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Abstract. We study the geometry of algebraic numbers in the complex plane, and their
Diophantine approximation, aided by extensive computer visualization. Motivated by the

resulting images, which we have called algebraic starscapes, we describe the geometry of the
map from the coefficient space of polynomials to the root space, focussing on the quadratic

and cubic cases. The geometry describes and explains the notable features of the illustra-

tions, and motivates a geometric-minded recasting of fundamental results in the Diophantine
approximation of the complex plane. Meanwhile, the images provide a case-study in the sym-

biosis of illustration and research, and an entry-point to geometry and number theory for a

wider audience. In particular, the paper is written to provide an accessible introduction to
the study of homogeneous geometry and Diophantine approximation.

We investigate the homogeneous geometry of root and coefficient spaces under the natural

PSL(2;C) action. Hyperbolic geometry and the discriminant play an important role in low
degree. In particular, we rediscover the quadratic and cubic root formulas as isometries of

H2 and its unit tangent bundle, respectively. Utilizing this geometry, we determine when the

map sending certain families of polynomials to their complex roots (our starscape images)
are embeddings.

We reconsider the fundamental questions of the Diophantine approximation of complex

numbers by algebraic numbers of bounded degree, from the geometric perspective developed.
In the quadratic case (approximation by quadratic irrationals), we consider approximation

in terms of hyperbolic distance between roots in the complex plane and the discriminant as a
measure of arithmetic height on a polynomial. In particular, we determine the supremum on

the exponent k for which an algebraic target α has infinitely many approximations β whose

hyperbolic distance from α does not exceed acosh(1+1/|∆β |k). It turns out to fall into two
cases, depending on whether α lies on the image of a plane of rational slope in coefficient space

(a rational geodesic). The result comes as an application of Schmidt’s subspace theorem.

Our results recover the quadratic case of results of Bugeaud and Evertse, and give some
geometric explanation for the dichotomy they discovered [17]. Our statements go a little

further in distinguishing approximability in terms of whether the target or approximations

lie on rational geodesics.
The paper comes with accompanying software, and finishes with a wide variety of open

problems.
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1. Introduction

We begin (and indeed this research began) with the images in Figure 1. Take a minute to
look at them before continuing.

On the top left (1a) you see complex quadratic algebraic numbers plotted and sized by dis-
criminant in the hyperbolic metric1. On the top right (1b) are the complex roots of polynomials

1For the polynomial ax2 + bx+ c = 0 the dot plotted will be at
−b+

√
4ac−b2i
2a

on the complex plane. Note

this only considers polynomials with negative discriminant and thus complex roots. A similar image can be
created for polynomials with only real roots, see Figure 9. The radius of the dot is proportional to 1√

4ac−b2
(one

over the root discriminant) times the height above the real axis

√
4ac−b2

2a
to adjust the radius to the hyperbolic
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(a) (b)

(c) (d)

Figure 1. Complex algebraic numbers sized by the inverse of the discriminant
of their minimal polynomial in the hyperbolic metric. All quadratics (1a). All
roots (quadratic in black, cubic in red) of the polynomials ax3+cx2+bx+c = 0
(1b). All cubics, coloured based on the value of the real root (1c) and the detail
of the cubics around a root of x3 + x+1 = 0. The first three images, as many
other figures here, are plotted from −1 to 1 in the real axis and 0 to 2 in the
imaginary axis.

of the form ax3 + cx2 + bx + c = 0, and on the bottom all complex cubics coloured by their
real conjugate (1c), with zoomed in detail around the complex root of x3 + x+1 (1d). In each
case the dot size is inversely proportional to the root discriminant (the discriminant to the
root of the degree), and the points are plotted in the hyperbolic metric (meaning, the radius
is hyperbolic in the upper half-plane model). This paper grew out of our excitement at the
beauty and detail present in these images and the search for mathematics that could be both
seen and conjectured from their structure.

metric. This gives dots with radius proportional to 1
2a

. If you are plotting the points yourself it can be useful

to adjust the scale of the dots (keeping the same proportions) as more are added.
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1.1. A note on our expository approach. We believe that the images presented here pro-
vide a motivated path into several topics in geometry and number theory. Mathematical beauty
can be incredibly hard to communicate to people not familiar with the details of the subject,
yet these images have already appeared in an art exhibit in Iceland [32] and been used for
engagement in a workshop with the Math Club for Battle Creek Area Math and Science Center
in Michigan. We have therefore attempted to build a paper containing two distinct paths for
two distinct audiences. For those with less background, we provide a leisurely introduction
to the subject keeping the description as accessible as possible, introducing even well-known
terminology as we build toward more sophisticated mathematics. We hope the paper might
provide insight and interest to a motivated high school student and a mathematician in these
research areas alike, and inspire REU projects. For the researcher who wishes to access the
results directly, we have endeavoured to make a bypass that avoids the more leisurely parts of
the paper, and provide an alternative, condensed introductory section that allows the reader
to pass directly to the results.

1.2. How to access this paper for a wider audience. For a motivated student of mathe-
matics, this paper should be read in chronological order, skipping Section 2. In Section 3, we
follow the visual investigation with a gallery of some of the images produced, and discussion
of some of the structural aspects visible in the images. We develop those observations in the
next two sections studying the geometry of the roots (in Section 4) and their number theory (in
Sections 5 and 6). These (geometry and number theory) are somewhat parallel, in that a reader
may wish to read both to their natural stopping point (dictated by the reader’s mathematical
background). Each one starts from a lower level of background and ramps up.

1.3. How researchers should read this paper. For a working mathematician with experi-
ence in the relevant background, Section 2 should be read first, followed by Section 4, and then
Section 6, dipping into Section 5 for background as needed.

1.4. Previous illustration. The notion of plotting algebraic numbers is not new, and there
are many beautiful mathematical visualisations made from them, many in the world of blogs
and online mathematical discussions. We curate those we are aware follows at the end of
this introduction. Our images were studied initially from the perspective of their aesthetic,
by asking, “What makes images that look interesting?” (without trying too hard to define
interesting). However, they rapidly became both a tool to illuminate existing mathematics,
including hyperbolic and projective geometry, representations of PSL(2;C), and Diophantine
approximation, and also a source of new mathematics.

The richest previous investigation of imagery grows out of the study of the roots of Little-
wood polynomials [43, 49, 59], which are polynomials with coefficients ±1, and more generally
polynomials with coefficients from a finite set. This produces the oldest images we have found,
particularly in the work of Peter and Jonathan Borwein [7, 11, 12, 13, 52]. These collections
of polynomials have the nice feature that all polynomials up to a certain degree can be con-
sidered. Other investigations of the geometry and images related to such polynomials (that we
will not describe in detail) include the curiously named Thurston’s master teapot [14] and the
eigenvalues of Bohemian Matrices [64, 19].

In particular, a lot of interest was generated by the work of Dan Christiansen [20], shared and
described by John Baez, including an incredibly intricate image created by Sam Derbyshire [5,
6, 46].

Many other people, some directly inspired by this, have also created, or discussed, the images,
including Paul Nylander [48], Greg Egan [26], Andrej Bauer [8], Vincent Pantaloni [50], Daniel
Wiegreffe [66], Bernat Espigulé [28], Jwalin Bhatt [9], Jonathan Lidbeck [41], and Jordan
Ellenberg [27].
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Pictures not limiting coefficients so strongly, closer to those we present here, are rarer. The
most notable are the images of Stephen Brooks used on Wikipedia [15], that were further
developed and optimised by David Moore [4]. These images also inspired a Wolfram Demon-
stration from Enrique Zeleny [68]. Other interesting images we have found come from David
Marciel [45] and Deviant Art user Fauxtographique [29]. There have also been discussions on
Stackexchange [30, 35], with the latter linking to further amazing images on the Flickr account
of Stackexchange user “DumpsterDoofus” [55]. The ease of creating these images means that
people quickly start making their own: for example, a twitter thread started by the first-named
author [31] quickly prompted variations by Dan Anderson, Michael Pershan and Peter Farrell
[1, 2, 51].

This list is extensive, but probably not exhaustive. We are interested in other versions of
such patterns, especially earlier ones (before 2010, and even more before 2000) so please send
us any you know of.

1.5. Software and image generation. We encourage the reader to explore along with us,
throughout the paper, using the accompanying software, available as a Sage Mathematics Soft-
ware [63] notebook, at algebraicstarscapes.com.

