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Abstract

Computer-based and web-based testing have become increasingly popular in recent
years. Their popularity has dramatically expanded the availability of response time
data. Compared to the conventional item response data that are often dichotomous
or polytomous, response time has the advantage of being continuous and can be col-
lected in an unobstrusive manner. It therefore has great potential to improve many
measurement activities. In this paper, we propose a change point analysis (CPA) pro-
cedure to detect test speededness using response time data. Specifically, two test sta-
tistics based on CPA, the likelihood ratio test and Wald test, are proposed to detect
test speededness. A simulation study has been conducted to evaluate the performance
of the proposed CPA procedure, as well as the use of asymptotic and empirical critical
values. Results indicate that the proposed procedure leads to high power in detecting
test speededness, while keeping the false positive rate under control, even when simplis-
tic and liberal critical values are used. Accuracy of the estimation of the actual change
point, however, is highly dependent on the true change point. A real data example is
also provided to illustrate the utility of the proposed procedure and its contrast to the
response-only procedure. Implications of the findings are discussed at the end.
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Introduction

In recent years, response time has received rapidly growing amount of attention in

psychometric research (Lee & Chen, 2011), likely due to the increasing availability

of (item-level) response time data through computer-based testing and online survey

data collection. The collection of response time data is unobtrusive as well, meaning

that test takers are typically unaware that response time data are being collected. As

such, response time on test items has the potential to improve many measurement

activities, for example, item parameter estimation of item response theory (IRT)

models (Bhola, 1994; Schnipke, 1995, 1996, 1999; van der Linden et al., 2010), test

assembly (van der Linden, 2011; van der Linden & Xiong, 2013), and item selection

in computerized adaptive testing (CAT; Cheng et al., 2017; Fan et al., 2012; van der

Linden, 2008).

One notable application of response time has been detection of aberrant response

behavior (van der Linden & van Krimpen-Stoop, 2003). Many researchers have

explored the use of response time to detect various types of aberrant response beha-

vior, such as speededness (Schnipke & Scrams, 1997; van der Linden et al., 1999),

low motivation or lack of effort (Wise & Kong, 2005), or item pre-knowledge (van

der Linden & Guo, 2008). In this paper we focus on test speededness. The test speed-

edness occurs when time limit affects examinees’ performance on a test while speed

is not part of the construct(s) of the test purports to measure (Evans & Reilly, 1972;

Shao et al., 2016). Test speededness may cause lower response accuracy toward the

end of a test or missing responses (Goegebeur et al., 2010). Test speededness could

also bias the estimates of item and ability estimates (Douglas et al., 1998; Oshima,

1994) and undermine the validity of the test scores, and may distort or weaken the

relationship between test scores and other variables. It is therefore critical to detect

response patterns that are affected by speededness.

Traditionally, unreached items toward the end of a test are considered an indica-

tion of test speededness (Schnipke & Scrams, 1997), in which case response time on

these items is 0. A more elusive and more prevalent form of test speededness is

‘‘rapid guessing behavior’’ (Schnipke & Scrams, 1997; Wise & Kong, 2005) on mul-

tiple choice items, meaning when time is running out, examinees may rapidly

respond to remaining items before time expires, and it is expected that ‘‘the correct-

ness of these answers will be at or near chance levels’’ (Wise & Kong, 2005, p.

167). Many rapid guessers may appear to finish the test in time, that is, there is no

unreached items on their test. Therefore more sophisticated approaches than looking

for unreached items are needed to detect speededness.

To date, there have been at least three approaches to detect test speededness using

response time data. The first approach is to model the distribution of response time

that are unaffected by that speededness and detecting speededness by model-based

inferences. Various measurement models have been proposed for response time in

psychological and educational testing. These include parametric models such as log-

normal model (Thissen, 1983; van der Linden, 2006), Weibull model (Rouder et al.,

2003; Wang, 2006), and gamma model (Maris, 1993). In addition to these parametric
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models, a number of ‘‘flexible parametric’’ and semiparametric models have been

proposed, which make weaker distributional assumptions and can subsume existing

parametric models (Ranger & Kuhn, 2012). These models include the Box-Cox nor-

mal model (Entink et al., 2009), the proportional hazards model (Ranger & Ortner,

2012; Wang, Fan et al., 2013), and the linear transformation model (Ranger & Kuhn,

2013; Wang, Chang et al., 2013). To detect speededness, a chosen model is fit to the

item response time data. Someone whose response time pattern does not fit the model

(i.e., with large residuals) can be flagged (van der Linden & van Krimpen-Stoop,

2003; van der Linden et al., 2007). This approach is similar to detecting person misfit

under the IRT framework. A chosen IRT model, that is, the null model, is fit to the

data, and response patterns with large residuals (e.g., large lz statistics) get flagged.

The second approach is to directly model response time data that are affected by test

speededness. One common approach is to use mixture modeling, with one latent class

corresponding to one type of test-taking behavior (Meyer, 2010; Molenaar et al., 2016),

for instance solution behavior and rapid guessing behavior (Wang & Xu, 2015), respec-

tively. One can fit a mixture model to the response time data and identify respondents

with rapid guessing behavior using estimated class membership. Another approach is to

model the trajectory of the change within one individual during the test taking process

using latent growth model (Fox & Marianti, 2016). By fitting the latent growth response

time model, a person going through the test with non-invariant speed, for example, line-

arly increasing or quadratically increasing speed, can be flagged.

The third approach does not explicitly utilize any measurement model of response

time. Instead, one can use visual inspection or arbitrarily chosen thresholds to flag

respondents who may have been affected by speededness. For example, Schnipke

(1995) used response time (in conjunction with the accuracy rates) to assess item-

level speededness in computer-based testing. In that study, she first examined the

computer-based Graduate Record Examinations (GRE) in terms of the percentage of

examinees who reached 75%, 80% of the test, or the last item. The response time and

response accuracy (i.e., the proportion of test takers getting the item right) were then

used to identify examinees who had rapid guessing behavior through visual inspec-

tion and a series of analyses of variance. Guo et al. (2016) compared five methods to

detect rapid guessing behavior. These all methods involve identifying a threshold that

indicates rapid guessing for each item. Then test takers whose response time is less

than the threshold will be flagged. For each test taker, the proportion of items on the

test for which his or her response time exceeded the established threshold values

(Swerdzewski et al., 2011; Wise & Kong, 2005) is computed. This proportion is

referred to as the overall response time effort (RTE) index. Test takers with low RTE

are considered showing rapid guessing behavior. These methods are item-based in

the sense that thresholds need to be first established for each item. For example, a

commonly used threshold is the 3 second threshold for all items. Demars (2007) dis-

cussed visually inspecting the distribution of response time of each item and identify

a gap. The gap, if exists, can be a natural threshold for the item. Wise and Ma (2012)

proposed to identify rapid guessing by using the normative time threshold, which is
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defined as a certain percentage (e.g., 10%) of the mean time the entire sample of test

takers spent on the item. Anyone spending less time than the normative time thresh-

old would be considered as a rapid guesser on the item. Such normative thresholds

were also adopted in Lee and Jia (2014) in flagging non-effortful test takers in a The

National Assessment of Educational Progress (NAEP) study. The establishment of

appropriate thresholds is critical to the performance of these methods (Kong et al.,

2007).

