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Abstract. SIDH is a post-quantum key exchange algorithm based on the presumed diffi-
culty of finding isogenies between supersingular elliptic curves. However, SIDH and related
cryptosystems also reveal additional information: the restriction of a secret isogeny to a
subgroup of the curve (torsion-point information). Petit [30] was the first to demonstrate
that torsion-point information could noticeably lower the difficulty of finding secret iso-
genies. In particular, Petit showed that “overstretched” parameterizations of SIDH could be
broken in polynomial time. However, this did not impact the security of any cryptosystems
proposed in the literature. The contribution of this paper is twofold: First, we strengthen
the techniques of [30] by exploiting additional information coming from a dual and a
Frobenius isogeny. This extends the impact of torsion-point attacks considerably. In par-
ticular, our techniques yield a classical attack that completely breaks the n-party group
key exchange of [2], first introduced as GSIDH in [16], for 6 parties or more, and a quantum
attack for 3 parties or more that improves on the best known asymptotic complexity. We
also provide a Magma implementation of our attack for 6 parties. We give the full range
of parameters for which our attacks apply. Second, we construct SIDH variants designed
to be weak against our attacks; this includes backdoor choices of starting curve, as well as
backdoor choices of base-field prime. We stress that our results do not degrade the security
of, or reveal any weakness in, the NIST submission SIKE [19].

1 Introduction

With the advent of quantum computers, commonly deployed cryptosystems based on the integer-
factorization or discrete-logarithm problems will need to be replaced by new post-quantum
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cryptosystems that rely on different assumptions. Isogeny-based cryptography is a relatively
new field within post-quantum cryptography. An isogeny is a non-zero rational map between
elliptic curves that also preserves the group structure, and isogeny-based cryptography is based
on the conjectured hardness of finding isogenies between elliptic curves over finite fields.

Isogeny-based cryptography stands out amongst post-quantum primitives due to the fact
that isogeny-based key-exchange achieves the smallest key sizes of all candidates. Isogeny-based
schemes also appear to be fairly flexible; for example, a relatively efficient post-quantum non-
interactive key agreement protocol called CSIDH |[8] is built on isogeny assumptions.

The Supersingular Isogeny Diffie-Hellman protocol, or SIDH, was the first practical isogeny-
based key-exchange protocol, proposed in 2011 by Jao and De Feo [21]. The security of SIDH
relies on the hardness of solving (a special case of) the following problem:!

Problem 1 (Supersingular Isogeny with Torsion (SSI-T)). For a prime p and smooth
coprime integers A and B, given two supersingular elliptic curves Ey/F,2 and E/F,> connected
by an unknown degree-A isogeny ¢: Ey — E, and given the restriction of ¢ to the B-torsion
of Ey, recover an? isogeny ¢ matching these constraints.

SSI-T is a generalization of the “Computational Supersingular Isogeny problem”, or CSSI for
short, defined in [21]. Although the CSSI problem that appears in the literature also includes
torsion information, we use the name SSI-T to stress the importance of the additional torsion
information. Additionally, we consider more flexibility in the parameters than CSSI to challenge
the implicit assumption that even with torsion information the hardness of the protocol always
scales with the degree of the isogenies and the characteristic p of the field.

The best known way to break SIDH by treating it as a pure isogeny problem is a claw-finding
approach on the isogeny graph having classical complexity O(/A - polylog(p)) and no known
quantum speedups viable in reality [22].> However, it is clear that SSI-T provides the attacker
with more information than the “pure” supersingular isogeny problem, where the goal is to find an
isogeny between two given supersingular elliptic curves without any further hints or restrictions.

The first indication that additional torsion-point information could be exploited to attack a
supersingular isogeny-based cryptosystem was an active key-reuse attack against SIDH published
in 2016 [17] by Galbraith, Petit, Shani, and Ti. In [17] the attacker sends key-exchange messages
with manipulated torsion points and detects whether the key exchange succeeds. This allows
recovery of the secret key within O(log A) queries. To mitigate this attack, [17] proposes using
the Fujisaki-Okamoto transform, which generically renders a CPA-secure public-key encryption
scheme CCA-secure, and therefore thwarts those so-called reaction attacks. The resulting scheme
Supersingular Isogeny Key Encapsulation, or SIKE [19] for short, is the only isogeny-based sub-
mission to NIST’s standardization project for post-quantum cryptography [28], and is currently
a Round 3 “Alternate Candidate”.

However, SSI-T can be easier than finding isogenies in general. Indeed, a line of work [30, 7|
revealed a separation between the hardness of the supersingular isogeny problem and SSI-T for
some parameterizations. This is potentially concerning because several similar schemes have been
proposed that are based on the more general SSI-T, and in particular, not clearly based on the
CSSI problem as stated in [21] due to CSSI’s restrictions on A and B [11, 33, 16, 2, 5, 13]. For

1 See Section 2.2 for how the objects discussed are represented computationally.

2 These constraints do not necessarily uniquely determine ¢, but any efficiently computable isogeny
from Ey to E is usually enough to recover the SIDH secret [17, 36]. Moreover, ¢ is unique whenever
B? > 4A |27, §4].

3 Note that the naive meet-in-the-middle approach has prohibitively large memory requirements. Colli-
sion finding & la van Oorschot—Wiener thus performs better in practice, although its time complexity
is worse in theory [1].



example, for the security of the GSIDH n-party group key agreement [16, 2], SSI-T must hold
for B~ A" 1.

A particular choice made in SIKE is to fix the “starting curve” Fy to be a curve defined
over [F, that has small-degree non-scalar endomorphisms; these are very rare properties within
the set of all supersingular curves defined over Fp.. On its own, such a choice of starting curve
does not seem to have any negative security implications for SIKE. However, in addition to their
active attack, [17] shows that given an explicit description of both curves’ endomorphism rings,
it is (under reasonable heuristic assumptions) possible to recover the secret isogeny in SIKE.
The argument in [17] does not use torsion-point information, but only applies if the curves are
sufficiently close; recently [36] showed that if torsion-point information is provided the two curves
do not need to be close.

The approach for solving SSI-T introduced by Petit in 2017 [30] exploits both torsion-point
information and knowledge of the endomorphism ring of the special starting curve. This attack is
efficient for certain parameters, for which the “pure” supersingular isogeny problem still appears
to be hard. It uses the knowledge of the secret isogeny restricted to a large torsion subgroup
to recover the isogeny itself, giving a passive heuristic polynomial-time attack on non-standard
variants of SIDH satisfying B > A* > p*. However, in practice, for all the SIDH-style schemes
proposed in the literature so far, both A and B are taken to be divisors of p? — 1, allowing torsion
points to be defined over small field extensions, which makes the resulting scheme more efficient.
One of the contributions of this work is extending torsion-point attacks to have a stronger impact
on parameterizations where A and B are divisors of p + 1 or p? — 1.

1.1 Owur contributions

We improve upon and extend Petit’s 2017 torsion-point attacks [30] in several ways. Our technical
results have the following cryptographic implications:

e We give an attack on n-party group key agreement [16, 2|, see Section 7.1 and in particular
Table 1. This attack applies to the GSIDH protocol of [16], not to the SIBD procotol of [16].
Our attack yields, under Heuristic 2:

— A polynomial-time break for n > 6.
— An improved classical attack for n > 5.
— An improved quantum attack for n > 3 (compared to the asymptotic complexity for
quantum claw-finding computed in [22]).
We provide a Magma [6] implementation of our attack on 6-party group key agreement, see
https://github.com/torsion-attacks-SIDH/6party.

e We give an attack on B-SIDH [11] that, under Heuristic 1, is asymptotically better than
quantum claw-finding (with respect to [22]), although it does not weaken the security claims
of [11] (see Section 7.2).

e We show that setting up a B-SIDH group key agreement in the natural way would yield a
polynomial-time attack for 4 or more parties (see Section 7.3).

e More generally, we solve Problem SSI-T (under plausible explicit heuristics) in:
1. Polynomial time when
— j(Ep) = 1728, B > pA, p > A, A has (at most) O(loglogp) distinct prime factors,
and B is at most polynomial in A (Proposition 9 and Corollary 7).

— j(Ey) =1728, B > \/f)AQ, p > A, A has (at most) O(log log p) distinct prime factors,
and B is at most polynomial in A (Proposition 11 and Corollary 8).
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— Ejy is a specially constructed “backdoor curve”, B > A2, and A has (at most)
O(loglog p) distinct prime factors (Theorem 15 and Algorithm 3).

— j(Ep) = 1728 and p is a specially constructed backdoor prime (Sections 5.3 and 5.4).

2. Superpolynomial time but asymptotically more efficient than meet-in-the-middle on a
classical computer when

— j(Ey) = 1728, B > max{\/ﬁA%,A,p}, A has (at most) O(loglogp) distinct prime
factors, and B is at most polynomial in A (Corollary 26).
— j(Eo) = 1728, B > /pA, A has (at most) O(loglogp) distinct prime factors, and B
is at most polynomial in A (Corollary 28).
— Ey is a specially constructed “backdoor curve” and A has (at most) O(loglogp)
distinct prime factors (Proposition 31).
3. Superpolynomial time but asymptotically more efficient than quantum claw-finding (with
respect to [22]) when j(Ep) = 1728, B > /p, A has (at most) O(loglog p) distinct prime
factors, and B is at most polynomial in A (Corollary 28).
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Figure 1. Performance of our attacks for j(Fp) = 1728. Here A ~ p® and B = p”. Parameters above the
red, orange and yellow curves are parameters admitting a polynomial-time attack, an improvement over
the best classical attacks, and an improvement over the best quantum attacks respectively. Parameters
below the upper dashed line are those allowing AB | (p® — 1) as in [11]. Parameters below the lower
dashed line are those allowing AB | (p+1) as in [20, 19]. The blue dot corresponds to SIKE parameters.

These cryptographic implications are consequences of the following new mathematical results:
e In Section 3, we formalize the hardness assumption and reduction implicit in [30]. We call
this hardness assumption the Shifted Lollipop Endomorphism (SLE) Problem.

e In Section 4, we give two improved reductions to SLE (leading to our dual isogeny attack
and Frobenius isogeny attack).

e In Section 5, we:
— Introduce “backdoor” curves, which, when used as Ejy, allows us to solve SSI-T in poly-
nomial time if B > A2
— Give a method to construct backdoor curves and study their frequency.

— Introduce “backdoor” primes, which, when used for p, allows us to solve SSI-T in poly-
nomial time.



e In Section 6, we show how to extend both the dual isogeny attack and the Frobenius isogeny
attack to allow for superpolynomial attacks.

We emphasize that none of our attacks apply to the NIST candidate SIKE: for each attack
described in this paper, at least one aspect of SIKE needs to be changed (e.g., the balance of the
degrees of the secret isogenies, the starting curve, or the base-field prime).

1.2 Comparison to earlier work

In [2], the authors estimated that the attack from [30] would render their scheme insecure for
400 parties or more. In contrast, we give a complete break when there are at least 6 parties.
The cryptanalysis done by Bottinelli et al. [7] also gave a reduction in the same vein as Petit’s
2017 paper [30]. Our work overlaps with theirs (only) in Corollary 8, and the only similarity in
techniques is in the use of “triangular decomposition” [7, § 5.1], see the middle diagram in Figure 4.
Although their improvement is akin to the one given by our dual isogeny attack, they require
additional (shifted lollipop) endomorphisms; unfortunately, we have not found a way to combine
the two methods. Moreover, our results go beyond [7] in several ways: we additionally introduce
the Frobenius isogeny attack (in particular giving rise to our attack on group key agreement).
We consider multiple trade-offs for both the dual and the Frobenius isogeny attacks by allowing
for superpolynomial attacks, as well as considering other starting curves and base-field primes.

1.3 Outline

In Section 2 we go over various preliminaries, including reviewing SIDH. In Section 3 we define
the relevant hard isogeny problems and give a technical preview; we also outline the idea behind
our attacks and how they give rise to reductions of the SSI-T Problem. In Section 4 we prove our
reductions and give two new algorithms to solve SSI-T in polynomial time for certain parameter
sets. In Section 5 we introduce backdoor curves Ey and backdoor primes p for which we can
solve SSI-T in polynomial time for certain parameter sets. In Section 6 we extend the attacks of
Sections 4 and 5 to superpolynomial attacks. In Section 7 we give the impact of our attacks on
cryptographic protocols in the literature. In Section 8 we pose an open question on constructing
new reductions.