In general the images here are produced by a rather simple three step process. We first
generate a list of polynomials whose coefficients lie in a region about the origin (for example, a
box or ball). These polynomials are then solved to give the collection of roots, with additional
data (such as polynomial discriminant) attached to the roots, data which is eventually to be
used for sizing. Finally, that list of data is converted into a collection of points and plotted.
Most of the images drawn involve over 50,000 dots, but some get to over 250,000.

1.6. Acknowledgements. The authors are grateful to the Institute for Computational and
Experimental Research in Mathematics in Providence, RI, and to the semester organizers, for
the opportunity to be in residence for Fall 2019 at the Illustrating Mathematics program, where
this work was initiated in the grand tradition of just being in the right place at the right time.
The authors would also like to thank their respective home institutions for their help in making
semester residency possible. Thanks are also due to the many participants in that program for
helpful discussions, including Arthur Baragar and Joseph H. Silverman. Special thanks go to
Pierre Arnoux and David Dumas for especially inspiring and detailed conversations as these
ideas developed.

2. A technical introduction

2.1. Algebraic starscapes. The images central to our story we have called algebraic starscapes.
Formally, these images consist of dots centred at all algebraic roots of a family of polynomials,
with radius a function of the coefficients of the relevant polynomial. More specifically, these
families are chosen by fixing a bound on the polynomial degree and allowing the coefficients to
range through all integer points in some affine subspace of the full vector space of coefficients.
The sizing is typically chosen from various measures of arithmetic complexity, such as Weil
height or polynomial discriminant, so that big dots correspond to low complexity. A linear
starscape is formed when the family of polynomials is two-dimensional; these appear as beaded
necklaces (see Figure 25); planar starscapes are formed from three-dimensional families (see
Figure 2). Planar starscapes contain infinitely many linear starscapes. The reader is invited
to examine the examples in Figures 2a through 2f. These pictures can all be considered gener-
alisations of Figure 15. The ‘repulsion’ of large dots from one another illustrates an analog to
Dirichlet’s approximation theorem (Theorem 3.1), stating that rational numbers cannot well
approximate other rational numbers (see also Figure 14).

As an aside, although we restrict our attention to complex roots, there’s no reason one cannot
seek analogous visualizations for real roots. For example, Figure 9 shows the real pairs that are
roots of quadratics. Or, for cubics with one real root, one could parametrize polynomials by a

algebraicstarscapes.com
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complex root in the upper half plane together with a real root on its ideal boundary: this gives
us a starscape picture living in a solid torus as in Figure 10. See Section 7 for further avenues.

The purpose of this paper is to study algebraic numbers in the complex plane, including
their Diophantine approximation properties, as a function of the homogeneous geometry of the
coefficients-to-roots map. That is, we aim to describe exactly the map from coefficient space
(the space of coefficient vectors of polynomials of fixed degree), and its affine subspaces, to the
root space (collections of points in the complex plane). Starscapes represent the images of affine
subspaces (strictly speaking, the starscape is formed by plotting all the roots occurring in the
root space image). The philosophy is that, with a sufficient understanding of the geometry, we
can state and prove concrete Diophantine results in low degree.

2.2. Geometry. The arithmetic complexity of an algebraic number, although measured in
a variety of ways (see Figures 12 and 13), is typically correlated to the size of the integer
coefficients of its minimal polynomial. The big dots in the image, then, are the image of the
short integer vectors in the affine subspace. If the geometric map from coefficient space to root
space is sufficiently convoluted, these dots may end up close together in the complex plane.
If we can control the behaviour of the geometric map, we can control this effect and prove
Diophantine results.

There are several key geometric points:

(1) The geometric description of the coefficients-to-roots map is studied in detail in de-
grees two and three. The spaces of coefficients and roots decompose as a union of
homogeneous spaces for PSL(2;R), and in these low degrees we may describe the cases
of interest (real polynomials with complex roots) completely in terms of the geometry
of the hyperbolic plane and its unit tangent bundle. See Sections 4.2 and 4.3.

(2) In degree two, we demonstrate that the coefficients-to-roots map (more colloquially
known as the quadratic formula) realizes an isometry between two models of the hy-
perbolic plane. See Theorem 4.9, Corrolary 4.10 and the associated Figure 22 for a
precise formulation. While surely classically known, none of the authors had previously
encountered this surprising aspect of the quadratic formula, and so we have provided
details accessible to students of hyperbolic geometry.

(3) In degree three, the PSL(2,R) action naturally identifies the space of real cubics pos-
sessing a complex root with the unit tangent bundle to the hyperbolic plane. This
identification allows a recasting of many familiar algebraic results in geometric terms.
As a particular example we see the fact that every real cubic has a real root pro-
vides a preferred trivialization UTH2 (Proposition 4.17), and the cubic formula can
be interpreted as a means of explicitly identifying cubics in coefficient-space with their
coordinates with respect to this trivialization (Theorem 4.27).

(4) Concerning the roots map in degree three, the projection onto complex roots naturally
identifies with the bundle map UTH2 → H2. We study the interaction of the lattice of
integer points with this map: for example, can rational affine subspaces be contained
in the fibres? We discuss this, and its implications for starscapes, in Section 4.3.4.

2.3. Diophantine Approximation. Diophantine approximation can be described as the quan-
titative study of the trade-off that is required to approximate a real number from a set of
approximations (for example, rational numbers), namely between the precision of the approx-
imation and the complexity of the approximant. Most of the classical story lives on the real
line, so that, given α ∈ R, we ask for p/q ∈ Q (if approximating with rationals), so that⃓⃓⃓⃓

α− p

q

⃓⃓⃓⃓
<

1

qk

for various positive k. Dirichlet’s Theorem (Theorem 3.1) asserts that for α /∈ Q, and k = 2,
there are infinitely many such approximations, while for algebraic α, and k > 2, Roth’s Theorem
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(Theorem 5.2) asserts that there are only finitely many. Thus, the exponent k = 2 is a critical
exponent for approximation of algebraic numbers by rationals. We might choose approximations
from other sets, such as algebraic numbers of bounded degree. Koksma defines kd(α) to be the
supremum of all k such that there are infinitely many algebraic β of degree ≤ d satisfying

|α− β| < 1

H(fβ)k
.

Here, H refers to the näıve height, and fβ to the minimal polynomial of β.
These questions have naturally been extended to the rest of the complex plane, typically by

reference to the euclidean distance in the complex plane. Thus one may define kd(α) for α ∈ C
also. Sprindz̆uk showed that the real and complex cases are essentially different: kd(α) = d+1
for almost all α ∈ R, but kd(α) = (d+ 1)/2 for almost all α ∈ C (see Theorem 5.3). Bugeaud
and Evertse where able to determine kd(α) for most algebraic α ∈ C\R (Theorem 5.4). In
particular, in the quadratic case they discovered that k2(α) = 2 or 3/2, depending upon whether
the quantities 1, αα and α+ α are linearly dependent or not, respectively.

However, motivated by the geometry of the coefficients-to-roots map which describes the vi-
sual features of the algebraic starscapes, we propose that it make sense to ask about Diophantine
approximation in the hyperbolic metric and with a sensitivity to the action of PSL(2;Z) implied
by the homogeneous geometry. Thus we consider instead the critical exponent k when asking
for approximations in the following sense:

dhyp(α, β) ≤ arcosh

(︃
1 +

1

|∆β |k

)︃
.

Here, ∆β is the discriminant of the minimal polynomial of β, and dhyp represents the hyperbolic
distance. This inequality is preserved under PSL(2;Z) transformations, and we demonstrate,
using Schmidt’s Subspace Theorem, that the critical exponent is either 2 or 3/2, the difference
controlled as in Bugeaud and Evertse’s result. The dependence of 1, αα and α + α can be
reinterpreted as the condition that α lie on a rational geodesic (see Section 4.2.5), i.e. the image
of a plane of rational slope in the coefficient space. These are exactly the linear starscapes of
Figure 1a, which are more densely packed with quadratic irrationals.

This essentially recovers (up to some nuances discussed in Section 6.1.1) the result of Bugeaud
and Evertse for degree 2. But it begs the question if higher degree cases (some of which are
not completely settled) can be similarly described in terms of the geometry of the coefficients-
to-roots map.

