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We are developing a system for long term Semi-Automated Rehabilitation At the Home

(SARAH) that relies on low-cost and unobtrusive video-based sensing. We present a

cyber-human methodology used by the SARAH system for automated assessment of

upper extremity stroke rehabilitation at the home. We propose a hierarchical model

for automatically segmenting stroke survivor’s movements and generating training task

performance assessment scores during rehabilitation. The hierarchical model fuses

expert therapist knowledge-based approaches with data-driven techniques. The expert

knowledge is more observable in the higher layers of the hierarchy (task and segment)

and therefore more accessible to algorithms incorporating high level constraints relating

to activity structure (i.e., type and order of segments per task). We utilize an HMM

and a Decision Tree model to connect these high level priors to data driven analysis.

The lower layers (RGB images and raw kinematics) need to be addressed primarily

through data driven techniques. We use a transformer based architecture operating on

low-level action features (tracking of individual body joints and objects) and a Multi-Stage

Temporal Convolutional Network(MS-TCN) operating on raw RGB images. We develop

a sequence combining these complimentary algorithms effectively, thus encoding the

information from different layers of the movement hierarchy. Through this combination,

we produce a robust segmentation and task assessment results on noisy, variable

and limited data, which is characteristic of low cost video capture of rehabilitation at

the home. Our proposed approach achieves 85% accuracy in per-frame labeling, 99%

accuracy in segment classification and 93% accuracy in task completion assessment.

Although themethodology proposed in this paper applies to upper extremity rehabilitation

using the SARAH system, it can potentially be used, with minor alterations, to assist

automation in many other movement rehabilitation contexts (i.e., lower extremity training

for neurological accidents).

Keywords: stroke rehabilitation, automation, cyber-human intelligence, HMM, MSTCN++, transformer,

segmentation, movement assessment

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2021.720650
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2021.720650&domain=pdf&date_stamp=2021-08-19
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:tamimahmed@vt.edu
mailto:kthopali@asu.edu
https://doi.org/10.3389/fneur.2021.720650
https://www.frontiersin.org/articles/10.3389/fneur.2021.720650/full


Ahmed et al. Automated Movement Assessment in Stroke Rehabilitation

1. INTRODUCTION

As the US and global populations age, we observe an increasing
need for effective and accessible rehabilitation services for
survivable debilitating illnesses and injuries, such as stroke and
degenerative arthritis (1, 2). Effective rehabilitation requires
intensive training and the ability to adapt the training program
based on patient progress and therapeutic judgment (3).
Intensive and adaptive rehabilitation is challenging to administer
in an accessible and affordable way; high intensity therapy
necessitates frequent trips to the clinic (usually supported by a
caregiver), and significant one-on-one time with rehabilitation
experts (4). Adaptation requires a standardized, evidence-based
approach, coordinated amongst many specialists (5–7). Active
participation by the patient is also critical for improving
self-efficacy and program adherence (8), although, without
significant dedicated effort from a caregiver, in many cases, active
participation and adherence are difficult to achieve (9).

Telemedicine and telehealth are gaining significance as
viable approaches for delivering health and wellness at the
home and in the community at scale (10). Applying existing
telemedicine approaches to physical rehabilitation in the home
is not yet possible, owing to the challenges of automating the
observation, assessment, and therapy adaptation process used by
expert therapists. For upper extremity rehabilitation for stroke
survivors, which is the focus of this paper, more than 30 low-
level movement features need to be tracked as the patient
performs functional tasks in order to precisely and quantitatively
characterize movement impairment (5). High precision sensing
and tracking systems can work well in spacious and supervised
clinical environments, but are currently not yet appropriate for a
typical home setting. The use of marker-based tracking systems
or complex exoskeletons are simply too expensive, challenging to
use, and obtrusive in the home (11–13).

Banks of video camera arrays can seem intrusive in the home
and lead patients and/or their families to feel as if they are
under surveillance (6). More promisingly, networks of wearable
technologies (e.g., IMUs, smart skins, pressure sensors) can
provide useful tracking data for overall movement and detailed
features, but they can also be hard to put on correctly, irritating to
wear for long periods of time, and sometimes require a perceived
excessive number of wearables to capture all movement features
correctly (14). A final concern with respect to the patient’s home
environment concerns the physical footprint of any technology
introduced into their home. Disturbing the home setting can be
understood negatively, which has the knock-on effect of reducing
adoption by stroke survivors and/or other family members in the
home (15).

That said, accurate, low-cost capture of movement data is
only part of the challenge. Automation of assessment is also
difficult because the processes used by therapists are largely
tacit and not well standardized (16). Clinicians are trained
to use validated clinical measures (e.g., Fugl-Meyer, ARAT,
and WMFT), utilizing a small range of quantitative scales
(0–2, 0–3, and 0–5, respectively) for assessing performance
of functional tasks that map to activities of daily life (17,
18). These scales provide standardized rubrics for realizing

this assessment and use a uniform activity space with exact
measurements for each subcomponent of the space to assist the
standardized performance of the tasks. The high-level rating of
task performance provided by experts through these measures
is difficult to map directly to specific aspects of movement
and related detailed kinematics extracted through computational
means. Even expert clinicians cannot simultaneously observe all
aspects of upper extremity pathological movement or compare
such observations to a standardized value. There is considerable
evidence showing that individual therapists direct their attention
toward different elements and assess them differently when
evaluating performance in situ and real-time, or when later rating
videos of performance (19–22). The relation of movement quality
to function is therefore difficult to ascertain in a standardized
quantitative manner (5, 16). This results in approaches for
structuring and customizing therapy that are partly based on
subjective experience rather than a standardized quantifiable
framework (16, 20). In turn, this results in a lack of large-
scale data on the structuring and customization of adaptive
therapy, and on the effects of customization and adaptation
choices on functionality in everyday life (23). Therefore, full scale
automation of the real-time functions of the therapist at the home
is not yet feasible.

In light of these limitations, we are developing the novel
Semi-Automated Rehabilitation At the Home (SARAH) system.
The SARAH system comprises two video cameras, a tablet
computer, a flexible activity mat, and eight custom-designed
3D printed objects, as shown in Figure 1 below. The objects
are designed to support a broad range of perceived affordances
(24), meaning they can be gripped, moved, and manipulated
in a wide variety of ways (25). Each object is unique in terms
of size and color to assist identification of objects by patients,
and to enable easier identification and tracking using computer
vision methods. The flexible activity mat is screen-printed
with high-contrast guidance lines indicating to the patient the
four primary activity spaces (near and distal ipsilateral and
contralateral) through increasingly colored lines. In addition,
four rows of circles on the mat assist the computer vision system
with boundary detection between activity space for consistently
analyzing patient activities.

The system can be easily installed on a regular kitchen or living
room table. The two cameras initiate and record only during
training, and they are activated and controlled by the patient
using a custom-designed application on the tablet computer.
The system aims to integrate expert knowledge with data driven
algorithms to realize coarse real-time automated assessment
of movement of stroke survivors during therapy at the home
(26). This assessment can drive high-level feedback on results
and performance after execution of each training task, to assist
patients with self assessment, and to help them plan their
next attempt(s) of the training task. Daily summaries of the
interactive training will be transmitted to remote therapists to
assess overall progress (within and across sessions), adjust the
therapy structure, and provide text or audio based feedback and
directions to the patient via the tablet. Continuous and effective
training monitoring accompanied by feedback on the patient’s
immediate performance, combined with expert customization of
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therapy to their needs and learning styles, increases the likelihood
of patients adopting home-based rehabilitation systems (8).

The SARAH system is optimized for daily at home therapy
of stroke survivors with moderate and moderate-to-mild
impairment. Stroke survivors who score above 30 on the Fugl
Meyer test and can initiate even minimal movement into
extension of the elbow, wrist and digits when discharged from the
clinic post stroke, can show significant improvement in function
through repetitive training lasting 2 weeks to 6 months (27–
29). Currently, third party insurance in the US provides financial
support for up to 6 months of outpatient and/or in home therapy
after release from the clinic. Patients with moderate impairment
and a Mini Mental score >25 can follow instructions given by
the SARAH system, use their unimpaired limb to control the
SARAH system and can engage (at least partially) all SARAH
objects (25). The SARAH system promotes active learning by
the patient who is expected to interpret the coarse feedback
provided by the system and to plan the next action so as to
improve her performance. Furthermore, the generalizable design
of the objects and tasks of SARAH encourages the patient to
actively map the task to multiple ADLs. These active learning
characteristics of the SARAH system, combined with the variety
of included tasks in the system makes the system feasible for
in-home rehabilitation lasting 2–8 weeks (25, 26).