In this paper we propose a procedure based on change point analysis (CPA) to

detect speededness using item response time data. Similar to the first approach

described above, the CPA approach assumes a null distribution of response time, that

is, distribution of response time when it is not affected by speededness. However, it

does not examine how an individual response time pattern deviates from the group

behavior (in the sense of Mahalanobis distance) or model-implied behavior (in the

sense of residuals such as person-fit statistics). Instead, it concerns itself with intra-

individual change during the test taking process. In doing so it challenges the assump-

tion that the working speed of an individual is a constant throughout the test taking

process. From this perspective it is conceptually similar to the latent growth model

described under the second approach above. In spite of the conceptual resemblance

between the two approaches, the CPA approach does not fit an alternative model and

hence does not make an assumption of the growth trajectory, linear or non-linear.

Instead, all it requires is the null model, which makes it also distinct from the second

approach. Compared to the third approach, the CPA approach is model-based. It does

not require the establishment of a threshold for each item or visual inspection.

Further, CPA allows the estimation of the item position from which a test taker starts

to show speededness, or the speeding point. This makes it distinct from all three

approaches above. An estimated change point enables partial filtering of a response

pattern instead of removing the entire response pattern of a suspected test taker, as

typically done when one is flagged.

The rest of the paper is organized as follows. We first discuss the existing research

on using CPA to address psychometric issues. Then we introduce the proposed CPA

procedure to detect test speededness using item response time data. More specifically,

two variations are discussed, one based on the likelihood ratio test and the other based

on the Wald test. A simulation study is then described that evaluates the performance

of the proposed procedure under various conditions, followed by a real data example.

Lastly, we discuss implications of the findings and future directions.

Method

Very recently, CPA has provided testing professionals a new lens to understand test

taking behavior at both the examinee and item levels (Shao et al., 2016; Sinharay,

2016; Yu & Cheng, 2019; Zhang, 2014). For example, Zhang (2014) used CPA to

detect compromised items using time series of item usage data, for example, propor-

tion of test takers answering each item correctly over a number of days. The most
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relevant to the current study is Shao et al. (2016), which proposed a CPA procedure

to detect test speededness using item response patterns. Consider a test of J items.

Suppose that test taker i operates under time pressure on the last si items; in other

words, he or she starts to show speededness from the (J � si + 1) th item onward.

Shao et al. (2016) tried to detect speededness by testing if there exists a drop in abil-

ity during the test taking process. This is done by comparing two likelihoods: a null

likelihood (li0) assuming constant ability and an alternative likelihood (lia) assuming

two separate abilities before and after the change point. Because the actual change

point is unknown, the alternative likelihood lia assuming two separate abilities is

computed for every possible change point, from after the first item to the (J � 1) th

item. If the maximum change in likelihood, that is, Dli = maxflia � li0g is significant,

the null hypothesis will be rejected that the ability is non-changing. The point that

leads to the largest lia is the estimated change point.

The significance testing on Dli requires the null distribution of Dli when there is

no change point. Because there is no closed form distribution for Dli, in Shao et al.

(2016) the null distribution was obtained by random permutation of the item

responses. By referencing the sample Dli against the null distribution, a decision can

be made to reject or retain the null hypothesis, that is, to determine whether a change

point occurred or not. Shao et al. (2016) was the earliest study on using CPA to

detect person-level aberrant response patterns, but it relied solely on the dichotomous

item response data. Reliance on the permutation test to derive the null distribution of

the test statistic also makes it computationally cumbersome. Later Sinharay (2016)

pointed out that asymptotic critical values previously obtained in Andrews (1993)

are applicable even in the context of dichotomous item response data under certain

regularity conditions, thus possibly alleviating the need of a computationally inten-

sive permutation test.

In this study, we would like to introduce a new CPA procedure to detect speeded-

ness. This study differs from existing studies in several important ways. First, the

new procedure is developed using continuous response time data. This study there-

fore allows us to evaluate the gain from using response time over dichotomous item

responses. When item-level response times are available (and their availability has

indeed greatly expanded in the past decade), they can be powerful resources to help

control the quality of response data. Second, we will build on previous work by

Andrews (1993) and Sinharay (2016) to establish generally applicable critical values

for easy implementation of the procedure. The permutation-based method to establish

cutoffs in Shao et al. (2016) is computationally prohibitive when the sample size and

test length increase, and greatly limits its applicability to large datasets. In this paper

we validated the use of generally applicable critical values by simulations, and illu-

strated how they can be used on a large dataset. The gain in computational efficiency

is clearly demonstrated in the real data example. Further, this study closely examines

the estimation of the actual change point, and identify factors that influence the accu-

racy of change point estimation. The change point itself can be important to testing
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programs, for example, to determine appropriate test length. It is therefore an impera-

tive to gain deeper understanding of what affects change point estimation.

CPA for Item Response Time Data

In this paper we introduce two CPA test statistics to detect test speededness using

item response time data instead of item response data. Sinharay (2017) provided a

general framework for the applications of CPA to psychometric research, as well as

guidelines regarding the choice of test statistics and critical values. In the remainder

of the paper we mostly follow his notations.

Let X1,X2, � � � ,XJ be independent random variables and suppose

Xj(j= 1, 2, � � � , J ) has probability function of f (Xj;p), where p is the underlying

latent variable governing the distribution of Xj. Testing if a change has occurred

amounts to testing the null hypothesis that p has changed significantly at one point t,

or in other words, testing whether it is true that the distribution of Xj, j= 1, 2, � � � , t is
governed by f (Xj;p1) whereas the distribution of Xj, j= t + 1, t + 2, � � � , J is governed

by f (Xj;p2). In the context of educational testing, X1,X2, � � � ,XJ can be item-level

data, such as item response data or item response time data, where J is the test

length. If item response data are used, an item response function (IRF) given by an

IRT model such as the two-parameter logistic model (2PLM) could be the f (Xj;p).
If item response time data are used, there are also many choices of models that could

serve as the f (Xj;p), including the log-normal model, Weibull model etc. that are

discussed in the introduction. For a recent review of some popular models for

response time in psychological and educational research, please see Cheng et al.

(2017).

In this study we choose the log-normal model as the f (Xj;p), which has been

shown to fit well empirical response time data from high-stakes educational testing

(van der Linden, 2006) and has been used widely to model item response time in

achievement testing (Fan et al., 2012; van der Linden & van Krimpen-Stoop, 2003).

