POD-RACING: Bulk-Bitwise to Floating-Point

Compute in Racetrack Memory for Machine
Learning at the Edge

Sébastien Ollivier ®, Xinyi Zhang, Yue Tang, Chayanika Choudhuri, Jingtong Hu ® and Alex K. Jones ®,
University of Pittsburgh, Pittsburgh, PA, 15260, USA

8 Convolutional neural networks (CNNs) have become a ubiquitous algorithm with
9 growing applications in mobile and edge settings. We describe a compute-in-
10 memory (CIM) technique called POD-RACING using Racetrack memory (RM) to
11 accelerate CNNs for edge systems. Using transverse read, a technique that can
12 determine the number of “1”s in multiple adjacent domains, POD-RACING can
13 efficiently implement multioperand bulk-bitwise and addition computations, and
14 two-operand multiplication. We discuss how POD-RACING can implement both
15 variable precision integer and floating point arithmetic using digital CIM. This
16 allows both CNN inference and on-device training without expensive data
17 movement to the cloud. Based on these functions we demonstrate the
18 implementation of several CNNs with backpropagation using RM CIM and compare
19 these to the state-of-the-art implementations of CNN inference and training. During

20 training, POD-RACING improves efficiency by 2x, energy consumption by >27%, and

increases throughput by >18% versus a state-of-the-art FPGA accelerator.

dge computing has become increasingly
Eattractive for accelerating machine learning
algorithms, such as convolutional neural net-

works (CNNs), to support the needs of mobile applica-
tions. However, edge systems must adhere to
constraints often referred to as SWaP (size, weight,
and power). For CNN acceleration, field programmable
gate arrays (FPGA) are studied as the best possible
acceleration engines for low latency while meeting
the energy requirements of these edge systems but,
are limited by the need for intensive off-chip memory
accesses. Compute-in-memory (CIM) is proposed to
alleviate this bottleneck. Unfortunately, crossbar-
based solutions require high-energy digital/analog
conversion, which is inappropriate for mobile devices
and DRAM-based solutions have not demonstrated
sufficient precision to implement training. Spintronic
Racetrack memory' (RM) is attractive for edge sys-
tems as it has the necessary density, i.e., between 1-
4F* per cell, while not suffering from endurance

0272-1732 © 2022 |EEE
Digital Object Identifier 10.1109/MM.2022.3195761

002022

Published by the IEEE Computer Society
; @ 2022 IEEE. Personal use is permitted, but republication/redistribution r
Authonized licensed use limited to: University of PltIsEurgh_ Downloaded on

concerns of other tiered memory candidates, such as
phase-change and resistive memories. It also has a
low-energy consumption of circa 0.1 pJ? per write and
a low access latency of circa 1-ns generating excite-
ment for use as main memory,>* particularly for SWaP
constrained systems.

We present precision optimized deep-learning
(POD) using Racetrack arithmetic computed in-mem-
ory for native gradient-descent (RACING). POD-RAC-
ING is the first digital CIM implementation of floating-
point multiply-accumulate designed to implement full
CNN algorithms under SWaP constraints.

With POD-RACING CIM acceleration of deep learn-
ing, we achieve as much as 5x higher performance
than the state-of-the-art DRAM CIM, which leverages
ternary (bulk-bitwise and summation) weight calcula-
tions®® with a nearly 50% reduction in power. POD-
RACING is 2.8 x faster and more than 3x more energy
efficient for integer precision (multiplication and addi-
tion) than the state-of-the-art RM CIM. We also
achieve 18%-74% performance improvement and
26%-81% reduction in power compared to a low-
energy FPGA for 32-bit floating-point precision online
training targeting small to moderate CNNs. In particu-
lar, POD-RACING makes the following contributions.

|EEE Micro
ugust 27

42

S

& &

47

49

51
52

& aE S

57

2 28

6

=

2 &2 BB

uires IEEE permission. See htips:/fwww.ieee.org/publications/rights/index_himl for more information.
,5(]22 at 18:43:58 UTC from IEEE Xplore. Restrictions apply

https://orcid.org/0000-0001-8283-0187
https://orcid.org/0000-0001-8283-0187
https://orcid.org/0000-0001-8283-0187
https://orcid.org/0000-0001-8283-0187
https://orcid.org/0000-0001-8283-0187
https://orcid.org/0000-0003-4029-4034
https://orcid.org/0000-0003-4029-4034
https://orcid.org/0000-0003-4029-4034
https://orcid.org/0000-0003-4029-4034
https://orcid.org/0000-0003-4029-4034
https://orcid.org/0000-0001-7498-0206
https://orcid.org/0000-0001-7498-0206
https://orcid.org/0000-0001-7498-0206
https://orcid.org/0000-0001-7498-0206
https://orcid.org/0000-0001-7498-0206

69
70
71

73
74
75

76

101

103
104
105
106
107
108
109
110
111
112
113

2

This article has been accepted for publication in IEEE Micro. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/MM_2022 3195761

» POD-RACING is, to the best of our knowledge,
the first RM CIM approach to implement float-
ing-point addition and multiplication.