This paper focuses on our hybrid knowledge-based data-
driven approach to automated assessment of human movement
in the home. Our approach leverages expert rubrics for
standardized rating of overall task performance to inform
automated rating of movement performance based on low cost,
limited, noisy, and variable kinematic data. The assessment
process and outcomes need to be compatible with therapist
assessment approaches so as to assist remote therapists in using
summaries of the computational assessment when remotely
monitoring progress and structuring therapy at the home.
Our approach has two components: (i) making the expert
raters process as observable as possible; and (ii) leveraging
the expert rating process to inform the structuring and
improved performance of computational algorithms. In previous
publications, we have presented in detail our research and

development activities for the first component (26, 30, 31).
Inspired by clinical measures for rating rehabilitation movement,
we developed the SARAH system to utilize a standardized activity
space with eight well defined sub-spaces that are drawn as
bounding boxes on the video capture of therapy (see Figure 2).
We designed the SARAH training objects to facilitate generalized
mapping of training tasks to ADLs for the patients, while
also facilitating tracking through low-cost video cameras (25).
We used participatory design processes and custom-designed
interactive video rating tools to help expert therapists reveal
and reflect on their rating process and internalized (tacit) rating
schemas (26).

In order to manage the complexity of real-time movement
observation and to make generalizable observations across
different therapy tasks, therapists tend to segment tasks into a few
segments that can be combined in different sequences to generate
targeted therapy tasks. Even though most therapists use intuitive
segmentation of movement for observation and assessment, the
segment vocabulary is not standardized. We worked with expert
therapists to standardize the segment vocabulary into a state
machine that can produce all 15 tasks of the SARAH system
(26). The segments are: Initiation + Progression + Termination
(IPT),Manipulate and Transport (MTR), ComplexManipulation
and Transport (CMTR), and Release and Return (RR). As an
example, a drinking related task can be described by the following
codification: subject reaches out and grasps a cone object (IPT)
and brings it to their mouth (MTR), then returns the object to
the original position (MTR), and releases the object and returns
the hand to the rest position (RR).

To make the assessment of segments in real-time manageable,
the therapist significantly limits the features observed
per segment. This limitation is achieved by using their own
experience to develop a probabilistic filtering of irrelevant
low-level features for a segment (i.e., digit positioning is likely
not that relevant to movement initiation), and probabilistic
composite observation of relevant features (i.e., a strategy for
quick impressions of shoulder and torso compensation during
movement initiation). This process is not well standardized as
the filtering and compositing activities are based on individual

FIGURE 1 | (A) SARAH system and objects setup. (B) SARAH activity mat.
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FIGURE 2 | Drawn bounding boxes on the activity space and patients upper body; there are five bounding boxes on the mat and three on the patients body.

experience and training. We further worked with expert
therapists to define a consensus-limited set of composite
movement features that are important when assessing the
performance of each segment in our model (26). For example,
the resulting rubric identifies four key features to assess during
the Complex Manipulation and Transport stage: (i) appropriate
initial finger positioning, (ii) appropriate finger motion after
positioning, (iii) appropriate limb motion following finger
positioning, and (iv) limb trajectory with appropriate accuracy.
The rubric also establishes operational definitions of terms
used to evaluate movement quality and inform rating. For
example, the word “appropriate” used in the above instructions
is defined as “the range, direction, and timing of the movement
component for the task compared to that expected for the less
impaired upper extremity.” Although therapists do not explicitly
track and assess raw kinematic features, in previous work we
proposed computational approaches connecting therapist’s
assessment of composite features to computationally tracked raw
kinematics (5, 32).

2. MATERIALS AND METHODS

2.1. Analysis Framework
Based on the background discussed above, we propose
a cyber-human movement assessment hierarchy for upper
extremity rehabilitation. The five layers of the hierarchy
(listed top to bottom) are: overall task rating, segment
rating, composite feature assessment, raw kinematics, and raw
RGB images (see also Figure 3). As we move down the
hierarchy, the expert knowledge becomes less observable and
less standardized. Computational knowledge works in reverse,
with more confidence in the lower levels (raw kinematics or
derivatives) that gradually diminishes moving up in the hierarchy
toward complex decision-making relying on expert experience
(e.g., overall task rating). The proposed hierarchy aims to
reveal the grammar (or compositional structure) of therapy,
from the signal level to the meaningful activity level (training
tasks). Knowing the composition rules of a complex human
activity, whether that is language, sport, or a board game like

FIGURE 3 | Hierarchical representation of the cyber-human system; (from the

bottom) a video frame as an example of raw visual features, velocity profile as

an example of raw kinematic features, composite feature for task 5 generated

using PCA, segment labels, different types of tasks and impairment levels.

chess, facilitates the meaningful computational analysis of the
activity in a manner that is comprehended and leveraged by
expert trainers and trainees (33, 34). Although the hierarchy
proposed in this paper is established for upper extremity
rehabilitation using the SARAH system, it can potentially be
used, with minor alterations, to assist automation in many other
movement rehabilitation contexts (i.e., lower extremity training
for neurological accidents). Our proposed methodology can also
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transfer to other complex human activity contexts (i.e., training
firefighters or athletes).

In the following sections, we show how we leverage the
observable expert knowledge of the higher levels of the hierarchy
to improve the performance of computational algorithms
using raw kinematics and visual features for automated task
segmentation, segment classification, and task performance
assessment at the home. As the patient selects the task
they want to attempt using the tablet computer, the system
knows the desired sequence of segments for satisfactory
performance of the task. The expected topology of each segment
of each task within our standardized activity space is also
specified. We can thus utilize a feature-matching approach
to measure the “distance” between the observed sequence of
segments by the system and the expected sequence of states
for the performed task to determine whether the task was
successfully performed.

The state-time characteristics of our hierarchy (i.e., segment
state machine) motivates our use of automated segmentation
though a hiddenMarkov model (HMM). We also leverage recent
advances in machine-learning models for processing video data.
Specifically, we tested the use of transformers (35) operating on
low-level action features (tracking of individual body joints and
object tracking). We also tested machine learning algorithms
that operate on raw RGB images (MS-TCN) (36). We chose
the MS-TCN algorithm because its classifiers are trained on
recognizing human activity based on kinetics and thus can
synergize well with automated assessment of task performance
in rehabilitation. All three types of algorithms required slightly
different features for achieving best performance in connecting
the raw data layers to the segment layer (and achieving automated
segmentation). In addition, the features used by the algorithms
were different from the composite features used by the human
experts. This established the segments layer as the key integration
layer for different assessment approaches, and reinforced the
important role of a generalizable segment vocabulary proposed
by expert therapists. Each approach showed different strengths
and weaknesses, therefore we utilized an ensemble approach
across the algorithms to finalize the automated segmentation
and segment classification decisions. Automated assessment of
therapy at the home using the SARAH system will need to be
realized through noisy and variable data because of the low cost
infrastructure, the varying environments of installation in the
home, and the significant variation of movement impairment
of stroke survivors (30). Furthermore, at the early stages
of implementation of the SARAH system the data sets will
be limited. To explore the resilience of our methodology
we recreated these conditions in a clinic and gathered a
limited data set for testing the algorithms. As we show in
detail in the next section, even though the individual data
layers of our cyber-human hierarchy are noisy, the composite
automated decisions (successful performance of individual tasks
and sequence of tasks assigned) produced across layers are
robust. In future work, we will explore the expanded use of
this approach for detailed automated assessment of elements
of movement quality and the relation of movement quality
to functionality.

2.2. Data Collection
We used an earlier version of the SARAH system (37) to record
videos of nine stroke survivors (seven men and two women)
performing the first 12 SARAH tasks. The nine stroke survivors
had different levels of impairment ranging from mild/moderate
(Fugl-Meyer score >40) to moderate impairment (Fugl-Meyer
score >30) and had different types of movement challenges.
Thus, our overall dataset represents good range of conditions and
movement variability. The participants in the study were asked to
attempt each of the first 12 SARAH tasks, repeating each task four
times if possible.

All patients could follow the instructions given by the SARAH
system and use their unimpaired limb to control the system. All
patients could engage all objects of the SARAH system (25, 26) at
least minimally using the impaired limb. Most patients could not
perform the final two of the 12 SARAH tasks since the last two are
the most difficult. For this reason, in our analysis below, we only
use 450 videos of the individual performances of the first 10 tasks
by the nine patients. When we begin to implement the SARAH
system in the home we expect patients to gradually engage the
more complex SARAH tasks as their training at home progresses.