Following the standard notation of the log-normal model, the density of response

time tij, that is, the response time of test taker i to item j, takes the following form:

f (tij; ti,aj,bj) =
aj

tij
ffiffiffiffiffiffi
2p

p expf� 1

2
½aj( ln tij � (bj � ti))�2g, ð1Þ

or equivalently

ln (tij) =bj � ti + eij, eij;N (0,a�2
j ), ð2Þ

where bj 2 (�‘,‘) is the item time parameter. A larger bj suggests the item tends

to be more time consuming. The ti 2 (�‘,‘) is the working speed parameter for test

taker i. t is assumed to be normally distributed in the population. In addition,

aj 2 (0,‘) is the inverse scale parameter or time discrimination parameter. The role

of aj is analogous to the discrimination parameter in the 2PLM in IRT. The larger
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value aj takes, the less dispersion for ln (tij)jti. An item with a larger time discrimi-

nation parameter therefore tend to better distinguish respondents with high or low t.

Detection of speededness essentially amounts to detecting an increase in the working

speed parameter, t, for each test taker. Next we introduce how to use the CPA proce-

dure based on the likelihood ratio test and the Wald test to detect the increase in t.

CPA Based on the Likelihood Ratio Test

Assuming that the log-normal model in Equation (1) fits and local independence

holds, the likelihood function of observing an item response time pattern ti for per-

son i is:

L(ti; ti) =
YJ

j= 1

aj

tij
ffiffiffiffiffiffi
2p

p expf� 1

2
½aj( ln tij � (bj � ti))�2g, ð3Þ

where t
0
i = (ti1, ti2, � � � , tiJ ) captures the response time of person i to all items on the

test. The log-likelihood function is therefore

l(ti; ti) = lnL(ti; ti) =
XJ

j= 1

ln
aj

tij
ffiffiffiffiffiffi
2p

p � 1

2

XJ

j= 1

f½aj( ln tij � (bj � ti))�2g: ð4Þ

Similar to Shao et al. (2016), the likelihood ratio test is formulated as follows:

Dl
(k)
i = � 2(lH0

i � l
(k)
i ), ð5Þ

where l
H0

i = l(t̂i, 0; ti) is the log-likelihood computed following Equation (4) by plug-

ging in t̂i, 0, the working speed parameter estimate for person i using item response

time data from all J items. Assuming that an abrupt change occurs immediately after

item k, the alternative log-likelihood given the change point k is computed as

l
(k)
i = l(t̂i, k�; ti(k�)) + l(t̂i, k + ; ti(k + )), ð6Þ

where t̂i, k� is the working speed parameter estimate using the first k items, t̂i, k + is

the working speed parameter estimate using items (k + 1) to J , the response time vec-

tor t
0
i(k � ) = (ti1, ti2, � � � , tik) captures the response time of person i on item 1 to item

k, and t
0
i(k + ) captures the response time of person i on the remaining items.

Because the change point is actually unknown, the maximum of the Dl
(k)
i overall

possible change points is taken as the test statistic:

Dlmax , i = max
k = 1, 2, :::, (J�1)

Dl
(k)
i : ð7Þ

An abrupt change is judged to have occurred in test taker i’s item response time if the

sample Dlmax , i is significantly larger than 0.
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Similar to the likelihood ratio test based on item responses, there is no closed

form distribution for Dlmax , i based on response time. Shao et al. (2016) obtained the

null distribution of Dlmax , i through random permutation of item response data, which

can be computationally intensive when the test is long. This makes it cumbersome to

apply the CPA procedure. On the other hand, long tests are particularly susceptible

to speededness. So there is great need in simplifying the procedure. Sinharay (2016)

pointed out that if the change point does not appear too early or too late on the test

(e.g., in the middle 70% of the test), the asymptotic critical values established in pre-

vious literature such as Andrews (1993) are directly applicable. In that case, detec-

tion of the change point can be done by comparing the sample Dlmax , i against the

asymptotic critical values. The log-normal model for response time is included in the

family of distributions considered by Andrews (1993), with the working speed para-

meter t and the density function in Equation (1) playing the role of p and f (Xj;p) in
Andrews (1993), respectively. When t is estimated by MLE and plugged into the

equations to obtain Dlmax , i, Theorem 3 of Andrews (1993) should hold as all the con-

ditions for this theorem are satisfied. This implies that the asymptotic critical values

should be directly applicable to the current study as well, as long as the change point

does not occur too early or too late on the test.

In the context of detecting speededness, however, the change point may indeed be

late because typically a test taker feels the pressure of the time limit toward the end

of the test. Therefore in this study the critical values are obtained through Monte

Carlo simulations, that is, by simulating data with no change point, to derive the null

distribution. In the context of aberrant response detection, it is common to obtain

critical values through computational approaches such as simulation, bootstrap, or

permutation (e.g., Armstrong & Shi, 2009; Meijer, 2002; Shao et al., 2016). For

instance, Worsley (1979) simulated 9,999 values under the null condition and the

1,000th, 500th, and 100th largest values were taken as the approximated critical

value for of 10%, 5%, and 1% of nominal type-I error level for a one-sided test.

Therefore in this study, a similar approach to Worsley (1979) is used to generate the

null distribution and obtain the critical values. Bootstrap or permutation can also be

used but they tend to be time intensive. Details of how we derive the null distribution

using Monte Carlo simulations will be provided in the simulation section below.

In the case that Dlmax , i is significantly above the critical value at a certain a level,

an abrupt change is said to be detected at that significance level and an estimate of

the change point would also be computed. For the specific purpose of detecting cer-

tain type of aberrant response behavior, we would expect the change in t to be in a

certain direction. For example, in order to detect speededness specifically, the t

would be expected to increase after the change point, that is, ti, k + . ti, k�. In practice

it is always important to check the direction of the change in order to understand if

the aberrant behavior is the type of interest. The next item to the point at which l
(k)
i

is maximized is taken as the estimate of the speeding point, or more specifically, the

item from which person i starts to show speededness. In other words, person i was

estimated to have been affected by speededness on the last ŝi items, where
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ŝi = J � argmax k = 1, 2, :::, (J�1)fl(k)i g: ð8Þ

CPA Based on the Wald Test

When k is known, the Wald test tests whether the working speed of test taker i on the

first k items is the same as that on the last (J � k) items, that is, ti, k� = ti, k + . The

Wald test statistic is formulated as below:

W
(k)
i =

(t̂i, k + � t̂i, k�)
2

1
Ik�(t̂i, 0)

+ 1
Ik + (t̂i, 0)

, ð9Þ

where Ik�(t̂i, 0) is the observed Fisher information based on response time data from

items 1 to k of test taker i, and Ik + (t̂i, 0) is the same information computed based on

items (k + 1) to J .

To test the null hypothesis that ti, k + = ti, k� versus the one-sided alternative

ti, k + . ti, k� for all k, k = 1, 2, � � � , (J � 1), the test statistic is defined as

Wmax , i = max
k = 1, 2, :::, (J�1)

W
(k)
i : ð10Þ

When k is known, W
(k)
i follows asymptotically the x2 distribution with 1 degree of

freedom. However, with unknown k and dependent W
(k)
i s, there is no closed form

distribution for Wmax , i: According to Sinharay (2016), the asymptotic null distribu-

tion of the maximum value of the Wald statistic and the likelihood ratio statistic are

identical, as they both can be characterized as the supremum of the square of a stan-

dardized tied-down Bessel process. Similar to the likelihood ratio test, we can obtain

the critical values for Wmax , i through Monte Carlo simulations.