2.4. Reading Guide. In Section 4, we describe in detail the map from coefficient space to
root space. A research audience may wish to skip Section 4.1, briefly looking at Section 4.1.3
for the roots map in the linear case, and begin with Section 4.2.4, which concerns quadratic
polynomials. Section 4.2.5 concerns the consequences of the quadratic geometric story for
integer points, which is relevant to the Diophantine approximation we will do later. Section 4.3
tells a similar story for cubics using the geometry of the unit tangent bundle to the hyperbolic
plane, and interprets the cubic formula from this perspective 4.27).

In Section 5, we give the necessary background to Diophantine approximation. The expert
will not find anything new in Section 5.1–5.1.1, but we place the Diophantine results in context
in Section 5.1.2, and argue for the importance of PSL(2;Z) in Section 5.2.1. Sections 5.2.2 and
5.2.3 can again be skipped by the expert. Section 5.2.4–5.2.5 discuss the appropriate choice of
measure of arithmetic complexity.

The number theorist interested in the quadratic results will therefore wish to read Sections
4.2.4–4.2.5, Sections 5.1.2–5.2.1 and then focus on Section 6 (possibly returning to Sections 4.3
for the cubic geometric story, although our Diophantine results are restricted to quadratics). In
Section 6, we revisit the description of the critical exponent for Diophantine approximation of
complex numbers by algebraic numbers of degree 2. We use Schmidt’s subspace theorem, and we
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find that the exponent depends upon whether the complex numbers lies on a rational hyperbolic
geodesic (defined in Section 4.2.5). The main theorems are Theorems 6.3 and 6.4 (analogous to
Dirichlet’s Theorem, asserting infinitely many good quadratic irrational approximations) and
Theorem 6.6 (analogous to Roths’ Theorem, asserting that there are only finitely many better
quadratic irrational approximations).

3. Gallery

3.1. In a galaxy far, far away. The starscapes shown in Figure 1 of the quadratics (1a) and
the family of cubics (1b) have a striking self-similar curvilinear structure: the figures seem to be
populated with beaded necklaces of discs subdividing the plane into smaller regions criss-crossed
with similar, finer, necklaces.

This basic pattern occurs quite generally. To give all polynomials of a given degree each
coefficient must be allowed to change freely. This defines topological space, the “coefficient
space,” of polynomials where each coefficient gives a dimension2. The total dimension of all
polynomials of a given degree is one greater than the degree. It is natural to think of subspaces
of this space and the pattern we describe above seems to appear any time one works with a
three dimensional linear subspace in coefficient space; more examples appear in Figure 2.

As the degree increases, the curves and their relationships become more complicated, but
the basic motif continues. We hope these images justify the term “algebraic starscapes.” When
the family of polynomials is two-dimensional, we obtain a “linear starscape” (that is, a single
beaded necklace threading through the plane; see Figure 25). When a family of polynomials is
three-dimensional, we obtain “planar starscapes” such as those in Figure 2. One may continue
this to higher dimension, but in four-dimensional families such as all cubics (Figure 1c), the
collapse to the complex plane produces much more complicated, less immediately patternful,
although nonetheless enticing, pictures.

The simplest version of the basic motif that seems to pervade these images appears when
looking at a lattice in perspective, as you can see in Figure 3. In this case the points only
form straight lines. The one dimensional version of this effect is sometimes called the orchard
illusion and can be experienced when driving past an orchard planted on a grid (Figure 4).

In the quadratic case (Figure 1a) the lines might actually seem familiar to geometers as
they are the straight lines (geodesics), not in euclidean geometry, but in the upper half plane
model of the hyperbolic plane. In fact Figure 1a is a regular tiling of the upper half plane by a
single tile, under the action of a group of symmetries preserving the hyperbolic distance. More
precisely, the action is that of the modular group PSL(2;Z) (Figure 5).

While the link to hyperbolic geometry and PSL(2;Z) is especially strong in the quadratic
case, it is more generally useful in understanding starscapes. From an aesthetic perspective,
using the hyperbolic metric improves the look of the images close to the real line, as seen
in Figure 6. There are more mathematical justifications for this approach described in later
sections.

The observations we have described so far constitute a näıve visual approach to the images
produced: we are simply asking what it is we are seeing. The underlying geometric explanation,
especially for the quadratic and cubic cases, is developed in far more detail in Section 4, and
the deeper connections to the study of Diophantine approximation in Sections 5 and 6.

3.2. Mostly harmless. The images shown in Section 3.1 are compelling enough to encourage
wider investigation. For example, one might move the families considered away from 0 to give
affine subspaces of the coefficient space, as shown in Figure 7.

2This space starts as Rn, but with polynomials multiplying all coefficients by a constant does not change
the roots of the polynomials. It is natural, therefore to consider such polynomials as equivalent. This gives

projective geometry one dimension lower, as discussed in Section 4.1.
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(a) ax3 + bx+ c = 0 (b) ax3 + bx2 + cx+ a = 0

(c) ax4 + bx3 + cx2 + bx+ a = 0 (d) ax4 + bx2 + bx+ c = 0

(e) ax4 + bx3 + bx2 + bx+ c = 0 (f) ax5 + bx3 + cx2 + bx+ a = 0

Figure 2. Complex algebraic numbers (roots of each polynomial family with
a, b, c ∈ Z) sized by the root discriminant in the hyperbolic metric. Quadratic
numbers are black, cubics red, quartics blue and quintics purple.
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Figure 3. The points (b/a, c/a), for a, b, c ∈ Z with radius proportional to
1/a. To see how this links to the view of a lattice for an observer, see Figure
17.

Figure 4. A sideways view of a grid of rectangles in perspective forming the
orchard illusion.

Figure 5. A tiling by infinite polygons on the hyperbolic plane (a partition
of the hyperbolic plane by the action of PSL(2;Z)). The curves seen here are
some of those seen in Figure 1a.

In these affine subspaces, a couple have particular interest: the algebraic integers (where
the leading coefficient is 1) and the algebraic integer units (where the leading and constant
coefficients are both 1). These are shown for the cubics and quartics in Figure 8.
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Figure 6. The depressed cubics, sized by the root discriminant, plotted in
the euclidean metric (meaning, radii are interpreted as euclidean). Note how
the plot is very dense at the bottom, but light at the top.

Another approach is to consider real roots, or tuples of roots. For example, quadratics with
real roots can be plotted in R× R (Figure 9), though the lack of an ordering on the roots will
cause each to appear twice.

A powerful property of the images of the quadratics with complex roots is that they show
all the information about the roots, as the complex roots come as a complex conjugate pair (so
that all the information is shown with just one of them). To extend this to the cubics requires
an additional dimension. In this case the cubic polynomials with complex roots always have
an additional real root.

To take into account this additional information, we could take a space in C×R given by the
upper half-plane for the complex root and the real line for the real root. We can then add some
rather beautiful geometry to this space, described in detail in Section 4.3. This corresponds
to considering the upper half plane of C as the hyperbolic plane. In this model the real line
in C lies on the boundary of the hyperbolic plane, which contains one additional point, the
point at infinity that pulls the real line back into a circle by connecting the two ends. This can
be considered as the difference between considering the slope and angle of a line on the plane.
As the slope gets more positive or negative the line gets closer to vertical. As a slope this is
not obtainable, but it is can be considered as an angle. The complex root can therefore look
towards any point on this circular boundary.

Considering the pair of a point and direction in a space gives the geometry of the “unit
tangent bundle”. For hyperbolic geometry this can be considered to be a solid torus, where the
circular slices are a disk model of the hyperbolic plane. This torus is a finite region of three
dimensional space so, although we took a bit of a journey the result gives a powerful way to
see the roots of cubic polynomials, as shown in Figure 10.

The cubic families we have considered nicely embed into this picture as 2d surfaces. The
polynomials ax3 + bx2 + ax+ c = 0 having a complex root even create a Möbius strip (Figure
10b). Both of these images are even more powerful when you can manipulate them yourself
in 3d, and we encourage you to check out David Dumas’ beautiful software SL(View) that we
used to make these images ourselves [25]; see algebraicstarscapes.com for the datasets.

A different approach to using the unit tangent bundle is to draw arrows, rather than dots
on the plane. Such images are shown in Figures 29 and 32.

There are many other spaces to explore that have the potential to reveal many aspects of the
structure of algebraic numbers and illustrate various geometric ideas. Using the colour of the

algebraicstarscapes.com
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(a) ax3 + x2 + bx+ c = 0 (b) ax3 + 3x2 + bx+ c = 0

(c) ax3 + (c+ 1)x2 + bx+ c = 0 (d) ax4 + x3 + bx2 + bx+ c = 0

Figure 7. Roots on affine planes in coefficient space.

