AUTHOR QUERY FORM

AllP

Publishing

Journal: J. Chem. Phys. Please provide your responses and any corrections by annotating this
PDF and uploading it to AIP’s eProof website as detailed in the

Welcome email.

Article Number: JCP22-AR-
CHAI2021-00840

Dear Author,

Below are the queries associated with your article. Please answer all of these queries before sending the proof back to AIP.

Article checklist: In order to ensure greater accuracy, please check the following and make all necessary corrections before

returning your proof.

1. Is the title of your article accurate and spelled correctly?
2. Please check affiliations including spelling, completeness, and correct linking to authors.
3. Did you remember to include acknowledgment of funding, if required, and is it accurate?

Location in Query/Remark: click on the Q link to navigate
article to the appropriate spot in the proof. There, insert your comments as a PDF annotation.

Q1 Please check that the author names are in the proper order and spelled correctly. Also, please ensure that each author’s given and
surnames have been correctly identified (given names are highlighted in red and surnames appear in blue).

Q2 Please provide zip code for affiliations 1 and 2.

Q3

04 The DataAvailabilitv-st ent has been-edited-to-follow AIPP stvle fordataopenlyavailablein-apubli itorv-that doesnot

2 b SRS E N ¥ penty P P ¥

issue-ROks—PRlease-check:

( Dl £ th L g i uthersinitdalsan- {-‘.11) A) 4113

Q6 Ref. 11, 42, 50, 60, 67 and 80: Can these references be updated? If so, please provide the relevant information such as year, volume
and page or article numbers as appropriate.

Q7

Q8

Q9 We were unable to locate a digital object identifier (doi) for Refs. 46, 71, 78, 94, 106, 111, and 112. Please verify and correct author
names and journal details (journal title, volume number, page number, and year) as needed and provide the doi. If a doi is not
available, no other information is needed from you. For additional information on doi’s, please select this link: http//www.doi.org/.

Q10

Q11 Dlease-confirm-the-changeinyearofpublicationin Ref 57

Q12 Please confirm the change in page number in Refs. 66, 100, and 110.

Q13 Please provide volume number in Ref. 67.

Q14 If e-print Refs. 69, 75, and 80 have subsequently been published elsewhere, please provide updated reference information (journal
title, volume number, and page number).

Q15 Please provide publisher’s name in Refs. 81, 119, 122, and 124.

Q16 Please confirm the change in journal title in Ref. 82.

Continued on next page




Continued from previous page

Please provide page number in Ref. 87.
Please provide complete information in Ref. 94.

Please confirm ORCIDs are accurate. If you wish to add an ORCID for any author that does not have one, you may do so now.
For more information on ORCID, see

Ping Yang - 0000-0003-0105-6172

E. Adrian Henle -

Xiaoli Z. Fern -

Cory M. Simon - 0000-0002-8181-9178

Please check and confirm the Funder(s) and Grant Reference Number(s) provided with your submission:
National Science Foundation, Award/Contract Number 1920945

Please add any additional funding sources not stated above.

Thank you for your assistance.



= Q1

27

28

29
30
31
32
33
34
35
36
37
38
39
40
41

The Journal
of Chemical Physics

ARTICLE scitation.org/journalljcp

Classifying the toxicity of pesticides to honey bees
via support vector machines with random walk
graph kernels

Cite as: J. Chem. Phys. 156, 000000 (2022); doi: 10.1063/5.0090573
Submitted: 8 March 2022 + Accepted: 24 May 2022
Published Online: 9 99 9999

Q@ o @

Ping Yang,' E. Adrian Henle,' Xiaoli Z. Fern,” and Cory M. Simon'®

AFFILIATIONS

I'School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA
2School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon, USA

Note: This paper is part of the JCP Special Topic on Chemical Design by Artificial Intelligence.
? Author to whom correspondence should be addressed: Cory Simon@oregonstate.edu

ABSTRACT

Pesticides benefit agriculture by increasing crop yield, quality, and security. However, pesticides may inadvertently harm bees, which are
valuable as pollinators. Thus, candidate pesticides in development pipelines must be assessed for toxicity to bees. Leveraging a dataset of
382 molecules with toxicity labels from honey bee exposure experiments, we train a support vector machine (SVM) to predict the toxicity of
pesticides to honey bees. We compare two representations of the pesticide molecules: (i) a random walk feature vector listing counts of length-
L walks on the molecular graph with each vertex- and edge-label sequence and (ii) the Molecular ACCess System (MACCS) structural key
fingerprint (FP), a bit vector indicating the presence/absence of a list of pre-defined subgraph patterns in the molecular graph. We explicitly
construct the MACCS FPs but rely on the fixed-length-L random walk graph kernel (RWGK) in place of the dot product for the random walk
representation. The L-RWGK-SVM achieves an accuracy, precision, recall, and F1 score (mean over 2000 runs) of 0.81, 0.68, 0.71, and 0.69,
respectively, on the test data set—with L = 4 being the mode optimal walk length. The MACCS-FP-SVM performs on par/marginally better
than the L-RWGK-SVM, lends more interpretability, but varies more in performance. We interpret the MACCS-FP-SVM by illuminating
which subgraph patterns in the molecules'tend to strongly push them toward the toxic/non-toxic side of the separating hyperplane.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0090573

I. INTRODUCTION serve as pollen vectors for many crops, including fruits, vegetables,
nuts, oilseed, spices, and coffee.””** Specifically, bees visit the flow-

A. Pesticide toxicity to bees ers of plants (angiosperms) to collect pollen or nectar as a food

Pesticides (including insecticides, fungicides, and herbicides)
are used in agriculture as.an economical means to control weeds,
pests, and pathogens. Thereby, pesticides increase expected crop
yield and quality and contribute to food security.* However,
widespread pesticide use has negative externalities on both aquatic
and terrestrial ecosystems and human health.”” For example, pes-
ticides can harm agriculturally beneficial species not deliberately
targeted, such as earthworms and bees.'"!!