» We propose floating-point CIM designed to con-
duct multioperand floating-point addition.

» We show that POD-RACING outperforms and
provides better efficiency for both CIM (infer-
ence) and FPGA (training) targeting edge
systems.

The remainder of this article is organized as fol-
lows. First, we provide the necessary background on
CNNs and RM. Next, we describe the basic concepts
of POD-RACING, starting with its architecture and
how to perform integer operations. We then explain
how to perform floating-point multiplication with RM
CIM followed by an algorithmic-level explanation on
how to extend similar approaches to perform FP multi-
operand addition. We provide experimental results
comparing improvements of POD-RACING with
DRAM CIM for inference and an FPGA accelerator, fol-
lowed by conclusions.

In this section, we first introduce the elements that
compose the CNN inference and the additional opera-
tions required for training. Next, we provide a brief
introduction to RM.

Convolutional Neural Network

CNN's are primarily based on the convolution opera-
tion, which is a windowed pointwise multiplication
accumulation of multiple channels of input features
with a set of weights to generate output features. As
an example, for the input features I and weights K of
size N x Rin x Cn and M x N x 3 x 3, respectively,
the convolution operation for the window at m (output
channel index), r (row), and ¢ (column) is

N-12 2
Conv(LK)(m,r,c) = Z Z Z Konnjt X Lnptjest

n=0 j=0 t=0

where M is the number of output channels, N is the
number of input channels, R, x Cy, is the size of an
input feature map. The inference operation requires
convolution steps broken up with activation layers
composed of pooling layers to reduce the dimension-
ality of input matrices through average or maximum
value operations and ReLU function, a linear function
that will output the input if positive and zero other-
wise. Once these convolution layers are completed,
fully connected layers are used to provide the

|IEEE Micro
© 2022 |EEE. Personal use is permitted, but republication/redistribution r

Authonized licensed use limited to: University of Pltlsgurgh_ Downloaded on

classification result. The fully connected layers can be
mathematically written as ReLU(Wx + b).

Training of the CNN includes forward propagation,
loss backpropagation, and weight update. During the
forward propagation, which is the same as in infer-
ence, the values at each activation layer are stored for
the weight update. The loss is calculated by a loss
function, such as cross-entropy loss.” After calculating
the loss of the last layer, the loss is propagated layer
by layer until reaching the first layer of the CNN, by a
process that includes weight rotation, convolution,
and channelwise accumulation. Based on the loss
backpropagation, the weights are updated in each
layer individually. The operations in weight updates
are depthwise convolution, elementwise multiplica-
tion, and elementwise subtraction.

While deep leaming with CNNs presumes calcula-
tions with floating-point values, CNN inference calcu-
lations can often be reduced to integer computation
with as few as 8-bits achieving reasonable accuracy.
Recent DRAM CIM work has shown that in many
cases this can be further reduced to ternary
we {~1,0,1}° or even binary w e {0,1} computa-
tions® operations to replace the multiplications. How-
ever, online training for all but the simplest CNNs still
requires full 32-bit floating-point computations to
work properly. Without this accuracy, the weight
updates can be ineffective and possibly even
detrimental.

Next, we describe the basics of RM that provides
the foundation for CIM acceleration of CNN functions.

RM Fundamentals

Spintronic RM is made of ferromagnetic nanowires
consisting of many magnetic domains separated by
domain walls (DWSs), as shown in Figure 1. Each
domain has its own magnetization direction such that
binary values are represented by the magnetization
direction of each domain, either parallel/antiparallel to
a fixed reference. For a planar nanowire, several
domains share one/few access point(s) (APs) for read
and write operations.® DW motion is controlled by
applying a short current pulse laterally along the nano-
wire governed by SL. An access requires shifting the

GND

B Extra-Domain
- Data Demain

FIGURE 1. Anatomy of a DW memory nanowire.

002022

ugust 27 at 18:43:58 UTC from IEEE Xplore. Restrictions apply.

114
115
116
117
118
119
120
121
122
123
124
125
126
17
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

145
146
147
148
149
150
151
152
153
154
155
156

uires IEEE gemission. See hitpsJ/iwww.ieee.org/publications/rights/index_himl for more information.