Once a significant change is detected, a change point is estimated accordingly.

Similar to the likelihood ratio test, the number of speeded responses is estimated to

be the number of items after the change point:

ŝi = J � argmax k = 1, 2, :::, (J�1)W
(k)
i : ð11Þ

For both the likelihood ratio test and the Wald test, we need to obtain the estimate

of the working speed parameter. For the Wald test, we also need to compute the

Fisher information in Equation (9). Technical details for these computations are pro-

vided in the Appendix. In the description above, the item parameters in the log-

normal model aj and bj are considered known. In reality they will need to be esti-

mated based on the item response time data. After they are estimated they can be

treated as known and unchanging. Then the working speed before and after each pos-

sible change point can be estimated as described in the Appendix. We followed van

der Linden (2006) in estimating the item parameters, that is, using MCMC with

Gibbs sampler. These structural parameters could also be estimated in a factor-

analytic approach as done in Molenaar et al. (2015).
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Simulation Study

A simulation study was conducted to evaluate the performance of the proposed CPA

method in detecting speeded test takers using item response time data. The idea is to

generate datasets that contain both regular response time patterns as well as response

time patterns that are affected by speededness. By applying the CPA method on the

generated datasets, we obtain information on the power (flagging the speeded exami-

nees as speeded) and false positive rate/type-I error (flagging non-speeded examinees

as speeded) of the detection of speededness.

Speeded Response Time Model. As explained earlier, the log-normal model has been

chosen as the generating model for regular response time patterns. To generate the

response time affected by speededness, one approach is to simulate the response time

as fixed values such as 10, 20, or 30 seconds as done in van der Linden and Guo

(2008). An alternative is to add a positive value to ti in the log-normal model, which

results in

ln (tij) =bj � ti � L+ eij, eij;N (0,a�2
j ), ð12Þ

where L quantifies the increase in working speed caused by speededness. In van der

Linden and van Krimpen-Stoop (2003), L was set at 0.375 and 0.750 in the

simulation.

In practice, however, such constant response time or constant change of working

speed is rarely observed; a gradual change is more likely to occur. In this study, there-

fore, we consider a generating model that considers gradual change. In modeling the

impact of speededness on item responses, Wollack and Cohen (2004) proposed a gra-

dual change model to allow for gradual decline in Pij, the probability of answering

item j correctly by test taker i. Goegebeur et al. (2008) further showed how to fit this

model and estimate the model parameters. The 2PLM version of the gradual change

model takes the following form:

P�
ij =

exp½aj(ui � bj)�
1 + exp½aj(ui � bj)�

� min(1, ½1� (
j

J
� hi)�)li , ð13Þ

where
exp½aj(ui�bj)�

1 + exp½aj(ui�bj)� is the ordinary 2PLM, and hi is the stage of the test at which

examinee i starts to speed (0 � hi � 1). For instance, an hi = :8 suggests that test

taker i has speeded responses on the last 20% of the test. The speededness rate para-

meter li regulates how fast P�
ij drops as the test progresses after the speeding point.

This model has been used in many studies to simulate speeded responses (Goegebeur

et al., 2008; Shao et al., 2016; Suh et al., 2012).

Similarly, in this study we propose a modified log-normal model of response time

to capture response time under speededness:

ln (tij) = (bj � ti + eij) � min(1, ½1� (
j

J
� hi)�)li , eij;N (0,a�2

j ): ð14Þ
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The model is structured similarly to Equation (13). The parameters hi and li are

interpreted the same way as in Equation (13) as well. When j

J
.hi, that is, when the

test progresses past a certain stage as defined by hi, the term min(1, ½1� ( j

J
� hi)�)hi

will be smaller than 1, meaning that the test taker will spend less time on this item

than he/she would have if unaffected by speededness.

We choose this model as the generating model of response time affected by speed-

edness for several reasons. First, it allows us to generate gradual change instead of

abrupt change in working speed. As noted earlier, the former may be a more realistic

scenario. On the other hand, the CPA procedure is known to be sensitive to abrupt

shift in a random process. If we generate abrupt change and apply the CPA, it will

certainly highlight the strength of the CPA procedure. By generating gradual change,

we evaluate the robustness of our proposed procedure in situations that it is chal-

lenged. Luecht and Ackerman (2018) recently criticized common practices in simula-

tion studies that employs a chosen IRT model and then evaluate parameter recovery

or model fit by fitting the same model that is used to generate the data. Such setup

favors the chosen model by design and does not show how robust the performance of

a parameter estimation method or a model fit statistic can be. Instead, they suggest

challenging modeling alternatives/choices by generating data from complex models

that might better ‘‘represent plausible and important features of real data.’’ Our

choice of a gradual change model over an abrupt change model to generate data fol-

lows the advice of Luecht and Ackerman (2018) in spirit. Second, it allows us to reg-

ulate the change point in a very straightforward manner through the parameter hi.

There exist other models that allow for graduate change, for example, the latent

growth model proposed by Fox and Marianti (2016). However, it is not straightfor-

ward how the change point can be explicitly modeled in that framework. Hence, the

evaluation of the estimation of the change point is unclear in that context. Last, we

intentionally keep the current simulation study in every way possible parallel to Shao

et al. (2016), which adopted the gradual change model of Wollack and Cohen (2004).

The purpose of keeping these two simulation studies parallel in key aspects is to iso-

late the effect of the type of data used, that is, item responses versus item response

time.

Simulation Design. Tests of 40, 60, and 80 items were simulated, and their time limit

was set at 60, 90, and 120 minutes, respectively. The sample size was N = 1, 000. The

percentage of speeded test takers was set at 10% or 30%. The gradual change log-

normal model in Equation (14) was used to generate the response time pattern for test

takers who speeded. The response time data for the other test takers were generated

following the regular log-normal model. If a test taker ran out of time, the test would

terminate automatically. The response time of remaining items would be recorded as

0, meaning those items were unreached. In that case the test taker would be labeled

as ‘‘speeded’’ without applying any statistical detection techniques.

For test takers who speeded, we followed Suh et al. (2012) and Shao et al. (2016)

to generate l;logN (3:912, 1), the parameter that governed the rate of the drop in
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response time. Also following Shao et al. (2016), the change point h was simulated

from the beta distribution, more specifically with the median of h = .6 or .7, and

hvar = .001 or 403:001 = :04. The distribution of the change point is shown in

Figure 1. Note that h reflects the change point as a percentage. In our simulation

speededness starts from the next closest integer of h3J . For a 40-item test, h of .6

indicates that a test taker shows speededness from item 25 onward. For a 60-item test

an h of .7 means that a test taker starts to speed from item 43 onward. Figure 1 illus-

trates that with hvar of .001, the generated starting points were very close to the med-

ian; whereas when hvar, the possible change point were much more spread out and

could occur anywhere on the test, including very late on the test. For our study, it is

important to include cases in which the change point is close to the end of the test

for two reasons. First, we are interested in the detection of speededness, which likely

occurs late in the test. Second, it will allow us to evaluate if the asymptotic critical

Figure 1. Distribution of the speeding point h.
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values can be directly applied as suggested in Sinharay (2016) when the change point

is not in the midmost of the test.