(a) Cubic algebraic integers (b) Quartic unit algebraic integers

Figure 8. Algebraic integers and unit integers.
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Figure 9. The real quadratics plotted against their algebraic conjugate, with
one root (x-axis) between −1 and 0 and the other between 1 and 2. The large

dot is the Golden ratio (1−
√
5

2 , 1+
√
5

2 ).

(a) (b)

Figure 10. All cubic polynomials shown in the unit tangent bundle to H2

(10a) and the roots of ax3 + bx2 + ax + c = 0 (10b), forming a Möbis strip
within it. Both are shown from the same angle so if you look carefully you can
see the second image in the first. Images are screenshots from SL(View) by
David Dumas [25].

dots has the potential to give pictures with up to 6 dimensions of information (3 spatial and 3
colour (red, green and blue, for example)). As an example, more of the structure of Figure 2d
is revealed when real roots are used to colour points, as shown in Figure 11.

The challenge is to produce images that are attractive, informative or, ideally, both. From
our explorations so far we have found that chasing the first is a surprisingly reliable (though
not guaranteed) path to the second.

3.3. A celestial dance. In all our images so far, there is a feeling that larger dots repel each
other, like binary stars locked in a mutual orbit, unable to approach. We also see remarkable
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Figure 11. The starscape shown in Figure 2d coloured by a real root (simply
the first given by Sage), red for negative and blue for positive, each fading to
white as the absolute value increases. Quadratic Points are black and points
with no real conjugate are shown in gray.

spiraling trajectories of shrinking dots surrounding large ones, like the arms of small galaxies, as
in Figure 1d. We have been using the root discriminant as the way to size the dots: this provides
a rough measure of the “complexity” of an algebraic number. The notion of needing increasingly
complicated algebraic numbers to successively better and better approximate a target is a classic
idea in number theory, and is explored in the field of Diophantine approximation.

The paradigm is that as the polynomial gets more complicated, the dots representing its
roots are drawn smaller. There are many notions of complexity one might use to size the
points. Ideas of “complicated” are generally tied to the coefficients (as in the discriminant);
Figure 12 shows some classic metrics on the coefficients. In Figure 13a we show the Weil height
(or Mahler measure), a more sophisticated way to show complexity. These are all discussed in
more detail in Section 5. Compare with the discriminant in Figure 13b.

From a geometric perspective, we’ve seen that this type of repulsion effect can arise from
a lattice in projection, with the dots appearing smaller in some sense proportional to their
distance. If we consider the lattice of points (p, q) for p, q ∈ Z, we can map to a line by taking
p
q and get the rational numbers, as in Figure 16 and its result, Figure 15. In this setup, the

points are sized inversely to their denominators. But as it turns out, the traditional measure of
arithmetic complexity of a rational number is in fact, simply its denominator! The geometric
aligns with the arithmetic. This is the most elementary example of the relationship between
geometry and arithmetic that plays out throughout the paper.

A natural arithmetic question is to ask how well a real number can be approximated by
rationals. The first answer to this, of course, is that the rational numbers are dense, so you
can get approximations as close as you wish. On the other hand, one might consider 22

7 to be a
surprisingly good approximation for π, given the simplicity of the numerator and denominator.
After all,

⃓⃓
π − 22

7

⃓⃓
< 0.0013. To quantify this, it’s convenient to imagine a cost (the complexity)

of a rational number, with higher denominators considered more expensive. We can then ask
which approximations are particularly good value for money.

To illustrate such approximations, we could surround each rational number with a disk,
where more expensive points have smaller disks; then we could call an approximation to α ∈ R
good if the corresponding disk covers α. This notion is, of course, very dependent on the disk
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(a) The 1-Norm on the coefficients (sum of absolute value).

(b) The standard euclidean norm on the coefficients.

(c) The ∞-Norm giving the largest absolute coefficient.

Figure 12. Complex roots of polynomials of the form ax3+ bx2+ cx+a = 0,
using different dot sizing from the geometry of the coefficients, given by the
inverse of the given quantity. All points with a, b, c between −40 and 40 are
plotted, in the region between −2.5 and 2.5 on the real axis and 0 and 2 on
the imaginary axis, for a total of 231710 roots.

sizing. It turns out a sizing of 1
q2 is a sort of cusp in behaviour, as demonstrated by the following

theorem3 illustrated in Figure 14.

Theorem 3.1 (Dirichlet’s Approximation Theorem). For any α ∈ R, α is irrational if and
only if there exist infinitely many distinct p/q ∈ Q such that

|α− p/q| < 1/q2.

3The theorem as stated here is most commonly known as Dirichlet’s Approximation Theorem, but this
theorem was already known to Legendre [39] as a result of the study of continued fractions. The proof we give

in Section 5.1 is Dirichlet’s and actually gives a stronger asymptotic approximation result.
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(a) The Weil Height, or Mahler measure.

(b) The root discriminant as used more generally in the paper.

Figure 13. Companion to Figure 12, showing two sizings based on the poly-
nomial and number theory of the roots.

Figure 14. Disks centred at rational numbers p
q between 0 and 3 with radius

1
q2 , illustrating Dirichlet’s theorem.
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Figure 15. Disks centred at rational numbers p
q between 0 and 3 with radius 3

20q2 .

This gives good approximations to irrational numbers (the p/q that satisfy Theorem 3.1)
and also shows that the rational numbers cannot be easily approximated by other rationals,
demonstrating the idea that the points are repelling each other. By scaling the points down,
the repulsion rather than the notion of approximation becomes clearer, and we have an image
close to a one dimensional version of the starscapes (Figure 15).

These ideas and pictures lie at the heart of Diophantine approximation. Linking geometry
and number theory, they provide many of the key ideas that can be extended to the algebraic
numbers. It is therefore with geometry that we will start the next section, moving from a study
of images to the mathematical ideas expressed in them. In later sections, we will return to
Diophantine approximation, motivated by the geometry to recast and reprove some variations
on and extensions of standard results.

4. Geometry

The gallery images show some structures in the lattice of polynomials over the integers,
viewed in two dimensions by drawing their roots in the complex plane. Because polynomials
are basic and important objects across mathematics, it should perhaps be no surprise (although
it was one to the authors!) that their geometric story involves many familiar characters: from
projective geometry and discrete groups, to hyperbolic space, the representation theory of
SL2(C) and symmetric powers of the sphere. A recurring theme:

Patterns in the distribution of algebraic numbers are shadows of the geometry
of their lattice of minimal polynomials.

Throughout the geometry section, we will formulate precise versions of the above statement
in degrees two and three, where there is a beautiful connection of the geometry of polynomials
to the geometry of the hyperbolic plane. We attempt to increase the required prerequisites only
gradually, to allow readers at many levels to chart their own paths through the material. In
particular, researchers may want to read the high level overview Section 4.0.1: A birds eye view
immediately below, and then move directly to any theorem of particular interest. Students may
wish instead to skip this fast-paced summary and begin reading at Section 4.1, which provides
an introduction to projective space.

4.0.1. A Bird’s Eye View. The main actor in this story is the roots map R sending the coeffi-
cients of a complex polynomial to its multi-set of roots. This provides a two-way bridge between
the space of polynomial solutions and their coefficients, relating the structures in these images
directly to structures already present in their sets of minimal polynomials. Making use of this
bridge requires understanding what kind of information (topological, representation-theoretic,
geometric) survives the trip. We summarize three main themes here:

• The fundamental theorem of algebra implies that the roots map is a homeomorphism
between the spaces of roots and coefficients over C. Thus topological properties of
collections of algebraic numbers are equivalent to topological properties of their corre-
sponding sets of minimal polynomials.

• For F ∈ {R,C}, the roots map R is equivariant with respect to natural PSL(2;F)
actions on the spaces of roots and coefficients. This equips each of these with a no-
tion of geometry preserved by R. Thus, geometric properties of the space of minimal
polynomials determine geometric properties of the algebraic numbers.
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• In small degree, this action has finitely many orbits, decomposing the space of polyno-
mials into a union of homogeneous geometries for PSL(2;F).

By ‘geometric’ throughout, we mean in the sense of homogeneous geometry, following Felix
Klein. In a vast generalisation of euclidean geometry, Klein proposed in his 1872 Erlagen
Programm that a geometry is defined as a space X, together with the transitive action of a
group G. This group action is interpreted as the allowable, or ‘rigid’ motions of this geometry,
its transitivity implies the geometry is homogeneous or behaves the same at every point4.