This article has been accepted for publication in IEEE Micro. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/MM_2022 3195761

TABLE I. POD-RACING compared to accelerators.

1:; Inference improvement compared to CIM

159 Benchmark Target Throughput Power Efficiency

160 FPS w FPS/W

::; LeNet-5 DRAM® 8330 - -

163 Temary® POD-R 32075 0.028 11-10°

164 POD-R improvement 3.85x% Oslash; Oslash;

165 AlexNet DRAM® 84.8 2 424

1$ Temary5 POD-R 4380 0.93 526

168 POD-R improvement 578x 1.94x 12.4x

169 LeNet-5 RM" 59 0.017 13291

170 Integer POD-R 163 0.006 44169

1; POD-R improvement 2.76x 2.33x 3.32x

173 AlexNet RM" 321 5.89 5.45

174 Integer POD-R 90.5 499 1813

1: POD-R improvement 281x 118 3.33x

177 Training improvement compared to FPGA

178 Benchmark Target Throughput Power Efficiency

179 GFLOPS w GFLOPS/W

1:) LeNet-10 FPGA" 86.12 14.23 6.05

. POD-R 1015 276 36.77
183 POD-R improvement 118 5.16x 6.08:x

184 AlexNet FPGA'™ 3452 7.74 4.46

185 POD-R 50.72 5.65 8.97
12: POD-R improvement 147 % 1.36x 2.01x

188 VGG-16 FPGA'™® 46.99 7.7 6.09

189 POD-R 81.95 5.7 14.37
120 POD-R improvement 1.74x 1.35x 2.36x

191

~ i C(i+2)
> H [C{i+1)
o ? = j \I;:v 1)
Global Wordlines = . H N{i+8)
Tile, Tiley, Tileys £ s ¢ ¢ L
| DBCO 2 a AP, < . L —
S bac g 2 g " = Bl
< o >1:: —_—i .
X .]] AP, @ el g 3
% - b g o o < i #
2 [pande & 2 |=l = (o h @ o N(i-8
itand J & . . . o i CIM | nii-1)
CIM Unit an (=] % § g g % - LoGic™
Local Rowbuffer N(i-8) Cli-1 N(+8)
1 S 5§ § S5 § ci-2)
Global Rowbuffer 2 =2 =2 2 =2) Nen N(i+1)
(a) (b) (c)

FIGURE 2. RM architecture following rank, bank, subarray, and tile conventions. All tiles are decomposed into DBCs with some
tiles (e.g., one per subarray) augmented for transverse access and CIM. (a) Subarray built from tiles and DBCs. (b) DBC design: 2
APs for TR. (c) CIM unit for logic, arithmetic, and shifting.

002022 IEEE Micro 3
; @ 2022 IEEE. Personal use is permitted, but regublicationﬂ'redistﬁbutionr uires IEEE permission. See htips:/fwww.ieee.org/publications/rights/index_himl for more information.
Authonized licensed use limited to: University of Pittsburgh. Downloaded on August 2?,5(]22 at 18:43:58 UTC from IEEE Xplore. Restrictions apply.

193
194
195
196
197
198
199
200
201
202
203
204

205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

224

226
227

229

4

This article has been accepted for publication in IEEE Micro. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/MM_2022 3195761

target domain to align it with an AP (dark blue) and
apply a current to read or write the target bit. To avoid
data loss when shifting, overhead domains, repre-
sented in grey, are required.

RM, like many other novel memories, including
resistive memory CIM crossbars,’® has also received
significant attention for CIM, particularly for deep
leaming?>™" In the next section, we describe the
POD-RACING RM CIM approach that can operate at
multiple levels of precision from binary/temary weight
inference to full floating-point precision online
training.

The memory architecture concept behind POD-RAC-
ING is shown in Figure 2. We follow a DRAM-inspired
hierarchical organization consisting of ranks and
banks constructed from subarrays built with tiles [see
Figure 2(a)]. Each tile is constructed from bundles of
RM nanowires shifted together and referred to as a
domain-block cluster (DBC).*™ A DBC can accommo-
date D rows with parallel access to all bits belonging
to the same row through the parallel APs [see Figure 2
(b)l. D € {16,32,64} is the number of data domains
per nanowire. Each tile maintains a 512 x 512 shape,
akin to DRAM. To enable CIM, a tile may be extended
in two ways. A second AP is added to the DBCs in that
tile to allow a current to traverse all the domains
between the two APs indicated by the orange arrow
[see Figure 2(b)]. If spaced within a prescribed trans-
verse read distance (TRD), transverse read (TR) can
distinguish between resistance levels based on the
number of “1"s (v) between the APs much like a multi-
level cell.* Using TR, the local row buffer is extended
with a CIM unit that retains a fast (bypass) path for a
standard read, but can also convert the “I"s count
from a TR into multioperand logic and the building
blocks for arithmetic [shown for TRD = 7 in Figure 2
(c)].