In generating response time patterns for both speeded and non-speeded test takers,

the inverse scale parameter (a) in the response time model was generated using a uni-

form distribution U (1:75, 3:25). The time intensity parameter (b) was generated fol-

lowing Patton (2015) so that b has a mean of 4 and a SD of 1/3, and had a correlation

of .3 with a and a correlation of :5 with b, where a and b are the discrimination and

difficulty parameters in the 2PL IRT model, respectively. This is because in real data

the time intensity parameter has often been found to correlate positively with those

parameters. In Patton (2015), random normal deviates were added to a linear combi-

nation of the discrimination (a) and difficulty (b) parameters in order to achieve a

correlation of .3 for rba and a correlation of .5 for rbb. The IRT item parameters were

generated by a; lnN(0, 0.5), and b; N(0, 1) as done in Patton (2015). The working

speed parameter for the N = 1, 000 test takers was simulated by t;N (0, :25), the same

as Patton (2015). Overall there are 3 (test lengths) 3 2 (percentage of speeded test

takers) 3 2 (hmean) 3 2 (hvariance) = 24 conditions. Each condition was replicated

50 times. The simulation was performed in R (R Development Core Team, 2014).

The goal of the simulation study is twofold. First, we would like to generate the

null distribution of the likelihood ratio test and Wald test statistics and obtain critical

values. These simulation-based critical values will be compared against the asympto-

tic critical values given in Andrews (1993) and Sinharay (2016). Second, based on

the chosen critical values, we would like to examine the performance of the likeli-

hood ratio test and Wald test in detecting speeded responses, specifically in terms of

power and empirical type-I error.

To find the critical values, the null distribution was generated by simulating no

speeded responses in the response time data, following the log-normal model in

Equation (1) or (2). Similar to Worsley (1979), 10,000 response time patterns were

generated under each condition, resulting in 10,000 test statistics, in our case Dlmax , i

and Wmax, i’s, from which the 500th, 100th, and 10th largest values were chosen as

the approximates of c:05, c:01, and c:001, the critical values corresponding to a nominal

a level of .05, .01, and .001, respectively. Each of the null condition was replicated

1,000 times and the average of the c:05, c:01, and c:001’s were taken as the empirical

critical values. Table 1 provided the mean and SD of the critical values for each con-

dition. The critical values were almost identical for Wald and likelihood ratio test, as

expected following Sinharay (2016). Thus only results based on the Wald test were

Table 1. Mean (and SD) of the Critical Values for Wald and Likelihood Ratio Test.

J c:05 c:01 c:001

40 8.148 (0.09) 11.345 (0.19) 15.772 (0.59)
60 8.293 (0.09) 11.483 (0.20) 15.883 (0.64)
80 8.765 (0.09) 12.024 (0.20) 16.533 (0.64)
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shown in Table 1. The critical values, though varying substantially at different nom-

inal a levels, did not differ much across different test lengths. As test length

increased, there was a slight increase in the average critical values of 1,000 replica-

tions. The variance of the critical values across replications at each test length was

small for a= :05 or .01, suggesting that the critical values were rather stable. For

a:001, the variance appeared much larger. This was not surprising since only a sample

size of 10,000 examinees were simulated to obtain the null distribution for the test

statistic. At a:001, it means we were picking the 10th largest value in the simulated

values. Larger fluctuation was duly expected at that extreme end of the distribution.

Compared to the Table 1 in Sinharay (2016, p. 531), which listed the range of crit-

ical values to be between 8.45 and 9.84 for a= :05, and 11.69 to 13.01 for a= :01,
the values in Table 1 here were not too far away from them albeit different. As

explained earlier, the asymptotic values would be applicable when the test is long

and when the change point occurs in the midmost of the test but not too early or too

late. In our simulation the test length was finite and the change point could occur

anywhere during the test. That might explain the small but visible differences. That

said, the stability of the empirical critical values across test lengths and replications

suggested the feasibility of using simple, fixed critical values, rather than nuanced

test specific critical values. Hence, based on Tables 1, 8 and 11 were selected as the

critical values at a:05, and a:01, respectively. These two integers were chosen to facil-

itate easy and straightforward application of the CPA procedure. Note that these two

values were all slightly smaller than the average critical values in Table 1, so the

resulting empirical type-I error rates were expected to be somewhat inflated. It would

make sense to use these simple critical values if the inflation in type-I error is mini-

mal, which will be examined next. To compare with the asymptotic critical values

reported in Andrews’ (1993), we also included the critical values of 8.85 and 12.35

at a = .05 and .01 respectively in our simulations. Please note that the choice of criti-

cal values does not affect the estimation of the change location.

Results. There are two points of interest for us when we evaluate the performance of

the proposed approach. The first is to examine the empirical power and false positive

rate of detecting test speededness. Empirical power is defined as the percentage of

test takers in our generated sample who have had speeded responses that are flagged

by the proposed procedure. Empirical false positive rate is the percentage of test

takers unaffected by speededness that are flagged by the proposed procedure.

The second point of interest is the performance of the proposed approach in esti-

mating the actual change point. The actual change point, that is, the item right after

which speededness exerts itself, is J � si, where si is the number of responses

affected by speededness. The estimated change point is J � ŝi, where ŝi is estimated

by Equation (8) or (11). In the literature of CPA, the measure often used to capture

the accuracy of change point estimation is the lag, that is, the estimated change point

minus the actual change point (Shao et al., 2016; Sinharay, 2016). Numerically it is

equivalent to si � ŝi. A positive lag suggests a delay in detecting the change point.
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Statistically the lag is the bias of the change point estimate. The standard error of the

lag is also computed. Note that across replications, a positive lag and a negative lag

may cancel out. Therefore we also take the average of the absolute value of the lag,

or ALmean. To make the results across different test lengths comparable, ALmean% is

also calculated as the relative lag, that is, the absolute value of the lag divided by the

test length.

Tables 2 to 4 provided the power and type-I error/false positive rate for each test

length. Within each condition, the average of power and false positive rate of the 50

replications were taken. The first row for each of the three tables showed the type-I

error rate when no test takers in the sample is affected by speededness. Across all

conditions, except for test length of 80, the empirical type-I errors were only slightly

higher than the nominal values. This suggests that using these simple, fixed critical

values for medium to medium-long tests is indeed feasible. Meanwhile, the power

was very high for every condition, regardless of the length of the test, the distribution

of the change point, and the percentage of test takers affected by speededness. In

contrast, Shao et al. (2016) reported power ranging from 0.60 to 0.90 at a of .05.

