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Abstract

Computer-based and web-based testing have become increasingly popular in recent
years. Their popularity has dramatically expanded the availability of response time
data. Compared to the conventional item response data that are often dichotomous
or polytomous, response time has the advantage of being continuous and can be col-
lected in an unobstrusive manner. It therefore has great potential to improve many
measurement activities. In this paper, we propose a change point analysis (CPA) pro-
cedure to detect test speededness using response time data. Specifically, two test sta-
tistics based on CPA, the likelihood ratio test and WVald test, are proposed to detect
test speededness. A simulation study has been conducted to evaluate the performance
of the proposed CPA procedure, as well as the use of asymptotic and empirical critical
values. Results indicate that the proposed procedure leads to high power in detecting
test speededness, while keeping the false positive rate under control, even when simplis-
tic and liberal critical values are used. Accuracy of the estimation of the actual change
point, however, is highly dependent on the true change point. A real data example is
also provided to illustrate the utility of the proposed procedure and its contrast to the
response-only procedure. Implications of the findings are discussed at the end.
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Introduction

In recent years, response time has received rapidly growing amount of attention in
psychometric research (Lee & Chen, 2011), likely due to the increasing availability
of (item-level) response time data through computer-based testing and online survey
data collection. The collection of response time data is unobtrusive as well, meaning
that test takers are typically unaware that response time data are being collected. As
such, response time on test items has the potential to improve many measurement
activities, for example, item parameter estimation of item response theory (IRT)
models (Bhola, 1994; Schnipke, 1995, 1996, 1999; van der Linden et al., 2010), test
assembly (van der Linden, 2011; van der Linden & Xiong, 2013), and item selection
in computerized adaptive testing (CAT; Cheng et al., 2017; Fan et al., 2012; van der
Linden, 2008).

One notable application of response time has been detection of aberrant response
behavior (van der Linden & van Krimpen-Stoop, 2003). Many researchers have
explored the use of response time to detect various types of aberrant response beha-
vior, such as speededness (Schnipke & Scrams, 1997; van der Linden et al., 1999),
low motivation or lack of effort (Wise & Kong, 2005), or item pre-knowledge (van
der Linden & Guo, 2008). In this paper we focus on test speededness. The test speed-
edness occurs when time limit affects examinees’ performance on a test while speed
is not part of the construct(s) of the test purports to measure (Evans & Reilly, 1972;
Shao et al., 2016). Test speededness may cause lower response accuracy toward the
end of a test or missing responses (Goegebeur et al., 2010). Test speededness could
also bias the estimates of item and ability estimates (Douglas et al., 1998; Oshima,
1994) and undermine the validity of the test scores, and may distort or weaken the
relationship between test scores and other variables. It is therefore critical to detect
response patterns that are affected by speededness.

Traditionally, unreached items toward the end of a test are considered an indica-
tion of test speededness (Schnipke & Scrams, 1997), in which case response time on
these items is 0. A more elusive and more prevalent form of test speededness is
“‘rapid guessing behavior’ (Schnipke & Scrams, 1997; Wise & Kong, 2005) on mul-
tiple choice items, meaning when time is running out, examinees may rapidly
respond to remaining items before time expires, and it is expected that ‘‘the correct-
ness of these answers will be at or near chance levels” (Wise & Kong, 2005, p.
167). Many rapid guessers may appear to finish the test in time, that is, there is no
unreached items on their test. Therefore more sophisticated approaches than looking
for unreached items are needed to detect speededness.

To date, there have been at least three approaches to detect test speededness using
response time data. The first approach is to model the distribution of response time
that are unaffected by that speededness and detecting speededness by model-based
inferences. Various measurement models have been proposed for response time in
psychological and educational testing. These include parametric models such as log-
normal model (Thissen, 1983; van der Linden, 2006), Weibull model (Rouder et al.,
2003; Wang, 2006), and gamma model (Maris, 1993). In addition to these parametric
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models, a number of ‘‘flexible parametric’’ and semiparametric models have been
proposed, which make weaker distributional assumptions and can subsume existing
parametric models (Ranger & Kuhn, 2012). These models include the Box-Cox nor-
mal model (Entink et al., 2009), the proportional hazards model (Ranger & Ortner,
2012; Wang, Fan et al., 2013), and the linear transformation model (Ranger & Kuhn,
2013; Wang, Chang et al., 2013). To detect speededness, a chosen model is fit to the
item response time data. Someone whose response time pattern does not fit the model
(i.e., with large residuals) can be flagged (van der Linden & van Krimpen-Stoop,
2003; van der Linden et al., 2007). This approach is similar to detecting person misfit
under the IRT framework. A chosen IRT model, that is, the null model, is fit to the
data, and response patterns with large residuals (e.g., large /, statistics) get flagged.

The second approach is to directly model response time data that are affected by test
speededness. One common approach is to use mixture modeling, with one latent class
corresponding to one type of test-taking behavior (Meyer, 2010; Molenaar et al., 2016),
for instance solution behavior and rapid guessing behavior (Wang & Xu, 2015), respec-
tively. One can fit a mixture model to the response time data and identify respondents
with rapid guessing behavior using estimated class membership. Another approach is to
model the trajectory of the change within one individual during the test taking process
using latent growth model (Fox & Marianti, 2016). By fitting the latent growth response
time model, a person going through the test with non-invariant speed, for example, line-
arly increasing or quadratically increasing speed, can be flagged.

The third approach does not explicitly utilize any measurement model of response
time. Instead, one can use visual inspection or arbitrarily chosen thresholds to flag
respondents who may have been affected by speededness. For example, Schnipke
(1995) used response time (in conjunction with the accuracy rates) to assess item-
level speededness in computer-based testing. In that study, she first examined the
computer-based Graduate Record Examinations (GRE) in terms of the percentage of
examinees who reached 75%, 80% of the test, or the last item. The response time and
response accuracy (i.e., the proportion of test takers getting the item right) were then
used to identify examinees who had rapid guessing behavior through visual inspec-
tion and a series of analyses of variance. Guo et al. (2016) compared five methods to
detect rapid guessing behavior. These all methods involve identifying a threshold that
indicates rapid guessing for each item. Then test takers whose response time is less
than the threshold will be flagged. For each test taker, the proportion of items on the
test for which his or her response time exceeded the established threshold values
(Swerdzewski et al., 2011; Wise & Kong, 2005) is computed. This proportion is
referred to as the overall response time effort (RTE) index. Test takers with low RTE
are considered showing rapid guessing behavior. These methods are item-based in
the sense that thresholds need to be first established for each item. For example, a
commonly used threshold is the 3 second threshold for all items. Demars (2007) dis-
cussed visually inspecting the distribution of response time of each item and identify
a gap. The gap, if exists, can be a natural threshold for the item. Wise and Ma (2012)
proposed to identify rapid guessing by using the normative time threshold, which is
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defined as a certain percentage (e.g., 10%) of the mean time the entire sample of test
takers spent on the item. Anyone spending less time than the normative time thresh-
old would be considered as a rapid guesser on the item. Such normative thresholds
were also adopted in Lee and Jia (2014) in flagging non-effortful test takers in a The
National Assessment of Educational Progress (NAEP) study. The establishment of
appropriate thresholds is critical to the performance of these methods (Kong et al.,
2007).