Acknowledgements. Thanks to Daniel J. Bernstein for his insight into estimating sizes of solu-
tions to Equation 3, to John Voight for answering a question of ours concerning Subsection 5.2,
and to Boris Fouotsa for identifying errors in Proposition 34 and its proof. We would also like to
thank Filip Pawlega and the anonymous reviewers for their careful reading and helpful feedback.

2 Preliminaries

2.1 The Supersingular Isogeny Diffie-Hellman protocol family

We give a somewhat generalized high-level description of SIDH [21]. Recall that E[N] denotes
the N-torsion subgroup of an elliptic curve E and [m] denotes scalar multiplication by m. The
public parameters of the system are two smooth coprime numbers A and B, a prime p of the form
p= ABf —1, where f is a small cofactor, and a supersingular elliptic curve Ey defined over I,
together with points P4, Qa, P, Qp € Ep such that Ey[A] = (Pa,Q4) and Ey[B] = (P, QB).

The protocol then proceeds as follows:



1. Alice chooses a random cyclic subgroup of Fy[A] as G4 = (P4 + [24]Q4) and Bob chooses
a random cyclic subgroup of FEy[B] as Gg = (Pp + [z5]|QB).

2. Alice computes the isogeny ¢4 : Ey — Eo/(Ga) =: E4 and Bob computes the isogeny
¢p : Ey = Eo/(Gp) =: Ep.

3. Alice sends the curve F4 and the two points p4(Pg), pa(Qp5) to Bob. Similarly, Bob sends
(EB,@B(PA),@B(QA)) to Alice.

4. Alice and Bob use the given torsion points to obtain the shared secret curve Ey/(Ga, Gp). To
do so, Alice computes ¢ (Ga) = p(Pa)+[xa]es(Q.a) and uses the fact that Ey/(Ga, Gg) =
Ep/{pp(Ga)). Bob proceeds analogously.

The SIKE proposal [19] suggests various choices of (p, A, B) depending on the targeted secur-
ity level: All parameter sets use powers of two and three for A and B, respectively, with A =~ B
and f = 1. For example, the smallest parameter set suggested in [19] uses p = 2216 . 3137 — 1,
Other constructions belonging to the SIDH “family tree” of protocols use different types of para-
meters [16, 11, 2, 33].

We may assume knowledge of End(Ep): The only known way to construct supersingular
elliptic curves is by reduction of elliptic curves with CM by a small discriminant (which implies
small-degree endomorphisms: see [26, 9]), or by isogeny walks starting from such curves (where
knowledge of the path reveals the endomorphism ring, thus requiring trusted setup). A common
choice when p = 3 (mod 4) is j(Ey) = 1728 or a small-degree isogeny neighbour of that curve [19].
Various variants of SIDH exist in the literature. We will call a variant an SIDH-like protocol if
its security can be broken by solving SSI-T for some values of A and B.

In [2] the authors propose the following n-party key agreement, first introduced as GSIDH
in [16].* The idea is to use primes of the form p = f[[;_, ¢;" — 1 where ¢; is the i-th prime
number, the i-th party’s secret isogeny has degree ¢;°, the i-th participant provides the images
of a basis of the H;.Lzl ij /45" torsion, and f is a small cofactor. They choose the starting curve
to be of j-invariant 1728 and choose the e; in such a way that all the ¢;’ are of roughly the same
size. This is an example of an SIDH-like protocol; for this protocol to be secure it is required
that SSI-T be hard when A = ¢{' and B = f[];_, ¢;". However, we prove in Theorem 33 that
SSI-T can be solved in polynomial time for 6 or more parties; also see Table 1 for the complexity
of our attack for any number of parties.

Another example of a SIDH-like scheme is B-SIDH [11]. In B-SIDH, the prime has the property
that p? — 1 is smooth (as opposed to just p+ 1 being smooth) and A ~ B ~ p. It would seem that
choosing parameters this way one has to work over IF,« but in fact the scheme simultaneously
works with the curve and its quadratic twist (i.e., a curve which is not isomorphic to the original
curve over [F,> but has the same j-invariant) and avoids the use of extension fields. The main
advantage of B-SIDH is that the base-field primes used can be considerably smaller than the
primes used in SIDH. We discuss the impact of our attacks of B-SIDH in Subsection 7.2; although
we give an improvement on the quantum attack of [22] the parameter choices in [11] are not
affected as they were chosen with a significant quantum security margin.

The general concept of using primes of this form extends beyond the actual B-SIDH scheme.
As a final example of an SIDH-like scheme, consider the natural idea of using B-SIDH in a group
key agreement context. The reason that this construction is a natural choice is that a large
number of parties implies a large base-field prime, which is an issue both in terms of efficiency
and key size. Using a B-SIDH prime could in theory enable the use of primes of half the size.
However, as we show in Corollary 35, such a scheme is especially susceptible to our attacks and
is broken in polynomial time for 4 or more parties.

4 [16] also proposes a different group key agreement, SIBD, to which our attack does not apply.



2.2 Notation

Throughout this paper, we work with the field > for a prime p. In our analysis we often want to
omit factors polynomial in log p; as such, from this point on we will abbreviate O(g - polylog(p))
by O*(g).° Similarly, a number is called smooth, without further qualification, if all of its prime
factors are O*(1). Polynomial time without explicitly mentioning the variables means “polynomial
in the representation size of the input” — usually the logarithms of integers. An algorithm is called
efficient if its runs in polynomial time.

We let B, . denote the quaternion algebra ramified at p and oo, for which we use a fixed
Q-basis (1,1,],ij) such that j2 = —p and i is a nonzero endomorphism of minimal norm satis-
fying ij = —ji. Quaternions are treated symbolically throughout; they are simply formal linear
combinations of 1,1, j, ij.

For any positive integer N we write sqfr(N) for the squarefree part of N.

Representation of elliptic-curve points and isogenies. We will generally require that the
objects we are working with have “compact” representation (that is, size polylog(p) bits), and
that maps can be evaluated at points of representation size polylog(p) in time polylog(p).

In the interest of generality, we will not force a specific choice of representation, but for
concreteness, the following data formats are examples of suitable instantiations:

e For an elliptic curve E defined over an extension of F,, and an integer N, a point in E[N]
may be stored as a tuple consisting of one point in E[g;*] for each prime power ¢;* in the
factorization of N, each represented naively as coordinates. This “CRT-style” representation
has size polylog(p) when N is powersmooth and polynomial in p. (In some cases, storing
points in E[N] nalvely may be more efficient, for instance in the beneficial situation that
E[N] C E(F,x) for some small extension degree k.)

e A smooth-degree isogeny may be represented as a sequence (often of length one) of isogenies,
each of which is represented by an (often singleton) set of generators of its kernel subgroup.

e Endomorphisms of a curve Ey with known endomorphism ring spanned by a set of efficiently
evaluatable endomorphisms may be stored as a formal Z-linear combination of such “nice”
endomorphisms. Evaluation is done by first evaluating each basis endomorphism separately,
then taking the appropriate linear combination of the resulting points.

In some of our algorithms, we will deal with the restriction of an isogeny to some N-torsion
subgroup, where N is smooth. This object is motivated by the auxiliary points w4 (Pg), pa(@5)
given in the SIDH protocol (Section 2.1), and it can be represented in the same way: The
restriction of an isogeny ¢: E — E’ to the N-torsion subgroup FE[N] is stored as a tuple of
points (P, Q, »(P),»(Q)) € E? x E", where {P,Q} forms a basis of E[N]. Then, to evaluate ¢
on any other N-torsion point R € E[N], we first decompose R over the basis {P, @}, yielding
a linear combination R = [i]P + [§]Q. (This two-dimensional discrete-logarithm computation is
feasible in polynomial time as N was assumed to be smooth.) Then, we may simply recover ¢(R)
as [i|o(P) + [j]¢(Q), exploiting the fact that ¢ is a group homomorphism.

2.3 Quantum computation cost assumptions

In the context of NIST’s post-quantum cryptography standardization process [28], there is a sig-
nificant ongoing effort to estimate the quantum cost of fundamental cryptanalysis tasks in prac-
tice. In particular, while it seems well-accepted that Grover’s algorithm provides a square-root

5 Each occurrence of polylog(p) is shorthand for a concrete, fixed polynomial in logp. (The notation is
not meant to imply that all instances of polylog(p) be the same.)



quantum speedup, the complexity of the claimed cube-root claw-finding algorithm of Tani [37] has
been disputed by Jaques and Schanck [22], and the topic is still subject to ongoing research [23].

Several attacks we present in this paper use claw-finding algorithms as a subroutine, and
the state-of-the-art algorithms against which we compare them are also claw-finding algorithms.
We stress, however, that the insight provided by our attacks is independent of the choice of the
quantum computation model. For concreteness we chose the RAM model studied in detail by
Jaques and Schanck in [22], in which it is argued that quantum computers do not seem to offer
a significant speedup over classical computers for the task of claw-finding. Adapting our various
calculations to other existing and future quantum computing cost models, in particular with
respect to claw-finding, is certainly possible.

3 Overview

Standard attacks on SIDH follow two general approaches: they either solve the supersingular
isogeny problem directly, or they reduce finding an isogeny to computing endomorphism rings.
However, SIDH is based on SSI-T introduced above, where an adversary is also given the restric-
tion of the secret isogeny to the B-torsion of the starting curve Ey. Exploiting this B-torsion
information led to a new line of attack as first illustrated in [30].

In Subsection 3.1 we discuss the Supersingular Isogeny Problem and SSI-T. Petit’s work was
the first to show an apparent separation between the hardness of SSI-T and the hardness of the
Supersingular Isogeny Problem in certain settings. In this work we introduce a new isogeny prob-
lem, the Shifted Lollipop Endomorphism Problem (SLE). This problem was implicit in Petit’s
work [30], which contained a purely algebraic reduction from SSI-T to this new hard problem. We
improve upon the work of [30] by giving two significantly stronger reductions. In Subsection 3.2
we sketch the main idea behind the reduction obtained by Petit. In Subsection 3.3 we present a
technical overview which covers the ideas behind our two improved reduction variants.

In Section 4 we will present and analyze our two reductions, and give algorithms to solve SLE
for certain parameter sets. As we will see, the combination of our reductions and our algorithms
to solve particular parameter sets of SLE give rise to two families of improvements on the torsion-
point attacks of [30] on SIDH-like protocols; these attacks will additionally exploit the dual of
the secret isogeny and the Frobenius isogeny.

3.1 Hard isogeny problems
We first review the most basic hardness assumption in isogeny-based cryptography:

Problem 2 (Supersingular Isogeny). Given a prime p, a smooth integer A, and two supersin-
gular elliptic curves Ey/FF,2 and E/F,> guaranteed to be A-isogenous, find an isogeny ¢: Ey — E
of degree A.

In SIDH, we denote Alice’s secret isogeny ¢4 : Eg — E4, but in general we will denote some
unknown isogeny by ¢ : Ey — E.

Recall that Alice’s public key contains not only the curve E but also the points ¢ (P), ¢(Q) for
a fixed basis { P, Q} of Ey[B]. Since B is smooth, knowing ¢(P) and ¢(Q) allows us to efficiently
compute the restriction of ¢ to the torsion subgroup Ey[B] [32]. Hence, it is more accurate to say
that the security of SIDH is based on SSI-T, which includes this additional torsion information.

One additional fact that is often overlooked is that the hardness of SIDH is not based on a
random instance of SSI-T, because the starting curve is fixed and has a well-known endomorphism
ring with small degree endomorphisms. It is known that given an explicit description of both



endomorphism rings End(FE) and End(Fj), it is (under reasonable heuristic assumptions) possible
to recover the secret isogeny [17, 36]. However, it is not clear if knowing only one of End(F) and
End(FEy) makes the isogeny problem easier.

Petit was the first to observe that knowing End(Fy) could be useful to show an apparent
separation between the hardness of the Supersingular Isogeny Problem and the hardness of SSI-
T. In particular, in [30] Petit gave a reduction from SSI-T to the following problem, which we
will call the Shifted Lollipop Endomorphism (SLE) Problem, where N = B.