Although under debate, extensive pesticide use in agriculture
may playarole' ' in the widespread decline'” *’ of bee populations
(see Ref. 21 for a synopsis) via both lethal and sublethal toxicity.‘ 1,21
Harms to bee populations are especially concerning because bees
are valuable for agricultural production:’” (1; primary value) bees

source. In the process, bees (inadvertently) transfer pollen from
the anther of one flower to the stigma of another flower, a neces-
sary step in the production of seeds and fruits for many plants.”
(2; secondary value’®) Honey bees produce honey and beeswax. In
addition, bees are ecologically valuable as pollen vectors for plants
in natural habitats.””

Because insect,”® weed,”” and fungi’’ populations can develop
resistance to an insecticide, herbicide, and fungicide, respectively,
new pesticides must be continually discovered and deployed." New
pesticide development is also driven by the aim to reduce negative
environmental impacts of incumbent pesticides.”’

Virtual screenings can accelerate the discovery of new pesti-
cides operating under a known mechanism. For example, suppose
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an insect protein is a known target for insecticides. Then, computa-
tional protein-ligand docking™ can score candidate compounds for
insecticide activity, informing experimental campaigns.” " How-
ever, newly proposed pesticides must also be assessed for toxicity to
honey bees™’ (see the US EPA website*!).

A computational model that accurately predicts the toxicity of
pesticides to bees would be useful® (i) as a toxicity filter in virtual
and experimental screenings of compounds for pesticide activity,
(ii) in emergency situations where an immediate assessment of tox-
icity risk is needed, and (iii) to focus scrutiny and motivate more
thorough toxicity assessments on existing and new pesticides pre-
dicted to be toxic. Generally, training machine learning models
to predict the toxicity of compounds to biological organisms is
an active area of research.””** Indeed, open data from bee toxic-
ity experiments” "’ have been leveraged to train machine learn-
ing models to computationally predict the toxicity of pesticides to
beeS-Sﬁfﬁ-l

B. Representing molecules for supervised machine
learning tasks

A flurry of research activity is devoted to the data-driven
prediction of the properties of molecules via supervised machine
learning.®® A starting point is to design a machine-readable rep-
resentation of the molecule for input to the machine learning
model.*

A vertex- and edge-labeled graph (vertices = atoms, edges
= bonds, vertex label = element, and edge label = bond order) is a
fundamental representation of the concept of a small molecule. For
many classes of molecules, the mapping of the concept of a molecule
to a molecular graph is one-to-one. If we wished to communicate
a small molecule to an intelligent, extraterrestrial life form that has
just arrived on Earth and does not know our language, we would
likely sketch a vertex- and edge-labeled, undirected graph. ecular
graph representations break down for certain classes of molecules®
and are invariant to the 3D structure and stereoisomerism."’

However, because classical machine learning algorithms oper-
ate in a Euclidean vector space, much research is devoted to
the design of fixed-size, information-rich vector representations of
molecules that encode their salient features.””~>. Many molecu-
lar fingerprinting methods’” extract topological features from the
molecular graph’” to produce a “bag of fragments” bit vector repre-
sentation of the molecule.”” For example, Molecular ACCess System
(MACCS) structural key fingerprints’* of a molecular graph are
bit vectors indicating the presence or absence of a pre-defined list
of subgraph patterns. Other hand-crafted molecular feature vectors
include chemical, electronic, and structural/shape (3D) properties of
the molecule as well. "

Two advanced supervised machine learning approaches cir-
cumvent explicit hand-crafting of vector representations of molec-
ular graphs:

1. graph representation learning,”” such as message passing neu-
ral networks (MPNNs) " that learn task-specific vector rep-
resentations of molecular graphs for prediction tasks in an
end-to-end manner and

2. graph kernels," "’ which (loosely speaking) measure the sim-
ilarity between any two input graphs, allowing for the use

ARTICLE scitation.org/journalljcp

of kernel methods,** such as support vector machines,* ker-
nel regression/classification,” and Gaussian processes,*® for
prediction tasks.

That is, MPNNs and kernel methods operate directly on the
molecular graph representation, bypassing engineering and explicit
construction, respectively, of molecular feature vectors for machine
learning tasks.

MPNNS are powerful models for molecular machine learning
tasks’® but require large training datasets. In contrast, kernel meth-
ods with graph kernels are likely more appropriate when training
data are limited, as they are easier to train, possess fewer hyper-
parameters, and are less susceptible to overfitting.*” Empirically,
graph kernels give performance on par with MPNNs on a variety
of molecular prediction tasks.”

C. Our contribution: Building a bee toxicity classifier
of pesticides via the random walk graph kernel

We train and evaluate a support vector machine (SVM) clas-
sifier for predicting the toxicity of pesticide molecules to bees.
Enabling a machine learning approach, the BeeToxAI project™ com-
piled labeled data from bee toxicity experiments, composed of 382
(pesticide molecule, bee toxicity outcome) pairs. We compare two
constructions of a molecular vector space for the SVM: (1) a ran-
dom walk feature space, describing pesticides by the set of vertex-
and edge-label sequences along length-L walks on their molecu-
lar graphs, and (2) the MACCS fingerprint (FP) space, describing
pesticides by the presence/absence of a list of pre-defined sub-
graph patterns in their molecular graphs. We explicitly construct the
MACCS FPs but instead rely on the kernel trick and fixed-length-L
random walk graph kernel (RWGK) for dot products in the ran-
dom walk feature space. The L-RWGK-SVM achieves an F1 score
(mean over 2000 runs) of 0.69 on the test dataset, and L =4 is the
mode optimal walk length to describe the molecular graphs. The
MACCS-FP-SVM performs on par/marginally better but exhibits
more variance in its performance. Finally, we illuminate subgraphs
in the pesticide molecules that tend to most strongly push molecules
in the MACCS FP space toward the toxic/non-toxic side of the
separating hyperplane of the MACCS-FP-SVM.