a) DBCO Sign

b) Additional space Exponent

Mantissa

Multioperand AND and OR are naturally determined
by sensing the highest (all ones) or lowest (all zeros)
resistance levels. Operations of fewer operands can
be accomplished by padding with ones or zeros as
appropriate. Unlike prior processing using memory
approaches POD-RACING includes logic to directly
compute ¥R from the 1's count, which also serves as
the sum S for addition. All of these bulk-bitwise opera-
tions may be computed in parallel across the entire
memory row. To support arithmetic we also can com-
pute a carry C'=%tmod 2 and super carry ¢’ =% with
minimal additional logic, which are needed to gener-
ate a sum of up to seven “1"s. Addition of TRD-2 oper-
ands may be computed directly by activating each
nanowire in sequence. For nanowire N;, §; is written
to AP, of N; (S; — N,), while similarly C; — N;;,; and
C] — N2y in parallel enabling a carry chain using
navy and yellow connections in the CIM."”

The CIM block allows logical left and right shifts by
both ones (orange and blue) and eight (red and green)
positions. These logical shifts are different from RM
nanowire shifting, which aligns different domains with
APs (up and down). The shift by one position along
with a small number of predication bits™ to support
multiplication using partial product addition. For more

Step 1 Step 2 Step 3
| i |

Find Max
Exponent

Shift
Mantissas

Complement

<0 . number l

Step 7

mantissas

Step 6 Step 8 Step 9

FIGURE 4. FP addition flow. Steps in blue, green, and red are
operating on the mantissa, exponent, and sign bits,
respectively.

| B |

127

k+6]

FIGURE 3. FP multiplication in memory.

|IEEE Micro
© 2022 |EEE. Personal use is permitted, but republication/redistribution r

Authonized licensed use limited to: University of Pltlsgurgh_ Downloaded on

002022

at 18:43:58 UTC from IEEE Xplore. Restrictions apply.

8

BERBREEBRR

uires IEEE permission. See htips:/fwww.ieee.org/publications/rights/index_himl for more information.
ugust 2?,5(]22

257

260
261
262
263
264
265
266
267
268
269
270
271

272
273
274
275
276
277
278

291
292
293
294
295
296
297
298

This article has been accepted for publication in IEEE Micro. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/MM_2022 3195761

than TRD-2 operands, computing the S, C, and C” bits
in parallel reduces seven operands to three, allowing
multiplication and reduction over addition to being
computed in O(n) time where n is the operand width.
To clarify these capabilities from prior work,'? detailed
algorithms for these arithmetic operations are pre-
sented in Algorithm 1 of the supplementary material,
which can be found in the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
MM.2022.3195761.

This CIM approach forms the basis to conduct
binary, temary, and integer/fixed point CNN inference.
In the next sections, we describe floating-point multi-
plication and reduction over addition required for
accurate backpropagation used for CNN online
training.

POD RACING implements 32-bit floating-point multi-
plication on operands composed of packed 23-bit
mantissas represented in blue, 8-bit exponents (biased
by 2% — 1) in green, and a sign bit in red, in rows with
64-bit alignment, as shown in Figure 3(a). Data from
multiple input channels are packed in 512-bit rows.
Each operation executes on eight 64-bit values allow-
ing channelwise parallelism regardless of window size
or stride. Convolution across multiple windows in par-
allel is possible across different subarrays.™

First, the mantissa M;, exponent E;, and sign S; of
each operand i € {A, B} are masked off with an AND
operation, the leading “1” restored with an 0R operation
and stored in separate DBCs. In Figure 3(b), using inte-
ger operations we multiply the two 24-bit mantissas
by using operand B and the predication registers to
store a shifted copy of A or “0"s depending on each bit
of B. We sum the partial products in two major steps.
First, we create for all bits in parallel a sum S, carry C,
and supercarry ¢’ vector, using the S, C, and C’ opera-
tors, respectively, for each of seven partial products.
We continue to reduce the generated S, C, and C" until
we have <5 operands, as shown in the right half of
Figure 3(b). Here the final sum is created by summing
each bit position carrying C' and C’ where the final
sum that is the mantissa product expanded to 48-bits.
Because 1.0 < M; < 2.0 then it follows that their
product Pis 1.0 < P < 4.0.