In this paper we propose a procedure based on change point analysis (CPA) to
detect speededness using item response time data. Similar to the first approach
described above, the CPA approach assumes a null distribution of response time, that
is, distribution of response time when it is not affected by speededness. However, it
does not examine how an individual response time pattern deviates from the group
behavior (in the sense of Mahalanobis distance) or model-implied behavior (in the
sense of residuals such as person-fit statistics). Instead, it concerns itself with intra-
individual change during the test taking process. In doing so it challenges the assump-
tion that the working speed of an individual is a constant throughout the test taking
process. From this perspective it is conceptually similar to the latent growth model
described under the second approach above. In spite of the conceptual resemblance
between the two approaches, the CPA approach does not fit an alternative model and
hence does not make an assumption of the growth trajectory, linear or non-linear.
Instead, all it requires is the null model, which makes it also distinct from the second
approach. Compared to the third approach, the CPA approach is model-based. It does
not require the establishment of a threshold for each item or visual inspection.
Further, CPA allows the estimation of the item position from which a test taker starts
to show speededness, or the speeding point. This makes it distinct from all three
approaches above. An estimated change point enables partial filtering of a response
pattern instead of removing the entire response pattern of a suspected test taker, as
typically done when one is flagged.

The rest of the paper is organized as follows. We first discuss the existing research
on using CPA to address psychometric issues. Then we introduce the proposed CPA
procedure to detect test speededness using item response time data. More specifically,
two variations are discussed, one based on the likelihood ratio test and the other based
on the Wald test. A simulation study is then described that evaluates the performance
of the proposed procedure under various conditions, followed by a real data example.
Lastly, we discuss implications of the findings and future directions.

Method

Very recently, CPA has provided testing professionals a new lens to understand test
taking behavior at both the examinee and item levels (Shao et al., 2016; Sinharay,
2016; Yu & Cheng, 2019; Zhang, 2014). For example, Zhang (2014) used CPA to
detect compromised items using time series of item usage data, for example, propor-
tion of test takers answering each item correctly over a number of days. The most
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relevant to the current study is Shao et al. (2016), which proposed a CPA procedure
to detect test speededness using item response patterns. Consider a test of J items.
Suppose that test taker i operates under time pressure on the last s; items; in other
words, he or she starts to show speededness from the (J —s;+1) th item onward.
Shao et al. (2016) tried to detect speededness by testing if there exists a drop in abil-
ity during the test taking process. This is done by comparing two likelihoods: a null
likelihood (/;p) assuming constant ability and an alternative likelihood (/;,) assuming
two separate abilities before and after the change point. Because the actual change
point is unknown, the alternative likelihood /;, assuming two separate abilities is
computed for every possible change point, from after the first item to the (J — 1) th
item. If the maximum change in likelihood, that is, Al;= max{l;, — l;o} is significant,
the null hypothesis will be rejected that the ability is non-changing. The point that
leads to the largest /;, is the estimated change point.

The significance testing on Al; requires the null distribution of A/; when there is
no change point. Because there is no closed form distribution for AJ;, in Shao et al.
(2016) the null distribution was obtained by random permutation of the item
responses. By referencing the sample A/; against the null distribution, a decision can
be made to reject or retain the null hypothesis, that is, to determine whether a change
point occurred or not. Shao et al. (2016) was the earliest study on using CPA to
detect person-level aberrant response patterns, but it relied solely on the dichotomous
item response data. Reliance on the permutation test to derive the null distribution of
the test statistic also makes it computationally cumbersome. Later Sinharay (2016)
pointed out that asymptotic critical values previously obtained in Andrews (1993)
are applicable even in the context of dichotomous item response data under certain
regularity conditions, thus possibly alleviating the need of a computationally inten-
sive permutation test.

In this study, we would like to introduce a new CPA procedure to detect speeded-
ness. This study differs from existing studies in several important ways. First, the
new procedure is developed using continuous response time data. This study there-
fore allows us to evaluate the gain from using response time over dichotomous item
responses. When item-level response times are available (and their availability has
indeed greatly expanded in the past decade), they can be powerful resources to help
control the quality of response data. Second, we will build on previous work by
Andrews (1993) and Sinharay (2016) to establish generally applicable critical values
for easy implementation of the procedure. The permutation-based method to establish
cutoffs in Shao et al. (2016) is computationally prohibitive when the sample size and
test length increase, and greatly limits its applicability to large datasets. In this paper
we validated the use of generally applicable critical values by simulations, and illu-
strated how they can be used on a large dataset. The gain in computational efficiency
is clearly demonstrated in the real data example. Further, this study closely examines
the estimation of the actual change point, and identify factors that influence the accu-
racy of change point estimation. The change point itself can be important to testing
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programs, for example, to determine appropriate test length. It is therefore an impera-
tive to gain deeper understanding of what affects change point estimation.

CPA for Item Response Time Data

In this paper we introduce two CPA test statistics to detect test speededness using
item response time data instead of item response data. Sinharay (2017) provided a
general framework for the applications of CPA to psychometric research, as well as
guidelines regarding the choice of test statistics and critical values. In the remainder
of the paper we mostly follow his notations.

Let Xi,X5,---,X; be independent random variables and suppose
Xi(j=1,2, ---,J) has probability function of f(X;; ), where m is the underlying
latent variable governing the distribution of X;. Testing if a change has occurred
amounts to testing the null hypothesis that 7 has changed significantly at one point ¢,
or in other words, testing whether it is true that the distribution of X;,j=1,2, ---,t1is
governed by f(Xj; 1) whereas the distribution of Xj,j=¢+1,7+2, ---,J is governed
by f(Xj; ). In the context of educational testing, X, X5, ---, X, can be item-level
data, such as item response data or item response time data, where J is the test
length. If item response data are used, an item response function (IRF) given by an
IRT model such as the two-parameter logistic model (2PLM) could be the f(X;; ).
If item response time data are used, there are also many choices of models that could
serve as the f(Xj; w), including the log-normal model, Weibull model etc. that are
discussed in the introduction. For a recent review of some popular models for
response time in psychological and educational research, please see Cheng et al.
(2017).