Il. PROBLEM SETUP: CLASSIFYING THE TOXICITY
OF A PESTICIDE TO HONEY BEES

The pesticide toxicity classification task. We wish to construct
a classifier f: G — {-1,1} that maps any molecular graph G (see
Sec. 111 A) representing a pesticide molecule to a predicted binary
label § = f(G) , where y =1 is toxic to honey bees (Apis mellifera)
and y = -1 is nontoxic. The classifier f is valuable as a cheap-to-
evaluate “surrogate model” of an expensive bee toxicity experiment
[see Fig. 1(a)].

The labeled bee toxicity dataset.”® From the BeeToxAl
project,”® we took labeled data {(Gn,y)}., composed of N = 382
examples of (i) a molecular graph G, € G representing a pesticide or
pesticide-like molecule and (ii) its experimentally-determined acute
contact bee toxicity label y, € {~1,1} (I: toxic, —1: nontoxic).

Figure 1(b) shows the class (im)balance; 113 of the molecules
are labeled toxic, and 269 are labeled nontoxic.
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165 The outcome of a bee exposure experiment was mapped to a o Eisthe set of edges representing chemical bonds; {v;,v;} € £ 206
166 toxicity label on the pesticide following US EPA guidelines:* the iff the atoms represented by vertices v; € V and vj € V are 207
167 pesticide was labeled as toxic if the median lethal dose (LDso) after bonded. 208
168 48 h to an adult honey bee was greater than 11 yg/bee—and nontoxic o {,:V—> {C,N,0O,S,P,F,CLLBr,Si, As} is the vertex- 209
169 otherwise. labeling function that provides the chemical element of each 210
170 The dataset includes neonicotinoid, pyrethroid, organophos- vertex (atom). 211
171 phate, carbamate, pyridine azomethine, phenylpyrazole, and orga- o (.:&—{1,2,3,a} (“a" for aromatic) is the edge-labeling 212
172 pochlorine insecticides,” ****°*>" herbicides,”® miticides,” function that provides the bond order of each edge (bond). 213

173 and fungicides.”**”>"” Any molecules bearing tetrahedral chiral

) . ; lig. 2. Thi i 214
174 centers are not labeled with stereochemical configuration. For example, see Fig. 2. This molecular graph representation
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175 The machine learning approach: data-driven prediction of ofa mole.cule describes its topology and is invariant to traqslatlons
. . L2 .. and rotations of the molecule and to bond stretching, bending, and 216
176 bee toxicity. Our objective is to leverage the labeled bee toxicity otation o7
177 dataset to train an SVM as the toxicity classifier f(G). An SVM rotation. .
Y f(G) Let G be the set of possible molecular graphs, so G € G. 218

178 is a versatile supervised machine learning model that aims to find
179 the maximum-margin separator (a hyperplane) between the positive
180 and negative training examples in a mapped feature (vector) space.
181 The mapped feature space does not need to be explicitly constructed.
182 Instead, kernel functions can be used to (implicitly) perform the
183 needed operation (dot product) in the mapped feature space. We
184  compare two constructions of a molecular vector, space by repre- @
185 senting pesticide molecules with (1) the fixed-length random walk

186 feature vector and (2) the MACCS fingerprint. We explicitly con-

187 struct the latter, while for the former we rely on the fixed-length N walk (,@

188 random walk graph kernel for the dot product. c
B
Cl. Cy .0 @
% Il METHODS T = @y ¢ T R
190 A, The vertex- and edge-labeled graph representation Cy\CH//CsH 1 4 ‘
w1 of a molecule 7
N#Ccle(Cl 1c1 (&)
192 A fundamental representation of a molecule is as a vertex- and #Cele(Cl)ceee a @ a .
193 edge-labeled, undirected graph G = (V, &, 4y, e ):
molecular graph, G
194 e V={vi,...,on} is the set of vertices representing its N
195 atoms, excluding hydrogen atoms. We exclude H atoms in FIG. 2. The molecular graph representation of 2,6-dichlorobenzonitrile (SMILES 219
196 the molecular graph to avoid redundancy. For example, the string shown). Nodes are labeled by atomic species (indicated by color). Edges 220
197 hydrogen-excluding molecular graphs of ethane, ethylene, are labeled by bond order. A length L =4 walk (w1, v, v3,vg,v19) on the 21
198 and acetylene can be distinguished by the order (an edge molecular graph is indicated by the arrows. The label sequence of this walk is 222
N,3,C.1,C.a,C1,Cl). 223
199 label) of the C-C bond (edge). (13:01,6:8,6, 1,6
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B. Two molecular vector spaces

We explore two feature maps ¢ : G — R” that map a molecu-
lar graph G € G to a feature vector ¢(G) € RF, with R" being the
molecular vector space in which the SVM operates: (1) the MACCS
structural key fingerprint and (2) the fixed-length random walk
feature vector.

ARTICLE scitation.org/journalljcp

1. MACCS structural key fingerprint

The Molecular ACCess System (MACCS) structural key fin-
gerprint (FP) of a molecular graph is a bit vector whose entries
indicate the presence (1) or absence (0) of a list of F = 166 pre-
defined subgraph patterns (molecular substructures/ fragments).’il"f :
The number of “on” (1) bits in the MACCS FP is equal to the

C% = e

Cl

[#6]# [R]
[F,Cl,Br,I] K] mkakakakaka]
107 i 144 150

103

134 T T 166

G- g% &

[F,Cl,Br,I]!@*e* K kak
[F,C1l,Br, I]~* (~*)~* *1@*@* 1
(a)
label sequence, s | # L=2 walks
N, 3,C, 1,0) 1
(N, 3,C, 3,N) 1
(Cl, 1, G, 1,00 2
(Cl, 1, C, a, C) 4
(C 3,N, 3,C) 1
(C, ,1,0) 2
(C, a,C, 1,Cl) 4 V10)=].
(C,1,C, 8, N) 1
(C,4,C,a,0) 24
(C,a,C, 1,C) 2
(C, 1,C,a,C) 2
(C, 1,C, 1,0) 2

(b)

FIG. 3. lllustrating the two molecular vector representations we employ for pesticides.

