking, we have a significant

improvement.

Theorem 6.12 (Ambient Short-Range Prime Geodesic Theorem). LetI' < PSL,C be a
discrete, co-compact, torsion-free subgroup. Then, for any intervals I = [y, y]1 (0 < y’ <
y)and J C R/27Z,

wp(@,J) == [{[y) : (¢(y), hol(y)) € I x J}|

a0 ,3€%3 @3/
_ ag /3 Z
_jj dwr(u)zn —|—OF((|I|+|J|) V273 + yi2 )'
IxJ

where @ is the density (2).
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Proof. We use the smooth count (g, f;,) with parameters 0 < n < 75, and
0 < 1’ < 27 to be suitably chosen later, to approximate the sharp cutoff count (I, J).
Using Corollary 6.10 to estimate the boundary terms, as in the proof of Proposition 6.11,

we obtain

lrp (L, J) — nr(g[,n/fj,n’” < Wr(In_,Jn/) + jTF(I)-;_IJr,/) + WF(IWIJ,;) +7TF(I,7:J;C)

ey  eY 1 e
< I+ 0"l + ) — + —5 log" = + —5.
y v n

Then, using Lemma 6.9 for 7 (gI'n,fJ'n/), we achieve the estimate

|J| ZY ey 1 eY
0, ) /gzn<u)dwr<u>+or,m(<n|J|+n|I|+nn)—+W1g +5)

n_
J
_ | |/dwr(u)+OFnO((nlJ|+n|I|+nn)—+y—l g ) (64)

To obtain the result, we use the essentially optimal choices

ylBev/3 Cyl/3ev3
n=m1n(|J|—1/3,y1/ —Y/4, 0), n’:mln(m—l/B,y/ /4 271’)

taking a fixed ny = 1. Here we note that a brief comparison of the three latter summands
in the error term in (64) shows that indeed the term e3//2/y'/2 in Theorem 6.12 is the best

possible following (64). |

Remark 6.13. As already remarked, Theorem 6.12 recovers the long-range Theorem 6.5
and its Corollary 6.7. It provides a substantial improvement as soon as both I and J are
short, which is particularly strong if the total boundary length =< |I| + |J| is favorably
small. For example, if |I| < |J|, Theorem 6.12 gives a power-saving asymptotic as long
as [I| < |J| » e"1/4t9¥ with the error term potentially as small as O ;(e®/2+9Y), In
general, Theorem 6.12 yields a power-saving asymptotic whenever |I x J|3/(|I| + |J|)? =
II x J| - min(|]I|?, |J|?) > e~ for some § > 0.

Proposition 6.11 similarly improves upon Theorem 6.2 and Proposition 6.4. For
example, when sampling geodesics with a sharp cutoff in length in an interval of size
Il < 1 and a “mild” holonomy cutoff with " =< |J|, Proposition 6.11 improves upon
Theorem 6.2 for all e(=1/3+97 < |J| < %, with the error term as good as Op(e®¥/?) for

II| < 1 and #/,|J| < e ¥/4.
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