In this study we choose the log-normal model as the f(Xj;w), which has been
shown to fit well empirical response time data from high-stakes educational testing
(van der Linden, 2006) and has been used widely to model item response time in
achievement testing (Fan et al., 2012; van der Linden & van Krimpen-Stoop, 2003).
Following the standard notation of the log-normal model, the density of response
time #;;, that is, the response time of test taker i to item j, takes the following form:

i 1
S5m0, 8) = t,;,-jjﬁexp{_i [(Int; — (B; — )}, (1)

or equivalently
In(15)=B; — 7+ &, &;~N(0,0;7), 2)

where 3; € (—, ) is the item time parameter. A larger 3; suggests the item tends
to be more time consuming. The 7; € (—%, %) is the working speed parameter for test
taker i. 7 is assumed to be normally distributed in the population. In addition,
a; € (0,) is the inverse scale parameter or time discrimination parameter. The role
of o is analogous to the discrimination parameter in the 2PLM in IRT. The larger
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value o; takes, the less dispersion for In (#;)|7;. An item with a larger time discrimi-
nation parameter therefore tend to better distinguish respondents with high or low .
Detection of speededness essentially amounts to detecting an increase in the working
speed parameter, T, for each test taker. Next we introduce how to use the CPA proce-
dure based on the likelihood ratio test and the Wald test to detect the increase in 7.

CPA Based on the Likelihood Ratio Test

Assuming that the log-normal model in Equation (1) fits and local independence
holds, the likelihood function of observing an item response time pattern t; for per-
son i is:

L(r;; )= HtJ—mﬂ L ayCingy — B, — m), (3)
ij

where t; = (ty1,tn, - - -, t;y) captures the response time of person i to all items on the
test. The log-likelihood function is therefore

l(ri; ) =InL(7;;t)= > In (Inz; — i) 4
T nL(T IZ 11\/‘ 22{0‘1 ij T]} (4)

Similar to Shao et al. (2016), the likelihood ratio test is formulated as follows:
AL = — 20" 1), (5)

where liH" =1[(7;,0; ti) 1s the log-likelihood computed following Equation (4) by plug-
ging in T; o, the working speed parameter estimate for person i using item response
time data from all J items. Assuming that an abrupt change occurs immediately after
item k, the alternative log-likelihood given the change point & is computed as

¢ )=l(+i,k7§ti(k7))+l(%i,k+;ti(k+))a (6)

where 7; ;_ is the working speed parameter estimate using the first & items, 7; x+ is
the working speed parameter estimate using items (k + 1) to J, the response time vec-
tor t/(k —)=(t1,t, -, i) captures the response time of person i on item 1 to item
k,and t, {(k+) captures the response time of person i on the remaining items.

Because the change point is actually unknown, the maximum of the Al( ) overall
possible change points is taken as the test statistic:

_ k
Alax i = k=l,121,lfl.?((J71)All(- ). (7)

An abrupt change is judged to have occurred in test taker i’s item response time if the
sample Al ; is significantly larger than 0.
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Similar to the likelihood ratio test based on item responses, there is no closed
form distribution for Ay, ; based on response time. Shao et al. (2016) obtained the
null distribution of Aly,x; through random permutation of item response data, which
can be computationally intensive when the test is long. This makes it cuambersome to
apply the CPA procedure. On the other hand, long tests are particularly susceptible
to speededness. So there is great need in simplifying the procedure. Sinharay (2016)
pointed out that if the change point does not appear too early or too late on the test
(e.g., in the middle 70% of the test), the asymptotic critical values established in pre-
vious literature such as Andrews (1993) are directly applicable. In that case, detec-
tion of the change point can be done by comparing the sample Al ; against the
asymptotic critical values. The log-normal model for response time is included in the
family of distributions considered by Andrews (1993), with the working speed para-
meter 7 and the density function in Equation (1) playing the role of 7 and f(Xj; ) in
Andrews (1993), respectively. When 7 is estimated by MLE and plugged into the
equations to obtain Al ;, Theorem 3 of Andrews (1993) should hold as all the con-
ditions for this theorem are satisfied. This implies that the asymptotic critical values
should be directly applicable to the current study as well, as long as the change point
does not occur too early or too late on the test.

In the context of detecting speededness, however, the change point may indeed be
late because typically a test taker feels the pressure of the time limit toward the end
of the test. Therefore in this study the critical values are obtained through Monte
Carlo simulations, that is, by simulating data with no change point, to derive the null
distribution. In the context of aberrant response detection, it is common to obtain
critical values through computational approaches such as simulation, bootstrap, or
permutation (e.g., Armstrong & Shi, 2009; Meijer, 2002; Shao et al., 2016). For
instance, Worsley (1979) simulated 9,999 values under the null condition and the
1,000th, 500th, and 100th largest values were taken as the approximated critical
value for of 10%, 5%, and 1% of nominal type-I error level for a one-sided test.
Therefore in this study, a similar approach to Worsley (1979) is used to generate the
null distribution and obtain the critical values. Bootstrap or permutation can also be
used but they tend to be time intensive. Details of how we derive the null distribution
using Monte Carlo simulations will be provided in the simulation section below.

In the case that Al ; is significantly above the critical value at a certain a level,
an abrupt change is said to be detected at that significance level and an estimate of
the change point would also be computed. For the specific purpose of detecting cer-
tain type of aberrant response behavior, we would expect the change in 7 to be in a
certain direction. For example, in order to detect speededness specifically, the T
would be expected to increase after the change point, that is, 7; x+ > 7; x—. In practice
it is always important to check the direction of the change in order to understand if
the aberrant behavior is the type of interest. The next item to the point at which lgk)
is maximized is taken as the estimate of the speeding point, or more specifically, the
item from which person i starts to show speededness. In other words, person i was
estimated to have been affected by speededness on the last §; items, where
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$i=J — argmaxk=1,2,A..,(J—1){l§k)}' (8)

CPA Based on the Wald Test

When £ is known, the Wald test tests whether the working speed of test taker 7 on the
first k items is the same as that on the last (J — k) items, that is, 7, - =7 x+. The
Wald test statistic is formulated as below:
- A 2
= Tik+ — Tig—)

1

: ©)

1 1
1y 1
Le-(Fi0) L+ (F10)

where I;._(7;,0) is the observed Fisher information based on response time data from
items 1 to k of test taker i, and /i + (7;,0) is the same information computed based on
items (k+1)to J.

To test the null hypothesis that T; + =7; 4,— versus the one-sided alternative
Tik+ > Tk forall k,k=1,2, ---,(J — 1), the test statistic is defined as

Wi ;=  max  WH. (10)
k=1,2,..,(J-1)

When £ is known, W,-(k) follows asymptotically the x? distribution with 1 degree of
freedom. However, with unknown & and dependent Wi(k) s, there is no closed form
distribution for Wy ;. According to Sinharay (2016), the asymptotic null distribu-
tion of the maximum value of the Wald statistic and the likelihood ratio statistic are
identical, as they both can be characterized as the supremum of the square of a stan-
dardized tied-down Bessel process. Similar to the likelihood ratio test, we can obtain
the critical values for W,y ; through Monte Carlo simulations.