*
o [#7]
3
1
O
(ORRC
a a
ol

molecular graph, G

(@) The MACCS fingerprint (FP) is a length-166 bit vector indicating the pres-

ence/absence of a predefined list of 166 subgraphs in a molecular graph. Shown here is the MACCS FP (“on” bits orange) of 2,6-dichlorobenzonitrile. Subgraphs of the

molecular graph that activate bits of the MACCS FP are highlighted orange. The pattern(s

) each subgraph matches is/are indicated in the SMARTS language. (b) The fixed-

length random walk feature vector contains counts of label sequences encountered along all fixed-length walks on a molecular graph. The table lists all label sequences

encountered along length L = 2 walks on the molecular graph of 2,6-dichlorobenzonitrile.

The numbers in the second column, giving the number of walks having each label

sequence, comprise the nonzero entries of the random walk feature vector of 2,6-dichlorobenzonitrile.
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number of these subgraphs with presence in the molecule. The list
of molecular patterns defining the MACCS feature map ¢ ““(G) :
G — R' was curated by a company, Molecular Design Limited,
Inc. (MDL), for drug discovery tasks.”* Thus, we hypothesize that
the MACCS fingerprint encodes biologically-relevant information
about pesticide molecules for predicting their toxicity to bees.
Indeed, MACCS fingerprints have been found to be predictive of
toxicity in other studies.”"”” We use the MACCS fingerprint
implementation in the-RDKit,”* whose source code lists the sub-
graph patterns (described by SMARTS strings) corresponding to
each keybit.” For example, keybits 29, 1° 25, and 154 indicate the
presence of phosphorus, a halogen, an aromatic ring, and a carbonyl
group, respectively. Figure 3(a) illustrates further.

2. The fixed-length random walk feature vector

a. Walks on a molecular graph and label sequences along them.
The random walk feature map describes a molecular graph by the set
of label sequences along walks on it.

A walk. A walk w of length L on a molecular graph G is a
sequence of vertices such that consecutive vertices are joined by an
edge,

w = (vy,...,vp+1) suchthat {vj,vis1} €€ forie {1,...,L}. (1)

The length L refers to the number of edges (not necessarily unique)
traversed along the walk (for example, see Fig. 2).

Let W1 (G) be the set of all possible walks of length L on a graph
G.

The label sequence of a walk. The label sequence s = £, (w) of
a walk w = (v1,...,vr41) gives the progression of vertex and edge
labels along the walk,

L (w) = Lo ), le({v1,02}), -« s be({vn, U1 })s o (VD41) ]
2)
(for example, see Fig. 2).
Let St = {s1,...,ss, } be the set of all possible label sequences
among length-L walks on all molecular graphs G € G—so |S;| = S;.

b. The fixed-length random walk feature map. The fixed-length
random walk feature vector of a molecular graph lists the number
of fixed-length walks on the graph with each possible vertex- and
edge-label sequence. Thereby, the molecular graph is described by
the distribution of label sequences along fixed-length (equipoise”®)
random walks on it.”” "

Precisely, the fixed-length-L feature map ¢ : G —~ RS con-

structs a vector representationof a graph G € G whose element i is a
count of length-L walks on G with label sequence s;,

$UG) = [91(Ghsr45 ()], ¥

where $(G) = {{w € Wi(G) : £ (w) = si}. (4)

As a length L = 0 walk constitutes an atom, ¢ ) lists counts of
atom types in the molecule. As a length I = 1 walk constitutes two
(ordered) atoms joined by a bond, ¢’ () lists counts of each par-
ticular (ordered) pairing of atoms joined by a particular bond type
in the molecule.

Figure 3(b) illustrates 1 sting (in an arbitrary order) the
nonzero elements of $“~? (G) for an example molecular graph G.

ARTICLE scitation.org/journalljcp

Inboth Eq. (4) and Fig. 3(b), we dodge the task of explicitly imj g
an ordering of the set Sy, since we never explicitly construct ¢/ (G).

3. Comparing and contrasting the MACCS FP
and random walk feature vector

Both the MACCS FP and random walk feature vector char-
acterize a molecular graph by looking for a list of “patterns” in
it—subgraph patterns for the MACCS FP and label sequences along
walks for the random walk feature vector. Distinctions are as fol-
lows: (1) the MACCS FP looks for variable-size subgraphs, whereas
the random walk feature vector looks at fixed-size (length) label
sequences along walks; (2) the random walk feature vector counts
patterns, whereas the MACCS FP only indicates the presence of pat-
terns; (3) the random walk feature vector exhaustively counts all
possible walk patterns, while the MACCS FP non-exhaustively looks
for a pre-defined, curated subset of the possible subgraph patterns;
(4) owing to the variably-sized list of subgraph patterns, including
wildcard atoms/bonds, in the MACCS FP, multiple subgraphs can
activate the same bit, and a single subgraph can activate multiple
bits; (5) the MACCS FPs ¢*““(G) € R™ are feasible to explic-
itly construct and store in memory, while the fixed-length random
walk feature vectors ¢2)(G) € R are not for large L, owing to the
large number of possible label sequences Sy present in length-L walks
on molecular graphs;”® given V possible vertex labels and E possible
edge labels, theoretically |S,| = V*'E" label sequences are possible
in length-L walks, although many of these will not be observed in
any plausible chemical system.