Given that it was a study with an almost identical setup of simulations except for

using item response data, the gain in power here seems to be largely attributable to

the use of item response time data in this study. Aside from these general patterns,

there were also fine and nuanced patterns. For example, power increased when the

test was longer, or when more responses within a person were affected (i.e.,

hmedian = :6 vs.hmedian = :7). Using Andrews’ (1993) critical values yields similar

power across all conditions (in some conditions, slightly smaller than the proposed

critical value results), but the type-I errors are consistently lower than the nominal a

levels.

The column of % NF in Tables 2 to 4 showed the percentage of examinees who

did not finish the test within the time limit. It can be found that under all conditions,

the percentage of examinees who did not finish the test remained around 4% to 5%

for a test length of 40, and around 5%–7% for a test length of 60 or 80, even when

the percentage of test takers affected by speededness can be as high as 30%. This

suggested that the majority of the simulees who were affected by speededness still

finished their tests in time. Those who did not finish the test within the time limit

would automatically be labeled as speeded. The fact that the power was 0.9 or above

in Tables 2–4 suggested that the CPA was able to pick up the more subtle and eva-

sive speededness, that is, being speeded but still finishing the test in time.

The last four columns of the tables presented the average absolute lag (AL)

between the detected change point and the true change point, the absolute value of

the lag divided by the test length, and the average lag (or bias) and RMSE of the

change point estimate across replications in each condition, respectively.

Theoretically the (absolute) lag can be computed for every examinee who was

detected as speeded. Given that the power in Tables 2 to 4 was close to 1 for any

nominal a level investigated here, it makes little difference which nominal a level

we look at with respect to the computation of absolute lag. For every examinee
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detected as speeded, the CPA yields an estimate of the same change point that corre-

sponds to the maximum of the test statistics, regardless of the nominal a level. Thus

in computing the ALmean, ALmean%, bias, and RMSE, only values under a= :05 were

reported. The mean bias and mean absolute bias were small in all conditions where

hvar = :001. When hvar increases to .04, the mean bias remains small, but the absolute

bias and RMSE increases dramatically. This trend is more pronounced when the test

is long. It suggests that in some instances the lags were positive and in some cases

negative. Hence they cancel out in the computation of bias. The absolute bias and

the RMSE better capture the variability in the estimate of the change point when that

happens.

Tables 2 to 4 indicate that the change points were better estimated when hvar is

small. This is because when the hvar is large, the change point can appear anywhere

on the test, including very early or late on the test (see Figure 1). It would be very

challenging to precisely locate the change point in those situations. Previous research

such as Andrews (1993) and Hawkins et al. (2003) suggested the search of the change

point be limited to the middle of the test. For example, Andrews (1993) suggested

limiting the search to j= n1, n1 + 1, :::,N � n1, where n1 was set to be the closest inte-

ger of :15N . Equivalently, the change point would be restricted to roughly the middle

70% of a test. Note that the average (absolute) lags reported in Tables 2 to 4 were

aggregated across different levels of true change point.

Figures 2 to 4, on the other hand, showed how well the change points were esti-

mated at each true change point value at each test length. They presented the esti-

mated versus the true change point for each condition when there were 10% of

speeded test takers. The plots for 30% of speeded test generally showed the same

pattern. Due to space limit, they are omitted from the manuscript and are available

upon request. Each figure of Figures 2 to 4 included four panels. The two panels on

the left showed the estimated against the true change point when hmedian = :6 and the

two right panels showed that when hmedian = :7. The two top panels were created for

small hvar whereas the bottom panels were for much larger hvar. Within each panel,

the dark line showed the average of the estimated change point at each true change

point over 50 replications, and the shaded area showed the 95% bound of the esti-

mated change point over 50 replications. When the dark curve is close to the diago-

nal Y =X (the dotted line), the bias is small. When the dark curve falls above Y =X ,

there exists positive bias; otherwise there exists negative bias. The shaded area

between the two dashed curves indicates the variability in the change point estimate.

Bigger distance between the two dashed curves at a given true change point suggests

larger variability in the change point estimate at this location. Take Figure 2 as an

example, which represented the conditions of test length of 40. In most cases the

dark line hovered above Y =X in the four panels, except when the change point

occurred very late on the test. This suggests that on average there’s delay in the

detection of the change point at most change point locations. The fact that the dark

line was close to Y =X showed that overall at each true change point the positive

bias in some replications and the negative bias in others mostly canceled each other
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out. Meanwhile, larger hvar led to a wider range of true change point and a thicker

shaded area, indicative of less stability in the change point estimate, consistent with

the literature. The other figures showed a similar pattern: when the change point can

occur very early or late on the test, the change point estimate was rather unstable. It

warrants further investigation how to improve the estimation of the actual change

point.

Real Data Analysis

To illustrate the application of the proposed CPA method, we performed CPA on the

response time data of 50,000 test takers on a 30-item multiple-choice computer-

based state assessment on mathematics. We cleansed the dataset by removing test

Figure 2. Estimated versus true change point with 10% of speeded test takers at test length
of 40.
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retakers and those who finished the entire test within 5 minutes. We also removed

cases with response time of 0 on late items, that is, conspicuous cases of speededness

and focused purely on detecting subtle cases of speededness. This resulted in a sam-

ple of around 46,000 test takers, which we randomly split into five samples each con-

taining data from 9,200 students. This enables us to cross-validate our findings while

having a large sample size for each sample.

We fitted the log-normal model to each sample of 9,200 response time patterns,

and obtained the parameter estimates of aj and bj’s. These structural estimates were

treated as known and unchanging in estimating the person or incidental parameters,

including ti, 0, ti, k� and ti, k + ’s. Then all these parameter estimates were used in the

computation of likelihoods and the Wald test statistics. Eventually we obtained 9,200

Dlmax , i and Wmax, i’s. Results were very similar using either statistic so only those

based on Wmax, i were reported next. Again both the currently proposed critical values

Figure 3. Estimated versus true change point with 10% of speeded test takers at test length
of 60.
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and Andrews (1993) values at a:05, and a:01 were applied in the detection. In addi-

tion, CPA was also carried out using the same 9,200 students with responses only

data following Shao et al. (2016). To allow for more direct comparison, critical val-

ues were determined based on 100 random permutation of the item responses (which

can be treated as null distribution) at a:05, and a:01 respectively. The process was

replicated for all five samples.

First, we would like to highlight the computational gains by using the simple cut-

offs. The analysis was run on a desktop with hardware specification as follows: 6

core, 2.90 GHz Intel Core i5-9400 processor, and 16.0 GB RAM. For the five sam-

ples, on one core, it took about 5 hours to run the CPA analysis with 100 permuta-

tions using item responses for each sample, and less than 1 minute using response

times with simple or asymptotic cutoffs, with maximum memory used around 400M.

Figure 4. Estimated versus true change point with 10% of speeded test takers at test length
of 80.
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This suggests that there is substantial gain in computational efficiency by using the

simple or asymptotic cutoffs.