Once a significant change is detected, a change point is estimated accordingly.
Similar to the likelihood ratio test, the number of speeded responses is estimated to
be the number of items after the change point:

. k
si=J_argmaxk=1,2,...,(J71)VV,’()- (11)

For both the likelihood ratio test and the Wald test, we need to obtain the estimate
of the working speed parameter. For the Wald test, we also need to compute the
Fisher information in Equation (9). Technical details for these computations are pro-
vided in the Appendix. In the description above, the item parameters in the log-
normal model o; and 3; are considered known. In reality they will need to be esti-
mated based on the item response time data. After they are estimated they can be
treated as known and unchanging. Then the working speed before and after each pos-
sible change point can be estimated as described in the Appendix. We followed van
der Linden (2006) in estimating the item parameters, that is, using MCMC with
Gibbs sampler. These structural parameters could also be estimated in a factor-
analytic approach as done in Molenaar et al. (2015).
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Simulation Study

A simulation study was conducted to evaluate the performance of the proposed CPA
method in detecting speeded test takers using item response time data. The idea is to
generate datasets that contain both regular response time patterns as well as response
time patterns that are affected by speededness. By applying the CPA method on the
generated datasets, we obtain information on the power (flagging the speeded exami-
nees as speeded) and false positive rate/type-1 error (flagging non-speeded examinees
as speeded) of the detection of speededness.

Speeded Response Time Model. As explained earlier, the log-normal model has been
chosen as the generating model for regular response time patterns. To generate the
response time affected by speededness, one approach is to simulate the response time
as fixed values such as 10, 20, or 30 seconds as done in van der Linden and Guo
(2008). An alternative is to add a positive value to T; in the log-normal model, which
results in

ln (ty)z Bj — T — L+ Sija SUNN(O’ OLj_z), (12)

where L quantifies the increase in working speed caused by speededness. In van der
Linden and van Krimpen-Stoop (2003), L was set at 0.375 and 0.750 in the
simulation.

In practice, however, such constant response time or constant change of working
speed is rarely observed; a gradual change is more likely to occur. In this study, there-
fore, we consider a generating model that considers gradual change. In modeling the
impact of speededness on item responses, Wollack and Cohen (2004) proposed a gra-
dual change model to allow for gradual decline in Pj;, the probability of answering
item j correctly by test taker i. Goegebeur et al. (2008) further showed how to fit this
model and estimate the model parameters. The 2PLM version of the gradual change
model takes the following form:

. __expla;(6; — by)]
T 1+ expla;(6; — b))]

emin(1,[1 = (L=, (13)

where % is the ordinary 2PLM, and ) is the stage of the test at which
examinee i starts to speed (0 <m; < 1). For instance, an m;=.8 suggests that test
taker i has speeded responses on the last 20% of the test. The speededness rate para-
meter \; regulates how fast Pj; drops as the test progresses after the speeding point.
This model has been used in many studies to simulate speeded responses (Goegebeur
et al., 2008; Shao et al., 2016; Suh et al., 2012).

Similarly, in this study we propose a modified log-normal model of response time

to capture response time under speededness:

In )= B; = mi+&) + min(1,[1 = (5 =m)D¥, e=NQO.o D). (14)
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The model is structured similarly to Equation (13). The parameters m; and \; are
interpreted the same way as in Equation (13) as well. When§ >;, that is, when the
test progresses past a certain stage as defined by m;, the term min(1,[1 — (4 —m)])™
will be smaller than 1, meaning that the test taker will spend less time on this item
than he/she would have if unaffected by speededness.

We choose this model as the generating model of response time affected by speed-
edness for several reasons. First, it allows us to generate gradual change instead of
abrupt change in working speed. As noted earlier, the former may be a more realistic
scenario. On the other hand, the CPA procedure is known to be sensitive to abrupt
shift in a random process. If we generate abrupt change and apply the CPA, it will
certainly highlight the strength of the CPA procedure. By generating gradual change,
we evaluate the robustness of our proposed procedure in situations that it is chal-
lenged. Luecht and Ackerman (2018) recently criticized common practices in simula-
tion studies that employs a chosen IRT model and then evaluate parameter recovery
or model fit by fitting the same model that is used to generate the data. Such setup
favors the chosen model by design and does not show how robust the performance of
a parameter estimation method or a model fit statistic can be. Instead, they suggest
challenging modeling alternatives/choices by generating data from complex models
that might better ‘‘represent plausible and important features of real data.”” Our
choice of a gradual change model over an abrupt change model to generate data fol-
lows the advice of Luecht and Ackerman (2018) in spirit. Second, it allows us to reg-
ulate the change point in a very straightforward manner through the parameter ).
There exist other models that allow for graduate change, for example, the latent
growth model proposed by Fox and Marianti (2016). However, it is not straightfor-
ward how the change point can be explicitly modeled in that framework. Hence, the
evaluation of the estimation of the change point is unclear in that context. Last, we
intentionally keep the current simulation study in every way possible parallel to Shao
et al. (2016), which adopted the gradual change model of Wollack and Cohen (2004).
The purpose of keeping these two simulation studies parallel in key aspects is to iso-
late the effect of the type of data used, that is, item responses versus item response
time.

Simulation Design. Tests of 40, 60, and 80 items were simulated, and their time limit
was set at 60, 90, and 120 minutes, respectively. The sample size was N =1, 000. The
percentage of speeded test takers was set at 10% or 30%. The gradual change log-
normal model in Equation (14) was used to generate the response time pattern for test
takers who speeded. The response time data for the other test takers were generated
following the regular log-normal model. If a test taker ran out of time, the test would
terminate automatically. The response time of remaining items would be recorded as
0, meaning those items were unreached. In that case the test taker would be labeled
as “‘speeded” without applying any statistical detection techniques.

For test takers who speeded, we followed Suh et al. (2012) and Shao et al. (2016)
to generate A~logN(3.912, 1), the parameter that governed the rate of the drop in
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Figure |. Distribution of the speeding point 7.

response time. Also following Shao et al. (2016), the change point m} was simulated
from the beta distribution, more specifically with the median of = .6 or .7, and
Nyar = -001 or 40X.001=.04. The distribution of the change point is shown in
Figure 1. Note that m reflects the change point as a percentage. In our simulation
speededness starts from the next closest integer of nXJ. For a 40-item test, m of .6
indicates that a test taker shows speededness from item 25 onward. For a 60-item test
an m of .7 means that a test taker starts to speed from item 43 onward. Figure 1 illus-
trates that with r,,,. of .001, the generated starting points were very close to the med-
ian; whereas when m,,,, the possible change point were much more spread out and
could occur anywhere on the test, including very late on the test. For our study, it is
important to include cases in which the change point is close to the end of the test
for two reasons. First, we are interested in the detection of speededness, which likely
occurs late in the test. Second, it will allow us to evaluate if the asymptotic critical
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Table I. Mean (and SD) of the Critical Values for Wald and Likelihood Ratio Test.