C. The fixed-length random walk graph kernel

The fixed-length random walk kernel” kX (G, G') = ¢ (G) -
¢™ (G') allows us to circumvent explicit construction of ¢* (G)
when employing a kernel method of machine learning, which can
be cast to rely only on dot products ¢ (G) - ¢¥ (G') of pairs of
vector representations of molecular graphs G, G'.

1. Definition and explanation of the L-RWGK

The fixed length-L random walk graph kernel””'"” (L-RWGK)
A :GxG— R is a (symmetric, positive semidefinite) function
such that evaluating k(G, G') is implicitly equivalent to (i) mapping
the two input graphs G and G’ into the random walk vector space
R*" via the feature map ¢~ and then (ii) taking the inner product of
these two vectors,

KM (6,6') = ¢(6) - 9P (6. (5)

As seen from Eq. (4), term i of K (G, G’) in Eq. (5) is the number
of pairs of length-L walks—one in graph G and the other in graph
G'—with the label sequence s; € S;. Hence, K (G, G') sums counts
of pairs of length-L walks on the two graphs G, G’ sharing a label
sequence,

k(l')(G, G’) = Z|{w e WL(G) : bu(w) =s}

SES

<[l{w’ e Wi(G): Cu(w) =5}k (6)

As the term associated with a label sequence s is nonzero; iff both
graphs G and G’ possess a length-L walk with label sequence s, this
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339  sum may be restricted to be over the subset of label sequences in
340 common between length-L walks on the two graphs, £, (WL(G))
Ml (WL(G)).

342 Intuitively, the 0-RWGK k© (G,G’) sums counts of pairs
33 of atoms of a particular type between the two graphs G,G'. The
344 1-RWGK k) (G,G’) sums counts of pairs of two particular
345 (ordered) atoms joined by a particular bond.

346 To evaluate the L-RWGK k* (G, G") without explicitly con-
M7 structing the random walk feature vectors ¢ (G), o™ (G'), we
348 leverage the direct product graph to count pairs of label sequences
349 in common between walks on two graphs G, G'.

50 2. The direct product graph to compute RWGKs

351 Given two input graphs G,G’ € G, we construct a new graph,
352 the direct product graph Gx = G x G’ = (W, Ex, €y %, Lex ), to evalu-
353 ate the L-RWGK k) (G, G") between G and G’. The direct product
354 graph Gx is constructed to give a one-to-one mapping between (i)
355 walks in G« and (ii) pairs of walks—one on G and one on G'—with
356 the same label sequence.

357 Definition of the direct product graph. Each vertex of the
358 direct product graph G« = G x G’ is an ordered pair of vertices—the

o &
HC/O5\P//4 :
3% /3\0/05'\0’ 12
HC—O 7 /10
1 2 B
1B 1
COP (=0) (OC)0OC(Br)C(Cl) (C1l)Br

©
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first in G and the second in G'. The vertices of the direct product
graph are constituted by the subset of pairs of vertices between G
and G’ with the same vertex label,

Vi = {(0,0) e Vx V! | Lu() = £, ()}, )

An undirected edge joins two vertices of the direct product graph
Gx = G x G’ iff (i) the two involved vertices of G are joined by an
edge in & and (ii) the two involved vertices of G’ are joined by an
edge in £’ and (iii) these two edges in € and £ have the same label,

Ec = {{(wu), (0,0)} | (wa) eV A (0,07) € Vs A
x {wv} €& Adfus0 Y €€ A L({uv}) = 6,({u' v })}.
(8)
We equip the direct product graph Gy = G x G’ with vertex- and

edge-labeling functions that give the (same) label of the involved
vertices and edges in G and G,

Lox ((v,0") 1= £, (v) = £,(v"), 9)
Lox ({(6,1), (0,0)}) = L({w,0}) = L({&,0'}). (10)

0}
5\ P -
HC.. _P” © CH,
2 NH
4 2

COP (N) (=0) sC

359 FIG. 4. lllustrating the direct product graph Gx = G x G’ of two molecular graphs G and G’ representing two molecules (shown above their SMILES strings) in the BeeToxAl
360 dataset. Vertex labels in the graphs are indicated by color. Note the one-to-one correspondence between (i) a walk on Gy« and (i) two walks on G and G’ with the same

361 label sequence. We indicate one such correspondence with the black arrows.
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Figure 4 shows the direct product graph of two molecular graphs as
an example.

Utility of the direct product graph for evaluating the
L-RWGK. By construction, any given length-L walk wx on
the direct product graph Gx=Gx G with label sequence
£y x(wx) corresponds to a unique pair of walks {w,w'}, with
we WL (G),w' e Wi.(G'), possessing the label sequence
Lo (w) = £, (w') = £y x(wx), and vice versa (giving a bijec-
tion). This is illustrated in Fig. 4. Therefore, all three of the following
quantities are equivalent:

e the number of length-L walks on the direct product graph
Gy =Gx @G,

e the number of pairs of length-L walks on G and G’ with the
same label sequence, and

e through Eq. (6), the value of the L-RWGK k% (G, G').

The key to counting length-L walks on G, = G x G'—and thus
to evaluating kX (G, G')—lies in its | Vx| x |Vy| adjacency matrix A,
whose entry (i,j) is one if vertices vy, Uxj € Vy are joined by an edge
and zero otherwise. The number of walks of length L from vertex
Uy, to vertex vy; is given by element (i,§) of AL, Summing over all
possible starting and end vertices of walks,

V] D]

K266 =3 S (AL

i=1 j=1

(11)

Summary of evaluating the L-RWGK. Computing the
L-RWGK k% (G, G), therefore, involves (i) constructing the direct
product graph G« = G x G, (ii) building the adjacency matrix Ax of
Gx, (iii) computing the Lth power of Ay, A%, and then (iv) summing
its entries.