The movement of the patients in this study was recorded
using one consumer grade video camera (we used the side view
camera of the SARAH system to capture the profile of the body
and impaired arm as this is the preferred viewing point of the
therapist). The camera placement instructions were relatively
high-level to ensure that they could be implemented quickly
and without interfering with the patient’s therapy session. The
research assistant collecting the videos was asked to place the
camera on the side of the impaired limb of the patient. The
camera had to be far enough so as to not interfere with the
performance of the tasks and be able to capture the full upper
body of the patient. No specific distance, height or viewing
angle were given for camera placement. As expected, this process
provided minimal interference and could be realized very quickly
but produced high variability in the captured videos in terms
of location of the patient, activity space in the image, lighting,
camera height, and viewing angle.

All collected videos were rated by expert therapists using a
custom developed SARAH rating interface that allows therapists
to rate the task, segment and composite movement features of
each video recording in an integrated manner (26). Therefore,
there are at least two expert ratings per recorded video. These
expert ratings can be used as the ground truth for comparing the
effectiveness of the computational analysis algorithms.

3. AUTOMATED SEGMENTATION AND
SEGMENT CLASSIFICATION

Our segmentation and classification framework is illustrated in
Figure 4. It has three sets of blocks denoted with different colors
in the figure. The first set of blocks are fine-tuned or pre-trained
models that we implement as feature extractor. The second set of
blocks include different algorithms such as HMM, Transformer,
MSTCN++, and RBBDT. The third set of blocks are knowledge
constrained formulas that we use as feature extractor for the
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FIGURE 4 | Block diagram of the proposed analysis framework. Keypoints and object locations are extracted from OpenPose and Faster-RCNN followed by a kalman

filtering, respectively. RBBDT along with the model ensemble determine the segment blocks from the per-frame segment labels, which are then used to assess the

performance of the subject for the given task.

RBBDT, HMM, and also use to predict segment blocks and
do task assessment. The HMM, Transformer, and MSTCN++
blocks generate per-frame state probabilities from the input video
data. We generate the per-frame segment labels by a fusion
of the state probabilities. With the incorporation of the design
constrained denoising and the candidates from the RBBDT
block (the decision tree), we calculate segment blocks from
the per-frame ensemble predictions. Finally, we calculate task
performance assessment scores using the segment blocks. The
following subsections cover the detailed description of different
blocks in the analysis framework.

3.1. RGB Image Pre-processor
The transformer, the HMM, MSTCN++, and the rule-based
decision tree pipelines have a feature extractor as demonstrated
in Figure 4 that converts the raw RGB frames into suitable input
features. The frames capture the activity space that includes the
patients upper body, the objects and the activity mat. All 12
tasks in the SARAH system involve movement in relation with

one or two objects. Therefore, it is imperative to detect key
movement features associated with both the patient’s upper body
and the objects.

3.1.1. Patient Skeleton Detection
We use OpenPose (38), an open source pose estimation
technique, to extract 2D patient skeletons from videos. OpenPose
generates 135 keypoints per-frame that include 25 body
keypoints (Figure 5A), 21 keypoints for both hand (Figure 5B),
and 70 keypoints for the face. These keypoints are the (x, y)-
pixel coordinates of the skeleton joints as shown in Figure 5C.
In the presence of multiple persons in the captured frame, we
measure the area of the estimated upper body skeleton and
consider the person with the largest area. We find that this simple
pre-filtering approach worked in all cases within our test set to
gives us the actual patient’s keypoints. In the SARAH system,
the side camera used in this experiment always focuses on the
impaired arm and the non-impaired arm is obscured. Therefore,
we exclude the estimated keypoints from the non-impaired limb
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FIGURE 5 | (A) Twenty-five body keypoints that OpenPose generates following the COCO dataset; the circles indicate the set of keypoints used in the proposed

analysis framework for the right hand impaired patient (red circle) and the left-hand impaired patient (blue circle). (B) Twenty-one hand keypoints. (C) OpenPose

extracted upper body skeleton overlapped on the actual frame. (D) Detected bounding box and object label using Faster RCNN.

in our analysis framework. Since we are only interested in the
upper body keypoints, we only consider keypoints above the
lower torso line (keypoints 9, 8, and 12). Also, because of the
non-standardized placement of the camera in this experiment,
the face was not always within the frame and therefore, we
excluded the face keypoints from further analysis. After all the
exclusions, we use the two sets of keypoints as indicated in
Figure 5A. The set of keypoints inside the red circle is for
right-hand impaired patients and the blue one for the left-hand
impaired patients. All keypoints are normalized with respect to
the image frame.

3.1.2. Object Detection and Tracking
It was also imperative to obtain high quality object identification
and location data for every frame, as the type of object being
used and the relationship between the objects and the keypoints
extracted from the subjects play an important role in determining
segment classification. To this effect, we fine-tuned an object
detection algorithm which classifies the objects in the frame,
places a bounding box around the classified object, and provides
the object/bounding box location relative to the overall frame.
We considered a Faster-RCNN model (39) pre-trained on MS
COCO (40) dataset for our experiments. To fine tune this object
detection model we first labeled all objects being used across the
12 performed SARAH tasks from a small number of videos using
CVAT, an open-source annotation tool. In total we had a training
set of around 23,253 training images andwe validated it on 11,112
images with a mean IOU score of 0.67. We then used the open
source detectron 2 framework (41), built on top of PyTorch (42)
to fine-tune the model.

As stated in section 2.1, there is a high variability in the
training data, owing to issues such as use of a single camera
view, non-standardized camera angles, variability in the patient’s
movement, unconstrained ways of grasping the objects, errors in
transportation etc. As a consequence, the object detection model
misses certain objects in certain frames due to factors such as
occlusions or dropped objects, and sometimes even misclassifies
certain objects due to partial visibility. However, as described
in section 1, the task being attempted in each captured video is
known to the algorithm and each task is associated with specific

objects. We use this knowledge to filter out misclassifications.
To further improve the smoothness of the trajectories of the
objects, we use a simple Kalman filter based tracking algorithm
SORT (43). Given the fine-tuned object detection model, the
pipeline constructed is as follows. First, we extract all the frames
in the video as images. Second, the trained Faster-RCNN is run
on each of the frames thus collecting per-frame object data.
Third, misclassifications are corrected automatically and the
trajectories of the tracked objects are smoothed.

3.1.3. Denoising Pose Keypoints and Object

Locations
The activity space in different videos has high variability. As
the camera angle and patient position are different for each
captured session, the ratio of the activity space to the frame
resolution changes. Low camera resolution and low frame-rate
(used so as to allow efficient capture of long sessions), variable
focus (cameras were set up by non-experts without standardized
instructions) and varied lighting conditions (typical of therapy
sessions happening in different contexts), create challenges for
pose-estimation methods from the raw frames. As a result, the
keypoint detection and bounding box estimation accuracy can
suffer, sometimes even completely missing all keypoints and not
detecting any bounding box in a frame. To reduce the missing
data problem we first detect the outliers. We calculate the z-score
for each sample using,

zscorei =
xi −mean(x)

std(x)+ ǫ
; i = 1, 2, . . . ,N (1)

where xi is the keypoints or object locations for the i
th frame (an

ǫ > 0 is used to guard against pathological situations). If the z-
score value is higher than a threshold, we consider the sample
as an outlier. For our case, using a threshold of 2.5 gives good
performance. Then we use spline interpolation to fill the missing
values or replace the outliers.

3.1.4. Normalization of Input Data
Denoising and normalizing the input data is a vital step in
achieving good performance through machine learning. We
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experimented with three different techniques to find the best
techniques for normalizing both the patient keypoints data
and the object locations—(i) global normalization with respect
to the image frame, (ii) normalization with respect to the
activity mat area, and (iii) normalization using a computed
homography matrix.
Global-Norm: Here, we just divide the raw patient keypoints and
object location data with the image frame’s width and height,
thus mapping the data to a [0, 1] range. In practice due to
the high amount of noise in the data, and variability in inter-
patient performance, this global normalization fails to achieve
good results and was therefore not applied (see Table 6).
Mat-Norm: Here, we normalize the data with respect to the ratio
of the area of the activity mat to the total image area. This
is done by labeling the activity mat in one of the frames per
subject per capture session. For every capture session the camera
position is set at the beginning. We could thus precompute
the area of the mat for all recorded tasks of each capture
session. This normalization with regards to the mat area removes
a good degree of variability and thus performs better than
global normalization.
Homography-Norm: Since the camera angles across subjects and
across attempts vary considerably,it is important to reduce the
impact of this variation. To achieve this, we apply a simple
homography-based re-projection of the object and keypoint data.
First, a homographymatrix is pre-computed that transforms data
from image frame to the coordinate frame defined by the activity
mat. This transformation matrix is then applied to the object
and keypoint data. Even though this achieves high invariance, it
also removes discriminative features and thus there is not any
observably significant improvement in the performance of the
transformer models.