To normalize P > 2.0 uses the top bit ¢ to govern a
predicated normalization right shift by one [see
Figure 2(c)]. Then as shown in Figure 3(c), we add the
exponents E = E4 + Eg + —127 + ¢ using multioper-
and integer arithmetic where —127 counteracts the

002022

; @ 2022 IEEE. Personal use is permitted, but regublicationfredistﬁbution [
Authonized licensed use limited to: University of Pittsburgh. Downloaded on

exponent offset and ¢ is from P normalization. Finally,
to determine the resulting sign of the multiplication,
as shown in Figure 3(d), we execute S = 54 X0RSg. A
detailed algorithm is presented in Algorithm 2 of the
supplementary material, available online. We leave M,
E, and S, decomposed to facilitate reduction over
floating-point addition described in the next section.

FP addition requires nine steps, as shown in Figure 4.
Step 1 determines the maximum exponent within the
convolution window. The maximum exponent is deter-
mined by the searching for “1“s using TR at each posi-
tion from most to least significant, if a “1” is present
from any exponent in that bit position, all exponents
without that bit set are set to zero eliminating all but
the maximum value, this process is also used for
determining the maximum value during pooling.'

In step 2 each local exponent is subtracted from
the maximum. In step 3 this difference is used to gov-
ern right shifts to normalize the corresponding mantis-
sas. This is implemented in POD-RACING by copying
each difference bit from the lowest to highest into the
predication register and executing a series of predi-
cated logical right shifts (read and shift using the CIM
unit). Each subsequent bit requires increasing the shift
distance by powers of two for which we can leverage
the orange N(i-1) or/and red N(i-8) connections in
Figure 2(c) as appropriate.

In step 4, the sign bit of each operand is used as a
predication value to invert the mantissa using an Xor
operation with all “1"s. In step 5, the same predication
register governs storing one. These two rows are now
necessary for representing the signed representation
M;. In step 6, M =3, M;, where each M; is repre-
sented as two rows, is conducted as discussed in the
prior section for adding partial products. In step 7, if
the most significant bit of M is “1,” we complement
the number, using this bit as a predicated inversion
operation and then add one.

In Steps 8 and 9, we normalize the mantissa to 23
bits and adjust the exponent based on the normaliza-
tion. There are three cases for M, the leading “1" is
higher than bit position 48 requiring to increase the
exponent and shift M right, it is lower than 48 but
higher than 23 requiring decreasing the exponent and
shift M right, or it is lower than 23 requiring decreasing
the exponent and shifting M left. We accomplish this
by creating a copy of M. Each cycle M is shifted left
and predicated instructions are issued that are gov-
erned by seeing the first “1" to adjust the exponent

|EEE Micro
uires IEEE
ugust 27,

ermission. See hitps/iwww
at 18:43:58 UTC from IE

310
311
312
313

314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

5

.ieee.org/publications/rightsfindex.himl for more information.
Xplore. Restrictions apply.

http://doi.ieeecomputersociety.org/10.1109/MM.2022.3195761
http://doi.ieeecomputersociety.org/10.1109/MM.2022.3195761

361
362

367

369
370
371
372
373
374
375
376
377
378
379

391
392
393
394
395
396
397
398

6

This article has been accepted for publication in IEEE Micro. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/MM_2022 3195761

and after seeing the first “1” to shift the actual man-
tissa. Unfortunately, due to space limitations we were
unable to provide precise details in the article, we
describe the detailed algorithms for these operations
in Algorithm 3 of the supplementary material, available
online, which follows the basic flow and intuition laid
out here.

During backpropagation weight matrices must be
rotated 180°, which is equivalent to swapping the val-
ues of these relatively small (3x3 up to 11x11) along
the vertical and horizontal bisecting lines of the
matrix. We use POD-RACING PIM to mask off the indi-
vidual values of each row using AND, logically shift to
the correct position, and recombine using OR. In addi-
tion, the weight update operation: W' =W — Lg x
AW where the new weight W' is a function of the pre-
vious weight W the learning weight Ly and the weight
difference AW calculated via gradient descent
method. We also use floating-point POD-RACING CIM
to compute this function.