J .05 col C.00l

40 8.148 (0.09) 11.345 (0.19) 15.772 (0.59)
60 8.293 (0.09) 11.483 (0.20) 15.883 (0.64)
80 8.765 (0.09) 12.024 (0.20) 16.533 (0.64)

values can be directly applied as suggested in Sinharay (2016) when the change point
is not in the midmost of the test.

In generating response time patterns for both speeded and non-speeded test takers,
the inverse scale parameter (o) in the response time model was generated using a uni-
form distribution U(1.75,3.25). The time intensity parameter (3) was generated fol-
lowing Patton (2015) so that B has a mean of 4 and a SD of 1/3, and had a correlation
of .3 with ¢ and a correlation of .5 with b, where a and b are the discrimination and
difficulty parameters in the 2PL IRT model, respectively. This is because in real data
the time intensity parameter has often been found to correlate positively with those
parameters. In Patton (2015), random normal deviates were added to a linear combi-
nation of the discrimination (@) and difficulty (b) parameters in order to achieve a
correlation of .3 for pg, and a correlation of .5 for pg,,. The IRT item parameters were
generated by a~ InN(0, 0.5), and b~ N(0, 1) as done in Patton (2015). The working
speed parameter for the N =1, 000 test takers was simulated by 7~N(0, .25), the same
as Patton (2015). Overall there are 3 (test lengths) X 2 (percentage of speeded test
takers) X 2 (Mean) X 2 (Mygriance) = 24 conditions. Each condition was replicated
50 times. The simulation was performed in R (R Development Core Team, 2014).

The goal of the simulation study is twofold. First, we would like to generate the
null distribution of the likelihood ratio test and Wald test statistics and obtain critical
values. These simulation-based critical values will be compared against the asympto-
tic critical values given in Andrews (1993) and Sinharay (2016). Second, based on
the chosen critical values, we would like to examine the performance of the likeli-
hood ratio test and Wald test in detecting speeded responses, specifically in terms of
power and empirical type-I error.

To find the critical values, the null distribution was generated by simulating no
speeded responses in the response time data, following the log-normal model in
Equation (1) or (2). Similar to Worsley (1979), 10,000 response time patterns were
generated under each condition, resulting in 10,000 test statistics, in our case Alyax. i
and Wy i’s, from which the 500th, 100th, and 10th largest values were chosen as
the approximates of ¢ s, c.o1, and ¢ go1, the critical values corresponding to a nominal
a level of .05, .01, and .001, respectively. Each of the null condition was replicated
1,000 times and the average of the c s, co1, and cgo;’s were taken as the empirical
critical values. Table 1 provided the mean and SD of the critical values for each con-
dition. The critical values were almost identical for Wald and likelihood ratio test, as
expected following Sinharay (2016). Thus only results based on the Wald test were
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shown in Table 1. The critical values, though varying substantially at different nom-
inal a levels, did not differ much across different test lengths. As test length
increased, there was a slight increase in the average critical values of 1,000 replica-
tions. The variance of the critical values across replications at each test length was
small for a=.05 or .01, suggesting that the critical values were rather stable. For
o 001, the variance appeared much larger. This was not surprising since only a sample
size of 10,000 examinees were simulated to obtain the null distribution for the test
statistic. At o g1, it means we were picking the 10th largest value in the simulated
values. Larger fluctuation was duly expected at that extreme end of the distribution.

Compared to the Table 1 in Sinharay (2016, p. 531), which listed the range of crit-
ical values to be between 8.45 and 9.84 for a=.05, and 11.69 to 13.01 for «=.01,
the values in Table 1 here were not too far away from them albeit different. As
explained earlier, the asymptotic values would be applicable when the test is long
and when the change point occurs in the midmost of the test but not too early or too
late. In our simulation the test length was finite and the change point could occur
anywhere during the test. That might explain the small but visible differences. That
said, the stability of the empirical critical values across test lengths and replications
suggested the feasibility of using simple, fixed critical values, rather than nuanced
test specific critical values. Hence, based on Tables 1, 8 and 11 were selected as the
critical values at o o5, and o o1, respectively. These two integers were chosen to facil-
itate easy and straightforward application of the CPA procedure. Note that these two
values were all slightly smaller than the average critical values in Table 1, so the
resulting empirical type-I error rates were expected to be somewhat inflated. It would
make sense to use these simple critical values if the inflation in type-I error is mini-
mal, which will be examined next. To compare with the asymptotic critical values
reported in Andrews’ (1993), we also included the critical values of 8.85 and 12.35
at a = .05 and .01 respectively in our simulations. Please note that the choice of criti-
cal values does not affect the estimation of the change location.

Results. There are two points of interest for us when we evaluate the performance of
the proposed approach. The first is to examine the empirical power and false positive
rate of detecting test speededness. Empirical power is defined as the percentage of
test takers in our generated sample who have had speeded responses that are flagged
by the proposed procedure. Empirical false positive rate is the percentage of test
takers unaffected by speededness that are flagged by the proposed procedure.

The second point of interest is the performance of the proposed approach in esti-
mating the actual change point. The actual change point, that is, the item right after
which speededness exerts itself, is J —s;, where s; is the number of responses
affected by speededness. The estimated change point is J — §;, where §; is estimated
by Equation (8) or (11). In the literature of CPA, the measure often used to capture
the accuracy of change point estimation is the lag, that is, the estimated change point
minus the actual change point (Shao et al., 2016; Sinharay, 2016). Numerically it is
equivalent to s; — §;. A positive lag suggests a delay in detecting the change point.
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Statistically the lag is the bias of the change point estimate. The standard error of the
lag is also computed. Note that across replications, a positive lag and a negative lag
may cancel out. Therefore we also take the average of the absolute value of the lag,
or AL,..,. To make the results across different test lengths comparable, AL,,..,% is
also calculated as the relative lag, that is, the absolute value of the lag divided by the
test length.

Tables 2 to 4 provided the power and type-I error/false positive rate for each test
length. Within each condition, the average of power and false positive rate of the 50
replications were taken. The first row for each of the three tables showed the type-I
error rate when no test takers in the sample is affected by speededness. Across all
conditions, except for test length of 80, the empirical type-I errors were only slightly
higher than the nominal values. This suggests that using these simple, fixed critical
values for medium to medium-long tests is indeed feasible. Meanwhile, the power
was very high for every condition, regardless of the length of the test, the distribution
of the change point, and the percentage of test takers affected by speededness. In
contrast, Shao et al. (2016) reported power ranging from 0.60 to 0.90 at a of .05.
Given that it was a study with an almost identical setup of simulations except for
using item response data, the gain in power here seems to be largely attributable to
the use of item response time data in this study. Aside from these general patterns,
there were also fine and nuanced patterns. For example, power increased when the
test was longer, or when more responses within a person were affected (i.e.,
Nimedian = -0 VS Mmedian =-71)- Using Andrews’ (1993) critical values yields similar
power across all conditions (in some conditions, slightly smaller than the proposed
critical value results), but the type-I errors are consistently lower than the nominal «
levels.