3.2. HMM Features and Algorithmic
Pipeline
3.2.1. Kinematic Feature Extractor
Using the denoised keypoints and object locations, we calculate
20 kinematic features that, based on our prior work (5), can
be combined to successfully assess functionality and movement
quality in upper extremity stroke rehabilitation. These features
can be used to analyze the movement of the object, the affected
limb and torso, and the patterns of human-object interaction.
These 20 features are summarized in Table 1. The variability in
stroke survivor movement and the low quality capture resulted
in 7 of the 20 features being too noisy to support automated
analysis. We therefore only used the 13 less noisy features for
further analysis in the paper. In addition to these 13 features, we
also calculate derivatives of some of the features. The derivatives
introduce oscillations unique to segments and by learning those
patterns the efficacy of the HMM in per-frame segmentation
improves. A detailed description of the kinematic features are
given in the Supplementary Material.

3.2.2. Hidden Markov Model With Prior Transitions
A hidden Markov model (HMM) (44) consists of a set of states,
a transition model, and an observation model. Denote S =

S1, S2, . . . , SN as theN states. Evolution between states is modeled

TABLE 1 | List of kinematic features extracted from patient 2D keypoints and

object co-ordinates.

Patient features Object features

Limb location Object location

Limb velocity Object velocity

Limb absolute velocity Object absolute velocity

Distance between limb and Torso Line Distance between two Objects

Pronation and supination Object angular velocity

Relative angle between torso line and

limb

Distance between object and limb

Hand openness Distance between object and torso line

Torso sway, rotation, and lean

Elbow extension

Jerkiness

Absolute limb angle

by the transition probability conditioned on the previous state.
The transition probability between states is represented by a
matrix, A = aij; where aij = Pr(Sj(t + 1)|Sj(t)). For a
given observation, O = O1,O2, . . . ,Ok, the emission probability
distribution is represented by a matrix B = bj(k); where bj(k)
is the probability of generating observation Ok when the current
state is Sj, where k is the total number of observation symbols.

HMMs have been used in movement quality assessment
because of their good performance in detecting subtle
inconsistencies in the movement (45–47). However, the
topological structure of the HMM in most cases cannot be
automatically determined due to the highly variant and small
dataset (47). We therefore use expert knowledge based design
constraints to model the topological structure of the HMM
for different exercises. We have modeled 5 different transition
matrices demonstrated in Figure 6 that are based on the number
of unique segments present in the 12 SARAH tasks. These
matrices provide a strong prior as they are modeled after the
therapist’s approach to parsing movement and focusing attention
on key composite movement features per type of segment.

To train the HMM, we first need to define the initialization
for each state in the transition matrix. For example, to initialize
an HMM with T4 transition matrix, we need four states: S =

{IPT,MTR1,MTR2,R&R}. Each state is initialized with a normal
distribution of mean, µ = 0.5, and standard deviation, σ =

0.1. We choose the normal distribution because it produced
the lowest chi-square error after intensive experimentation
with different distributions like beta, exponential, gamma, log-
normal, normal, Pearson3, triangular, uniform, and Weibull.
The distribution parameters can be randomly initialized, and
we find that the model is not sensitive to random initialization.
The training of the HMM tunes the parameters which are then
compactly represented as,

λT,F = (π ,AT ,BT,F),where T = 1, 2, 3, 4, 5 and F = 1, 2, . . . , F
(2)

Here, the subscript T and F refer to different transition matrices
and features and π is the initial state distribution and is defined
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FIGURE 6 | Different transitions matrix based on expert knowledge; (from left) T1: a 2 × 2 transition matrix designed for task 1 and 2; T2: a 3 × 3 transition matrix

designed for task 6, 7, and 10; T3: a 3 × 3 transition matrix designed for task 9; T4: a 4 × 4 transition matrix designed for task 3, 4, and 5; T5: a 5 × 5 transition

matrix designed for task 8.

as π = πi where πi is the probability of state Si being the
initial state. Based on the tasks, π = [1, 0, . . . ]. Since all the
tasks start with the state IPT, the first state probability is always
1 followed by zeros for other states present in the transition
matrix. This is another strong design prior we leverage, in the
form of supervision of the labels with state names. In this case,
maximum likelihood estimation (MLE) estimates the emissions
from data partitioned by the labels and the transition matrix is
calculated directly from the adjacency of labels. Then, various
transition matrices and their initialization are further tuned with
patient data. As we provide more training data, the final models
are expected to become more generalizable across different types
of tasks. Another prior we use for structuring our HMM relates
to the use of distributions of individual kinematic features.
Therapists establish through experience an expected distribution
per feature per segment (i.e., Gaussian velocity profile for IPT).
Therefore, to learn the distribution parameters for each of the
kinematic features, it is a requisite to train separate HMMs for
each of those features.

We use the open source toolbox Pomegranate (48) for
the training and estimation of the state probabilities for each
feature. Then, we formulate an objective function on the state
probabilities of the kinematic features to estimate one set of state
probabilities. For this purpose we use a mean squared error based
objective function defined as,

Ji =

N
∑

j=1

(

p̂ij −

∑F
k=1 w

k
i p

k
ij

∑F
k=1 w

k
i

)2

;

j = 1, 2, . . . ,N; i = 1, 2, . . . ,Tmax; k = 1, . . . , F (3)

where, p̂ denotes the per-frame categorical labels and p is
the predicted state probabilities. N is the total number of
observations in the training set, Tmax is the maximum observable
frame number, F represents the total number of features, and w is
the weight for optimization. We optimize the objective function
by adding two constraints on the weights. Firstly, restricting
the range of weights w ∈ [0, 1] and secondly, constraining the
weights to unit sum:

∑F
k=1 w

k
i = 1. The objective function was

minimized using Sequential Least Square Programming (SLSQP)
(49) due to its ease of implementation and because our objective
function naturally is an instance of this type of problem.

3.3. Transformer Pipeline
In addition to HMMs, we also explore deep-learning based
transformers (35), which have attracted a large amount of
interest in the natural language processing community due
to their strengthes in modeling long term dependencies while
being computationally efficient and avoiding problems such
as vanishing gradients in other deep-learning based time-
series approaches like long short-term memory (LSTM) based
approaches. Since our goal is video-segmentation, and per-frame
classification, we model this problem as a Sequence-to-Sequence
problem (50), where the input is a multivariate time-series
determined by body keypoints and object data. Given this data,
we output discrete segment labels for every timestep (frame). The
pipeline is as follows: (i) concatenate normalized pre-processed
zero-padded keypoints and object location data to obtain X ∈

R
N×F×Tmax where N is the number of videos, F is the total

number of feature and Tmax is the maximum observable frame
number including the zero-padding, (ii) partition the data X into
training Xtr , validation Xval, and test Xte sets randomly, with a
constraint that no patient-task pair should be repeated in train
and test sets, (iii) train the transformer with the objective to find a
function g that maps Xtr to Y , where Y tr ∈ R

1×Ts is the per-frame
label vector, by minimizing cross entropy loss between f (gtr) and
Y tr . We train the network with different augmentations on the
input data such as random drift, Gaussian noise etc using (51) to
avoid overfitting.

3.3.1. Transformer Architecture
We adopt the transformer architecture from (35), with minor
modifications to adapt it for timeseries (52): (i) we replace the
embedding layer with a generic layer; and (ii), we apply a window
on the attention map to focus on short-term trends because
the segments are short. Other hyperparameters are as follows:
number of encoder-decoder pairs are set to 2, number of heads as
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4, the dimension of key query and value and an attention window
of 100 along with sinusoidal positional encoding.

3.4. MSTCN++ Pipeline
Temporal convolutional networks (TCNs) (53) are shown
to outperform methods such as LSTMs on various time-
series modeling problems. Building on the success of TCNs,
(36) recently developed MS-TCN a multi-stage variant, by
stacking multiple TCNs. This multi-stage approach is shown
to outperform TCNs for video segmentation. We have thus
used MS-TCN (36) and its variants MS-TCN++ (54) for our
experiments. While our transformer and HMM based methods
operate on carefully constructed features from keypoints and
objects, our TCN approach can directly use features extracted
by a feature-learner approach such as a pre-trained video
classification network, I3D (55). I3D is trained on the Kinetics
dataset (56), which contains videos of human actions, with classes
such as single person actions, person-person actions, and person-
object actions. Since the I3D model that has been trained on
this large scale dataset, features extracted though the model can
capture representations of complex human activity, including
human-object interaction, thus making the model a fitted choice
for composite feature extraction for our analysis. We extract
features on our data from the I3D (55) model trained on Kinetics
400 dataset (56). We then train MS-TCN++ on these extracted
features with an objective to minimize the weighted combination
of (i) cross entropy loss between the predicted segment classes
and ground truth, and (ii), a penalty for over segmentation. We
fix the multiplier to the penalty term, which is a hyperparameter
at 0.15 as mentioned in (54). We train the network for 300
epochs with an ADAM optimizer (57), learning rate of 10−3 and
step-wise reduction in learning rate by a factor of 0.8 for every
30 epochs.