POD-RACING enables multiple precision modes from
binary weight used for inference to floating-point
required for effective training. FPGAs can also use
multiple precision modes, however, it has been dem-
onstrated by previous work that DRAM CNN-inference
is faster and consumes less energy than FPGA CNN-
inference.'® Thus, we compare POD-RACING for infer-
ence against the state-of-the-art DRAM CIM using ter-
nary weights®® and RM using integer weights,'” where
the RM and DRAM (DDR3-1600) have a 1 and 1.6-GHz
clock frequency, respectively. We compare POD-RAC-
ING for training using floating-point operations
against energy-efficient FPGAs suitable for edge sys-
tems: Xilinx ZU19EG (LeNet-10)'” and ZCU102 (AlexNet
and VGG-16).”® We used CIFAR-10 for LeNet-10 and
ImageNet for AlexNet and VGG16 as in prior work.'®
The energy and latency parameters of accessing RM
and TR in POD-RACING are provided by Yu et al.? and
Roxy et al.'"* The latency and energy consumption for
the CIM unit architecture extensions in Figure 2 were
determined by implementing the design with the
Cadence ASIC Flow targeting 45-nm technology. POD-
RACING simplifies the CIM-unit but expands the shift-
ing capability over prior work on integer CIM using RM
requiring an area overhead of 10% creating one CIM-
enabled tile per subarray.”

|IEEE Micro
© 2022 |EEE. Personal use is permitted, but republication/redistribution r

Authonized licensed use limited to: University of Pltlsgurgh_ Downloaded on

Like prior work, we presume the memory controller
issues CIM operations from dedicated CIM instruc-
tions, which can be included directly in the software
code as compiler directives. These instructions indi-
cate the source, destination, the operation, and block
size.'>' Either the virtual memory management sys-
tem can be made aware of these instructions or they
can be assigned to previously declared regions of CIM
memory like in memory mapped 1/O. In many cases,
such as addition operations the memory controller
must issues several instructions in sequence, gov-
erned by the block size, such as addition with the carry
chain, finding the maximum, and predicated opera-
tions. Algorithms 1-3 in the supplementary document,
available online, the detailed behavior of the memory
controller operations required for these instructions.

CNN Inference

During the CNN inference phase, precision can be
tuned based on the required accuracy. Reduced preci-
sion can provide a lower latency result in situ, which is
particularly valuable for edge networks with small
batch sizes. For instance, integer, temary, or binary
weight calculation reduces the complexity of addition
and multiplication to simpler integer functional units
while providing sufficient accuracy compared to more
expensive floating-point computation. In fact, ternary
and binary forms convert multiplication to much sim-
pler bulk-bitwise (e.g., X0R) operations.

Using bulk-bitwise ternary weight CNN inference
POD-RACING is more than 3x faster than the state-
of-the-art DRAM CIM>8 with an approximately 2x
power advantage leading to an order of magnitude
efficiency advantage for AlexNet® In fact, ternary
weight CNN inference with POD-RACING is 2-3x
faster than even simpler binary weight CNN inference
using DRAM CIM.'? Using integer operations, POD-
RACING can outperform by nearly 3x and provides
more than 3x the efficiency of the latest RM CIM."
The results are detailed in Table 1.

CNN Training

Given in situ training for low latency with small batch
sizes and to maintain SWaP of edge systems GPUs
may not be practical for their relatively high power.
Sending these large datasets to the cloud for GPU
acceleration is also impractical. Given CIM has yet to
demonstrate CNN training with floating-point

*Power and energy data were not reported for the LeNet-5
DRAM CIM implementation® and is noted as a “~" in Table 1.

002022

ugust 27 at 18:43:58 UTC from IEEE Xplore. Restrictions apply.

gz 5

410
411
412
413
414
415
416
417
418
419
420
421
422

423
424
425
426
427
428
4

&8 8

SEEBEEEEGEEEREER

T8 E8E

g &

uires IEEE gemission. See hitpsJ/iwww.ieee.org/publications/rights/index_himl for more information.

469
470
471
472
473
474
475
476
477
478

487

489
490
491
492
493
494

495
496
497
498

This article has been accepted for publication in IEEE Micro. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/MM_2022 3195761

precision, we compare with FPGAs accelerators,
which are emerging for in situ edge CNN training, 18

POD-RACING is competitive, even outperforming
FPGAs by 18%-74% with a significant improvement in
power. We demonstrate a more than 2x improvement
in efficiency even as the complexity of the CNN
increases; POD-RACING for AlexNet is 2x more effi-
cient, while VGG-16 is 2.36 x more efficient. Thus, not
only is POD-RACING demonstrating that CNN training
is possible using CIM, it may even be more practical
than FPGAs. When coupled with the high capacity and
low-energy consumption of RM-based memory, the
capabilities for SWaP constrained edge acceleration
of deep leaming and beyond are impressive and wor-
thy of further exploration.