D. The linear kernel between two MACCS structural
key fingerprints

For comparison to the L-RWGK, note the (linear) kernel
applied to the MACCS FPs of a pair of molecular graphs,

KA (G, G 1= VAT (). g1 (G (12)
gives the number of subgraph patterns in the MACCS library that
are exhibited by both graphs G and G'.

E. Support vector machines (SVMs) as classifiers

A support vector machine (SVM)"'""'” is a supervised

machine learning model for binary classification. To train an SVM
using a labeled training dataset {(Gu,yn) 15, with G, € G and y,
€ {~1,1}, we rely on a feature map ¢ : G — R” to represent graphs in
a vector space. Such feature maps can be constructed explicitly (the
case with the MACCS EP) or implicitly via the use of a kernel func-
tion k(G,G") = ¢(G) - ¢(G") between pairs of data (the case with
the random walk feature vector). We briefly explain the SVM here.
For more details, see Refs. 84 and 101.

The decision boundary. Ultimately, an SVM classifier f(G)
employs a hyperplane w - ¢(G) + b = 0 in the feature space R” as
the decision boundary,

¥ =f(G) =sign(w-¢(G) + b), (13)

ARTICLE scitation.org/journalljcp

with w € RF normal to the hyperplane, pointing in the direction
of (most) of the positive examples, and b € R specifying the off-
set of the hyperplane from the origin. Training an SVM constitutes
using the training data to find the “optimal” hyperplane described
by parameters w, b.

The primal optimization problem. The (soft margin) SVM
seeks a hyperplane that separates most of the training data with a
large margin defined by the thickness of the region |w - ¢(G) + b|
< 1. The primal optimization problem associated with training an
SVM is

1 N
min(—w”2 +CY En), (14)

wb \ 2 =1
suchthat & >0 forne {1,...,N}, (15)
Yn{w-¢(Gu) +b)>1-¢&, forne{l,...,N}. (16)

The slack variable €, associated with data vector ¢(G,) allows, if it
is nonzero, violation of the constraint y, (w - ¢(G,) + b) > 1 that it
lies (i)-on the correct side of the decision boundary and (ii) outside
of or on the boundary of the margin. The first term in the objective
fanction describes the size of the margin; the second term penal-
izes constraint violations. The hyperparameter C > 0 trades a large
margin for constraint violations.

The dual optimization problem. The Lagrangian dual of
the primal optimization problem is in N Lagrange multipliers

{a1,...,an},
N 1NN
max| Poai— >3 > aeyyi¢(G) - $(G) ), (17)
i=1 i=1 j=1
suchthat 0<a, < C forme {1,...,N}, (18)
N
Z Xn)n = 0, (19)
n=1

where the solution to the dual problem « and the solution to the
primal problem w satisfy

N
w = nynd(Gn). (20)

n=1

The kernel trick. The objective of the dual problem in Eq. (17)
depends only on the dot products ¢(G;) - ¢(G;) of the training data.
The kernel trick is to replace ¢{Gi) - ¢(G;) with a kernel func-
tion k(Gi, Gj) = ¢(Gi) - ¢(Gj) to bypass the explicit mapping of
the graphs G; and G; into the vector space R to compute the dot
product ¢(G;) - ¢(G;). Indeed, we use the L-RWGK kK (G;, G;) in
Eq. (5) in place of constructing ¢'” (G) and ¢¥ (G') and taking
their dot product.

Using Eq. (20), we can also rewrite the decision rule in Eq. (13)
for a new graph G in terms of the kernel between it and the graphs
in the training dataset,

N
f(G) = sign(Z 0 ynk(Gy, G) + b), 1
n=1
with a, being the solution to the dual problem. Equation (21) allows
us to also bypass mapping new molecular graphs G into the feature
space R via ¢ when classifying them with the trained SVM.
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The support vectors. An SVM is a sparse kernel machine;'"’

the decision rule in Eq. (21) will depend on a subset of the training
data, the support vectors gb(L) (Gy) with a, > 0 that lie inside or on
the boundary of the margin or outside the margin but on the wrong
side of the decision boundary.

The Gram matrix. When, in practice, invoking the kernel trick,
we store the inner products between all pairs of molecular graphs
in a N x N Gram matrix K, whose element (i,j) gives the kernel
k(Gi, Gj) between molecular graphs G; and G;.

Centering. SVMs tend to perform better if the feature vectors
{¢(G1),...,¢(Gn)} are first centered.'”” Again to avoid explicit
construction of them, the double-centering trick® allows us to
obtain the inner products of the centered feature vectors from the
inner products of the uncentered feature vectors in the Gram matrix
K. Particularly, the centered Gram matrix K := CKC with centering
matrix C = I — 100" (I the identity matrix, o a vector of ones).'"

F. Classification performance metrics

The performance metrics of a classifier # = f(G) include the
following (measured over a labeled test dataset):

o Accuracy: fraction of examples classified correctly.

e Precision: among the examples classified as toxic (j, = 1),
the fraction that are truly toxic (y, = 1).

o Recall: among the examples that are truly toxic (y, = 1), the
fraction that are correctly predicted as toxic (§, = 1).

The F1 score is the harmonic mean of precision and recall.
Owing to class imbalance [see Fig. 1(b)], the F1 score is a better
performance metric of the classifier than accuracy.'”

IV. RESULTS

We now train and evaluate the performance of a support vec-
tor machine (SVM) to classify the toxicity of pesticide molecules to
honey bees using two different molecular representations:

o the fixed-length-L random walk feature vector and
e the MACCS structural key fingerprint (FP).

Ne explicitly construct the MACCS FPs but invoke the ker-
nel trick and rely on the fixed-length-L random walk graph kernel
(L-RWGK) in place of a dot product in the random walk feature
space.