In the sections that follow, we give a detailed analysis of the roots map in low degree, and
introduce the necessary geometric objects as they arise. In particular, we use the geometry of
homogeneous spaces for PSL(2;R) to give an interpretation of the quadratic and cubic formulas
in terms of familiar geometric spaces:

• The space of real quadratics (those with real coefficients) with complex roots identifies
with the hyperbolic plane. Restricted to this subset, the roots map (the quadratic
formula) is an isometry between the projective model (in coefficient space) and upper
half plane model (in root space).

• The space of real cubics with complex roots is topologically a solid torus, and identifies
with the unit tangent bundle to the hyperbolic plane. The roots map is an isometry
between the models of this geometry constructed from coefficients and roots, respec-
tively.

• Viewing the space of these cubics as the unit tangent bundle to H2 gives a geometric
factorization of the cubic formula. Computing the complex and real roots amounts to
a projection onto the base and fiber (with respect to a fixed trivialization) respectively.

As the algebro-geometric study of polynomials of low degree spans centuries, these are almost
certainly not new, but we do not know of a reference. We prove them in this section (Theorems
4.3, 4.10, 4.14, 4.26 and 4.27) for the benefit of the reader. These geometric interpretations
provide both insight into the gallery images and new perspectives on results from number
theory. We summarize some of these insights here.

• The starscapes are naturally interpreted through hyperbolic geometry. Inversion in the
unit circle and translation along a horocycle through ∞ preserve integer polynomials,
explaining the evident SL(2;Z) symmetry in figures such as Figure 1a and Figure 1c.

• The roots map is an isometry, so we can measure distances between quadratic numbers
explicitly using the discriminant quadratic form on their minimal polynomials, which
we will use in Section 6.

• The identification of cubics having complex conjugate roots with the unit tangent bun-
dle to H2 suggests new ways of visualizing cubic numbers: as subsets of the solid torus
(Figures 10a, 28b, 30) and as vector fields in C (Figure 29).

• Under this identification, two parameter families of cubics embed in C via the roots
map when everywhere transverse to the fibers of the unit tangent bundle. This provides
a condition on precisely when the projection onto the complex root is not a homeomor-
phism: compare and contrast Figures 7c and 32b.

4.0.2. Notation. We briefly collect here some useful notation and conventions used throughout.
A complex polynomial of one variable is a function f : C → C of the form f(x) = anx

n +
· · · + a1x + a0 for a0, . . . an ∈ C. Throughout this section we focus instead on homogeneous
polynomials, which are polynomials in x, y where each term has constant total degree, i.e. of
the form anx

n+an−1x
n−1y · · ·+a1xy

n−1+a0y
n for a0, . . . , an ∈ C. These generalize the single

variable case (setting y = 1 returns its single variable counterpart) with several advantages.

4From this perspective the euclidean plane is R2 equipped with the group of rotations, translations and
(glide) reflections. Projective geometry, hyperbolic geometry, and de Sitter space are other common examples,

which we will encounter throughout our journey.
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Chiefly, binary forms of degree n naturally include all single variate polynomials of lower degree5,
providing spaces to study all algebraic numbers of bounded degree.

For a fixed degree n, we let Coefsn be the space of all coefficients of all degree n binary
forms, and Rootsn be the space of all multi-sets of their roots (we drop the subscript when
no confusion results). For binary forms, it is convenient to allow roots to lie in the extended
complex plane CP1 = C ∪ {∞}. In this way, every polynomial of degree n has exactly n roots
(with multiplicity)6. The roots map Rn : Coefsn → Rootsn returns all roots of a polynomial
as a function of its coefficients. As the roots of a polynomial are unchanged by rescaling all
coefficients by a constant, we abuse notation and also write Rn for the roots map on scaling
classes Rn : PCoefsn → Rootsn. Similarly, we write ∆n : Coefs → C for the discriminant,
dropping n when unambiguous.

Often, we will identify a certain subset of polynomials with some geometric or topological
space X. Depending on our perspective, we may find it useful to think of these as either being
built out of the polynomial’s coefficients or its roots. To keep these two conceptually distinct,
we will often decorate X accordingly, writing XCoefs ⊂ Coefs and XRoots ⊂ Roots. Some of
the important spaces that arise in this way (and will be defined in the following sections) are
the projective spaces RP1,CP1, their generalisations RPn,CPn, the symmetric powers of the
sphere SPn(CP1), and the hyperbolic plane H2.

4.1. Projective geometry and rational numbers. An analysis of the rational numbers
Q provides a gentle introduction to the recurring themes of this section, and an excellent
first introduction to projective geometry. Secretly of course, this is just the story of linear
polynomials over Z and their roots. The simplicity of the roots map R(ax− b) = b/a allows us
to suppress much of this formalism and focus on examples of our main idea: complex patterns
that reveal themselves when viewed as shadows of some higher dimensional structure.

After introducing projective geometry, we provide two examples of this. We give the geo-
metric explanation for the otherwise strange mediant addition law p

q ⊕ r
s = p+r

q+s used in the

construction of Farey sequences, and enumeration of the rationals via the Stern-Brocot tree.

4.1.1. Projective Space. Recall that every rational number r is the quotient of two integers
r = p/q, so it is natural to expect our analysis of Q to be deeply intertwined with the lattice
Z × Z. However, to actually build Q from Z × Z, there are two minor complications to be
resolved: (1) a pair (p, q) ∈ Z× Z does not uniquely determine a rational number, as p

q = np
nq ,

and (2) not all pairs (p, q) ∈ Z×Z determine rational numbers, as division by zero is undefined.
Both of these issues evaporate upon the realization that as ratios of integers, we should not
model rationals by points in Z × Z but rather as slopes. This is more memorably stated as
follows:

The rational numbers Q are what the integer lattice Z×Z looks like if you stand
at the origin (0, 0) and look around (Figure 16).

Formally, considering objects up to scaling is called projectivization, and scaling classes of
pairs of integers form the rational projective line or QP1:

QP1 = {(p, q) ̸= 0⃗ | p, q ∈ Z}
/︂
(p, q) ∼ (np, nq) .

The points of QP1 are denoted [p : q]. Note that by definition these points are unchanged by a
global scaling of their coordinates, resolving issue (1) above: for example [p : q] = [2p : 2q] =
[pq : 1]. Thus, one may recover the usual perspective of the rational numbers as points on a line

5For example the linear polynomial 2x+3 can be thought of as the homogeneous linear polynomial 2x+3y,

or the homogeneous quadratic 2xy + 3y2, or the homogeneous cubic 2xy2 + 3y3, etc.
6Again taking the univariate polynomial 2x+3 as an example, thought of as a linear homogeneous equation

this has a single root. But thought of as a quadratic, such linear equations have an additional root “at infinity”.
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Figure 16. The rational numbers as the projection of integer lattice (left)
onto an affine patch (middle) and visual sphere (right). The darker point on
the left represent the first point on each rational slope, as viewed from the
origin (lower left dot).

from this, by imagining a screen (called an affine patch) placed a unit distance in front of one’s
eyes. The rational number [p : q] projects onto this screen to [pq : 1] (Figure 16, middle).

This definition automatically resolves point (2) as well, and gives a rigorous interpretation
for 1/0 as the projective point [1 : 0] ∈ QP1 associated to the horizontal axis in the plane. This
line does not intersect the affine patch {[x : 1] | x ∈ Q}, so it is not a rational number but a
point at infinity, often denoted [1 : 0] = ∞. The rational projective line fixes the asymmetry
of Q’s relation to Z × Z by adding a single point: QP1 = Q ∪ {∞}. There are many contexts
in which scaling classes are the right objects to consider, and this construction generalizes far
beyond the rational numbers.

Definition 4.1. Let F be a field, and n ∈ N. Then n-dimensional projective space over F,
denoted FPn, is given by scaling classes of the nonzero elements of Fn+1 up to elements of F×:

FPn = {x = (x1, . . . , xn+1) ̸= 0⃗ | xi ∈ F}
/︂
(x = ax, a ∈ F×) .

An equivalence class in FPn is denoted [x] = [x1 : x2 : · · · : xn+1]. Given X ⊂ Fn+1\0⃗, we write
PX = {[x] | x ∈ X} ⊂ FPn for the scaling classes of all elements in X. An affine patch of FPn

is a subset homeomorphic to Fn equivalent to {[x1 : x2 : · · · : xn : 1]} under some change of
coordinates.