Second, Table 5 shows the number of test takes flagged as speeded by each type

of critical values at a= :05 (left) or a= :01 (right) in five samples. Under a= :05,
1,384 respondents were flagged in the first sample when CPA was applied to their

response times using our proposed simple cutoff. This cutoff, as expected, was more

liberal than Andrews’ asymptotic cutoff, which led to 1,152 respondents being

flagged in the same sample. If CPA was applied to responses instead of response

times, only 276 respondents were flagged. The same trend was observed in the other

four samples, that is, Andrews’ asymptotic critical values tend to result in a bit fewer

flagged test takers than the proposed simple critical values, and much fewer cases

were flagged using only response data. The latter is consistent with what was reported

by Shao et al. (2016) where their power in the simulation was lower than those shown

in this study. Across five samples, the percentages of participants being flagged by

each method remained largely stable, suggesting that the patterns we observe are

unlikely due to chance, but rather robust.

Meanwhile, there are a few caveats to the results to highlight. First, using either

the simple or asymptotic cutoff, response times led to over 80% of agreement with

item responses, due largely to the agreement on the vast majority of test takers judged

as non-speeded by both methods. Second, at a= :05, roughly 15% to 16% or 12% to

13% of participants were flagged by response times, depending on the cutoff used.

On the other hand, only about 3% of test takers were flagged by responses, which is

even lower than the nominal a level. At a= :01, using response times leads to 10 to

20 times more cases to be flagged than using responses. The latter led to again a

smaller-than-nominal-level proportion of participants flagged. Third, only 20% to

30% of the cases flagged by the responses were also flagged by response times. This

is consistent across all five samples, both a levels and both cutoffs. All these raise

questions whether many cases flagged by responses were cases of type-I errors. This

is a question to be best answered by a simulation study.

Table 5. Number of Test Takers Flagged and the Percent of Flagged Using Response Time
and Item Response.

Sample

a.05 a.01

Response time

Response

Response time

ResponseCurrent Andrews Current Andrews

1 1384 (15.0%) 1152 (12.5%) 276 (3.0%) 812 (8.8%) 687 (7.5%) 41 (0.4%)
2 1442 (15.7%) 1205 (13.1%) 348 (3.8%) 835 (9.1%) 683 (7.4%) 71 (0.8%)
3 1450 (15.8%) 1214 (13.2%) 296 (3.2%) 837 (9.1%) 715 (7.8%) 58 (0.6%)
4 1427 (15.5%) 1203 (13.1%) 300 (3.3%) 831 (9.0 %) 702 (7.6%) 57 (0.6%)
5 1385 (15.1%) 1182 (12.8%) 270 (2.9%) 828 (9.0%) 688 (7.5%) 53 (0.6%)
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Next, we further illustrate the different detection methods using two test takers’

data. Figure 5 showed the response and response time (in seconds) pattern to 30

items of the first example. He or she was not flagged using response data, but was

flagged by the CPA response time procedure at both a= :05 and a= :01 using either

the simple or asymptotic critical values. The detected change point was shown as a

vertical line in the right panel of the figure, which is around item 23. This indicates

that his or her responses to the last 7 items were deemed affected by speededness

using response time data, but no change was detected using response data. The blue

curve in the right panel represents the median response time at each item position for

all sampled students. It appeared that the response time on the last 7 items mostly

hovered around 10 seconds, which were substantially lower than those on the first 23

items, as well as the medians at these item positions. This seems to lend support to

the CPA response time procedure in flagging this test taker.

Figure 6 showed the response and response time (in seconds) pattern to 30 items

of the second example, one of the few flagged by both response and response time

using both types of critical values. Again, the detected change point was shown as a

vertical line in both panels. Both indicate that there is a change point in the middle

of the testing process. In the left panel, it shows that the test taker has a mixture of

correct and incorrect responses prior to item 18 but nothing correct afterward. In the

right panel, the response time was shown to be consistently much shorter than the

median in the second half of the test. Though agreeing with each other in flagging

this test taker, CPA-response procedure estimated the change point to be item 18,

while CPA-response time procedure led to an estimated change point of 15. Given

that there are too few test takers flagged by both data sources, we would not like to

over-generalize on the comparison of change point estimation, but this is definitely

something worth more attention in a future study.

Figure 5. The response and response time pattern of test taker (first example).
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Conclusions and Discussion

This study proposes a CPA method to detect test speededness using response time

data. Its performance of detecting speededness is demonstrated and evaluated in a

simulation study and a real-data example. In the simulation study, the proposed

method shows high power in detecting speeded examinees while keeping the false

positive rate well controlled, even when simple and fixed critical values are used.

The power in this study is substantially higher than in Shao et al. (2016), a study

that’s parallel in simulation design but used item response data. As explained earlier,

because response time data are continuous, we would expect the power to improve

compared against dichotomous item response data but the extent to which power can

be improved is unknown. This study showed that the improvement in power can be

substantial without any inflation of the false positive rate.

In addition to the success in detecting speeded responses, the proposed method is

also very flexible. In this study we assumed that the log-normal model fits the

response time data, but the method is not bounded by that assumption. The CPA

method can also be applied to other types of response time models such as the four-

parameter response time model (Wang & Hanson, 2005) where a slowness parameter

is incorporated. The slowness parameter can also be used for detecting test speeded-

ness. Similar to detecting an increase in working speed, we can use CPA to detect a

decrease in the slowness parameter. Second, through the simulation study we were

able to demonstrate that it is possible to use simple and fixed critical values, which

makes the application of the CPA method straightforward. The critical values are

similar to the asymptotic values reported in Andrews (1993) and used in Sinharay

(2016), suggesting that they are rather independent of item parameters. It also means

that it is unnecessary to re-conduct the simulation to update critical values when

small changes occur to the test, for example when one item for some reason has to

be removed. Third, the general principle of the CPA method and the test statistics

Figure 6. The response and response time pattern of test taker (second example).
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discussed in this paper can also be applied to detect aberrant responses on tests with

polytomous items, as well as mixed-format tests which contains both dichotomous

items and polytomous items. In addition, the simulation showed how the CPA can be

applied to response time data in a linear test. Given the stability of the critical values

across different tests (indicated by the very small standard deviation in the critical

values in Table 1) and test lengths, we expect the method to be applicable to CAT or

a multi-stage testing. Last but not least, the CPA method using response time data

can be applied to detect other types of aberrant responses. For instance, fatigue and

inattentiveness can manifest themselves in similar fashions to speededness, that is,

reduced response time. The CPA can be a very promising approach to detect inatten-

tiveness on a low-stakes survey if item response time is recorded, particularly when

inattentiveness starts in the middle of the test. In survey research this is often referred

to as back random responding or BRR, that is, respondents provide inattentive

responses on the later portion of the assessment (Clark et al., 2003; Meade & Craig,

2012; Yu & Cheng, 2019).