The column of % NF in Tables 2 to 4 showed the percentage of examinees who
did not finish the test within the time limit. It can be found that under all conditions,
the percentage of examinees who did not finish the test remained around 4% to 5%
for a test length of 40, and around 5%—7% for a test length of 60 or 80, even when
the percentage of test takers affected by speededness can be as high as 30%. This
suggested that the majority of the simulees who were affected by speededness still
finished their tests in time. Those who did not finish the test within the time limit
would automatically be labeled as speeded. The fact that the power was 0.9 or above
in Tables 2—4 suggested that the CPA was able to pick up the more subtle and eva-
sive speededness, that is, being speeded but still finishing the test in time.

The last four columns of the tables presented the average absolute lag (AL)
between the detected change point and the true change point, the absolute value of
the lag divided by the test length, and the average lag (or bias) and RMSE of the
change point estimate across replications in each condition, respectively.
Theoretically the (absolute) lag can be computed for every examinee who was
detected as speeded. Given that the power in Tables 2 to 4 was close to 1 for any
nominal a level investigated here, it makes little difference which nominal « level
we look at with respect to the computation of absolute lag. For every examinee
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detected as speeded, the CPA yields an estimate of the same change point that corre-
sponds to the maximum of the test statistics, regardless of the nominal « level. Thus
in computing the AL,eqn, AL ean%, bias, and RMSE, only values under o =.05 were
reported. The mean bias and mean absolute bias were small in all conditions where
Ny = -001. When m,,,,. increases to .04, the mean bias remains small, but the absolute
bias and RMSE increases dramatically. This trend is more pronounced when the test
is long. It suggests that in some instances the lags were positive and in some cases
negative. Hence they cancel out in the computation of bias. The absolute bias and
the RMSE better capture the variability in the estimate of the change point when that
happens.

Tables 2 to 4 indicate that the change points were better estimated when m,,,, is
small. This is because when the m,,, is large, the change point can appear anywhere
on the test, including very early or late on the test (see Figure 1). It would be very
challenging to precisely locate the change point in those situations. Previous research
such as Andrews (1993) and Hawkins et al. (2003) suggested the search of the change
point be limited to the middle of the test. For example, Andrews (1993) suggested
limiting the search to j=n,n; +1,..., N — n;, where n; was set to be the closest inte-
ger of .15N. Equivalently, the change point would be restricted to roughly the middle
70% of a test. Note that the average (absolute) lags reported in Tables 2 to 4 were
aggregated across different levels of true change point.

Figures 2 to 4, on the other hand, showed how well the change points were esti-
mated at each true change point value at each test length. They presented the esti-
mated versus the true change point for each condition when there were 10% of
speeded test takers. The plots for 30% of speeded test generally showed the same
pattern. Due to space limit, they are omitted from the manuscript and are available
upon request. Each figure of Figures 2 to 4 included four panels. The two panels on
the left showed the estimated against the true change point when n,,,,;,,, = .6 and the
two right panels showed that when m,,, ., =.7. The two top panels were created for
small m,,, whereas the bottom panels were for much larger m,,,.. Within each panel,
the dark line showed the average of the estimated change point at each true change
point over 50 replications, and the shaded area showed the 95% bound of the esti-
mated change point over 50 replications. When the dark curve is close to the diago-
nal Y =X (the dotted line), the bias is small. When the dark curve falls above Y =X,
there exists positive bias; otherwise there exists negative bias. The shaded area
between the two dashed curves indicates the variability in the change point estimate.
Bigger distance between the two dashed curves at a given true change point suggests
larger variability in the change point estimate at this location. Take Figure 2 as an
example, which represented the conditions of test length of 40. In most cases the
dark line hovered above Y =X in the four panels, except when the change point
occurred very late on the test. This suggests that on average there’s delay in the
detection of the change point at most change point locations. The fact that the dark
line was close to Y =X showed that overall at each true change point the positive
bias in some replications and the negative bias in others mostly canceled each other
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Figure 2. Estimated versus true change point with 10% of speeded test takers at test length
of 40.

out. Meanwhile, larger m,,,. led to a wider range of true change point and a thicker
shaded area, indicative of less stability in the change point estimate, consistent with
the literature. The other figures showed a similar pattern: when the change point can
occur very early or late on the test, the change point estimate was rather unstable. It
warrants further investigation how to improve the estimation of the actual change
point.

Real Data Analysis

To illustrate the application of the proposed CPA method, we performed CPA on the
response time data of 50,000 test takers on a 30-item multiple-choice computer-
based state assessment on mathematics. We cleansed the dataset by removing test
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Figure 3. Estimated versus true change point with 10% of speeded test takers at test length
of 60.

retakers and those who finished the entire test within 5 minutes. We also removed
cases with response time of 0 on late items, that is, conspicuous cases of speededness
and focused purely on detecting subtle cases of speededness. This resulted in a sam-
ple of around 46,000 test takers, which we randomly split into five samples each con-
taining data from 9,200 students. This enables us to cross-validate our findings while
having a large sample size for each sample.

We fitted the log-normal model to each sample of 9,200 response time patterns,
and obtained the parameter estimates of o; and 3;’s. These structural estimates were
treated as known and unchanging in estimating the person or incidental parameters,
including 7; o, T; — and T; x+’s. Then all these parameter estimates were used in the
computation of likelihoods and the Wald test statistics. Eventually we obtained 9,200
Alax ; and Wy, i’s. Results were very similar using either statistic so only those
based on W, ; were reported next. Again both the currently proposed critical values



Cheng and Shao 1051

Eta Median=0.6, Eta Variance=0.001 Eta Median=0.7, Eta Variance=0.001

o _| o 4

© ©
2 8 2 8
© ©
£ £
3 3
w w
.§ o g o
E < E <
° °
<) 1<)
& &
© ©
2 2
o o | o o |

Y 3

o o

T T T T T T T T T T
0 20 40 60 80 0 20 40 60 80
True Change Point True Change Point
Eta Median=0.6, Eta Variance=0.04 Eta Median=0.7, Eta Variance=0.04

60
1
60
1

Change Point Estimate
40

Change Point Estimate
40

20
1
20
1

True Change Point True Change Point

Figure 4. Estimated versus true change point with 10% of speeded test takers at test length
of 80.

and Andrews (1993) values at s, and o g; were applied in the detection. In addi-
tion, CPA was also carried out using the same 9,200 students with responses only
data following Shao et al. (2016). To allow for more direct comparison, critical val-
ues were determined based on 100 random permutation of the item responses (which
can be treated as null distribution) at o g5, and o o; respectively. The process was
replicated for all five samples.

First, we would like to highlight the computational gains by using the simple cut-
offs. The analysis was run on a desktop with hardware specification as follows: 6
core, 2.90 GHz Intel Core 15-9400 processor, and 16.0 GB RAM. For the five sam-
ples, on one core, it took about 5 hours to run the CPA analysis with 100 permuta-
tions using item responses for each sample, and less than 1 minute using response
times with simple or asymptotic cutoffs, with maximum memory used around 400M.
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Table 5. Number of Test Takers Flagged and the Percent of Flagged Using Response Time
and Item Response.