Problem 3 (Shifted Lollipop Endomorphism (SLEy )). Let p be a prime, A and B be
smooth coprime integers, and a supersingular elliptic curve Ey/Fp2. Given a positive integer N,
find the restriction of a trace-zero endomorphism 6 € End(Ejy) to Eg[B], an integer d coprime to
B, and a smooth integer 0 < e < A such that

A?deg + d* = Ne. (1)
When A is left unspecified we let SLEx denote SLEy o«(1)-

Notice that SLEx only depends on the parameters (p, A, B, Ey). It does not depend on an
unknown isogeny (it depends on A, which in practice will be the degree of the unknown isogeny).
Thus solving SLEy can be completed in a precomputation phase and applied to any unknown
isogeny in a fixed SIDH protocol. In [30], Petit was able to show solutions to SLE 5 where N = B
in certain cases, where End(Ep) was known and has small-degree, non-scalar endomorphisms.

The goal of this work is to further investigate for which parameters there exists a separation
between SSI-T and the Supersingular Isogeny Problem. Intuitively, SLEx should become easier
to solve as N increases, however, this is not true in general and it is unclear how to find efficient
reductions to SLEy for most values of N. To this end, we will give two reductions: one reduction
from SSI-T to SLEx ) where N = B2, and the other where N = B?p. Both reductions run in
O*()\%)7 assuming A has only O(loglog p) distinct prime factors, see Theorems 3 and 5. We then
investigate their impact on supersingular isogeny-based protocols.

3.2 Petit’s torsion-point attack

We begin this subsection by sketching Petit’s reduction from SSI-T to SLEy where N = B.
Suppose we are given an instance of SSI-T, that is, (p, 4, B, Ey, E, ¢|g[p)), where the goal is to
recover the unknown isogeny ¢. We call an endomorphism on E that has the form ¢ o 8 o ¢ for
some endomorphism 6 on Fj a lollipop endomorphism, and an endomorphism of the form
pobop+|[d] for d € Z a shifted lollipop endomorphism; see Figure 2 (this is the motivation
for the name of Problem SLE). We will now discuss how to find a shifted lollipop endomorphism,
as we will show in Lemma 4 how to use the resulting shifted lollipop endomorphism to recover
the secret isogeny.

The main idea of Petit’s original attack is that if (6,d,e) forms a solution to SLEg, then
T =@obop+[d is a shifted lollipop endomorphism of degree Be where e is smooth. Since
deg T = Be, it follows that 7 also decomposes as T = 1 o ¢ for two isogenies ¢ : E — F; and
1 : E1 — E of degrees B and e; see Figure 3.

The restriction of ¢ to Eo[B] given in Alice’s public key can be used to construct the B-isogeny
in the decomposition (the green arrow in Figure 3), see [30] for details. This can be done efficiently
if 6 is in a representation that can be efficiently evaluated on Fy[B]. As e is smooth, the e-isogeny
in the decomposition (the blue arrow) can be found via brute-force in time O*(ez). This gives
us 7. Subtracting [d] from 7 gives ¢ 0 6 o @.



Q pobop+[d] pobopp

E E

Figure 2. Lollipop and Shifted Lollipop endomorphisms. The name “lollipop” endomorphism was in-
spired by the diagram on the left.

deg=B
E E

deg=e

Figure 3. A decomposition of 7 in Petit’s original attack

Suppose the lollipop endomorphism p = ¢ o § o @ is cyclic. Then ker(p) N Ey[A] = ker .
(The kernel of p can be calculated as A is smooth.) Once we have found @, it is easy to find the
unknown isogeny ¢. If p is not cyclic, then one can still recover ¢ if A has O(loglogp) distinct
prime factors by using a technical approach developed in [30, Section 4.3|, for further details see
Lemma 4. Thus we have a reduction from SSI-T to SLEy where N = B, which is formalized in
the following theorem.

Theorem 1. Suppose we are given an instance of SSI-T where A has O(loglogp) distinct prime
factors. Assume we are given the restriction of a trace-zero endomorphism 0 € End(Ey) to Ey[B],
an integer d coprime to B, and a smooth integer e such that

deg(¢p 0B o+ [d]) = Be.

Then we can compute ¢ in time O*(/e) = O(/e - polylog(p)).

3.3 Technical preview

Although the attack of [30] was the first to establish an apparent separation between the hardness
of SSI-T and the hardness of supersingular isogeny problem, it did not affect the security of
any cryptosystems that appear in the literature. In this paper, we give two attacks improving
upon [30] by additionally exploiting the dual and the Frobenius conjugate of the secret isogeny
respectively.

The first attack, which we call the dual isogeny attack, corresponds to reducing SSI-T
to SLEy where N = B2.5 The second attack, which we call the Frobenius isogeny attack,
corresponds to reducing SSI-T to SLEx where N = B2p. The run-time of each attack depends
on the parametrization of the cryptosystem, and one may perform better than the other for some
choices of parameters. We show the details in Theorem 3 and Theorem 5. We begin by sketching
the main ideas behind the reductions.

In the dual isogeny attack, finding a solution (6,d,e) to SLEx with N = B? corresponds to
finding a shifted lollipop endomorphism 7 = @06 o % + [d] on E of degree B2e, with e smooth.

5 See also [7] for a different reduction to SLE 52, cf. Subsection 1.2.
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Assume 7 is cyclic (only for simplicity in this overview; the general case is Theorem 3). Then
since deg 7 = BZ2e, it follows that 7 also decomposes as T = ¢’ o5 o ¢ for three isogenies ¢, n and
¢’ of degrees B, e and B, respectively: see the middle diagram in Figure 4.

In the Frobenius isogeny attack, finding a solution (#,d,e) to SLEx with N = B?p corres-
ponds to finding a shifted lollipop endomorphism 7 = @ oo @+ [d] that has degree B2pe, with e
smooth. Assume 7 is cyclic (only for simplicity in this overview; the general case is Theorem 5).
Since deg 7 = B?pe, it follows that 7 also decomposes as 7 = ¢’ onowop for four isogenies @, 7,7
and ¢’ of degrees B, p, e and B, respectively, where the isogeny of degree p is the Frobenius map
(z,y) — (zP,yP): see the right-hand diagram in Figure 4.

E
deg=I // \\ deg=B
R E >
E T=pofof+[d] /N « >
deg=B \_ deg=B
// \\ El E2
1/ \:4
E ——— FE
1 deg=c¢ 2 ™ deg=e
o
El

Figure 4. A decomposition of 7 in our two new attacks. Note: we take the dual of one isogeny in the
middle and right-hand diagrams to reverse its arrow.

In both attacks we find 7 by calculating each isogeny in the decomposition of 7. In particular,
we will use the restriction of ¢ to Fy[B] given by Alice’s public key to construct the two B-
isogenies in the decomposition (the green arrows in Figure 4). Again this can be done efficiently
if # is in a representation that can be efficiently evaluated on Ey[B]. As e is smooth we can
calculate the e-isogeny in the decomposition (the blue arrow) via brute-force in time O*(e%). As
we can always construct the Frobenius map 7 (the purple arrow), this gives us 7. The rest of the
proof proceeds as with Petit’s original attack assuming A has O(loglog p) distinct prime factors,
see Lemma 4 for details.

Remark 2. These methods are an improvement over Petit’s original attack, which only utilized
a shifted lollipop endomorphism 7 of degree Be. There 7 could only be decomposed into two
isogenies of degree B and e as in Figure 3. Intuitively, Petit’s original attack was less effective
as a smaller proportion of 7 could be calculated directly, and hence a much larger (potentially
exponential) proportion of the endomorphism needed to be brute forced. It is not clear how to
find a better decomposition with more computable isogenies than those given in Figure 4 using
the fixed parameters and public keys given in SIDH protocols. Furthermore, we give reductions
both to SLEg2 and SLEpg:,, as increasing the degree of 7 does not necessarily make a shifted
lollipop endomorphism 7 easier to find.

Once an appropriate (6,d,e) is found for a particular setting (that is, a particular choice
of p, A, B, Ey), then the reduction outlines an algorithm that can be run to find any unknown
isogeny ¢ : Eyg — E. In other words, there is first a precomputation needed to solve SLEy and
find a particular (6, d, ). Using this (6, d, e), the above reduction gives a key-dependent algorithm
to find a particular unknown isogeny ¢ : Ey — E.

We now outline how to solve SLEy when N = B?p for a particular choice of Ey, see Al-
gorithm 2 for details. A similar technique works when N = B2, see Algorithm 1. In most su-
persingular isogeny-based protocols, the endomorphism ring of Ej is known. A common choice
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of starting curve, in SIKE for example’, is where Ey has j-invariant 1728. We show that in
the Frobenius isogeny attack finding a shifted lollipop endomorphism of degree B2pe reduces to
finding a solution of

A%(a® + b%) + pc? = B?e. (2)

To proceed choose ¢ and e such that pc> = B?e modulo A2. The remaining equation a4 b% =
BSA;;?C? can be solved by Cornacchia’s algorithm a large percentage of time; else the procedure
is restarted with a new choice of e or c.

This method of solving SLEy can be used to attack the n-party group key agreement [2].
We analyze this attack in Section 7.1, and show that it can be expected, heuristically, to run in
polynomial time for n > 6. The results are summarized in Table 1, and an implementation of
this attack for n = 6 can be found at https://github.com/torsion-attacks-SIDH/6party.

While we use the Frobenius isogeny attack to highlight vulnerabilities in the isogeny-based
group key agreement, we use the ideas from the dual isogeny attack to investigate situations,
namely different starting curves and base fields, which would result in insecure schemes.

4 Improved torsion-point attacks

In this section, we generalize and improve upon the torsion-point attacks from Petit’s 2017 pa-
per [30]; in our notation, Petit’s attack can be viewed as a reduction of SSI-T to SLEg 5 together
with O*(1)-time algorithm to solve SLEg ) for certain parameter sets. In Subsection 4.1, we
introduce two new reductions from SSI-T to SLEy y, where N = B? and N = B?p, respectively.
The runtime of both reductions is O*(/\%). The reductions exploit two new techniques: a dual
isogeny and the Frobenius isogeny.

In Subsection 4.2 we give an algorithm to solve SLEy for N = B? and N = B?p, for specific
starting curve® Ey under explicit, plausible heuristics (Heuristic 1 and 2, respectively). For certain
parameters these algorithms solve SLEy , for N = B? for A\ = O*(1) in polynomial time and
SLEy for N = B?p for A = O(logp) in polynomial time. For these parameters, this solves SSI-T
in time O*(1).

4.1 Improved torsion-point attacks

The main ingredient in Petit’s [30] attack can be viewed as a reduction of SSI-T to SLEp. In this
section we introduce our first extension of this attack: the dual isogeny attack, which works by
exploiting the dual isogeny of the (shifted lollipop) endomorphism 7 on E. We begin by giving
the reduction for the dual isogeny attack.

Theorem 3. Suppose we are given an instance of SSI-T where A has O(loglogp) distinct prime
factors. Assume we are given the restriction of a trace-zero endomorphism 6 € End(Ey) to Eo[B],
an integer d coprime to B, and a smooth integer e such that

deg(pofop+ [d]) = B?e.
Then we can compute ¢ in time O*(/e) = O\/e - polylog(p)).

We first state a technical lemma which mostly follows from [30, Section 4.3].

" Note that the newest version of SIKE [19] changed the starting curve to a 2-isogenous neighbour of
j = 1728, but this does not affect the asymptotic complexity of any attack.
8 More generally, these attacks apply for any “special” starting curve in the sense of [25].
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Lemma 4. Let A be a smooth integer with O(loglog p) distinct prime factors, and let Ey/Fp2 and
E/F,2 be two supersingular elliptic curves connected by an unknown degree-A isogeny ¢. Suppose
we are given the restriction of some 7 € End(F) to E[A], where T is of the form T = pofop+]d]
such that if E[m] C kert then m | 2. Then we can compute ker ¢ in time O*(1).

Proof. See Appendix A.1.

Proof (of Theorem 3). Suppose we have d,e and the restriction of 6 to E[B] satisfying the
conditions above. We wish to find an explicit description of 7 = ¢ 0 8 0 @ + [d]. Let m be the
largest integer dividing B such that E[m] C ker 7. Since the degree of 7 is B2e, there exists a
decomposition of the form 7 = ¢’ o 5o ) o [m], where ¢ and v’ are isogenies of degree B/m, 1
is cyclic, and 7 is an isogeny of degree e.

We proceed by deriving the maps in this decomposition. Since 7 factors through [m], this
implies m divides tr(7) = 2d. As we chose d coprime to B, this shows m € {1,2}.

To compute ? and 7', we start by finding the restriction of 7 to the B-torsion. This can
be computed from what we are given: the restrictions of 8, [d], ¢, hence $, to the B-torsion of
the relevant elliptic curves. This also allows us to compute m explicitly, as the largest integer
dividing B such that E[m] C ker 7 N E[B].