In the meantime, this study has several limitations. First, the CPA procedure based

on response times versus based on responses make very different assumptions. For

this reason we would like to suggest caution against over-generalizing the findings

from this study. The assumption of the CPA-response procedure is that speededness

manifests itself in performance decline. The assumption of the CPA-response time

procedure is that speededness will manifest in faster responding, irrespective of per-

formance. In the literature, different definitions of speededness exist. For example,

some defines speededness as ‘‘the situation where the time limits on a standardized

test do not allow substantial numbers of examinees to fully consider all test items’’

(Lu & Sireci, 2007). One can argue whether the consequence of not having enough

time to fully consider all test items is having unreached items, or rapid responses or

guessing on some items, and/or performance decline on them. In fact some seem to

suggest that both should be considered. Schnipke (1997) stated that test takers

affected by speededness ‘‘will have very fast response times and the responses will

be at or near chance levels of accuracy.’’ The first half of the statement is consistent

with the assumption of CPA-response time procedure, while the second half is more

in line with the assumption of CPA-response procedure. There are reasons to ques-

tion the assumption associated with responses. For one, time pressure and associated

anxiety does not necessarily lead to performance decline. A small amount of test

anxiety could act as motivation and can improve performance (Akanbi, 2013). In

addition, for test takers with very low ability, their performance may seem unaffected

or even boosted by rapid guessing. Meanwhile, literature has shown how heightened

anxiety can be associated with decreased processing efficiency and slow reaction

time (Eysenck et al., 2007; Nishisato, 1966) in certain scenarios. That means the

assumption associated with response time can also be challenged. Such complex

effect of time pressure and the associated anxiety on item responses and response

times are not considered in this study. Therefore the comparison between the current

study and Shao et al. (2016) is based on simplified assumptions and should only be
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interpreted as such. Given the high power of the CPA procedure based on response

times to detect test speededness when its assumption holds, the next urgent task is to

evaluate the validity of the assumption: Does test speededness manifest in faster

response times? If so, in what context (e.g., high-stakes testing) and to what extent?

Future research is certainly warranted in this area.

If one accepts the stringent assumption of Schnipke (1997), that is, speededness is

characterized by faster response times and reduced response accuracy, one could

potentially leverage information from both item responses and response time to detect

test speededness. It is possible to develop a CPA procedure that directly utilizes both

data sources based on a model that models item responses and response time simulta-

neously, for example, the hierarchical model by van der Linden (2007). It models at

the first level the item responses by a three-parameter normal ogive model and the

item response time by the same log-normal model used in this study. At the second

level, the examinee ability u and working speed t are assumed to follow bivariate

normal distribution. Instead of testing the change in u and t separately, one can test

the change in the vector of (u, t)0 using the Wald test (authors, 2019).

Second, applying the CPA procedure introduced in this paper requires knowledge

of the pre-change and post-change distribution structure, with the unknowns being

only the parameters in the distribution. In reality even the probability structure may

be unknown, in which case data-driven quickest change detection methods as pro-

posed in Li (2016) may be helpful. In the future, we would like to explore the appli-

cation of model-free quickest change detection methods to psychometric research.

Second, when a change point is detected, one can only infer what is the underlying

cause of the change. As suggested earlier, low motivation and speededness could

both lead to rapid guessing late in the testing process. We may be able to statistically

detect an increase in the working speed and locate the point when that increase starts

to occur, but the CPA will not be able to pinpoint the cause. It will take other sources

of information, for example, expert domain knowledge, to identify the cause. Wang

et al. (2018) proposed a two-stage approach through which normal and aberrant beha-

viors are distinguished in the first stage, and in the second stage different types of

aberrant behavior such as rapid guessing versus cheating are separated. We could

pursue a similar approach down the road.

Third, it is assumed in this study that there exist only one change point. In prac-

tice, we might see multiple change points, for example, when an examinee is affected

by a warm-up effect in the beginning of the test and the speededness effect toward

the end. In theory, one can search for the first change point, and then search another

possible change point given the first change point. This is certainly a topic that is

worth further exploration.

Yet another limitation shown in the current study is that estimation of the actual

change point is unsatisfactory when the change point varies widely across test takers,

particularly for long tests. This is a well known issue in CPA. As Andrews (1993)

pointed out, when the change occurs very early or late, the detection of the change

and the estimation of the change point can be very challenging. In the future, it may
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be possible to leverage the information in both response time and item responses to

better estimate the actual change point. This is certainly an area that we will pursue

to improve.

In spite of these limitations, this study has strong practical implications to psy-

chometric researchers and testing professionals. Developing methods to check

examinees’ behavior for possible aberrant responses is one of the most important

quality control components in testing industry. Failing to address this issue will

not only result in inaccurate item and ability parameter estimations and biased

scores, but also poses a threat to the public due to misleading interpretations of

examinees’ performance. Some comprehensive tests can be very long as they need

to cover broad content. It needs to be thoroughly investigated the proper test length

for these tests so that the majority of examinees will have enough time to finish

(van der Linden, 2011). For a high-stakes test, examinees are motivated to give

answers to all questions even when they are running out of time, which can result

in rapid guessing. In that case, the proportion of examinees who have unreached

items may be small, but this does not necessarily mean there is only a small pro-

portion of speeded examinees. Thus a rigorous procedure such as the CPA method

can be very helpful to understand the prevalence of speededness. Based on the

findings of this study, we recommend testing programs record the item-level

response time data in addition to item responses, and use CPA method to closely

monitor aberrant responses during and after test administration. That said, one

should exercise extreme caution when it comes to removing any response or test

taker data, and one should refrain from relying solely on statistical results to make

such decisions. As indicated by Allalouf et al. (2017), typically human review

should follow statistical quality control procedures, and it should be no different

when they are applied to testing.

Appendix

To calculate the Fisher information used in Wald test, we need to first get the second

derivative of the log-likelihood function. According to Equation (4), the first deriva-

tive of the log-likelihood function is:

l0(ti; ti) = �
XJ

j = 1

a2
j ( ln tij � (bj � ti)): ðA1Þ

Thus the second derivative of the log-likelihood function takes the following

form:

l00(ti; ti) = �
XJ

j= 1

a2
j : ðA2Þ
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By definition, the Fisher information of ti is given by:

I(ti) =
XJ

j= 1

a2
j : ðA3Þ

The MLE estimate of ti using all the response time (t̂i, 0) can be obtained by set-

ting l0(ti; ti) to be 0 as shown below:

�
XJ

j= 1

a2
j ( ln tij � (bj � ti)) = 0, ðA4aÞ

XJ

j= 1

a2
j ln tij �

XJ

j = 1

a2
j bj +

XJ

j = 1

a2
j ti = 0, ðA4bÞ

XJ

j= 1

a2
j ti =

XJ

j= 1

a2
j bj �

XJ

j= 1

a2
j ln tij, ðA4cÞ

t̂i =

PJ
j= 1 a

2
j bj �

PJ
j= 1 a

2
j ln tijPJ

j= 1 a
2
j

, ðA4dÞ

which is also given in van der Linden (2008). t̂i, k� and t̂i, k + can be calculated in a

similar fashion.
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