Qo5 Qo1
Response time Response time
Sample Current Andrews Response Current Andrews  Response

1384 (15.0%) 1152 (12.5%) 276 (3.0%) 812 (8.8%) 687 (75%) 41 (0.4%)
1442 (15.7%) 1205 (13.1%) 348 (3.8%) 835 (9.1%) 683 (7.4%) 71 (0.8%)
1450 (15.8%) 1214 (13.2%) 296 (32%) 837 (9.1%) 715 (7.8%) 58 (0.6%)
1427 (155%) 1203 (13.1%) 300 (3.3%) 831 (9.0%) 702 (7.6%) 57 (0.6%)
1385 (15.1%) 1182 (12.8%) 270 (2.9%) 828 (9.0%) 688 (7.5%) 53 (0.6%)

UuhAhWN—

This suggests that there is substantial gain in computational efficiency by using the
simple or asymptotic cutoffs.

Second, Table 5 shows the number of test takes flagged as speeded by each type
of critical values at a=.05 (left) or o =.01 (right) in five samples. Under o =.05,
1,384 respondents were flagged in the first sample when CPA was applied to their
response times using our proposed simple cutoff. This cutoff, as expected, was more
liberal than Andrews’ asymptotic cutoff, which led to 1,152 respondents being
flagged in the same sample. If CPA was applied to responses instead of response
times, only 276 respondents were flagged. The same trend was observed in the other
four samples, that is, Andrews’ asymptotic critical values tend to result in a bit fewer
flagged test takers than the proposed simple critical values, and much fewer cases
were flagged using only response data. The latter is consistent with what was reported
by Shao et al. (2016) where their power in the simulation was lower than those shown
in this study. Across five samples, the percentages of participants being flagged by
each method remained largely stable, suggesting that the patterns we observe are
unlikely due to chance, but rather robust.

Meanwhile, there are a few caveats to the results to highlight. First, using either
the simple or asymptotic cutoff, response times led to over 80% of agreement with
item responses, due largely to the agreement on the vast majority of test takers judged
as non-speeded by both methods. Second, at o =.05, roughly 15% to 16% or 12% to
13% of participants were flagged by response times, depending on the cutoff used.
On the other hand, only about 3% of test takers were flagged by responses, which is
even lower than the nominal « level. At a=.01, using response times leads to 10 to
20 times more cases to be flagged than using responses. The latter led to again a
smaller-than-nominal-level proportion of participants flagged. Third, only 20% to
30% of the cases flagged by the responses were also flagged by response times. This
is consistent across all five samples, both « levels and both cutoffs. All these raise
questions whether many cases flagged by responses were cases of type-I errors. This
is a question to be best answered by a simulation study.
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Figure 5. The response and response time pattern of test taker (first example).

Next, we further illustrate the different detection methods using two test takers’
data. Figure 5 showed the response and response time (in seconds) pattern to 30
items of the first example. He or she was not flagged using response data, but was
flagged by the CPA response time procedure at both « =.05 and a=.01 using either
the simple or asymptotic critical values. The detected change point was shown as a
vertical line in the right panel of the figure, which is around item 23. This indicates
that his or her responses to the last 7 items were deemed affected by speededness
using response time data, but no change was detected using response data. The blue
curve in the right panel represents the median response time at each item position for
all sampled students. It appeared that the response time on the last 7 items mostly
hovered around 10 seconds, which were substantially lower than those on the first 23
items, as well as the medians at these item positions. This seems to lend support to
the CPA response time procedure in flagging this test taker.

Figure 6 showed the response and response time (in seconds) pattern to 30 items
of the second example, one of the few flagged by both response and response time
using both types of critical values. Again, the detected change point was shown as a
vertical line in both panels. Both indicate that there is a change point in the middle
of the testing process. In the left panel, it shows that the test taker has a mixture of
correct and incorrect responses prior to item 18 but nothing correct afterward. In the
right panel, the response time was shown to be consistently much shorter than the
median in the second half of the test. Though agreeing with each other in flagging
this test taker, CPA-response procedure estimated the change point to be item 18,
while CPA-response time procedure led to an estimated change point of 15. Given
that there are too few test takers flagged by both data sources, we would not like to
over-generalize on the comparison of change point estimation, but this is definitely
something worth more attention in a future study.
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Figure 6. The response and response time pattern of test taker (second example).

Conclusions and Discussion

This study proposes a CPA method to detect test speededness using response time
data. Its performance of detecting speededness is demonstrated and evaluated in a
simulation study and a real-data example. In the simulation study, the proposed
method shows high power in detecting speeded examinees while keeping the false
positive rate well controlled, even when simple and fixed critical values are used.
The power in this study is substantially higher than in Shao et al. (2016), a study
that’s parallel in simulation design but used item response data. As explained earlier,
because response time data are continuous, we would expect the power to improve
compared against dichotomous item response data but the extent to which power can
be improved is unknown. This study showed that the improvement in power can be
substantial without any inflation of the false positive rate.

In addition to the success in detecting speeded responses, the proposed method is
also very flexible. In this study we assumed that the log-normal model fits the
response time data, but the method is not bounded by that assumption. The CPA
method can also be applied to other types of response time models such as the four-
parameter response time model (Wang & Hanson, 2005) where a slowness parameter
is incorporated. The slowness parameter can also be used for detecting test speeded-
ness. Similar to detecting an increase in working speed, we can use CPA to detect a
decrease in the slowness parameter. Second, through the simulation study we were
able to demonstrate that it is possible to use simple and fixed critical values, which
makes the application of the CPA method straightforward. The critical values are
similar to the asymptotic values reported in Andrews (1993) and used in Sinharay
(2016), suggesting that they are rather independent of item parameters. It also means
that it is unnecessary to re-conduct the simulation to update critical values when
small changes occur to the test, for example when one item for some reason has to
be removed. Third, the general principle of the CPA method and the test statistics
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discussed in this paper can also be applied to detect aberrant responses on tests with
polytomous items, as well as mixed-format tests which contains both dichotomous
items and polytomous items. In addition, the simulation showed how the CPA can be
applied to response time data in a linear test. Given the stability of the critical values
across different tests (indicated by the very small standard deviation in the critical
values in Table 1) and test lengths, we expect the method to be applicable to CAT or
a multi-stage testing. Last but not least, the CPA method using response time data
can be applied to detect other types of aberrant responses. For instance, fatigue and
inattentiveness can manifest themselves in similar fashions to speededness, that is,
reduced response time. The CPA can be a very promising approach to detect inatten-
tiveness on a low-stakes survey if item response time is recorded, particularly when
inattentiveness starts in the middle of the test. In survey research this is often referred
to as back random responding or BRR, that is, respondents provide inattentive
responses on the later portion of the assessment (Clark et al., 2003; Meade & Craig,
2012; Yu & Cheng, 2019).