Let 7/ = ¢’ ono). The isogeny ¢ can now be computed from the restriction of 7 to E[B] via

kery = ker 7' N ([m] - E[B]) = (ker 7 N E[B])/E[m)].

From the cyclicity of ¥, we can also deduce that ker 12;’ = 7(F[B]), which gives 1’ explicitly.
Finally, we recover the isogeny n by a generic meet-in-the-middle algorithm, which runs in

time O*(/e) since e is smooth. Note that if e = O*(1), then the entire algorithm runs in time

polylog(p). In this way we have found 7 explicitly, and by Lemma 4 can compute . a

Next we give the reduction for the Frobenius isogeny attack, which works by exploiting the
Frobenius isogeny on E to improve, or at least alter, the dual attack.

Theorem 5. Suppose we are given an instance of SSI-T where A has at most O(loglogp) distinct
prime factors. Assume we are given the restriction of a trace-zero endomorphism 6 € End(Ey)
to Fy[B], an integer d coprime to B, and a smooth integer e such that

deg(p o0&+ [d]) = Bpe.
Then we can compute ¢ in time O*(/e) = O\/e - polylog(p)).

Proof. Let 7 = pofop+[d]. As in the proof of Theorem 3, we can decompose 7 as ¥’ onotpo[m],
where 7 has degree pe, and compute 1) and ¢’ efficiently.

We are left to recovering 7. Instead of using a generic meet-in-the-middle algorithm, we
observe that 1 has inseparable degree p (since we are in the supersingular case). Thus, n = n’ o,
where 7 is the p-power Frobenius isogeny, and 7’ is of degree e. We use the meet-in-the-middle
algorithm on 7’ and recover the specified runtime. O

Remark 6. It is a natural question why we stick to the p-power Frobenius and why the attack
doesn’t give a better condition for a higher-power Frobenius isogeny. The reason is that for
supersingular elliptic curves defined over F2, the p?-power Frobenius isogeny is just a scalar
multiplication followed by an isomorphism (since every supersingular j-invariant lies in F,2),
and hence would already be covered by the method of Theorem 3.

More generally, see Section 8 for a more abstract viewpoint that subsumes both of the reduc-
tions given above (but has not led to the discovery of other useful variants thus far).

The complexity of both attacks relies on whether one can find a suitable endomorphism 6
with e as small as possible. In the next subsection we will establish criteria when we can find a
suitable 6 when the starting curve has j-invariant 1728.
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4.2 Solving norm equations

In Subsection 4.1 we showed two reductions (Theorem 3 and Theorem 5) from SSI-T to SLEx
where N = B2 and N = B?p. To complete the description of our attacks, we discuss how to
solve SLE in these two cases; that is, we want to find solutions (6, d, e) to

deg(pofo @+ [d]) = A% degf + d*> = Ne,

where N = B2 or N = B?p.

The degree of any endomorphism of Ej is represented by a quadratic form that depends on Ej.
To simply our exposition we choose Fy/F,: y* = 2® +x (having j = 1728), where p is congruent
to 3 (mod 4). In this case the endomorphism ring End(Ey) has a particularly simple norm form.
To complete the dual isogeny attack, it suffices to find a solution to the norm Equation (3):

Corollary 7. Let p = 3 (mod 4) and j(Ey) = 1728. Consider coprime smooth integers A, B
such that A has (at most) O(loglogp) distinct prime factors and suppose that we are given an
integer solution (a,b,c,d,e), with e smooth, to the equation

A%(pa® + pb® + ¢*) + d* = Be. (3)
Then we can solve SSI-T with the above parameters in time O*(/e).

Proof. Let « € End(Ep) be such that 1> = [~1] and let 7 be the Frobenius endomorphism of Ej.
Let ¢ be as in Theorem 3. The endomorphism 6 = atm 4+ b+ ¢t and the given choice of d satisfies
the requirements of Theorem 3. a

To complete the Frobenius isogeny attack, we find a solution to the norm equation (8):

Corollary 8. Let p = 3 (mod 4) and j(Ey) = 1728. Consider coprime smooth integers A, B
such that A has (at most) O(loglogp) distinct prime factors and suppose that we are given an
integer solution (a,b,d,e), with e smooth, to the equation

A%(a® + b*) + pd* = B?e. (4)
Then we can solve SSI-T with the above parameters in time O*(\/e).

Proof. With ¢ and 7 as in the proof of Corollary 7, and ¢ as in Theorem 5, the endomorphism
0 = auvm + b, together with the choice ¢ = 0 satisfies the requirements of Theorem 5 (to see this,
multiply (4) through by p). O

Now we present two algorithms for solving each norm equation (3) and (4). The algorithms

are similar in nature but they work on different parameter sets. See Algorithms 1 and 2.

4.3 Runtime and justification for Algorithms 1 and 2

The remainder of this section is devoted to providing justification that the algorithms succeed
in polynomial time.

Heuristic 1. Let p, A, B be SIDH parameters. Note that for each e, the equation
eB? =d? + c2A%?  (mod A%p), (5)

may or may not have a solution (c,d). We assert two heuristics:
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Algorithm 1: Solving norm equation 3.

Input: SIDH parameters p, A, B.

Output: A solution (a,b, ¢, d,e) to (3).
1 Set e := 2.
2 If e is a quadratic non-residue mod A? then
3 L Set e := e+ 1 and go to Step 2.

Compute d such that d* = eB? (mod A?%).
If eB%2 — d? is a quadratic non-residue mod p then
L Set e := e+ 1 and go to Step 2.

o otk

N

Compute c as the smallest positive integer such that c2A? = eB? — d? (mod p).
If eB? > d? + c*A? then

9 If %2 ii prime then

10 If W =1 (mod 4) then

11 L Find a,b € Z such that a® + b% = eB’—d =’ A%

®

A2p
12 Return (a,b,c,d,e).

13 | Set e:=e+ 1 and go to Step 2.

14 else
15 L Return Failure.

Algorithm 2: Solving norm equation 4.

Input: SIDH parameters p, A, B.
Output: A solution (a,b,d,e) to (4).
1 Set e:=1.
2 While & isa quadratic non-residue mod A% do

p
3 LSete::e—i—l.

Compute d such that eB? = pd? (mod A%).
If eB? > pd? then

4
5
6327pd2 : :
6 If = is prime then
7
8
9

If P‘BﬂA;zpdz =1 (mod 4) then
Find a,b € Z such that a? + b* = eBﬂA;Qp‘F.
Return (a,b,d,e).

10 | Set e:=e+1and go to Step 2.

11 else
12 L Return Failure.
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1. Amongst invertible residues e modulo A%p, which are quadratic residues modulo A?, the
probability of the existence of a solution is approzimately 1/2.

2. Amongst those e for which there is a solution, and for which the resulting integer

B?e — d? — ?A?
— ©)
p

is positive, the probability that (6) is a prime congruent to 1 modulo 4 is expected to be
approximately the same as the probability that a random integer of the same size is prime
congruent to 1 modulo 4.

Justification. By the Chinese remainder theorem, solving (5) amounts to solving eB? = d?
(mod A?) and eB? = d? + ¢*A% (mod p). If e is a quadratic residue modulo A?, then the first
of these equations has a solution d. Using this d, the second equation has either no solutions or
two, with equal probability. This justifies the first item.

For the second item, this is a restriction of the assertion that the values of the quadratic
function B2e —d? — ¢ A?, in terms of variables e, ¢ and d, behave, in terms of their factorizations,
as if they were random integers. In particular, the conditional probability that the value has the
form A%pq for a prime ¢ = 1 (mod 4), given that it is divisible by A%p, is as for random integers.

Proposition 9. Let e > 0. Under Heuristic 1, if B > pA andp > A, but B is at most polynomial
in A, then Algorithm 1 returns a solution (a,b,c,d,e) with e = O(log®T¢(p)) in polynomial time.

Proof. Checking that a number is a quadratic residue modulo p can be accomplished by a square-
and-multiply algorithm. Checking that a certain number is prime can also be accomplished in
polynomial-time. Representing a prime as a sum of two squares can be carried out by Cornacchia’s
algorithm. Suppose one iterates e a total of X times.

For the algorithm to succeed, we must succeed in three key steps in reasonable time: first, that
e such that e is a quadratic residue modulo A% (Step 2) and second, that eB? — d? is a quaratic
residue modulo p (Step 5), and third, that W is a prime congruent to 1 modulo 4 (Step
9-10). Suppose we check values of e up to size X.

For Step 2, it suffices to find e an integer square, which happens 1/ VX of the time. When
this is satisfied, the resulting d can be taken so d < A2. For Step 5, under Heuristic 1 Part 1,
the probability that a corresponding ¢ exists is 1/2. Such a ¢ can be taken with ¢ < p. Under the
given assumption that B > pA and p > A, then

eB? > 2B? > 2p° A% > p? A% + A* > 2 A% + 4.

So the quantity in Heuristic 1 Part 2 is positive. We can bound it by eB?/pA2%. Since B is at
worst polynomial in A, the quantity B2?/pA? is at worst polynomial in p, say p*. Hence, for Step
9-10, one expects at a proportion 1/log(p*X) of successes to find a prime congruent to 1 modulo
4. Such a prime is a sum of two squares, and the algorithm succeeds.

Finally, we set X = log?"(p) to optimize the result. If one iterates e at most log®"(p) times,
one expects to succeed at Step 2 at least log'T¢(p)) times, to succeed at Step 5 half of those
times, and to succeed at Steps 9 and 10 at least 1/log(p* log?*¢(p)) of those times. This gives a
total probability of success, at any one iteration, of 1/4klog®™(p). Hence we expect to succeed
with polynomial probability.

For the analysis of Algorithm 2, the following technical lemma is helpful.
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Lemma 10. Let M be an integer. Let r be an invertible residue modulo M. Then the pattern
of e such that re is a quadratic residue repeats modulo N = 4sqfr(M), four times the squarefree
part of M. Among residues modulo 4sqft(M), a proportion of 1/2¢ of them are solutions, where
¢ is the number of distinct primes dividing M .

Proof. Suppose M has prime factorization M = [],I;*. A residue  modulo M is a quadratic
residue if and only if it is a quadratic residue modulo [{* for every i. For odd [;, a residue modulo
7% is a quadratic residue if and only if it is a quadratic residue modulo /;, by Hensel’s lemma.
And a residue modulo 2¢, e > 3, is a quadratic residue if and only if it is a quadratic residue
modulo 8. By the Chinese remainder theorem, re is a quadratic residue modulo M if and only if
re is a quadratic residue modulo 4 sqfr(M).

Heuristic 2. Let p, A, B be SIDH parameters. Let £ be the number of distinct prime divisors of
A. Note that for each e, the equation

eB? = pd® (mod A?) (7)

may or may not have solutions d. We assert two heuristics:

1. As e varies, the probability that it has solutions is 1/2°.
2. Amongst those e for which there is a solution, and for which the resulting integer

B?e — pd?
o ®)

is positive, the probability that (8) is a prime congruent to 1 modulo 4 is expected to be
approzimately the same as the probability that a random integer of the same size is prime
congruent to 1 modulo 4.

Justification. Consider the first item. Modulo each prime dividing A?, the quadratic residues
vs. non-residues are expected to be distributed “randomly”; resulting in a random distribution
modulo 4sqfr(A), by Lemma 10.

For the second item, this is a restriction of the assertion that the values of the quadratic
function B2%e — pd?, in terms of variables e and d, behave, in terms of their factorizations, as if
they were random integers. In particular, the conditional probability that the value has the form
A%q for a prime ¢ = 1 (mod 4), given that it is divisible by A2, is as for random integers.

Proposition 11. Under Heuristic 2, if B > \/]3A2, A has O(loglog p) distinct prime factors,
B is at most polynomial in A, and® p > A, then Algorithm 2 returns a solution (a,b,d,e) with
e = O(logp) in polynomial time.

Proof. Checking that a number is a quadratic residue can be accomplished by a square-and-
multiply algorithm. Checking that a certain number is prime can also be accomplished in
polynomial-time. Representing a prime as a sum of two squares can be carried out by Cor-
nacchia’s algorithm.

For the algorithm to succeed, we must succeed in two key steps in reasonable time: first, that
e such that eB?/p is a quadratic residue (Step 2) and second, that EBZA;QI”# is a prime congruent
to 1 modulo 4 (Step 6-7). Suppose we check values of e up to size X.