Figure 17. Real projective space can be constructed from a solid ball by
identifying its boundary via the antipodal map. Here we see this in dimensions
1, 2 and 3.

Remark 4.2. For any field F, we may see that FP1 ∼= F ∪ {[1 : 0]} = F ∪ {∞} by the same
argument as for Q. In fact, FP1 is the one point compactification of F. For example, RP1 is a
circle and CP1 is a sphere.
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For us, a main advantage of this perspective7 is to aid in switching back and forth between
thinking about objects in FPn and objects in the higher dimensional space Fn+1. We give two
simple, but surprisingly beautiful applications of this below.

4.1.2. QP1 and the Stern-Brocot Tree. A means of representing the lowest-terms representative
of each rational number by an infinite binary tree was discovered independently by Stern and
Brocot in the mid 1800s. This tree is depicted in Figure 18. The construction of the tree is
inductive, where the elements of the nth row are produced from those in prior rows by taking
mediants. The mediant of two fractions p

q and r
s in lowest terms is the fraction p+q

r+s , which

appears to be a rather algebraically unnatural construction8. Taking mediants is a common
step in such enumeration sequences (including the Farey sequence, a source of much beautiful
mathematics on QP1), but is best understood not as an algebraic operation on Q but rather
as a geometric operation on QP1. Indeed, before projectivizing, the points (p, q) and (r, s) are
vectors in R2, and here the mediant operation is simply vector addition! This is completely
natural geometrically on QP1: given two points, lift to their representatives in Z2 which are
closest to the origin. These two vectors determine two sides of a parallelogram, whose main
diagonal connects you directly to the mediant.
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Figure 18. The Stern-Brocot Tree enumerating the rationals, and a geometric
description of the mediant of two fractions, essential to its construction.

4.1.3. The Roots Map. We briefly record the roots to linear equations ax + b in our standard
notation, for later use when discussing cubics. Over C, the space of coefficients identifies
naturally with C2 = {(a, b) | a, b ∈ C}, and so up to scaling we have PCoefs = CP1. The space
of their roots is also CP1, thought of as the extended complex plane; as ax+ b (thought of as
the homogeneous equation ax + by on CP1), has the unique root [−b : a] = [−b/a : 1] when
a ̸= 0 and otherwise ∞ = [1 : 0]. Thus the roots map here is a linear isomorphism of CP1 with
itself:

R1 : CP1
Coefs → CP1

Roots [a : b] ↦→ [−b : a]

This gives a natural identification between the spaces of roots and (projectivized) coefficients,
allowing us to simplify the stories above. In the following sections, R will continue to be a
homeomorphism PCoefs → Roots, and topologically the mapping from a polynomial’s coef-
ficients to its solutions is still equivalent to projectivization. However, R is no longer such a

7In addition to managing to rigorously make sense of 1/0 of course!
8However, it is certainly a visually natural thing to try given our representation of rationals as quotients -

indeed probably the most common mistake when first learning arithmetic is to add rationals by taking their

mediant!
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simple isomorphism, and much of the work involved in accurately transferring information from
coefficients to roots involves a careful analysis of R and the symmetries it preserves.

4.2. Hyperbolic geometry and quadratic numbers. Some of the striking images in the
gallery involve quadratic numbers, or solutions in C to degree-two polynomials with integer
coefficients ax2 + bx + c. The suggestively “hyperbolic” nature of these (Figure 1a) is no
accident; and the goal of this section is to make this connection explicit. In particular, we
prove the following.

Theorem 4.3. Let H2
Coefs be the projectivized set of coefficients of real quadratics with complex

roots and H2
Roots be the set of their root-sets, equipped with the following metrics:

• H2
Coefs = {[a : b : c] | b2 < 4ac} is given the projectively invariant metric it inherits as

a convex subset of RP2,
• H2

Roots = {{x ± iy} | x, y ∈ R, y > 0} is given the Möbius-transformation invariant

metric from identification with the upper half plane ⊂ CP1.

Both of these spaces are isometric to the hyperbolic plane. Furthermore, the quadratic for-

mula, given as the map [a : b : c] ↦→
{︂

−b±i
√
4ac−b2

2a

}︂
is an isometry between these two metrics.

This theorem is our main goal in Section 4.2; we will take some time to explain the met-
rics and invariances just referenced. Throughout we attempt to emphasize how how natural
symmetry considerations might lead one to have conjectured this theorem in the first place.

4.2.1. Complex Quadratics. Irreducible quadratics over R have pairs of complex conjugate
roots, which makes the complex numbers integral to our discussion. As such, we begin with a
discussion of homogeneous quadratics over C. This has several advantages9, and after getting
comfortable here we will restrict back to real coefficients to prove Theorem 4.3. In this section
we precisely define the space of coefficients, space of roots, and the map R : Coefs → Roots for
complex homogeneous quadratics. This lays the foundation for a bridge between properties of
quadratic numbers and properties of their minimal polynomials, by the following observation.

Observation 4.4. The roots map R : Coefs → Roots is a homeomorphism from the space of
complex homogeneous quadratics to the multi-sets of their roots in CP1.

The polynomial f = ax2 + bxy + cy2 is determined by its coefficients a, b, c ∈ C, so Coefs ∼=
C3. We denote the scaling class of a quadratic f = ax2 + bxy + cy2 by [f ], with coefficients
[a : b : c] ∈ PCoefs = P(C3) = CP2 in the complex projective plane. The roots map R is just the
quadratic formula; taking the polynomial with coefficients [a : b : c] with a ̸= 0 to its solutions

[−b
2a ±

√
b2−4ac
2a : 1], or [−b ±

√
b2 − 4ac : 2a] after clearing denominators10. The space of roots

comes with no natural ordering. Thus, Roots does not identify with the space of ordered pairs
CP1 × CP1 of points in the extended complex plane, but rather the set of unordered pairs in
CP1. This space is called the second symmetric power of CP1, and we write Roots = SP2(CP1).
An explicit construction of this space results from the quotient of CP1 × CP1 by the action of
Z/2Z swapping coordinates.

Remark 4.5. It may be helpful to pause here to gain some intuition from the lowest-dimensional
example of a nontrivial symmetric power. The second symmetric power of a circle SP2(S1) is
the quotient of a torus S1 × S1 by the involution (x, y) ↦→ (y, x) This fixes the diagonal (x, x),
and the quotient is a Möbius strip with these points as the boundary curve (Figure 19).

9As C is algebraically closed, the space of roots is easy to describe, defining the roots map does not require
passing to a field extension, and the PSL(2;C) symmetry can be exhibited at its most natural level of generality.

10It is quick to check that as r → ∞ the coefficients of the polynomial (x−ry)(ax+by) converge projectively
to [0 : a : b] and the roots to {[1 : 0], [−b : a]} = {∞,−b/a}. Thus the quadratic formula extends continuously

to linear equations interpreted as ‘quadratics with roots at infinity’ as noted in Section 4.1.



Starscapes 23

Figure 19. The space SP2(RP1) of unordered pairs of points on the circle
RP1 ∼= S1 is homeomorphic to a Möbius band.

The space of quadratic polynomials parameterized by their roots is SP2(CP1), a space built
from the sphere in much the same way as the Möbius strip SP2(S1) was built from the circle in
Remark 4.5. See the text following Observation 4.4, for the discussion of this. Not only do every
pair of points in CP1 determine a scaling class of quadratics, but as a consequence of the funda-
mental theorem of algebra, every scaling class has two roots (with multiplicity) determining it.
Together with the continuity of R, this implies that the roots map is a homeomorphism11 from
Coefs = CP2 to Roots = SP2(CP1). Thus topological properties of (projectivized) collections
of quadratic polynomials completely determine the topology of their collection of roots. To
strengthen this connection, we next focus on natural symmetries of the space of polynomials
which are preserved by the roots map. We will see these symmetries are actually isometries of
natural choices of metrics on both the space of coefficients and roots, which will be instrumental
in our proof of the main theorem, 4.3.