3.5. Weighted Average Ensemble
Finally, we fuse the outputs of the data driven models with
the expert knowledge constrained models. The HMM algorithm
uses kinematic features and design priors that are constrained
by the expert knowledge. The predictions from the HMM
encode information about the segments and task level of the
movement analysis hierarchy shown in Figure 3. On the other
hand, techniques like Transformer andMSTCN++ use kinematic
and composite features to perform better in the frame level but
fail to encode information about the segments and the tasks. To
combine the strengths of each approach, we fuse the analysis
outcomes of the different algorithms. We employ a standard
weighing scheme to fuse these models i.e., ŷ =

∑

iWiPi where
Wi is the weight assigned to each model’s prediction Pi. To
determine the weights Wi, we have conducted a grid search for
each of them in the range of [0.1, 0.2, 0.3, . . . , 1.0]. Thus, for a
threemodel ensemble, we run the evaluation 10×10×10 = 1, 000
times for each combination of weights. We experimented with
four ensemble schemes to find the combination that provides the
most robust results: (i) HMM and Transformer, (ii) HMM and
MSTCN++, (iii) Transformer and MSTCN++, and (iv)HMM,
Transformer, and MSTCN++.

3.6. Block Based Task Completion
Assessment
To perform task completion assessment we need to organize
the per-frame segment labels into segment blocks. We again
leverage therapist expertise for grouping segment samples into
segment blocks (as embedded in the SARAH system design),
to automatically extract segment blocks and assess the order,
duration, and continuity of the blocks. To calculate segment
blocks, we first denoise the ensemble predictions. The per-frame
segment predictions resulting from the ensemble model have two
types of noise: false transitions and missing transitions.

3.6.1. Denoising of Ensemble Predictions
In the SARAH system, the performance of all tasks is realized
through a sequence of a small number of segments. These
segments are performed with a defined set of objects, and within a
defined activity space. Further, they are executed at a speed that is
constrained by human biomechanics and potentially constrained
by stroke induced impairment. We can filter some of the false
predictions through a Gaussian filter for each transition model
that implements these priors. In Figure 7, we illustrate the per-
segment filters for a 3 × 3 transition matrix model. The filters
can be mathematically expressed as Gs(µs, σs), where µs and σs
denotes to the mean duration and standard deviation of each
segment, s calculated from the training data. For a test data
of length, N, we calculate the posterior distribution and use a
75% confidence cutoff to get the upper and lower bounds for
each segment. We only accept a predicted transition, if it falls
within the bounds. In addition, we pose a 20 frame window
constraint on the predictions since all the task segments in the
SARAH system require more than 1 s to complete. Therefore, any
transitions within 20 frames is discarded. This filtering technique
reduces the majority of the false predictions.

3.6.2. Rule-Based Binary Decision Tree (RBBDT)
To correct the remaining false predictions and find the missing
segment transitions, we use a rule-based binary decision tree
(RBBDT) to encode the process that the experts (therapists)
use to segment the patient movement. As observed during
the development of the SARAH system with therapists,
instead of classifying each frame of movement, therapists
utilize a few key events to find transition point candidates
between segments. These events are primarily based on three
relationships: (i) patient–object interaction, (ii) patient–activity
space relationship, and (iii) object–activity space relation. People
execute functional tasks differently (i.e., the trajectory of raising
a glass to our mouths to drink is slightly different for each
person). These differences are much more pronounced for
stroke survivors as they have different types of impairment.
Therefore, therapists organize the patient activity space into a few
generalizable regions that are robust to variation. Standardized
stroke rehabilitation assessment tests (i.e., WMFT, ARAT) rely on
such generalizable regions and the regions have accordingly been
adopted in the design of the SARAH system (see section 1).

To model relationships between the object(s), patient, and
the generalizable activity regions, we recreate the activity regions
as eight bounding boxes on each frame of the video. These
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FIGURE 7 | Gaussian windows per segment to filter out false transitions

outside the first standard deviation mark.

bounding boxes are illustrated in Figure 2. Our approach is
similar to region based object detection (39) techniques, where
the bounding boxes are created based on the relationships
between different objects and the space. Our bounding boxes,
divide the body into the regions of head, upper and lower
torso, since movements of the impaired arm toward the head
(i.e., for feeding) have different functionality than movement
of the impaired limb toward the torso (i.e., dressing). Moving
the end point of the impaired upper limb toward the upper
and lower torso presents different challenges for different
patients. The tabletop activity space is divided into an ipsilateral
and contralateral area since the engagement of these two
spaces requires different coordination of joints and muscles.
The ipsilateral and contralateral areas are further divided into
proximal and distal areas, since different extension patterns of the
arm are needed to engage the distal space (see Figure 2). We use
these eight bounding boxes to calculate the space-patient, space-
object, and patient-object relationships that appear in Table 2.

We use previously calculated object and end point position
and velocity to mark the object and limb end point stopping
time. We can then calculate multiple distance features like limb-
bounding box distance, object-bounding box distance, and limb-
object distance. These simple distance features do not exhibit a
simple statistical pattern (e.g., Gaussian) across different patients
for each type of segment and are therefore not easily amenable
to training the HMM segmentation algorithm. However, under
the RBBDT framing they did indeed become usable for detecting
segments blocks because they encode the features used by experts
to define segment blocks as shown in Table 2.

In our previous work (32), we used a standard classification
and regression tree (CART) for modeling therapist decision
processes in movement assessment. Data driven tuning of the
parameters of these decision trees is sensitive to noisy data.
Since the dataset for this experiment is small and noisy, we
developed an approach for manually tuning the thresholds
and split branches, and selecting the order of features of the
RBBDT. Our manually tuning is supported by training data.

TABLE 2 | List of RBBDT features calculated using patient keypoints, object

co-ordinates and center of eight bounding boxes.

Index Feature notation Definition

1 dFl Distance between upper torso, F, and the limb

2 dGl Distance between lower torso, G, and the limb

3 dEl Distance between head, E, and the limb

4 dhl Distance between limb and hand bounding

box, h

5 dAl ,dBl ,dCl ,dDl Distance between limb and bounding box A, B,

C, and D

6 dFo Distance between upper torso, F, and the

object

7 dGo Distance between lower torso, G, and the

object

8 dEo Distance between head, E, and the object

9 dho Distance between object and hand bounding

box, h

10 dAo,dBo,dCo,dDo Distance between object and bounding box A,

B, C, and D

11 dlo Distance between limb and object

12 doo Distance between two objects

13 d
dt
() First derivative of the above features

The goal of the tuning is to place the features in descending
order of observability and error for each type of transition
prediction with the most observable and accurate feature coming
first in the decision sequence. The exercises of the SARAH
system have different combinations of segments and variable
object locations. Therefore, the RBBDT based prediction of each
segment transition, the transition between two segment blocks,
requires a unique order of features. In the appendix section, we
show the order of features used for each transition of the different
SARAH tasks based on the mathematical notation from Table 2.
If a candidate sample of a feature stream meets the threshold
condition, the confidence value of that candidate as a transition
point increases.

Let’s consider the previous example of exercise three and
four where the patient transports the object close to their
mouth to simulate drinking action. To get the candidates for
the IPT-MTR1 transition, the highest observable feature is the
location of the object and limb as a phase change occurs at
the beginning of MTR1. The next most observable feature is
the directionality of the object’s movement in relation to the
bounding boxes. The process for calculating the confidence
value of the candidates for the above IPT-MTR1 transition is
illustrated in Table 3. In the shown example, RBBDT generates
a possible candidate when two or more conditions are true for
the sample. Therefore, we set the confidence threshold to 0.5. It
is important to note, that the RBBDT does not aim for accuracy
at the per-frame classification level as this accuracy is secured
through the ensemble model presented above. The RBBDT aims
to only find transition points organizing the data stream into
segments blocks that are feasible (could have been performed by
a stroke patient), while minimizing missed transitions and false
transitions between blocks.
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TABLE 3 | Confidence calculations based on binary decision from the rules.

Object phase Limb phase Bounding

box

directionality

Confidence,

C

0 0 0 0

0 0 1 0.25

0 1 0 0.25

1 0 0 0.25

1 0 1 0.5

1 1 0 0.5

0 1 1 0.5

1 1 1 0.75

3.6.3. Task Completion Assessment
For a given task, the segment blocks will inform us about
the continuity and order of the segments. In addition, we
can calculate the duration of the completed task. Once
we have calculated the segment blocks and duration for
each task, we can compare that calculation to the expected
sequence of segments and duration for each task for a coarse
assessment of task completion. The algorithm checks for
three conditions:

• Is the task completed with all the necessary segment blocks?
• Is the order of the segment blocks correct?
• Is the task performed within allowable time?