By Heuristic 2 Part 1, we expect to succeed at Step 2 with probability 1/2¢, where ¢ is the
number of distinct prime divisors of A.

9 In the proof, it suffices to take p* > A for any k.
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When this is satisfied, the resulting d can be taken so d < A2. Under the given assumption
that B > ,/pA, then
eB? > B% > pA* > pd®.

So the quantity in Heuristic 2 Part 2 is positive. We can bound it above by eB?/A%  and using
the assumption that B is at most polynomial in A, we bound this by < p*X for some k. So we
expect to succeed in Step 6-7 with probability 1/2log(p* X). The resulting prime is a sum of two
squares, and the algorithm succeeds. Thus, taking X = O(logp) suffices for the statement.

Remark 12. In practice, in Algorithm 2 it may be more efficient to increment d by multiples
of A? in place of incrementing e. This however makes the inequalities satisfied by A, B, and p
slightly less tight so for the sake of cleaner results we opted for incrementing only e.

Remark 13. If parameters A and B are slightly more unbalanced (i.e., B > rA?,/p for some
r > 100), then instead of increasing e it is better to fix e and increase d by A? in each step.

5 Backdoor instances

In this section we give a method to specifically create instantiations of the SIDH framework
for which we can solve SSI-T more efficiently. So far all of our results were only considering
cases where the starting curve Fy has j-invariant 1728. In Section 5.1 we explore the question:
For given A, B can we construct starting curves for which we can solve SSI-T with a better
balance? We will call such curves backdoor curves (see Definition 14), and quantify the number
of backdoor curves in Section 5.2. In Sections 5.3 and 5.4, we also consider backdoored choices of
(p, A, B), for which we can solve SSI-T more efficiently even when starting from the curve with
j-invariant 1728.

5.1 Backdoor curves

This section introduces the concept of backdoor curves and how to find such curves. Roughly
speaking, these are specially crafted curves which, if used as starting curves for the SIDH pro-
tocol, are susceptible to our dual isogeny attack by the party which chose the curve, under only
moderately unbalanced parameters A, B; in particular, the imbalance is independent of p. In
fact, when we allow for non-polynomial time attacks we get an asymptotic improvement over
meet-in-the-middle for balanced SIDH parameters (but starting from a backdoor curve). These
curves could potentially be utilized as a backdoor, for example by suggesting the use of such a
curve as a standardized starting curve. We note that it does not seem obvious how backdoored
curves, such as those generated by Algorithm 3, can be detected by other parties: The existence
of an endomorphism of large degree which satisfies Equation 3 does not seem to be detectable
without trying to recover such an endomorphism, which is hard using all currently known al-
gorithms. The notion of backdoor curves is dependent on the parameters A, B, which motivates
the following definition:

Definition 14. Let A, B be coprime positive integers. An (A, B)-backdoor curve is a tuple
(Eo,0,d,e), where Ey is a supersingular elliptic curve defined over some Fp2, an endomorph-
ism 6 € End(Ey) in an efficient representation, and two integers d,e such that Algorithm 5
solves SSI-T for that particular Eqy in time polynomial in logp when given (0,d,e).

The main result of this section is Algorithm 3 which computes (A, B)-backdoor curves in
heuristic polynomial time, assuming we have a factoring oracle (see Theorem 15).
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Algorithm 3: Generating (A, B)-backdoor curves.

Input: A prime p =3 (mod 4) and smooth coprime integers A, B with B > A2.

Output: An (A, B)-backdoor curve (Ey,0,d,e) with Eo/Fp.

Set e :=1.

While true do

Find an integer d such that d?> = B2%e (mod A?).

If d is coprime to B then

If %;d? 18 square modulo p then L

Find rational a, b, ¢ such that pa? + pb® + ¢ = Bfli;d.
break

BN TN~ <, RN V- I VI

8 Set e to the next square.

9 Set ¥ =aij+ bj+ci € By .
10 Compute a maximal order O C B, o, containing 6.
11 Compute an elliptic curve Ey whose endomorphism ring is isomorphic to O.

12 Construct an efficient representation of the endomorphism 6 of Ey corresponding to 9.
13 Return (Ey,0,d,e).

Theorem 15. Given an oracle for factoring, if A has (at most) O(loglogp) distinct prime
factors, then Algorithm 3 can heuristically be expected to succeed in polynomial time.

Remark 16. The imbalance B > A? is naturally satisfied for a group key agreement in the style
of [2] with three or more participants; we can break (in polynomial time) such a variant when
starting at an (A, B)-backdoor curve.

Before proving Theorem 15 we need the following easy lemma:

Lemma 17. Let p be a prime congruent to & modulo 4. Let D be a positive integer. Then the
quadratic form Q(z1, x2,x3,14) = prt + prd + 2% — D23 has a nontrivial integer root if and only
if D is a quadratic residue modulo p.

Proof. The proof is essentially a special case of [35, Proposition 10], but we give a brief sketch of
the proof here. If D is a quadratic residue modulo p, then pz? + pz3 + 23 — D23 has a solution in
Q, by setting r; = 22 = 0 and x4 = 1 and applying Hensel’s lemma to the equation z3 = D. The
quadratic form @ also has local solutions everywhere else (the 2-adic case involves looking at the
equation modulo 8 and applying a 2-adic version of Hensel’s lemma). If on the other hand D is
not a quadratic residue modulo p, then one has to choose z3 and x4 to be divisible by p. Dividing
the equation Q(z1, 2,73, 74) = 0 by p and reducing modulo p yields 22 + 22 = 0 (mod p). This
does not have a solution as p = 3 (mod 4). Finally, one can show that this implies that ¢ does
not have a root in Q. 0O

Proof (of Theorem 15). The main idea is to apply Theorem 3 in the following way: using Al-
gorithm 3, we find integers D, d, and e, with e polynomially small and D a quadratic residue
mod p, such that A%2D + d> = BZ?e, and an element 6 € B, of trace zero and such that
6% = —D. We then construct a maximal order O C By~ containing ¢ and an elliptic curve Ey
with EHd(E()) ~ .

Most steps of Algorithm 3 obviously run in polynomial time, although some need further
explanation. We expect d? ~ A* since we solved for d modulo B2, and we expect e to be small
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since heuristically we find a quadratic residue after a small number of tries. Then the right-hand
side in step 6 should be positive since B > A2, so by Lemma, 17, step 6 returns a solution using
Simon’s algorithm [35], assuming an oracle for factoring #. For step 10, we can apply either
of the polynomial-time algorithms [18, 38| for finding maximal orders containing a fixed order in
a quaternion algebra, which again assume a factoring oracle. Steps 11 and 12 can be accomplished
using the heuristically polynomial-time algorithm from [31, 15] which returns both the curve Ey

and (see [15, §5.3, Algorithm 5]) an efficient representation of 6. O

Remark 18. The algorithm uses factorization twice (once in solving the quadratic form and once
in factoring the discriminant of the starting order). In Appendix C we discuss how one can ensure
in practice that the numbers to be factored have an easy factorization.

Remark 19. Denis Simon’s algorithm [35] is available on his webpage.'® Furthermore, it is im-
plemented in MAGMA [6] and PARI/GP [3]. The main contribution of Simon’s paper is a
polynomial-time algorithm for finding nontrivial zeroes of (not necessarily diagonal) quadratic
forms which does not rely on an effective version of Dirichlet’s theorem. In our case, however,
we only need a heuristic polynomial-time algorithm for finding a nontrivial zero (z,y, z,u) of a
form px? 4 py? + 22 — Du?. We sketch an easy way to do this: Suppose that D is squarefree, and
pick a prime ¢ = 1 (mod 4) such that —pq is a quadratic residue modulo every prime divisor of
D. Tt is then easy to see that the quadratic equations pz? + py? = pq and Du? — 22 = pq both
admit a nontrivial rational solution which can be found using [12].

There are two natural questions that arise when looking at Theorem 15:

e Why are we using the dual attack and not the Frobenius attack?
e Why do we get a substantially better balance than we had before?

The answer to the first question is that we get a better result in terms of balance. In the
Frobenius version we essentially get the same bound for backdoor curves as for the curve with
j-invariant 1728. The answer to the second question is that by not restricting ourselves to one
starting curve we only have the condition that pa? + pb? + ¢? is an integer and a,b, ¢ can be
rational numbers.

Remark 20. Backdoor curves also have a constructive application: An improvement on the recent
paper [13] using Petit’s attack to build a one-way function “SETA”. In this scheme, the secret
key is a secret isogeny to a curve Ey that starts from the elliptic curve with j-invariant 1728 and
the message is the end point of a secret isogeny from FEg to some curve E,,, together with the
image of some torsion points. The reason for using j-invariant 1728 is in order to apply Petit’s
attack constructively. One could instead use a backdoor curve; this provides more flexibility to
the scheme as one does not need to disclose the starting curve and the corresponding norm
equation is easier to solve.

5.2 Counting backdoor curves

Having shown how to construct backdoor curves and how to exploit them, a natural question to
ask is how many of these curves we can find using the methods of the previous section. Recall
that the methods above search for an element ¥ € B, with reduced norm D. Theorem 21
below suggests they can be expected to produce exponentially (in log D) many different maximal
orders, and using Lemma 22 we can prove this rigorously for the (indeed interesting) case of
(A, B)-backdoor curves with AB ~ p and A? < B < A3 (cf. Theorem 15).

!9 https://simond.users.1lmno.cnrs.fr/
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We first recall some notation from [29]. The set p(&£(O)) consists of the reductions modulo
p of all elliptic curves over Q with complex multiplication by O. Each curve E = £ mod p in this
set comes with an optimal embedding ¢: O < End(FE), referred to as an “orientation” of E, and
conversely, [29, Prop. 3.3] shows that—up to conjugation —each oriented curve (F,:) defined
over Fp is obtained by the reduction modulo p of a characteristic-zero curve; in other words,
either (E,¢) or (E®)1P)) lies in p(&¢(O)). The following theorem was to our knowledge first
explicitly stated and used constructively in [10] to build the “OSIDH” cryptosystem. The proof
was omitted,!! but later published by Onuki [29], whose formulation we reproduce here:

Theorem 21. Let K be an imaginary quadratic field such that p does not split in K, and O an
order in K such that p does not divide the conductor of O. Then the ideal class group cl(O) acts
freely and transitively on p(E¥(0)).

Thus, it follows from well-known results about imaginary quadratic class numbers [34] that
asymptotically, there are h(—D) € Q(D%’E) many backdoor elliptic curves counted with multi-
plicities given by the number of embeddings of O. However, it is not generally clear that this
corresponds to many distinct curves (or maximal orders). As an (extreme) indication of what
could go wrong, consider the following: there seems to be no obvious reason why in some cases
the entire orbit of the group action of Theorem 21 should not consist only of one elliptic curve
with lots of independent copies of O in its endomorphism ring.

We can however at least prove that this does not always happen. In fact, in the case that D
is small enough relative to p, one can show that there cannot be more than one embedding of O
into any maximal order in B,, o, implying that the h(—D) oriented supersingular elliptic curves
indeed must constitute h(—D) ~ /D distinct quaternion maximal orders:

Lemma 22. Let O be a mazimal order in By, oo. If D = 3,0 (mod 4) is a positive integer smaller
than p, then there exists at most one copy of the imaginary quadratic order of discriminant —D

inside O.
Proof. This follows readily from Theorem 2’ of [24].

This lemma together with Theorem 15 shows that there are ©(h(—D)) many (A, B)-backdoor
maximal orders under the restrictions that B > A% and D < p. Consider the case (of interest)
in which AB = p: Following the same line of reasoning as in the proof of Theorem 15 we have
that B?/A% — A% ~ D, which if D < p ~ AB implies that B < A®. Hence, as advertised above,
Lemma 22 suffices to prove that there are ©(h(—D)) many (A, B)-backdoor maximal orders
under the restriction that AB ~ p and roughly A? < B < A3. For larger choices of B, it is no
longer true that there is only one embedding of O into a quaternion maximal order: indeed, at
some point hA(—D) will exceed the number ©(p) of available maximal orders, hence there must
be repetitions. While it seems hard to imagine cases where the orbit of cl(Z[f]) covers only a
negligible number of curves (recall that § was our endomorphism of reduced norm D), we do not
currently know how (and under which conditions) to rule out this possibility.