4.2.2. PSL(2;C) Symmetry. From both the roots and coefficients perspectives, quadratics are
intimately tied to complex projective spaces. But these spaces are only half the story. To work
geometrically, we must also describe their groups of allowable motions. As projective space
CPn is just scaling classes of vectors in Cn+1, the most natural group of symmetries is the
linear group GL(n + 1;C) acting on these scaling classes via A.[v] = [Av] for A ∈ GL(n;C),
[v] ∈ CPn. For simplicity, we may consider these matrices up to constant multiples as well, and
take the projective special linear group PSL(n+ 1;C) = {[A] | detA = 1} as the symmetries of
CPn. For points in CP1 thought of as C ∪ {∞}, these are known as Möbius transformations:
the transformation corresponding to ( p q

r s ) acts on z ∈ C as(︃
p q
r s

)︃
.z =

[︃
p q
r s

]︃
.[z : 1] =

[︃(︃
p q
r s

)︃(︃
z
1

)︃]︃
=

[︃(︃
pz + q
rz + s

)︃]︃
=

[︃
pz + q

rz + s
: 1

]︃
=

pz + q

rz + s
.

Thus, PCoefs ∼= CP2 naturally has the symmetries of PSL(3;C). As Roots = (CP1×CP1)/Z2

is built from the complex projective line, the natural symmetries of the space of roots are

11This is an important argument in its own right, for it shows topologically the symmetric power SP2(S2) is
the complex projective plane in disguise. In particular, it is a closed manifold. Compare this with Remark 4.5
where SP2(S1) is a manifold with boundary. This generalizes to arbitrary degree n, and the roots map provides

a homeomorphism Rn : CPn ∼→ SPn(CP1).



24 EDMUND HARRISS, KATHERINE E. STANGE, STEVE TRETTEL

PSL(2;C), inherited from CP1 via [A].{[z], [w]} = {[Az], [Aw]}. Initially these two notions
of geometry are completely independent, constructed from our models of Roots and Coefs
respectively. However, given that R : Coefs → Roots is a homeomorphism, we may use it to
compare the symmetries on one side to the other. The main observation of this section is that
these two actions are actually compatible12 with each other.

Observation 4.6. Moving the space of roots by a (projective) linear transformation is rep-
resented on the space of coefficients by a (projective) linear transformation as well. That is,
conjugation of this action by R−1 embeds PSL(2;C) into PSL(3;C).

One may then directly convert any knowledge about this representation into geometric state-
ments binding the spaces of roots and coefficients yet closer together. This PSL(2;C) action on
the space of coefficients has a natural description: conjugation by the roots map simply declares
that [A] ∈ PSL(2;C) send the polynomial with roots {[z], [w]} to the polynomial with roots
{[Az], [Aw]}. Writing this out explicitly, let A = ( p q

r s ) ∈ PSL(2;C) and f be a homogeneous
quadratic with coefficients [f ] = [a : b : c]. Then [A].[f ] = [f ◦A−1], which gives the following.

f

(︃[︃
s −q
−r p

]︃ [︃
x
y

]︃)︃
= f

(︃[︃
sx− qy
py − rx

]︃)︃
= a(sx− qy)2 + b(sx− qy)(py − rx) + c(py − rx)2

Expanding and collecting like terms in xiyj shows that the new coefficient vector is a linear
transformation of [a : b : c] involving p, q, r, s, which confirms Observation 4.6. Specifically, the
coefficients of [A].[f ] satisfy[︃

p q
r s

]︃
.[a : b : c] =

⎡⎣⎛⎝ s2 −rs r2

−2qs qr + ps −2pr
q2 −pq p2

⎞⎠⎛⎝a
b
c

⎞⎠⎤⎦ . (1)

This 3× 3 matrix is the representation of ( p q
r s ) acting on Coefs = CP2. Let ρ : PSL(2;C) →

PSL(3;C) denote this representation. By construction, for each A ∈ PSL(2;C) we have
f(A.[x : y]) = (ρ(A).f)([x : y]). This implies the roots map is ρ-equivariant, satisfying the
following important identity:

R (ρ(A).f) = A.R(f). (2)

In principle, this formula for the action lets us completely compute anything we desire
about the relationship between the spaces of roots and coefficients (including the quadratic
formula itself, Corollary 4.10). This PSL(2;C) action divides the space of quadratics into two
components: those with a double root, and (the generic case) those with distinct roots. Each of
these components forms a singe PSL(2;C) orbit, which we may see as follows. For quadratics
with a double root, note for any a = [a1 : a2] ∈ CP1 the symmetry13 A =

(︁
a2 −a1
a1 a2

)︁
∈ PSL(2;C)

takes f = x2 to the quadratic (a2x − a1y)
2 with double root a. More abstractly, one may

deduce this for the component containing quadratics with distinct roots from the fact that
PSL(2,C) acts freely and transitively on distinct triples in CP1 (see [53] for this and other
useful facts in projective geometry). That is, given any quadratic f with roots a, b ∈ CP1,
choosing any arbitrary c ̸∈ {[0 : 1], [1 : 1], a, b} there is a unique A ∈ PSL(2;C) taking (a, b, c)
to ([0 : 1], [1 : 1]), and thus taking f to the fixed quadratic x(x − y). Because the action of
PSL(2;C) is transitive on each of these components, they can be interpreted as homogeneous
geometries in the sense of Klein. This allows us to use geometric properties to understand the
behavior of the roots map.

12This picture may already be familiar from representation theory: the action of PSL(V ) on a 2-dimensional

complex vector space V induces actions on symmetric powers of V , which are the irreducible representations of

PSL(V ). Projectivizing this picture under an identification V = C2 yields the result we exposit here.
13indeed there are many choices for A: if a ∈ C then A =

(︁
1 a
0 1

)︁
also works.
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4.2.3. Real Quadratics. We now turn to quadratics with real coefficients. The spaces of real
quadratics naturally inherit their topology and geometry as subsets of the corresponding spaces
over C. This reduces the space of coefficients from C3 to R3, so we work with the projective
plane PCoefs = RP2, and its symmetries PSL(3;R). The space of roots is more complicated
to describe due to the fact that real quadratics may have complex roots. However, as the
roots map is a homeomorphism over C, we can immediately determine its topology: Roots =
R(PCoefs) = R(RP2) ∼= RP2. We will denote these two models of projective space as RP2

Coefs,
RP2

Roots in what follows.

RP2
Coefs =

{︁
[a : b : c] | (a, b, c) ∈ R3\0

}︁
⊂ CP3

RP2
Roots =

{︁
{x, y} | x, y ∈ RP1

}︁⋃︂
{{x± iy} | x, y ∈ R, y > 0} ⊂ SP2(CP1)

The natural symmetry group on the roots restricts to PSL(2;R), and equation (1) confirms
that the representation faithfully translates this to a subgroup of PSL(3;R) on the coefficients.
Thus R : RP2

Coefs → RP2
Roots remains equivariant with respect to the PSL(2;R) symmetries on

each side. Recall that over C, this action divided the space of quadratics into two orbits. Any
two polynomials with distinct roots are related to one another by a symmetry transformation,
as are any two with a double root; but PSL(2;C) cannot convert one type into the other. Over
R the story gets more interesting, as the generic case (polynomials with distinct roots) splits.

Observation 4.7. The PSL(2;R) action divides the space of real quadratics into three orbits14:
(1) quadratics with a double real root, (2) quadratics with distinct real roots, and (3) quadratics
with complex conjugate roots.

The orbit (1) is homeomorphic to a circle15 as any point [p : q] ∈ RP1 determines a quadratic
f = (px− qy)2 with double root at [p : q]. The orbit (2) of quadratics with distinct real roots
identifies with the space of unordered pairs of points of RP1, which we saw in Remark 4.5 to
be the Möbius band. We are mainly interested in orbit (3), which consists of unordered pairs
of complex conjugates in C\R. Each such pair contains a unique point x + iy with y > 0, so
we identify this with the upper half plane in C. As the PSL(2;R) action is transitive on each
orbit, all three of these pieces inherit the structure of a homogeneous geometry, listed below.

(a) Double Root (b) 2 Real Roots (c) 2 Complex Conju-
gate Roots

Figure 20. The four PSL(2;R)? orbits on the RP2 of real quadratics, as
subsets of RP2. These are the three homogeneous spaces of Observation 4.8
As in Figure 17, the topology of each component is recovered by identifying
points on the boundary circle via the antipodal map. Compare to the analogous
decomposition of RP3 for cubics in Figure 26.

14On RP2
Coefs, the orbit of quadratics with double root is exactly the discriminant locus (the set of polynomials

whose discriminant is equal to zero); its complement is the union of the other two orbits.
15In fact, from here, elementary topology completes the story as all separating circles divide RP2 into a

Möbius strip and a disk, giving the topological type of (2) and (3) respectively.
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Observation 4.8. The PSL(2;R) action on the projective plane of real quadratics divides it
into three disjoint homogeneous geometries.