A. Machine learning procedures

Data preparation. The data are prepared from the SMILES
strings representing the pesticide molecules in the BeeToxAl
dataset.”

MACCS  fingerprints. We used RDKit™” to explic-
itly construct the MACCS FPs of the pesticide molecules,
{MAS(GY),. .., ¢MAS(Gy)}. Then, we computed the dot
product ¢"CF(G;) - $M1P(G;) between each pair of MACCS
FPs and stored them in the Gram matrix K45,

Fixed-length random walk graph kernel. We used Molecular-
Graph,jl to obtain the molecular graphs {G,..., Gy} representing
the pesticide molecules. For each pair of graphs (G;, G;), we con-
structed their direct product graph G; x G;j, evaluated the L-RWGK

ARTICLE scitation.org/journalljcp

k¥ (Gi, G;) via Eq. (11) (using our own code), and then stored it in
a Gram matrix K for L € {0,...,12}.

A train-test run. For both the MACCS FP and fixed-length
random walk representations, a “train-test run” of an SVM com-
prises the following procedure. First, we randomly shuffle and then
split the examples into a 80%/20% train/test split. We stratify the
split to preserve the distribution of class labels in the two splits.
Second, using only the training split, we use stratified K = 3-fold
cross-validation to determine the optimal hyperparameter(s). For
the MACCS fingerprint, the hyperparameter is the C parameter
of the SVM. For the fixed-length random walk representation, the
hyperparameters are both C and L, the length of the random walks.
Through grid search, we choose the optimal hyperparameter(s) as
the one(s) providing the K SVMs (each trained on K —1 folds)
with the maximal mean F1 score on the validation sets (one fold
each). The hyperparameter grid comprises (i) logioC € {-6,...,1}
and (ii) L € {0, ..., 12}. Finally, we train a deployment SVM with the
optimal hyperparameter(s) on all training data and evaluate its per-
formance (precision, recall, accuracy, and F1 score) on the hold-out
test set.

Note that, for each SVM trained, we center the Gram matrix
K pertaining only to the training graphs via the double-centering
trick.”* We adopt a similar centering trick'’* for the Gram matrix

hyperparam exploration via 3-folds CV

MACCS
L-RWGK FP

~density

[+ B}
o
o

SVM C parameter

oHANMTMONOOO N 0.0
— =l -

walk length, L

(@

performance on test set

1.0
0.8
0.6
0.4
0.2
0.0 070| [oesfo.67| |o71075| [0.81

F1 score precision recall accuracy

FIG. 5. Average results of the SVM toxicity classifier over 2000 (stochastic) runs
of test/train splits using the (i) L-RWGK and (i) MACCS FP with a linear kernel. (a)
The empirical jeirt-distribution of the optimal hyperparameters during the threefold
cross-validation procedure to determine the optimal SVM C parameter and also,
in the case of the L-RWGK, length L of the walks. The + marks the mode of the
optimal hyperparameters. (b) Toxicity classification performance of the deployment
SVM (with the optima! €, L from cross-validation) on hold-out test data. Bars show
standard deviation.

CJL-RWGK
[EIMACCS FP
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giving the similarity of the test graphs with the training graphs when
we feed it as input to the SVM for predictions on the test split.

We used the SVC implementation and Gram matrix centerer
in scikit-learn.'® We scaled the C parameter in Eq. (14) seen by
the slack variables pertaining to each class to balance penalization
of constraint violations for each class.

Opverall procedure. For both the MACCS fingerprint and fixed-
length random walk representations, we conducted 2000 (stochastic,
owing to the random train/test and K-folds splits) train-test runs;
for each run, we evaluated the performance of a hyperparameter-
optimized, trained SVM classifier on the hold-out test set. Con-
ducting multiple train-test runs allows us to report both expected
performance and variance in the performance.

B. Cross-validation results

Figure 5(a) shows the empirical distribution of optimal hyper-
parameters during the K = 3-folds cross-validation routine. The
mode of the distribution of the optimal C parameter for the
MACCS-FP-SVM is 0.1. The mode of the joint distribution for the
optimal walk length L and SVM C parameter for the L-RWGK-SVM
is L =4 and C = 0.001. In conclusion, the pesticide molecules were
best described by random walks of length L = 4 for bee toxicity pre-
diction. The optimal C parameter tended to decrease with the walk

[
.
0

bit 96

*lakakaukakal

bit 22

*]~kaka]

coefficient, wi
oo

i D WNR OR NWPRWM

ARTICLE scitation.org/journalfjcp

length, consistent with the view of the inverse of C as a regulariza-
tion parameter expected to increase when the representation of the
examples is more complex.

C. Classification performance on the test set

Figure 5(b) shows the mean and standard deviation of the
accuracy, precision, recall, and F1 score of the L-RWGK-SVM and
MACCS-FP-SVM on the hold-out test set of pesticide molecules.
The performance of the L-RWGK-SVM is on par with/slightly lower
than that of the MACCS-FP-SVM but has the advantage of a lower
variance (see error bars). The L-RWGK-SVM achieves, on average,
an F1 score, precision, recall, and accuracy of 0.69, 0.68, 0.71, and
0.81, respectively.

D. Interpreting the MACCS-FP-SVM

Explaining the predictions of and interpreting a molecular
machine learning model can give chemical insights and foster
trust—or distrust, by uncovering “Clever Hans” predictions—in the
model.]mu 08

In contrast to the L-RWGK-SVM that leverages the kernel
trick, the MACCS-FP-SVM lends interpretability because we may
explicitly construct w via Eq. (20).