Remark 28. Having obtained any one maximal order O that contains 6, it is efficient to compute
more such orders (either randomly or exhaustively): For any ideal a in Z[6], another maximal
order with an optimal embedding of Z[f] is the right order of the left ideal Z = Da. (One way
to see this: a defines a horizontal isogeny with respect to the subring O; multiplying by the full
endomorphism ring does not change the represented kernel subgroup; the codomain of an isogeny
described by a quaternion left ideal has endomorphism ring isomorphic to the right order of that
ideal. Note that this is similar to a technique used by [9] in the context O C Q(m).)

" In [10] the theorem was referred to as a classical result, considered to be folklore.
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5.3 Backdoored p for given A and B with starting vertex j = 1728

Another way of constructing backdoor instances of an SIDH-style key exchange is to keep the
starting vertex as j = 1728 (or close to it), keep A and B smooth or powersmooth (but not
necessarily only powers of 2 and 3 as in SIKE), and construct the base-field prime p to turn
j = 1728 into an (A, B)-backdoor curve. In this section, let Ey denote the curve Ey: y* = 23 +z.

An easy way of constructing such a p is to perform steps 1 and 3 of Algorithm 3, and then

2 2
let D := Bf‘igd. Then we can solve

D =p(a® +b%) +¢?

in variables a, b, c,p € Z, p prime, as follows. Factor D — ¢? for small ¢ until the result is of the
form pm where p is a large prime congruent to 3 modulo 4 and m is a number representable as
a sum of squares.'?
Then, with § = awr + br + ¢ the tuple (Ey, 6,d,e) is (A, B)-backdoor. (Note that, in this
construction, we cannot expect to satisfy a relationship such as p = ABf — 1 with small f € Z.)
As an (unbalanced) example, let us choose A = 221¢ and B = 33% and set ¢ = 1. Then we

can use d = Bmod A%. Let D = & 2A_2d2, for which we will now produce two primes: First, pick
¢ =53, then D — ¢? is a prime number (i.e., a = 1, b = 0). Second, pick ¢ = 355, then D — ¢? is
5 times a prime number (i.e., a = 2, b = 1). Both of these primes are congruent to 3 modulo 4.

For a powersmooth example, let A be the product of every other prime from 3 up through
317, and let B be the product of all remaining odd primes < 479. With e = 4, we can again use
d = B mod A% and compute D as above. Then D — 1532 is prime and congruent to 3 modulo 4
(e, a=1,b=0).

5.4 Backdoored p for given A =~ B with starting vertex j = 1728

For A =~ B, finding (A, B)-backdoor curves seems difficult. However, in this section we show that
certain choices of (power)smooth parameters A and B allow us to find f such that j = 1728 can
be made insecure over any F,> with p = ABf — 1.

One approach to this is to find Pythagorean triples A2 +d? = B? where A and B are coprime
and (power)smooth; then Ey: y? = 23 + x is a backdoor curve with § = ¢, the d value from the
Pythagorean triple, and e = 1. With this construction, we can then use any p = 3 (mod 4), in
particular one of the form p = ABf — 1.

Note that given the isogeny degrees A, B, it is easy for anyone to detect if this method has
been used by simply checking whether B2 — A? is a square; hence, an SIDH key exchange using
such degrees is simply weak and not just backdoored.'?

Problem 4. Find Pythagorean triples B? = A2 +d? such that A and B are coprime and smooth
(or powersmooth).

Pythagorean triples can be parameterized in terms of Gaussian integers. To be precise, prim-
itive integral Pythagorean triples a? = b? + ¢? are in bijection with Gaussian integers z = m + ni
with ged(m,n) =1 via the correspondence (a, b, c) = (N(z), Re(2?),Im(22)). The condition that
m and n are coprime is satisfied if we take z to be a product of split Gaussian primes, i.e.,
z = [[, w; where N(w) = 1 (mod 4) is prime, taking care to avoid simultaneously including a
prime and its conjugate. Thus the following method applies provided that B is taken to be an
integer divisible only by primes congruent to 1 modulo 4, and B > A.

2 Some choices of A and B result in D = 2 (mod 4) which is an obstruction to this method.
13 We resist the temptation of referring to such instantiations as “door” instead of “backdoor”.
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In order to guarantee that B = N(z) is powersmooth, one may take many small w;. In order
to guarantee that B is smooth, it is convenient to take z = w" for a single small Gaussian prime
w, and a large composite power k.

It so happens that the sequence of polynomials Re(z*) in variables n and m (recall z = n+mi)
factors generically into relatively small factors for composite k, so that, when B? = A2 + d?, we
can expect that A is frequently smooth or powersmooth. In practice, running a simple search
using this method, one very readily obtains example insecure parameters:

B — 5105

A=2%.11-19-29-41-59-61-139 -241 - 281 - 419 - 421 - 839 - 2381 - 17921
- 21001 - 39761 - 74761 - 448139 - 526679 - 771961 - 238197121

d=3%-13-79-83-239- 3072801 - 3119 - 3361 - 3529 - 28559 - 36791 - 53759
908321 - 3575762705759 - 23030958433523039

For this example, if we take p = 105AB — 1, we obtain a prime which is 3 modulo 4. Note
that here B ~ 224* and A ~ 2%23%, Many other primes can easily be obtained (replacing 105 with
214, 222, etc).

Remark 24. When choosing parameter sets to run B-SIDH [11], if the user is very unlucky, they
could hit an instance of such a weak prime. With this in mind, it would be prudent to check that
a given combination of A, B, and p does not fall into this category before implementing such a
B-SIDH instance.

6 Non-polynomial-time attacks

So far we focused on polynomial-time algorithms both for the starting curve Ey with j-invariant
1728 and for backdoor curves, which required the integer e occuring in the attack to be polynomial
in log p. However, the attack still works when e is bigger, with decent scaling behaviour. Hence,
we may (and will in this section) consider algorithms which are exponential-time, yet improve
on the state of the art. The best known classical and quantum attacks for retrieving an isogeny
of degree A take time O*(A%); recall that we discussed quantum claw-finding in Subsection 2.3.
We will adapt both the dual and the Frobenius isogeny attacks of Section 4 to allow for some
brute-force in order to attack balanced parameters. We will also adapt the definition of backdoor
curves to include curves for which there exists an exponential dual isogeny attack that improves
on the state of the art, thus increasing the pool of backdoor curves.

6.1 Non-polynomial time dual isogeny attack for Eg : y?> = 23 +

Recall from Section 4 that the dual isogeny attack consists of a “precomputation” phase and
a “key-dependent” phase. The precomputation phase (Algorithm 1) was to find a solution to
Equation (3) —notably, this depends only on the parameters (p, A, B) and not on the concrete
public key under attack. The “key-dependent” phase utilized said solution to recover the secret
isogeny via Theorem 3 for a specific public key. Our modifications to the dual isogeny attack
come in three independent guises, and the resulting algorithm is shown in Algorithm 6:

e Precomputation phase:

— Larger d: When computing a solution to Equation (3), we fix e and then try up to
A% values for d until the equation has solutions. This allows us to further relax the
constraints between A, B, and p, at the price of an exhaustive search of classical cost
O*(A%) or quantum cost O*(A?) using Grover’s algorithm.
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o Key-dependent phase:

— Larger e: We search for a solution to Equation (3) where e is any smooth number < A€
with € € [0, 1], whereas in [30] the integer e was required to be polynomial in logp. This
relaxes the constraints on A and B, at a cost of a O*(e2) = O*(A%) computation, both
classically and quantumly, via a meet-in-the-middle or claw-finding algorithm (to retrieve
the endomorphism 7 defined in the proof of Theorem 3).

— Smaller A: We first naively guess part of the secret isogeny and then apply the dual
isogeny attack only on the remaining part for each guess; see Figure 5. More precisely, we
iterate through isogenies of degree A7 | A, with v € [0, 1], and for each possible guess we
apply the dual isogeny attack to SSI-T with A’ := A'~" in place of A. The Diophantine
equation to solve thus turns into

A2 (pa® + pb? + *) + d* = Be. 9)

The cost of using A" in place of A is the cost of iterating over the isogenies of degree A7
multiplied by the cost T' of running the dual isogeny attack (possibly adapted as above to

allow for larger e). This is an exhaustive search of cost O*(AY-T) = O*(A*2) classically
Jyte

or O (A% -T) = O*(A™>") quantumly using Grover’s algorithm.'*

Figure 5. Brute-force guessing the degree A" part of Alice’s isogeny ¢ from Alice’s curve E and the
dual isogeny attack to find the remaining degree A’ part of ¢ from Ejy.

Proposition 25. Define a and B by setting A = p® and B = p® and fix 0 < o < 5. Under
Heuristic 1, if

26 4+ ae > max{4a + 2ad — day, 2+ 2a — 206 — 20y},
A has (at most) O(loglogp) distinct prime factors, and B is at most polynomial in A, then
Algorithm 6 solves SSI-T in time O*(AT) on a classical computer and time O*(AT/2) on a
quantum computer, where

1+43a—-28 2a—p8 14+a-—p

- 3a T 2a 2a } ’

' For the reader who is wondering exactly how to apply Grover’s algorithm in this context: Let
(Pa,Qa) = Eo[A”]. The input for Grover’s algorithm here is an integer n < A” and all of the
input of Algorithm 5. Attempt Steps 2 and 3 for ¢, such that ker(py) = (Pa + nQa); the output
will be success or failure. Every subroutine of Steps 2 and 3 can be broken down into basic elliptic
curve arithmetic for which there are known quantum algorithms of similar complexity to their classical
counterparts.

I = max{
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Algorithm 4: Solving the norm equation; precomputation.

Input: ¢ SIDH parameters p, A = p®, B = p°.
 Attack parameters 9,7, € € [0,1], with A7 | A.
Output: A solution (a,b,c,d,e) to (9) with A’ = A'~7 and e < A€ smooth.
Pick a smooth number e < A¢ which is a square modulo A’2.
Compute dy such that d3 = eB? (mod A"?).
For d' =1,2,....| A°| such that dy + A”%?d' < \/eB do
Let d = dy + Ad'.
Find the smallest positive integer ¢ such that ¢?A’”? = eB? — d? (mod p),
or continue if no such c exists.
If eB? > d? + c?A’? then

7 L Try finding (a,b) such that a? + b = eB g FAR

[S, S NVVRN VR

A/2p
If a solution is found, return (a,b,c,d,e).

Algorithm 5: Recovering the secret isogeny; key-dependent phase.

Input: ¢ All the inputs of Algorithm 4.

e An instance of SSI-T with those parameters, namely a curve E and points
P,(Q € E[B] where there exists a degree-A isogeny ¢ : Ey — F such that P,Q are the
images by ¢ of a canonical basis of Ey[B].

e § € End(E)p) and d, e € Z such that deg(A’ + d) = B%e with e < A€ smooth.
Output: An isogeny ¢ matching the constraints given by the input.

For ¢, : E — E' an A"-isogeny do
Compute P’ = [A™7 mod B] ¢,(P) and Q' = [A77 mod B] ¢4(Q).
Use Theorem 3 to compute ¢’ : Ey — E’ of degree A’ = A'™7,

assuming that P’ and Q' are the images by ¢’ of the canonical basis of Fy[B],
or conclude that no such isogeny exists.

4 If ¢ is found then
L Return ¢ = ¢, 0¢'.

=

Algorithm 6: Solving SSI-T.

1 Invoke Algorithm 4, yielding a, b, ¢, d, e € Z, and then Algorithm 5 with 6 = atw + b + ct.
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Proof. See Appendix A.2. ad

Corollary 26. Suppose that B is al most polynomial in A and that A has (at most) O(log log p)
distinct prime factors. When run on a classical computer, Algorithm 6 is asymptotically more effi-
cient than meet-in-the-middle — disregarding memory concerns, so more efficient than O*(A%) —
whenever

B> max{\/ﬁA%,A,p}.

When run on a quantum computer, Algorithm 6 is asymptotically more efficient than quantum
. . . . 1
claw-finding — according to the model in [22], so more efficient than O*(Az) — whenever

B > max {\/ﬁ,Aflp} .

6.2 Non-polynomial time Frobenius isogeny attack for Eg: y?> = 2% + o

Recall the Frobenius isogeny attack from Section 4. In a similar way to the previous section, we
allow for some brute-force to improve the balance of our parameters. More precisely, we consider
again:

e Smaller A: Iterate through isogenies of degree A7|A; in the precomputation we solve instead
A%(a® + ) + pc® = B2e, (10)

where A’ = A=,

Algorithm 7 describes how to adapt the Frobenius isogeny attack of Section 4 in this way.

Algorithm 7: Solving SSI-T.