POD-RACING is the first, to the best of our knowledge,
approach to enable full CNN architectures in memory,
with multiple precision capabilities suitable for tuning
both inference and training operations. While floating-
point operations have always been a major roadblock
for in-memory processing, POD-RACING can perform
these operations efficiently at a speed and energy
consumption improves over FPGA technology. In par-
ticular, POD-RACING is between 18% and 74% faster
in terms of throughput, and at least 26% better in
terms of energy, resulting in an efficiency improve-
ment of more than 2x compared to the state-of-the-
art FPGAs for small to moderate-sized CNNs. POD-
RACING is the first CIM architecture that is suffi-
ciently reconfigurable to provide capabilities and
improvements over the state-of-the-art techniques for
both in situ CNN inference and training for edge
computing.

This work was supported in part by the http://dx.doi.
org/10.13039/100000001NSF ~ under Grant CNS-
1822085, Grant CNS-2133267, the http://dx.doi.org/
10.13039/100009226 National Security Agency , and
Laboratory of Physical Sciences. The authors would
like to thank Dr. Xulong Tang and Sheng Li for their
consultation on this manuscript.

1. S.S.P.Parkin, S. S. Parkin, M. Hayashi, and L. Thomas,
“Magnetic domain-wall Racetrack memory,” Science,
vol. 320, no. 5873, pp. 190194, 2008.

002022

; @ 2022 IEEE. Personal use is permitted, but regublicationfredistﬁbution [
Authonized licensed use limited to: University of Pittsburgh. Downloaded on

10.

1.

14.

uires IEEE permission. See hitps:
ugust 2?,5022

H. Yu et al., “Energy efficient in-memory machine
learning for data intensive image-processing by non-
volatile domain-wall memory,” in Proc. 19th Asia, South
Pacific Des. Automat. Conf., 2014, pp.191-196.

D. Wang et al., “Shift-optimized energy-efficient
Racetrack-based main memory,” J. Circuits, Syst.
Comput., vol. 27, no. 05, 2018, Art. no. 1850081.

A. A. Khan et al, “Shiftsreduce: Minimizing shifts in
Racetrack memory 4.0, ACM Trans. Archit. Code
Optim., vol. 16, no. 4, pp. 1-23, 2019.

Q. Deng et al., “DRACC: A dram based accelerator for
accurate CNN inference,” in Proc. 55th Annu. Des.
Automat. Conf., 2018, pp. 1-6.

X.Xin, Y.Zhang, and J. Yang, “Elp2im: Efficient and low
power bitwise operation processing in dram,” in Proc.
IEEE Int. Symp. High Perform. Comput. Archit., 2020,
pp. 303-314.

P.-T. De Boer et al.,, “A tutorial on the cross-entropy
method,” Ann. Operations Res., vol. 134, no. 1, pp. 19—
67, 2005.

J. Sim, H. Seol, and L. Kim, “NID: Processing binary
convolutional neural network in commodity dram,” in
Proc. IEEE/ACM Int. Conf. Comput.-Aided Des., 2018,
pp. 1-8.

Y.Zhang et al., “Perpendicular-magnetic-anisotropy
CoFeB Racetrack memory,” J. Appl. Phys., vol. 111,

no. 9, 2012, Art. no. 093925.

P. Chi et al., “Prime: A novel processing-in-memory
architecture for neural network computation in
ReRAM-based main memory,” ACM SIGARCH Comput.
Architecture News, vol. 44, no. 3, pp. 27-39, 2016.

B. Liu et al., “An efficient Racetrack memory-based
processing-in-memory architecture for convolutional
neural networks,” in Proc. IEEE Int. Symp. Parallel
Distrib. Process. Appl., IEEE Int. Conf. Ubiquitous
Comput. Commun., 2017, pp. 383-390.

S. Ollivier, S. Longofono, P. Dutta, J. Hu, S. Bhanja, and
A. K. Jones, “"CORUSCANT: Fast efficient processing-
in-Racetrack memories,” in Proc. IEEE/ACM Int. Symp.
Microarchitecture, 2022.

. R.Venkatesan et al., “Tapecache: A high density,

energy efficient cache based on domain wall memory,”
in Proc. ACM/IEEE Int. Symp. Low Power Electron. Des.,
2012, pp. 185-190.

K. Roxy, S. Ollivier, A. Hoque, S. Longofono, A. K. Jones,
and S. Bhanja, “A novel transverse read technique for
domain-wall ‘Racetrack” memories,” IEEE Trans.
Nanotechnol,, vol.19, pp. 648-652, 2020.