We interpret a MACCS-FP-SVM toxicity classifier by inspect-
ing the vector w € R'* normal to its separating hyperplane. Weight
w; € R in w is associated with MACCS keybit 7, which looks for

A,

bit 130
[1#6; L#1]~[14#6; 141]

)‘afe;o:\ ./\

bit 29
[#15]

MACCS key 1

7
\—@ i
‘ o'

bit 55
[#81~[#16]1~[#8]

bit 72
[#8]~*~*~[#8]

e e

bit 162 bit 92
a [#81~[#6] (~[#7])~[#6]

FIG. 6. Interpreting the SVM toxicity classifier operating on un-standardized MACCS fingerprints. The bar plot visualizes the w € IR"® vector normal to the separating
hyperplane and pointing in the direction of the toxic examples [see Eg. (13)]. If a coefficient w; of w is positive (negative), the presence of the corresponding molecular
subgraph pattem (indicated by MACCS key i) correlates with a prediction of toxicity (non-toxicity). The MACCS keys and examples of molecules in the BeeToxAl dataset
exhibiting those patterns (highlighted) for the four most positive and four most negative w; are shown in the top and bottom, respectively (top: all toxic, bottom: all non-toxic).
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a particular subgraph pattern in the molecular graph. For ease of
interpretability, here we do not standardize the input MACCS FPs
and instead retain them as bit vectors; consequently, a positive (neg-
ative) coefficient w; implies the presence of the subgraph pattern
described by MACCS keybit i tends to produce a prediction of
toxicity (non-toxicity).

Figure 6 visualizes the w vector of our interpretable MACCS-
FP-SVM, trained on all of the data and with the optimal C hyperpa-
rameter found in Fig. 5(a) (C = 0.1). We inspect the molecular pat-
terns corresponding with the four most positive (top) and four most
negative (bottom) coefficients (bars decorated with *)—associated
with predictions of toxicity and non-toxicity, respectively. Their
MACCS keybits and SMARTS strings specifying the molecular pat-
tern they look for are shown. We also show an example molecule in
the dataset exhibiting that pattern (see highlight); the molecules on
the top (bottom) were correctly predicted to be toxic (non-toxic).

We caution against mistaking association for causality in our
interpretation of the SVM as (i) the two random variables indicating
the presence of two subgraphs (described by two MACCS keybits)
in a molecule are generally not independent and (ii) anthropogenic
biases'””"""" could be involved in the generation and curation of the
training dataset.

E. Run times.

The majority of the computational run time for generating our
results was in computing the 382 x 382 Gram matrices K involv+
ing the L-RWGK. Using four cores, the run time ranged from less
than five minutes (L = 0,1) to ~20-25 minutes for L > 7 (see'the
supplementary material).

V. DISCUSSION

We trained and evaluated a support vector machine classifier
that predicts the toxicity of pesticides to honey bees. We compared
two molecular vector representations: (1) MACCS fingerprints list-
ing the presence/absence of a set of pre-defined subgraph patterns
in the molecular graph and (2) a random walk feature vector listing
counts of label sequences along all fixed-length walks on the molec-
ular graph. While we explicitly construct the fingerprints, we relied
on the fixed-length random walk graph kernel for dot products in
the random walk vector space. The classifier using the MACCS fin-
gerprints (a) gave a slightly higher mean F1 score (0.70 vs 0.69) than
the classifier using the random walk feature, (b) grants a degree of
interpretability, but (c) exhibits a higher variance in performance

Graph kernels have been previously used with SVMs, Gaus-
sian processes, and kernel regression for molecular machine learning
tasks,””''* such as to classify proteins,''> score protein-protein
interactions,''* predict methane uptake in nanoporous materi-
als,''” predict atomization energy of molecules,''®'"” and predict
thermodynamic properties of pure substances.''*

A Gaussian process model*® using the L-RWGK would enable
uncertainty quantification in the prediction.

As the BeeToxAl dataset™ was collected from many sources,
including the scientific literature, anthropogenic biases could be
present, e.g., in the choices of which molecules to be tested for bee
toxicity. As a result, the training and ng data distributions could
differ, and the performance measure on the hold-out set (sampled
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from the training distribution) may not reflect the generalization
error when the model is deployed. Reference 111 articulates vari-
ous types of this “dataset shift.” Anthropogenic biases in datasets
in chemistry have been uncovered and shown to cause machine
learning algorithms trained on them to exhibit poorer generalization
performance.”””"""

Disadvantages of the L-RWGK include (i) its compute- and
memory-intensity to evaluate, hence poor scalability to large
molecules and large datasets,”” and (ii) tottering. Expanding on
(ii), by definition, the vertices in a walk [see Eq. (1)] may not be
distinct (then, it would be a path). Thus, long walks that totter
back and forth between the same few vertices—e.g., at the extreme:
w = (4,0, 4,0, ...,u,v)—areaccounted for in the L-RWGK. These
walks do not contribute extra information about the similarity of two
graphs—e.g., for our extreme example, no more information beyond
the length-2 walk (u, v). Tottering could thus lead to a “dilution” of
the similarity metric expressed by the random walk kernel.'" Mod-
ification of the random walk kernel can prevent tottering walks'"”
from contributing to the similarity metric.

The L-RWGK can be generalized further by defining a kernel
between two walks w and w’ as a product of the kernel between
the edges and vertices along the walk.”””*'"” A (non-Dirac) kernel
between vertices could account for similarity of chemical elements.

In addition to the fixed-length-L random walk kernel, we
employed the (i) max-length-L random walk kernel and (ii) geomet-
ric random walk kernel count pairs of length-£ walks with a shared
label sequence (i) for £ € {0,...,L} and (i) £ € {0,...}.”*'"

In addition to random walk kernels, other graph kernels can
be used to express the similarity of molecular graphs:”® shortest-
path,'”" graphlet,'” tree- and cyclic-pattern,””'"" and optimal
assignment kernels.'**

SUPPLEMENTARY MATERIAL

The supplementary material includes (i) a comparison of the (a)
linear kernel between MACCS FPs and (b) the L = 4 random walk
graph kernel and (ii) the run times for computing the random walk
graph kernel.
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