1 (Precomputation) Invoke Algorithm 2 with inputs p, A, B, yielding a, b, ¢, e € Z.
2 (Key-dependent) Run Algorithm 5 except that § = avm + br € End(E)) instead satisfies
the equation deg(A’0 + ¢) = B2ep and we use Theorem 5 in place of Theorem 3.

Proposition 27. Define o and 8 by A = p® and B = p®, fit B> A and B at most polynomial
in A, and suppose that A’ = A=Y has (at most) O(loglogp) distinct prime factors. Under

1+4a—28

Heuristic 2, Algorithm 7 has complexity O* (A7) = O* (AT) classically and O* (A%) =

o (A1+480if26) quantumly. Moreover, the precomputation step runs in time O*(1).

Proof. See Appendix A.3.

Corollary 28. Suppose that B is at most polynomial in A and that A has (at most) O(loglog p)
distinct prime factors. When run on a classical computer, Algorithm 7 is asymptotically more effi-
cient than meet-in-the-middle — disregarding memory concerns, so more efficient than O*(A%) —
whenever B > /pA. When run on a quantum computer, Algorithm 7 is asymptotically more
efficient than quantum claw-finding — according to the model in [22], so more efficient than
O*(A?) — whenever B > V/D-

Remark 29. It may seem natural to also allow for larger e as in the dual isogeny attack. However,
this limits how small A’ can be, and the gain from reducing A’ is strictly better than the gain
from increasing e. Intuitively this is because A’ appears in Equation 10 as a square, which doubles
the gain compared to gain from increasing e.
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6.3 Non-polynomial time dual isogeny attack for backdoor curves

Recall the definition of an (A, B)-backdoor curve (Ey, 8, d, e) from Definition 14; we now extend
this to define backdoor curves that give rise to a torsion-point attack of complexity O*(A?).
In this section we explain how to modify Algorithm 3 to compute these more general back-
door curves, and apply Algorithm 6 with such a backdoored starting curve Ey by replacing the
precomputation step with the modified Algorithm 3.

Definition 30. Let A, B be coprime positive integers and 0 < € < 1/2. An (A, B, % )-backdoor
curve is a tuple (Eo,0,d,e) of a supersingular elliptic curve Ey over some Fp2, an endomorph-
ism 0 € End(Ey) in an efficient representation, and two integers d,e, such that Algorithm 5
solves SSI-T for that particular Eq in time O*(A%) when given (0,d,e). An (A, B,0)-backdoor
curve is then an (A, B)-backdoor curve in the sense of Definition 1/.

To construct (A, B, €)-backdoor curves, we modify Algorithm 3 as follows:

e Use A’ = A7 instead of A, namely we will guess part of the isogeny with degree A7 | A.
e Instead of starting from e = 1, choose A random values of A*B~2 < ¢ < A (note e is not
necessarily an integer square) until there exists d such that d*> = B?e mod (4’)2,

B —d? >0 (11)

and B2e — d? is a square modulo p. Once these values of d and e are found, continue like in
Algorithm 3, Step 6.

Proposition 31. Heuristically, if A has (at most) O(loglogp) distinct prime factors:

o Let € €[0,0.4]. For A, B such that B > AQ_%'%, Algorithm 8 modified as above constructs
a (A, B,€)-backdoor curve in time O*(A%) on a classical computer, assuming an oracle for
factoring.

e Let € €[0,0.25]. For every A, B such that B > A>~*% Algorithm 3 constructs a (A, B,%)-
backdoor curve in polynomial time on a quantum computer.

Proof. See Appendix A .4.

Corollary 32. When A ~ B (e.g. as in SIKE [20]), the modified Algorithm 3 computes a
(A, B, 2)-insecure curve in time O*(A%) on a classical computer and computes a (A, B, 1)-
insecure curve in polynomial time on a quantum computer. In particular, when A =~ B ~ ,/p,
there exist backdoor curves Eqy for which we can solve SSI-T on a classical computer in time
O*(p3) and for which we can solve SSI-T on a quantum computer in time O*(p%).

7 Impact on unbalanced SIDH, group key agreement, and B-SIDH

We summarize how the results of Sections 4, 6.1, and 6.2 impact unbalanced SIDH with p ~ AB,
the GSIDH multiparty group key agreement [16, 2], and B-SIDH [11].

7.1 Frobenius isogeny attack on group key agreement and unbalanced SIDH

Let us consider unbalanced SIDH with p ~ AB. More precisely, we study instances of SSI-T with
p=AB- f—1, where f is a small cofactor and where A has (at most) O(loglog p) distinct prime
factors. Then by Proposition 11 and Theorem 5, under Heuristic 2, the Frobenius isogeny attack
of Section 4 gives a polynomial-time attack on SSI-T when B > \/]3A2. Since in this section we
restrict to the case p ~ AB, this inequality simplifies to B > A®. In particular, this gives us one
of our main results:
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Theorem 33. Under Heuristic 2, the Frobenius isogeny attack presented in Section j breaks the
GSIDH n-party group key agreement protocol presented in [16, 2] in time polynomial in logp for
allmn > 6.

Proof. Recall from Subsection 2.1 that the cryptanalytic challenge underlying the n-party group
key agreement as presented in [16, 2] can be modelled as an instance of SSI-T with A = (7',
B =1(3?---4", and p = AB - f — 1, where ¢1,...,¢, are primes such that for all 7,5 we have
05~ Ejj and f is a small cofactor chosen such that p is prime. Thus the security of the n-party
group key agreement is similar to that of unbalanced SIDH with the same p, A, B. Suppose n > 6.
Since A is a prime power (hence has 1 = O(loglog p) prime divisors) and B > A®, the Frobenius
isogeny attack on the group key agreement is polynomial-time when there are 6 or more parties.

O

We have implemented this attack in Magma [6] for 6 parties, see the code at https://github.
com/torsion-attacks-SIDH/6party. The code is written to attack the power-of-3 torsion sub-
group, when p 4 1 is powers of the first 6 primes, and uses cryptographically large parameters.

We know the Frobenius isogeny attack is polynomial on unbalanced SIDH when B > A°
(and the n-party group key agreement when n > 6); it remains to investigate the non-polynomial
analogue. To this end, consider the attack presented in Subsection 6.2. As above, suppose given
an instance of SSI-T with p = AB - f — 1, where f is a small cofactor, such that A has (at most)
O(log log p) distinct prime factors, and now additionally suppose that B ~ A'*¢ where 0 < € < 4.
To apply this attack to n-party group key agreement with n = 2,3,4,5, just set e =n — 2.

Proposition 34 demonstrates an improvement on the asymptotic complexity for quantum
claw-finding as analyzed in [22] for any level of imbalance (i.e., for any € > 0). However, note
that the only quantum subroutine used in our Frobenius isogeny attack is Grover’s algorithm, so
our complexity computation is independent of the choice of quantum computation model used
for claw-finding. As such, using a more nuanced model working with concrete complexities, such
as the one presented in [23], will make our quantum attack start to “improve on the state of the
art” at different levels of imbalance. As our work currently only presents asymptotic complexities,
we are leaving an analsyis of this for future work.

Proposition 34. Let A, B be coprime smooth numbers where B > A'*¢, and let p be a prime
congruent to 3 (mod 4). Furthermore, suppose that p = ABf —1 for some small cofactor f, and
that the number of distinct prime factors of A is (at most) O(loglogp). Let Ey/F,, be the super-
singular elliptic curve with j-invariant 1728. Algorithm 7 solves SSI-T with these parameters in

€

time O* (Al’i) when run on a classical computer and time O* (A%’E) when run on a quantum
computer.

Proof. Let a = 2%% and § = ;i: Proposition 27 proves that Algorithm 7 runs classically in time

o (A1+4f;25) — O (A <2+s>+4472<1+e)> — O (Al—i) .
Similarly, Proposition 27 proves that Algorithm 7 runs quantumly in time

O* (A1+4§a—26> — O (A(2+<)+48—2(1+e>> — O (Aéfg) '

O

As stated above, akin to the polynomial-time attack, substituting n = e+ 2 in Proposition 34
gives us the complexity of the non-polynomial Frobenius isogeny attack on m-party group key
agreement for n = 2, 3,4,5 parties, see Table 1.

16 As justified above, we take [22] for the “state-of-the-art” numbers for quantum claw-finding here rather
than [23].
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Table 1. Asymptotic complexities of our Frobenius isogeny attack on n-party key agreement and com-
parison with the state of the art, i.e., meet-in-the-middle and claw-finding.'® Numbers given are the
logarithm to base A of the complexity, ignoring factors polynomial in log p.

# parties || This work (classical) | This work (quantum) | MitM (classical) | [22] (quantum)

2 1 1/2

3 3/4 3/8 | |

4 1/2 1/4 1/2 1/2

5 1/4 1/8 | |
>6 0 0

7.2 Dual isogeny attack applied to B-SIDH

A recent proposal called B-SIDH [11] consists of instantiating SIDH with parameters where AB
is a divisor of p? — 1. By Proposition 25, under Heuristic 1, when A ~ B ~ p (that is, a = 8 ~ 1),
Algorithm 6 yields a quantum attack on these parameters of complexity O*(A%) = O*(p%). This
compares to other attack complexities in the literature as follows:

e Tani’s quantum claw-finding algorithm [37] was claimed to have complexity O*(p?), but [22]
argues that the complexity is actually no lower than O*(p%) when the cost of data-structure
operations is properly accounted for.

e A quantum algorithm due to Biasse, Jao, and Sankar [4] finds some isogeny between the start
and end curve in time O*(pi). While there is a heuristic argument for “standard” SIDH /SIKE
that any isogeny suffices to find the correct isogeny [17], this argument relies on the fact that
the isogeny sought in SIKE has relatively small degree compared to p, which is was not
believed to be true for B-SIDH. The B-SIDH paper [11]| conservatively views [4] as the best
quantum attack. Since the publication of B-SIDH, it has been shown [36] that [4] does in
fact apply, so this is currently the best known quantum attack against B-SIDH.

e The cost of known classical attacks is no lower than O*(A%)7 which is achieved by meet-in-
the-middle techniques (using exponential memory) and potentially memoryless by Delfs and
Galbraith [14] when A & p assuming a sufficiently efficient method to produce the isogeny
from some isogeny.

Thus, assuming Heuristic 1 holds, Algorithm 6 is asymptotically better than quantum claw-
finding but is not the best known quantum attack against B-SIDH at the moment.

Note that for 1/2 < a &~ § < 1, the (quantum) attack cost in terms of p may be lower than
O*(p3), but it does not get smaller than O*(p3) and hence does not improve on [4] for a ~ f.

7.3 Impact on B-SIDH group key exchange

As an example of how care should be taken when constructing new SIDH-style schemes, we also
include a scheme that does not exist in the literature: group key agreement instantiated with
B-SIDH parameters. This is a natural scheme to consider: The size of the base-field prime used in
group key agreement grows with the number of parties, and optimally chosen B-SIDH parameters
(with respect to efficiency) halves the bit-length of the base-field prime. Corollary 35 shows that
such an instantiation is insecure for 4 or more parties:

Corollary 35. Let A, B be coprime smooth numbers and let p be a prime congruent to 3 (mod 4).
Furthermore, suppose that p> —1 = ABf for some small cofactor f and that B > A3. Let Ey be
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the supersingular elliptic curve with j-invariant 1728. Then, assuming Heuristic 1, SSI-T can be
solved in polynomial time.

Proof. The result follows from Proposition 9.

Finally, in Corollary 36 we give the complexity of our dual isogeny attack on an instantiation of
B-SIDH 3-party group key agreement with minimal base-field prime:

Corollary 36. Let A, B be coprime smooth numbers and let p be a prime congruent to 3 (mod 4).
Furthermore, suppose that p> —1 = ABf for some small cofactor f and that B > A?. Let Ey
be the supersingular elliptic curve with j-invariant 1728. Then, assuming Heuristic 1, Algo-
rithm 6 solves SSI-T in time O*(A%) = O*(ps) when run on a classical computer and time
O*(A%) = O*(p12) when run on a quantum computer.

Proof. This follows from plugging o = 2/3 and § = 4/3 into Proposition 25.

8 Open Question

The two attack variants given in Theorems 3 and 5 may seem somewhat ad hoc at first. In this
Section, we describe a common abstraction for both variants and discuss potential generalizations.