. M. Lenjani et al., “Fulcrum: A simplified control and

access mechanism toward flexible and practical in-
situ accelerators,” in Proc. IEEE Int. Symp. High
Perform. Comput. Archit., 2020, pp. 556-569.

|EEE Micro
at 18:43:58 UTC from IE

499
500
501
502

504
505
506
507

509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533

535
536
537

539

540
541

7

Q3

Jiwww ieee org/publications/rights/index_html for more information.
Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Micro. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/MM_2022 3195761

16. L. Jiang, M. Kim, W. Wen, and D. Wang, “XNOR-POP: A

based CNN training and on-device artificial intelligence. Tang 58
552 processing-in-memory architecture for binary received her M.S. degree from the School of Automation Sci- 585
553 convolutional neural networks in wide-lo2 drams,” in ence and Electrical Engineering, Beihang University, Beijing, 58
554 IEEE/ACM Int. Symp. Low Power Electron. Des., 2017, . .

China. Contact her at yut51@pitt.edu. 587 Q5
555 pp. 1-6.
556 17. Z.Liu,Y.Dou, J. Jiang, Q. Wang, and P. Chow, “An
557 FPGA-based processor for training convolutional CHAYANIKA CHOUDHURI is a research volunteer with the 588
558 neural networks,” in Proc. Int. Conf. Field University of Pittsburgh, Pittsburgh, PA, 15260, USA, in electri- 589
559 Programmable Technol,, 2017, pp. 207-210. cal and computer engineering under the supervision of Pro- 5%
560 18. Y. Tang et al., "EF-Train: Enable efficient on-device fessor Alex K. Jones. Her research interests focusses on 591
561 CNN training on FPGA through data reshaping for novel memories as domain-wall memory. Contact her at 5%
562 online adaptation or personalization,” ACM Trans. Des. roc74@pitt.edu. 598 Q6
563 Automat. Electron. Syst., vol. 27, no. 5, 2022, Art. no. 49.
564 19. V. Sesl"nac‘lrl etal, meblt Il"u-memory ac:celerator for JINGTONG HU is currently an Associate Professor and Wil- 594
565 bulk bitwise operations using commodity dram liam Keoler Whiteford Facultvfellow in the Department of
566 technology,” in Proc. 50th Annu. IEEE/ACM Int. Symp. iam Kepler Whiteford Facultyfellow in the Department of 5%
67 Microarchit., 2017, pp. 273-287 Electrical and Computer Engineering, University of Pitts- 5%

burgh, Pittsburgh, PA, 15260, USA. His current research inter- 597
568 SEBASTIEN OLLIVIER research interests include novel mem- ests include hardware/software co-design for machine 5%
569 ory reliability, computing units for processing in memory and learning algorithms, on-device Al, embedded systems.. Hu 5%
570 application acceleration. He has authored or coauthored sev- received his Ph.D. degree in computer science from the Uni- 600
571 eral articles focusing on domain-wall memory. Ollivier ~ Versity of Texas at Dallas, Richardson, TX, USA. He is a senior 601
572 received his Ph.D. degree in electrical and computer engi- member of IEEE. Contact him at jthu@pitt.edu. 602
573 neering from the University of Pittsburgh, Pittsburgh, PA,
574 USA.Contact him at shol5@pitt.edu. ALEX K. JONES is a professor of ECE and CS with the Univer-

sity of Pittsburgh, Pittsburgh, PA, 15260, USA. He is currently
575 XINYl ZHANG research interests include software-hardware serving as a program director with the U.S. NSF in the CNS

2288 & 28

576 code-design for machine learning algorithms, deep-learning ~ Division of the CISE Directorate. His research interests
577 algorithm compression, and FPGA high-level synthesis.Zhang ~ include compilation for configurable systems and architec-
578 received his Ph.D. degree in electrical and computer engi- tures, scaled and emerging memory, reliability, fault toler-
579 neering from the University of Pittsburgh, Pittsburgh, PA, ance, and sustainable computing. He has authored or
580 USA. Contact him at xinyizhang@pitt.edu. coauthored more than 200 publications in these areas. His 610

581

YUE TANG is currently a Ph.D. candidate with the University

research is funded by the NSF, DARPA, NSA, and industry.
Jones received his Ph.D. degree in ECE from Northwestern

611
612

582 of Pittsburgh, Pittsburgh, PA, 15260, USA, in electrical and University, Evanston, IL, USA. He is a senior member of IEEE 613
583 computer engineering. Her research interests include FPGA- and ACM. Contact him at akjones@pitt.edu. 614
8 IEEE Micro 00 2022

© 2022 |EEE. Personal use is permitted, but republication/redistribution r

B h - 3 i uires IEEE permission. See htips/iwww.ieee.or
Authonized licensed use limited to: University of Pltlsgurgh_ Downloaded on ,5022

/publications/rightsfindex.himl for more information.
ugust 27 at 18:43:58 UTC from IE

Xplore. Restrictions apply.