If a task satisfies all three conditions, the algorithm gives a score
of 3. If the first two are satisfied then it generates a score of
2. If either of the first two are not satisfied then it generates
a score of 1. Finally, a score of 0 is assigned if the task is
not attempted. Although these scores are similar to the scores
assigned by therapists they do not take into account issues of
movement quality. Therapists may assign a score of 2 to a task
that is completed within the allowable time because of issues
of movement quality. Since our methodology connects different
types of movement features to assessment of segment and task
execution, in the future we plan to use actual therapists ratings
of patient videos to further train our algorithms so they can
automatically assess task completion and movement quality.

4. EXPERIMENTAL SETTINGS

Our initial dataset consists of 610 captured videos. The
experimental dataset includes 404 videos after exclusion of videos
where severe limb impairment caused multiple object dropping
or multiple segment occurrence leading to an incomplete
exercise. Including these videos would severely skew the training
sets at this early stage. However, some of these videos were
included in the test sets for task completion and in the future
these videos can be included in the training sets too. In our
dataset each patient performed each task multiple times in a
single session. Therefore, we design random split experiments
based on three factors: patient ID, session ID and task number.

TABLE 4 | Per frame segmentation results using the Hidden Markov Model.

Split index Frame wise accuracy Precision Recall

1 75.52 77.94 76.04

2 78.95 79.21 79.08

3 80.75 80.17 80.96

4 74.08 74.69 74.72

5 79.82 81.01 80.49

Mean 77.82 78.60 78.26

STD 2.88 2.47 2.76

For any task number, the same patient ID with the same session
ID is included in either of the training or test set but not in
both. We choose different random seeds and create 5 random
experiments for fairness based on this selection method. The
average training and test size of the 5 splits are 370 and 34,
respectively. We implement the deep learning experiments on
two NVIDIA RTX 2080 Ti GPUs. To evaluate the segmentation
performance of the experimented models, we calculate frame-
wise accuracy, precision, and recall. The calculation formula
for the matrices are given in the appendix section. In the
Supplementary Material, we also report two additional metrics
for all our models- IOU scores and F1 scores at different
overlap thresholds. For each of the split experiments, we evaluate
the matrices independently and calculate mean and standard
deviation of the results for all the algorithms.

5. RESULTS

5.1. HMM Segmentation Results
Table 4 shows the segmentation results using the proposed
five-transition-matrix HMM. The average per-frame accuracy is
77.82 ± 2.88% meaning around 78% of the frames are labeled
correctly. The precision and recall values are 78.60 ± 2.47% and
78.26 ± 2.76%, respectively. Additionally, we have performed
the following ablation studies to demonstrate the efficacy of the
proposed five-transition-matrix HMM.

5.1.1. Number of Features
We experimented with the proposed HMM using various
numbers of features. The feature selection is an important factor
as the combination of correct features captures the unique
patterns of different transitions. To understand the effect of
feature selection, we perform three experiments: (i) 13 kinematic
features; (ii) six kinematic features including four derivatives;
and (iii) one composite feature. To get the composite feature
from 13 kinematic features, we experimented with different
dimensionality reduction techniques like PCA, NMF, LDA, and
RP (58–61). Based on the performance, we choose PCA to reduce
the dimension of 13 features into one and produce the composite
feature. In Figure 8A, we illustrate the comparative results for
the above three experiments. As evident from the illustration,
the best performing result was achieved when a combination of
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FIGURE 8 | (A) Feature ablation study using 13 and 6 kinematic features and 1 composite feature. (B) Comparison between the 5 transition matrix vs. 1 transition

matrix model HMM. (C) Comparison between 5 transition matrix HMM with 5 transition matrix time dependent HMM model.

TABLE 5 | Per frame segmentation Results using Transformer with three different types of activity space normalization for 5 splits.

Normalization Metrics 1 2 3 4 5 Mean STD

Homography-Norm

ACC 70.07 74.29 75.85 65.34 72.37 71.59 3.67

Precision 65.03 61.68 68.69 58.37 63.20 63.40 3.43

Recall 61.84 61.45 68.08 55.55 60.54 61.49 3.99

Global-Norm

ACC 69.60 78.55 75.29 75.36 76.20 75.00 3.29

Precision 68.62 69.43 72.58 72.40 70.83 70.77 1.76

Recall 65.37 68.88 72.77 69.51 68.73 69.05 2.63

Mat-Norm

ACC 73.43 78.82 78.55 73.67 77.24 76.34 2.34

Precision 70.20 72.35 73.49 66.72 67.74 70.10 2.59

Recall 68.71 70.55 74.19 61.94 66.43 68.36 4.10

The bold number represent the best performing values.

the raw kinematics and the derivatives were used as input to
the HMM.

5.1.2. Transition Matrix
The proposed HMMmodel uses five transition matrices. We also
experimented with one transition matrix model to understand
the capability of the HMM to learn different variations of
segment transitions across all types of tasks. A 6 × 6 transition
matrix is necessary to represent all the segment transitions across
all performed tasks in our data set. In Figure 8C, we show
the comparison between the one transition matrix HMM and
the proposed five transition matrix HMM (with each transition
matrix calibrated to particular types of tasks).

5.1.3. Time Dependency
We also experimented with time dependent models and wanted
to exploit the duration of segments to correct the predictions
from the HMM. To model time dependency in the HMM
predictions, we use the gamma correction (62) on the predictions
of the HMM. We calculate the gamma probabilities using:

γ (x,α,β) = xα−1 βαe−βx

Ŵ(α)
(4)

where, α and β is calculated per segment using mean (µ)
and standard deviation (σ ) of the segments in the training
set. Since the dataset has a very high standard deviation,
the gamma function [Ŵ(α)] results in a large value and thus

Equation (4) generates probabilities < 0.01. Therefore, the
effect on the HMM predictions are negligible. In Figure 8B, we
illustrate the comparison with the proposed five transitionmatrix
HMMmodel.

5.2. Transformer Segmentation Results
Like the HMM, the transformer was also tested on five random
splits. In Table 5, we demonstrate the segmentation results for
the five splits. As described in section 3.1.2, we experimented
with two types of normalization technique to remove activity
space variance. We present the result for both normalization
techniques in Table 5. We conducted two additional studies to
understand the dynamics of our transformer pipeline by ablating
on (i) the number of features used as input; and (ii) the amount of
labeled training data needed. The former ablation study attempts
to identify the features that are beneficial, while the latter answers
the reduction in time and cost needed to label the data by hand.

5.2.1. Number of Features
We experimented with different number of keypoints while
always using the object features as input to the transformer based
pipeline. We decreased the number of keypoints from 8, 4, 2,
and then to 1. We selected the keypoints for each reduction
based on our prior work (63) that defined the relative importance
of different key points in characterizing upper limb impaired
movement. The best performing result was achieved using just
the wrist keypoints and object locations. This conforms to the
observations made in (63). The results are given in Table 6.
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TABLE 6 | Ablation results on transformers using different number of keypoints.

No. of Keypoints ACC Precision Recall

Mean STD Mean STD Mean STD

1 76.34 2.34 70.10 2.59 68.36 4.10

2 69.65 1.66 55.34 3.67 53.87 4.02

4 71.30 3.20 67.51 4.23 66.14 2.89

8 67.80 2.53 60.19 7.37 56.47 6.15

Using only wrist keypoint outperforms the rest.

The bold number represent the best performing values.

TABLE 7 | Transformer performance with varying sizes of training data.

No. of Samples ACC Precision Recall

Mean STD Mean STD Mean STD

100 65.00 1.85 57.23 3.12 55.12 3.05

200 71.97 3.00 64.63 1.79 62.85 2.17

300 75.54 2.57 69.49 2.54 68.11 3.88

404(all data) 76.34 2.34 70.10 2.59 68.36 4.10

As expected, more data prevents overfitting thus explaining the better performance.

The bold number represent the best performing values.

TABLE 8 | Per frame segmentation result using MSTCN++ for 5 splits.

Split 1 2 3 4 5 Mean STD

ACC 79.75 85.96 83.26 79.96 80.60 81.91 2.38

Precision 76.84 85.29 82.05 74.30 75.08 78.71 4.25

Recall 77.64 84.04 82.24 74.68 75.51 78.82 3.70

This method outperforms HMM and transformers for the task of per-frame segmentation.