The core idea is to relax the choice of 7 as an endomorphism of E, instead allowing 7 to be
an isogeny from F to another curve E':

Theorem 37. Suppose given an instance of SSI-T where A has O(loglogp) distinct prime
factors. Let w: E — E' be a known isogeny to some curve E'. Furthermore, assume we are
given the restriction to Eg[B] of an isogeny ¢: Eg — E’, and an integer d € Z such that the
isogeny T = VP + dw € Hom(E, E') has degree B%e, where e is smooth. Then, we can compute a
matching isogeny ¢ in time O*(/e).

Proof. The proof is completely analogous to Theorems 3 and 5.

The specific instantiations obtained as special cases earlier can be recovered as follows:

e For Theorem 3, we simply use E/ = FE, the map w is the identity morphism on E, and the
isogeny v is an element of the set M’ = oM C Hom(Ey, E), where M < End(E)) is the
subgroup of trace-zero endomorphisms of Ej.

e For Theorem 5, we use the Galois conjugate E' = E° of E, the mapw: E — E° is the p-power
Frobenius isogeny, and the isogeny 1 is an element of the set M’ = oM C Hom(Ey, E?),
where M < End(FEj) is the subgroup orthogonal to Frobenius 7 € End(Ep).!”

In both cases, the choice of M’ and w is such that the resulting degree form for the subgroup
M' + wZ of Hom(Ey, E’) has a sufficiently nice shape to be solved efficiently using techniques
such as those shown in Subsection 4.2.

It is unclear whether there are any other choices of M’ and w which lead to an efficiently
solvable norm equation and potentially improved attacks. However, so far we have not found any
other ways to exploit this viewpoint beyond using ¢ itself or its Galois conjugate. Finding other
useful generalizations is an interesting open problem.

17 The way Theorem 5 is presented differs from Theorem 37 here; this is merely a change in notation.
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A  Proofs

In this section we will cover the proofs not contained in the main body of the paper.

A.1 Proof of Lemma 4

Proof (of Lemma 4). Subtracting [d] from 7 gives p = ¢ 00 o . Once we know the lollipop
endomorphism p, then one can do the following. First one computes the intersection ker p N
E1[A] which can be accomplished efficiently as A is smooth. If this intersection is cyclic, then
ker p N E1[A] = ker(9).

If not, then one can do the following. Let M be the largest integer such that F;[M] C
(ker pN E1[A]). Then one can decompose the secret isogeny ¢ as @/\M oy where the pj; has
degree M and ¢ 4,5 has degree A/M. In [30, Subsection 4.3] the following is shown:

L. ker(pa/nr) = M(ker(p) N E1[A])

2. O(ker(pnr)) = ker(par)

3. The number of subgroups of FEy[M] fixed by 6 is at most 2¥, where k is the number of distinct
prime factors of M.

Fact 1 shows us how to compute ¢ 4/y. Finally, ¢ps can be computed by an exhaustive search
(going through all the subgroups of Fo[M] which are fixed by ). This last search is efficient by
the condition that A has O(loglog p) distinct prime factors. O

Remark 38. In practice M has usually O(loglog p) prime factors even without the extra condition
on the degree of 6 — [1].

A.2 Proof of Proposition 25

Lemma 39. Under Heuristic 1, if
26 4+ ae > max{4da+2ad — day, 2+ 2a — 206 — 20y}, (12)

then Algorithm J returns a solution (a,b,c,d,e) to Equation (9) with A’ = A~ and e < A€
smooth in time O*(A°) when run on a classical computer and in time O*(A%) when run on a
quantum computer.

Proof. To find an appropriate e in Step 4, find an integer square ey of size =~ logp, of which
there are approximately 1/+/log p, and take e to be an even power of ej of size approximately A€,
modulo A”2. Then Step 4 takes time O*(1), and dy exists, is < A2, and can be computed in time
O*(1) as before. By Heuristic 1 Part 1, for every choice of d' as we iterate there exists a ¢ < p in
Step 4 with probability 1/2, hence the smallest ¢ found, the one output by Algorithm 4, will have
size =~ A~%p. Also, we have d’ < A° so d*> < A"*A?°. Now (12) ensures that eB2 > d? + c?A’%, so
the quantity in Heuristic 1 Part 2 (with A’ in place of A) is positive; hence, since B is at most
polynomial in A, under Heuristic 1, Step 6 succeeds after O*(1) iterations. Hence Algorithm 4
terminates in time O*(A%) classically or time O*(A%) quantumly using Grover’s algorithm. 0O
Proof (of Proposition 25). Write f = 1 for classical algorithms and f = % for quantum al-
gorithms; hence, the complexity of Algorithm 6 as discussed in Subsection 6.1 equals ¥ =
max{ fd, fy + %6} Call a tuple (4,7, ¢€) € [0;1]® “admissible” if it satisfies the bounds

(4420 —4y—€a<28 and (2—-20—2y—¢e)a<28-2 (%)
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from Lemma 39. Suppose given an admissible tuple (,7,€) with cost € < 1/2. First, notice

that setting +' := max{d, vy + %e}, the tuple (4,7',0) is still admissible with the same %. (Since
€ < 1/2, we have v/ < % < 1.) Thus, it suffices to consider admissible tuples (4,7',0) with
0 <6 <~ <1 when optimizing. The bounds (x) simplify to

l+a—B—ay < ad < B—2a+ 207, (+')
which (leaving out the middle term «d and simplifying) implies

14+ 3a—26
(A e ()

This establishes a lower bound on +/, but it is not yet clear which of these values are actually
possible: For a given v/, we additionally require a § € [0;+'] that satisfies the bounds (+’). Hence,
the upper bound 8 — 2a+ 2oy’ on «d in (*') must be non-negative, which simplifies to

200 —
2 O;Ozﬁ' (x2)

Similarly, the lower bound 14+ a — 8 — a7’ on & in (') must not be greater than o/, yielding

5> M
2ce

(*3)

Recalling that ¥ = f+/, this shows the claim. O

A.3 Proof of Proposition 27

Proof (of Proposition 27). In the precomputation step of Algorithm 2, we use A’ = A=Y = p*=7
as an input in place of A. By Proposition 11, under Heuristic 2, if B > \/f)A’2 but is at most
polynomial in A and A’ has O(loglog p) distinct prime factors, then this step returns (a, b, ¢, e)
with e = O(logp) in polynomial time. Note that if v > (1 + 4o — 23) /4 then

14+4da—4ay
2

B:pﬂ>p

— \/]3Al27

that is, for v > (1 + 4o — 2f8) /4, the precomputation step runs in polynomial time. The online
step runs in time O*( A7) on a classical computer and time O*(A?) on a quantum computer using

Grover’s algorithm, so the result now follows by choosing v optimally for any given a and 8. O

A.4 Proof of Proposition 31

Proof (of Proposition 31). With the modifications described in Subsection 6.3, the attacker in-
vokes Algorithm 5 to compute the secret isogeny, using the data (0,d,e) from Algorithm 3.

We analyze the complexity of running the modified Algorithm 3 followed by Algorithm 5.
The two quadratic residuosity conditions are heuristically satisfied one in four times, so we ignore
them in this analysis. The cost of Algorithm 3 modified in this way becomes O*(Ael) for a classical

adversary and O*(A%) for a quantum adversary.
Note also that by construction we have e < A€, so the cost of running Algorithm 5 will be

O*(A7*3) for a classical adversary and O*(AWTJ“) for a quantum adversary, following the same
reasoning as in the complexity analysis of Algorithm 6.
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We now look at the conditions for existence of a solution in Algorithm 3. Note that d is a
priori bounded by (A4’)2 = A2(0=7). However, after trying A¢ values for e we may hope to find
some d bounded by A2(1=7)=¢ To satisfy (11) we need

28 > a4 — 4y — 2 —¢),

and by construction we also need ¢ < e.
For a classical adversary, setting € = ¢ = 2y = % gives the result. For a quantum adversary,
setting e = ¢ = 0 and v = 2 - € gives the result. O

Remark 40. We found these choices for e, €',y by solving the following optimization problems
fora == %, so at least in that case (which corresponds to SIKE) we expect there to be no
better choice with respect to overall complexity: For the best classical attack when o = 8 = %

we solved the following linear optimization problem:

. ’ €
min max{e,’y—l—f}.

4y42¢’ +€>2, 2
e>e’
For the best quantum attack when o = g = % we solved the following linear optimization
problem:
) € v+e
min  max<{ —, .
4y+2¢ +€e>2 2 2

e>e

B Additional examples of backdoored primes

In the examples in Subsection 5.3, we let A = 2216, B = 3300 ¢ = 1. We let d equal B mod A2,
and D = BIZde, hence
D = 16896420333246701930066245846797285820453043046692612 ...
... 34160275705261296847619733634147787139416180071370253 ...
... 151875694583397987452872630971686172791991823800180.

We first choose ¢ = 53, then D — ¢? is a prime number (i.e., a = 1, b= 0),
p = 16896420333246701930066245846797285820453043046692612 ...

... 34160275705261296847619733634147787139416180071370253 ...
... 151875694583397987452872630971686172791991823797371.

When ¢ = 355, then D — ¢? is 5 times a prime number, namely,

p = 33792840666493403860132491693594571640906086093385224 ...
... 68320551410522593695239467268295574278832360142740506 ...
... 30375138916679597490574526194337234558398364734831.

Both of these primes are congruent to 3 modulo 4.

We also give additional examples of Pythagorean triples as described in Subsection 5.4. In
particular, let

B =17%,
A=2°.32.52.7-11-13-19-23-41-47-59-61-101 - 181 - 191 - 199 - 239 - 421
- 541 - 659 - 769 - 2281 - 16319 - 30119 - 285599 - 391679 - 1039081 - 1109159
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For this, 177AB — 1 = 3 (mod 4) is prime. Finally, a powersmooth example is given by

B =5%.13%.17*.29% . 37% . 41* . 53* . 61* - 73* . 89* . 97*,
A=2.3.7-11-23-31-127-199-811 - 2903 - 155383 - 842041 - 933199 - 1900147
- 8333489 - 21629743 - 30583723 - 69375497

For this, 19AB — 1 =3 (mod 4) is prime.

C Computing concrete backdoor instances

In this section we report on computations regarding Algorithm 3 for some concrete parameters.

We chose parameters A = 2216, B = 3300 5 = AB.277 — 1. It is easy to see that we can choose
2 2
e =1 and d equal to B modulo A%. Now we need to factor £ A*d . The way we chose d makes

it easy as Bi@‘f = BA_zd (B + d). This is something which applies in other cases as well, and to
make sure that factorization is easy one can try choices of d until factoring B+ d is feasible (e.g.,
B%2—4? .

= is

B + d is a prime number). For completeness, the factorization of

22.5.23- 359 - 2089 - 39733 - 44059 - 74353 -

37628724343042581190433455539389264355404578964704347 ...
...59039416676945740598806299461624575502089058332472952 ...
...9427908921244148421914499463.

Once the factorization is known, we apply Simon’s algorithm, implemented in Pari/GP [3] as
2 2
gfsolve(), to compute a rational solution to the equation pa? + pb® + ¢ = £ A}d . A rational

solution is given by

a = 32319123496536786843254458765608553095663568521872334 ...
...297530315749275438736572/ 2

b = 37902893736016880777193854875253045553175457573067191 ...
...2406340378400674751175560/ 2

¢ = 85437128777417136022423941321585505761757160615798739 ...
... 72406075696054195168847143870020389324092617191284723 ...
... 80905798835064955553407208320599901478282089806543945 ...
... 266931422175906643935346/ z,

where

z = 87978348577011335417453239649099382225650021375809220 ...

...4820354441211407993264179570949123846469170675585119.

Once 6 is computed one has to compute an order Oy which contains 6. This can be accom-
plished in various ways. One way is to find a @’ such that 60’ + 6’6 = 0 and 6’2 is an integer
multiple of the identity. This amounts to finding the kernel of the linear map n — 61 + nf,
which is a 2-dimensional vector space over Q (i.e., one chooses an element in this kernel and
then multiplies it with a suitable integer). It is preferable to construct Qg in this way so that
the discriminant of the order is the square of the reduced norm of 6¢’. In particular, if we choose
a 6’ whose norm is easy to factor, then the discriminant is also easy to factor. One has a lot of
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flexibility in choosing #’ and lattice reduction techniques help finding one which is sufficiently
small and has an easy factorization. Note that the norm of 6’ will always be divisible by p since
the discriminant of every order is a multiple of p (and the norm of 6 is coprime to p). Finally,
one can compute a maximal order containing Oy using MAGMA’s [6] MaximalOrder () function.
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