In the meantime, this study has several limitations. First, the CPA procedure based
on response times versus based on responses make very different assumptions. For
this reason we would like to suggest caution against over-generalizing the findings
from this study. The assumption of the CPA-response procedure is that speededness
manifests itself in performance decline. The assumption of the CPA-response time
procedure is that speededness will manifest in faster responding, irrespective of per-
formance. In the literature, different definitions of speededness exist. For example,
some defines speededness as ‘‘the situation where the time limits on a standardized
test do not allow substantial numbers of examinees to fully consider all test items”
(Lu & Sireci, 2007). One can argue whether the consequence of not having enough
time to fully consider all test items is having unreached items, or rapid responses or
guessing on some items, and/or performance decline on them. In fact some seem to
suggest that both should be considered. Schnipke (1997) stated that test takers
affected by speededness ‘“will have very fast response times and the responses will
be at or near chance levels of accuracy.’” The first half of the statement is consistent
with the assumption of CPA-response time procedure, while the second half is more
in line with the assumption of CPA-response procedure. There are reasons to ques-
tion the assumption associated with responses. For one, time pressure and associated
anxiety does not necessarily lead to performance decline. A small amount of test
anxiety could act as motivation and can improve performance (Akanbi, 2013). In
addition, for test takers with very low ability, their performance may seem unaffected
or even boosted by rapid guessing. Meanwhile, literature has shown how heightened
anxiety can be associated with decreased processing efficiency and slow reaction
time (Eysenck et al., 2007; Nishisato, 1966) in certain scenarios. That means the
assumption associated with response time can also be challenged. Such complex
effect of time pressure and the associated anxiety on item responses and response
times are not considered in this study. Therefore the comparison between the current
study and Shao et al. (2016) is based on simplified assumptions and should only be
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interpreted as such. Given the high power of the CPA procedure based on response
times to detect test speededness when its assumption holds, the next urgent task is to
evaluate the validity of the assumption: Does test speededness manifest in faster
response times? If so, in what context (e.g., high-stakes testing) and to what extent?
Future research is certainly warranted in this area.

If one accepts the stringent assumption of Schnipke (1997), that is, speededness is
characterized by faster response times and reduced response accuracy, one could
potentially leverage information from both item responses and response time to detect
test speededness. It is possible to develop a CPA procedure that directly utilizes both
data sources based on a model that models item responses and response time simulta-
neously, for example, the hierarchical model by van der Linden (2007). It models at
the first level the item responses by a three-parameter normal ogive model and the
item response time by the same log-normal model used in this study. At the second
level, the examinee ability 8 and working speed T are assumed to follow bivariate
normal distribution. Instead of testing the change in 6 and T separately, one can test
the change in the vector of (6, T) using the Wald test (authors, 2019).

Second, applying the CPA procedure introduced in this paper requires knowledge
of the pre-change and post-change distribution structure, with the unknowns being
only the parameters in the distribution. In reality even the probability structure may
be unknown, in which case data-driven quickest change detection methods as pro-
posed in Li (2016) may be helpful. In the future, we would like to explore the appli-
cation of model-free quickest change detection methods to psychometric research.
Second, when a change point is detected, one can only infer what is the underlying
cause of the change. As suggested earlier, low motivation and speededness could
both lead to rapid guessing late in the testing process. We may be able to statistically
detect an increase in the working speed and locate the point when that increase starts
to occur, but the CPA will not be able to pinpoint the cause. It will take other sources
of information, for example, expert domain knowledge, to identify the cause. Wang
et al. (2018) proposed a two-stage approach through which normal and aberrant beha-
viors are distinguished in the first stage, and in the second stage different types of
aberrant behavior such as rapid guessing versus cheating are separated. We could
pursue a similar approach down the road.

Third, it is assumed in this study that there exist only one change point. In prac-
tice, we might see multiple change points, for example, when an examinee is affected
by a warm-up effect in the beginning of the test and the speededness effect toward
the end. In theory, one can search for the first change point, and then search another
possible change point given the first change point. This is certainly a topic that is
worth further exploration.

Yet another limitation shown in the current study is that estimation of the actual
change point is unsatisfactory when the change point varies widely across test takers,
particularly for long tests. This is a well known issue in CPA. As Andrews (1993)
pointed out, when the change occurs very early or late, the detection of the change
and the estimation of the change point can be very challenging. In the future, it may
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be possible to leverage the information in both response time and item responses to
better estimate the actual change point. This is certainly an area that we will pursue
to improve.

In spite of these limitations, this study has strong practical implications to psy-
chometric researchers and testing professionals. Developing methods to check
examinees’ behavior for possible aberrant responses is one of the most important
quality control components in testing industry. Failing to address this issue will
not only result in inaccurate item and ability parameter estimations and biased
scores, but also poses a threat to the public due to misleading interpretations of
examinees’ performance. Some comprehensive tests can be very long as they need
to cover broad content. It needs to be thoroughly investigated the proper test length
for these tests so that the majority of examinees will have enough time to finish
(van der Linden, 2011). For a high-stakes test, examinees are motivated to give
answers to all questions even when they are running out of time, which can result
in rapid guessing. In that case, the proportion of examinees who have unreached
items may be small, but this does not necessarily mean there is only a small pro-
portion of speeded examinees. Thus a rigorous procedure such as the CPA method
can be very helpful to understand the prevalence of speededness. Based on the
findings of this study, we recommend testing programs record the item-level
response time data in addition to item responses, and use CPA method to closely
monitor aberrant responses during and after test administration. That said, one
should exercise extreme caution when it comes to removing any response or test
taker data, and one should refrain from relying solely on statistical results to make
such decisions. As indicated by Allalouf et al. (2017), typically human review
should follow statistical quality control procedures, and it should be no different
when they are applied to testing.

Appendix
To calculate the Fisher information used in Wald test, we need to first get the second

derivative of the log-likelihood function. According to Equation (4), the first deriva-
tive of the log-likelihood function is:

J
Irit)= = of(Inty — (B; — 7). (A1)
j=1

Thus the second derivative of the log-likelihood function takes the following
form:

J
U'rit)= = > ol (A2)
j=1
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By definition, the Fisher information of 7; is given by:
J
I(1)=) o, (A3)
j=1

The MLE estimate of 7; using all the response time (7;9) can be obtained by set-
ting //(7;; t;) to be 0 as shown below:

J
- Z 0{,2( Inz; — (B; — 7)) =0, (Ada)
j=1
J J J
> adIng = alp+ D alr=0, (A4b)
J=1 J=1 j=1

J J J
PRI ST S (nde)
Jj=1 Jj=1 j=1

J 2 J 2
5 2=1 4B =2 = o Ing

i= J
Y19

, (A4d)

which is also given in van der Linden (2008). 7; 4 and 7; x+ can be calculated in a
similar fashion.
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