5.2.2. Amount of Training Data
We experimented with reducing the amount of training data to
the transformers to better study the generalization properties
of our pipeline in low data scenarios. This is a practical
setting, as the amount of time required to label the data is
very high. However, as transformers contain large number of
parameters, it is important to study the over fitting trends as
well. We report average accuracies on the same test data for fair
comparison while changing the size of input training data. As
can be seen from the Table 7, if the amount of data available
is too small, unsurprisingly the performance is very poor due
to overfitting; however, as size of available data increase, the
performance improves significantly plateauing after sometime. It
is encouraging that even with 25% reduction in training data(404
to 300) the drop in performance is only 2% thus showing the
robustness of the model.

5.3. MSTCN++ Segmentation Results
The results for the five split experiment using the MS-TCN++
is shown in Table 8. This is the best standalone model in
the pipeline as evident from the values. All coordinates were
normalized with respect to the activity mat area as described
in section 3.1.3 refereed to as Mat-Norm. As can be seen
from Table 8, MS-TCN++ achieves the best performance in
terms of per-frame classification error. However, as will be shown

in section 5.7, even though it achieves better classification error,
it performs poorly in standalone estimation of the completion
of the task. As MS-TCN++ is a completely data driven model
it fails to encode any design priors or expert knowledge (i.e.,
expected order of segments). Thus, the few errors that MS-
TCN++ makes are highly harmful. As an example, while every
task should start with an “IPT” segment, the MS-TCN++ based
model labels the first few frames of some tasks as “MTR” thus
affecting the automated task completion performance. Thus,
for higher level automated decisions (assessing completion of
segments and tasks by patients) it is imperative to fuse the
MS-TCN++ with other models that encode prior knowledge
such as our implementations of the HMM and transformer
based models.

5.4. Ensemble Model Segmentation
Results
We experiment with three combinations of model ensembles. In
Table 9, we illustrate the results of three ensemble models. The
best performance is achieved when all threemodels are combined
and that finding is consistent through all the splits. This is
rather unsurprising because, themodels are all complementary in
nature with MS-TCN++ being completely data driven, while our
transformer and HMM based models encode certain amounts of
prior knowledge.
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TABLE 9 | Results using different ensembles.

Ensemble 1 Ensemble 2 Ensemble 3

Mean STD Mean STD Mean STD

ACC 81.01 1.99 83.76 2.77 85.08 2.14

Precision 77.28 4.38 81.40 3.92 84.34 2.61

Recall 77.88 4.46 81.57 3.66 84.6 2.68

(i) Ensemble1: Transformer and HMM, (ii) Ensemble2: HMM and MS-TCN++, and (iii) Ensemble3: Transformer, HMM, and MS-TCN++. We observe that ensemble3 outperforms the

rest.

TABLE 10 | Per-sample inference time for each method.

Transformer HMM MS-TCN++

Inference time (1e-3s) 10.1 1.85 8.3

5.5. Analysis of Running Time
In Table 10, we provide time taken for inference by each of our
algorithm for each video. As can be seen, Transformer takes the
maximum amount of time due to its large amount of parameters
compared toHMM. Results are reported on a Intel Xeon Cpu and
after averaging the run-times for three different runs.

5.6. Qualitative Analysis
In Figure 9, we demonstrate the qualitative performance of
the ensemble model. Figure 9A shows the predicted vs ground
truth comparison for exercise 1 which is one of the easiest task
among the 15 tasks in the SARAH system. As evident from the
illustration, the proposed ensemble model is almost 97% accurate
in this example. However, in Figure 9B, the model fails to predict
one of the transportation segment. In this case the patient drops
the object at the end of “MTR2” segment resulting in artifacts
in the features. However, after incorporating the block-based
segmentation using the design constraint denoising and RBBDT,
we can recover more than 50% of the “MTR2” segment as
indicated by striped blue region in Figure 9B.

5.7. Task Performance Assessment Scores
In Table 11, we demonstrate the results of the block based
segmentation. As evident from the table, with the incorporation
of the proposed denoising and RBBDT, around 99% of the
segment blocks can be labeled correctly. We also calculate task
completion accuracy based on the continuity, and order of the
segment blocks and duration of the tasks. A task is completed if it
has an appropriate order of segments. As shown in Figure 10A,
with the highest as 100% for split 4 and lowest as 87.5% for split
3, the average task completion accuracy is 92%. This means 92%
of the tasks in the test case that were tagged as completed by
the therapists are also labeled as “completed” by our algorithm.
These are the tasks that have a score of either a 3 or 2. The
algorithm generates a score of 2 only when a patient takes longer
time to complete the task correctly. In Figure 10B, we show the
percentage of correctly predicted 2 s using the segment blocks for
three experiments. For these experiments we varied the range of
standard deviation (std). As seen from the figure, our algorithm

predicted maximum 22% of the 2 s among the videos that are
rated 2 s by the therapist. All these tasks are labeled as completed
both by the algorithm and the therapist.

6. DISCUSSION

In this paper, we propose a hierarchical model for automatically
segmenting stroke survivor’s movements and generating
task performance assessment scores during rehabilitation
training. The hierarchical model fuses expert knowledge-biased
approaches with data-driven techniques. The expert knowledge
is more observable in the higher layers of the hierarchy (task
and segment) and therefore more accessible to algorithms
incorporating high level constraints relating to activity structure
(i.e., type and order of segments per task). The lower layers need
to be addressed primarily through data driven techniques. By
developing a sequence for combining complimentary algorithms
that effectively encode the information from the different layers,
we produce robust segmentation and task assessment results
driven by noisy, variable, and limited data.

The MSTCN++ (54) is a data driven technique that relies
primarily on the RGB data layer of our hierarchy and on
composite kinetic features (the features extracted through the
pre-processor) that are trained through generic videos of
human activity. Therefore, the composite features are not fully
observable and are not directly related to upper extremity
functional tasks. Furthermore, the algorithm cannot incorporate
the higher layer constraints resulting from the expert driven
design of the system (segment vocabulary, composite features
related to each segment, order of segments per task). As the
algorithm is most sensitive to the lower layers of the hierarchy,
it performs the best in terms of per-frame segment classification,
but because it does not incorporate higher layer constraints, is
prone to errors in the order of segments. For example it can
classify the beginning frames of a task as belonging to an MTR
segment when all the SARAH tasks start with IPT. Because of the
ordering errors the MSTCN cannot be used in standalone mode
for assessing segment completion and task completion, since task
completion is based on assessment of segment completion and
segment order.

The Transformer utilizes raw kinematic features of the torso,
upper limb, and object. We experimented with 8, 4, 2, and
1 keypoints from open pose combined with object movement
features. We selected the keypoints representing joints that
have been show, in our previous work, to have prominence in
characterizing upper limb impaired movement (32, 34). It can
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FIGURE 9 | Qualitative representation of the task segmentation. (A) Almost 97% accurate segmentation using the proposed ensemble approach. (B) A case where

the algorithm misses the segment MTR2 using the ensemble model and mistakenly identifies it as MTR1. The striped blue zone is the correction in the prediction after

incorporating the block based segmentation using RBBDT.

TABLE 11 | Segmentation block results.

Split Segment wise accuracy Precision Recall

1 99.33 99 98.5

2 98.48 98.18 97.04

3 98.66 98 97

4 100 100 100

5 98.66 98.5 97.5

Mean 99.03 98.73 98.01

STD 0.56 0.71 1.13

thus be said that some form of prior expert knowledge is used
to constrain the Transformer. The best performing Transformer
was with only the wrist key point and object locations. The
object location is an important input feature as a lot of the
segment transitions are dependent on the object achieving
specific translations in the activity space (i.e., movement from
bounding box C to bounding box D and back). In prior work, we
show that the object-limb end point (wrist or hand) interaction
data can be sufficient for the coarse analysis of task completion
in upper extremity rehabilitation (32). We also further proposed
that in these scenarios, the limb could be considered as a dynamic
system that can be sufficiently characterized by the behavior
of the end point (32). Therefore, through the Transformer
we codify the long term relationship between the object and
the patient limb for better predictions of the segment labels.
However, because of the limited and noisy data set, and the
limited data points being used for the Transformer, this model
has the worst per-frame classification performance of the three
segmentation algorithms.

The hiddenMarkov model (HMM) utilizes kinematic features
that are prominent in characterizing upper limb functional
movement (5) and also incorporates segment and task layer
information through the customized transition matrices. We
experimented with multiple training schemes for the HMM. The

ablation study of the HMM provides three key insights. First,
the HMM is sensitive to input features. The best performance
achieved used a six raw kinematic feature HMMmodel combined
with the first derivatives of four kinematic features. The
derivatives have more oscillation compared to the raw features
as shown in Figure 11 and follow the Gaussian distribution.
Second, the proposed HMM requires five transition matrix as
a prior. The transition probabilities are selected based on the
expert knowledge. The size of the transition matrix depends on
the state machine of the exercise. However, we experimented with
one transition matrix model to represent all the exercises and
as shown in Figure 8B. The performance is poor compared to
a 5 model HMM since the expert knowledge of segment-task
relation is lost. Lastly, we compared the proposed HMM with
a time dependent HMM model but the variance in duration
of performance among stroke survivors with different levels of
impairment reduces the performance of the time dependent
HMM. The HMM has limited segment ordering issues as those
are constrained by the transition matrices. However, the reduced
sensitivity of the HMM to nuances in the data layer (the HMM
model would perform better if the differences in the data between
states was significant) combined with the variance in the data
cause a higher number of frame level misclassifications. We
also varied the batch size to understand the sensitivity of the
HMM. In Table 12, the comparative results for different batch
sizes are shown. It is evident that with the increase in data size
the performance of the HMM increases. Since the HMM tunes
its transition matrix and distribution parameters based on the
training data, the more data the better the tuning, and we can
thus expect to see continuous improvement as we add data in
the future.

For all the splits, the ensemble model with three algorithms
performs the best in the frame level classification. This proves
that a fusion of algorithms that have different sensitivities to
different layers of the hierarchy outperforms individual models.
Without the HMM, the ensemble model predictions have a
higher misclassification rate and incorrect sequence orders. For

Frontiers in Neurology | www.frontiersin.org 16 August 2021 | Volume 12 | Article 720650

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Ahmed et al. Automated Movement Assessment in Stroke Rehabilitation

FIGURE 10 | (A) Task completion accuracy for 5 splits using the segment blocks. (B) Percentage of 2 s correctly predicted for different range of standard deviation.

FIGURE 11 | One of the kinematic features representing the distance between the body and the object (left); first derivative of the object body distance feature (right).

TABLE 12 | Results using different batch sizes for HMM input: (i) Experiment 1: batch size of 1, (ii) Experiment 2: batch size of 9 and (iii) Experiment 3: all data.

Experiment 1 Experiment 2 Experiment 3

Mean STD Mean STD Mean STD

ACC 55 10.83 73.15 6.8 77.82 2.88

Precision 60.5 10.15 75.02 6.72 78.60 2.47

Recall 57 10.21 75.20 5.83 78.26 2.76

The bold number represent the best performing values.

example, without the HMM a prediction can start with MTR
or end with IPT. But based on our design prior, we know that
all exercises start with IPT and end with R&R. Since this prior
is incorporated into the HMM, the predicted order of segment
blocks are correct and the per-frame segment label prediction
accuracy increases. As is evident from Table 9, without the
MSCTN the ensemble model has significant deterioration in the
frame level classification.

To automatically assess the completion of a task, we need to
assess the completion and order of segment blocks. This cannot
be done solely through the ensemble model as the ensemble
model has many false positive blocks and missed transitions.
The connection of the segmentation layer to the task assessment
layer requires an algorithm that is heavily biased by expert
knowledge toward behaviors characterizing transition between

segments, as well as the effect of stroke related impairment on
these behaviors. The RBBDT algorithm successfully incorporates
key unimpaired and impaired movement priors for segment
block transition points in one integrated decision sequence. For
example, a phase transition is expected for both object and limb
end point for a simulated drinking motion (task three) when the
object gets close to the head. However, not all stroke survivors
are able to lift the object all the way to their mouth, so the
phase transition can sometimes happen away from the head.
Thus, the phase transition becomes the first decision node with
the place of the transition in the activity space the second node.
The RBBDT is highly sensitive to transition point features but
not sensitive to per-frame data patterns across the whole task.
Thus, the RBBDT produces low quality performance in per-
frame classification but higher quality performance in identifying
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transition candidates.When integrated with the ensemble model,
the correct identification of segment blocks rises above 90%.

To perform the task completion assessment, we use a very
simple algorithm relying only on comparison of the type and
order of the segment blocks given by the integrated ensemble and
RBBT predictions, with the expected type and order of segments
in tasks established by the expert therapists who designed the
SARAH tasks. By adding this codification of prior task knowledge
to our analysis, we are able to correctly classify completed and
uncompleted tasks over 90% of the time. We are also able to
classify completed tasks that took longer than the performance
time allowed by the therapist for impaired performance. These
results further enhance the validity of the use of a hierarchical
model of automated analysis combining algorithmswith different
sensitivities to the different layers of the hierarchy. This includes
layers primarily incorporating observable expert knowledge
(higher layers), layers primarily incorporating computer analyzed
data (lower layers) and layers integrating data and expert
knowledge (middle layers; see Figure 3).

The use of ∼400 videos for training/testing is enough to
overcome the issues of overfitting that we demonstrate when
using 200 or less videos. As we progressed to 300 and then 400
videos, we show steady improvement for the performance of all
the algorithms we were using. It is thus realistic to assume that as
we collect more data, the performance of the hierarchical model
will continue to improve at all layers.

7. CONCLUSION AND FUTURE WORK

Low cost and low intrusion long-term automated rehabilitation
at the home is expected to produce low quality and high
variability data. A hierarchical model fusing expert knowledge-
biased approaches with data-driven techniques can produce
robust results in segmentation and task completion assessment in
rehabilitation even when utilizing low quality and high variability
data. The hierarchical model produces over 90% performance
in assessment of segment completion and task completion.
Even with this limited information, long term, semi-automated
rehabilitation at the home using our SARAH system is feasible.
The system can monitor whether the patient has completed
the assigned exercises for the day and whether exercises were
completed correctly and with ease. The system can use this
information to provide coarse feedback to the patient to reward
accurate performance or remind the patient of the correct
structure of the task if errors are detected. The system can also
make simple decisions including when to encourage the patient
to repeat an exercise (if they are improving but still have more
room for improvement), or move to another simpler or harder
exercise (if they have repeated the exercise enough times or are
not making progress on the current exercise).

To realize this type of interactive training at the home the
system needs to have the capacity to assess each performed task
within 10 s from its completion. During these 10 s patients
rest and self-asses their performance of the previous task. Then
the system provides the automated assessment and the prompt
for the performance of the next task. The results of our run-
time comparison (section 5.5) show that with some further

optimization of our algorithms we can potentially automatically
segment video recorded tasks and assess task and segments
completion within 10 s from completion of each performed task.

Our team is currently working to develop a hybrid approach
where we will combine the vision-based and IMU based
techniques to fully capture movement patterns of stroke
survivors. We will use four IMU sensors that will record
accelerometer data of both hands, one index finger, and the pelvis.
The ring sensor on the finger will capture the hand openness
that will differentiate between different grips and release patterns.
Our team is currently developing techniques to reconstruct 3D
skeleton from accelerometer data using the other three sensors.

Our computational hierarchy, since it is based on
computational data, realizes the hierarchical analysis in a
bottom up manner (features conditioning segment frames,
conditioning segment blocks, conditioning task completion).
Therapists utilize a similar hierarchical analysis in a top down
manner (task conditioning segments, conditioning composite
features, conditioning raw features) so as to leverage their
heuristics about functional task performance. Therefore, the
SARAH system can send a daily summary of training results to a
remote therapist. Since the computational results will be highly
compatible with the therapist assessment heuristics, the therapist
will be able to quickly use this summary to structure the next
day’s therapy and send a message to the patient guiding their
training the next day. The therapist will also be able to select
any analysis result and review the corresponding video thus
further informing their assessment and therapy adaptation. The
feasibility of low-cost semi-automated rehabilitation at the home
using the SARAH system will allow the collection of many more
videos used to further train our algorithms. We are currently
planing to use the SARAH system in a pilot study in the homes
of stroke survivors in the Spring of 2022.

Our team also developed an intuitive assessment interface
allowing expert therapists to rate videos of therapy tasks in a
top down hierarchical manner, complimenting their assessment
approach: rate the overall task, then the segments, then the
composite features per segment, and then return to a final
assessment of the task) (26). As the videos collected through
the SARAH system are rated by expert therapists, we can
use this detailed rating (which is highly compatible with our
computational approach) to further inform our segmentation
and task assessment algorithms and evolve these algorithms to
also automatically analyze movement quality and the relation of
movement quality to functionality. The automatic rating of the
videos will also address the limited availability of rated videos
by experts since therapists have overloaded work schedules
and do not have time to rate videos. Automated assessment
will also allow therapist to focus more time on providing
treatment. To receive the benefits of automated assessment that
is compatible with their practice, therapists may be willing to
quickly review automatic ratings and comment on potential
issues. These annotations could then be used to improve
algorithm performance. Once a significant number of videos have
been rated, this data can be distributed within the rehabilitation
community as a basis for quantitatively exploring the relation of
movement changes to functional recovery. This information can
then be used to refine and optimize therapy customization.
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