(1) The geometry of quadratics with a double root is the familiar geometry of the real
projective line.

(2) The geometry of quadratics with distinct real roots is de Sitter space, a two dimensional
geometry relevant to relativistic physics16.

(3) The geometry of quadratics with complex conjugate roots is a hyperbolic plane (the disk
in Figure 20c equipped with the projective action of PSL(2;R).

4.2.4. Hyperbolic Geometry and the Roots Map. It is the real quadratics with complex roots
which are responsible for some of the beautiful images in the gallery such as Figure 1a, so we
study the hyperbolic geometry which underlies them17. An abstract understanding of hyper-
bolic space is insufficient for our goals, which rely on an explicit understanding of the geometry
of the roots map R. Thus we need to consider both the model H2

Coefs of hyperbolic geometry
given by the coefficients of these polynomials, and model H2

Roots formed by their roots. For an
excellent exposition of these models and more, see [18].

We begin with H2
Roots. Identifying this space with the upper half plane {x+ iy | y > 0} ⊂ C,

the Riemannian metric18 for hyperbolic geometry is ds2 = (dx2+dy2)/y2, which follows directly
from the PSL(2;R) action, translating the standard metric dx2 + dy2 at i around by the group
action.

The length of paths in the hyperbolic plane is computed via integrating this infinitesimal
arc length: given a curve γ(t) = (x(t), y(t)) defined for t ∈ [a, b], its length is Length(γ) =∫︁ b

a
x′(t)2+y′(t)2

y(t)2 dt. The geodesics of hyperbolic geometry are given by arcs of semicircles whose

centers lie on the boundary y = 0, together with vertical lines (circles of infinite radius). These
geodesics determine all length minimizing segments in the hyperbolic plane: if p, q are two
points in hyperbolic space and γ is a geodesic passing through p and q, then the segment of γ
connecting them achieves the minimum distance among all curves joining p to q. This allows
us to compute explicitly the distance function on hyperbolic space: if x1 + iy1 and x2 + iy2 in
H2

Roots, the distance between them is given by

dRoots(x1 + iyi, x2 + iy2) = acosh

(︃
1 +

(x2 − x1)
2 + (y2 − y1)

2

2y1y2

)︃
(3)

Hyperbolic geometry has a well-defined notion of an ideal boundary, consisting of points at
infinity. For the upper half plane model, we may describe these points as the idealized endpoints
of geodesics: if γ is any hyperbolic geodesic, the limits limt→±∞ γ(t) lie on the ideal boundary.
Concretely, this consists of all points on the real line y = 0 (the endpoints of all semicircle
geodesics, and one endpoint of each vertical geodesic) together with a single additional point
traditionally labeled ∞ (denoting the idealized endpoint of all vertical geodesics not lying on
the real line). See [3], Chapter 1 for more details on the upper half plane model and its ideal
boundary.

Next, we turn to H2
Coefs. Here the basic geometry is likely familiar from the study of conic

sections, often studied in high school mathematics. Generic real quadratics have either two real
roots or a pair of complex conjugate roots, as determined by the discriminant ∆(ax2+bx+c) =

16De Sitter geometry is a particular geometry not of space, but rather of spacetime. In this particular case,

De Sitter 2-space describes a world with one space and one time dimension of positive curvature. Geometrically,
this is just the hyperboloid of 1-sheet x2 + y2 − z2 = 1 in R3 equipped with the action of SO(2, 1).

17Hyperbolic geometry, commonly denoted H2, is the unique two dimensional geometry with constant nega-

tive curvature, and was the first non euclidean geometry discovered. Negative curvature implies that H2 violates
Euclid’s fifth postulate with an infinitude of parallel lines to a given line through any point not on it. For an

introductory treatment of the hyperbolic plane, see [3].
18A Riemannian metric is a choice of inner product for each tangent space, which allows one to measure the

length of vectors, and hence the arc length of curves.
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b2−4ac being positive or negative, respectively. In fact, this and more can be explicitly recovered
from studying the PSL(2;R) action given by the representation ρ on RP2

Coefs. We focus here on
the polynomials with complex roots; similar reasoning applies in the other case. As PSL(2;R)
acts transitively on H2

Roots, we may recover the entire space as the orbit of any point. Using
the defining property R(H2

Coefs) = H2
Roots and equation (2), we see that

H2
Roots = PSL(2;R).{±i} =⇒ H2

Coefs = ρ (PSL(2;R)) .[1 : 0 : 1], (4)

as [1 : 0 : 1] are the coefficients of x2 + 1, with roots {±i}. Computing this orbit19, the
hyperbolic space H2

Coefs is the projectivization of the negative cone20 of the discriminant ∆;
that is H2

Coefs = {[a : b : c] | 4ac > b2}. Topologically H2
Coefs is a disk, but depending on the

affine patch of RP2 that we choose it may take different forms. Indeed, the patch [1 : b : c],
corresponding to taking monic representatives, represents H2

Coefs as the interior of a paraboloid,
with one point on its ideal boundary at infinity: H2

Coefs = {[1 : b : c] | 4c > b2}.

Figure 21. The cone determined by the discriminant in R3, together with
two affine patches giving the usual Klein model (left) and a parabola model
(right) of H2.

As H2
Coefs is a properly convex set in RP2, it can be endowed with a natural metric invariant

under projective transformations21. See [18] for a more detailed analysis of this projective, or
Klein Model of the hyperbolic plane.

As the discriminant carries all the geometry associated with the PSL(2;R) symmetries, there
is a nice description of this metric in terms of ∆. This is most apparent for the Riemannian
metric after pulling back to the hyperboloid in R3: if v ∈ R3 is any tangent vector to the

19The entire action of PSL(2;R) on R3 via the representation ρ preserves the quadratic form ∆, and the

inner product ⟨(a1, b1, c1), (a2, b2, c2)⟩ = b1b2 − 2a1c2 − 2a2c1 for which ∆(v) = ⟨v, v⟩. Thus the symmetries of
H2

Coefs are contained in the special orthogonal group of this form SO(∆), the orthogonal group of a quadratic
form q is the group of all matrices with determinant 1 whose action leaves q invariant: SO(q) = {A ∈ SL(n;R) |
q(v, w) = q(Av,Aw)}. The indefinite orthogonal group SO(∆) has two components, determined by whether

or not a symmetry preserves or swaps the two sheets of the hyperboloid. The representation ρ is actually an
isomorphism onto the connected component of the identity: PSL(2;R) ∼= SO0(∆).

20A similar description can be given for the two other geometries of quadratic polynomials. The RP1 of
polynomials with double roots is the zero set of ∆, or the projectivization of the light cone b2 = 4ac. The space

of polynomials with distinct real roots corresponds to points on which ∆ is positive, which projectively forms

a Möbius band. This space also has a natural notion of geometry, coming not from the hyperbolic plane but
from relativity (it is called 1 + 1 dimensional de Sitter space, but is beyond the scope of this paper.)

21This is called the Hilbert metric. Such a metric may be defined for any convex subset Ω ⊂ RP2 not
containing any entire projective line, and realizes a model of hyperbolic geometry precisely when Ω is bounded

by a nonsingular conic section.
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hyperboloid, than its infinitesimal arc length is simply

ds2 = ∆(v).

The geodesics in this metric are straight line segments in any affine patch containing H2
Coefs,

and the distance between two points f1 = [a1 : b1 : c1] and f2 = [a2 : b2 : c2] is given by

dCoefs(f1, f2) = acosh

(︄
−⟨f1, f2⟩√︁
∆(f1)∆(f2)

)︄
= acosh

(︄
2a1c2 + 2a2c1 − b1b2√︁
(4a1c1 − b21)(4a2c2 − b22)

)︄
(5)

Bringing this all together, we have seen the natural PSL(2;R) actions on both the spaces of
roots and coefficients endow the space of real quadratics with complex conjugate roots with the
homogeneous geometry of the hyperbolic plane. We are now in a position to prove the main
theorem of this section, following the outline proposed at the beginning.

Theorem 4.9. Let H2
Coefs = {[a : b : c] ∈ RP2 | 4ac > b2} be equipped with the projectively

invariant metric (equation 5) it inherits as a convex subset of RP2, and H2
Roots = {{x ± iy} |

x, y ∈ R, y > 0} be equipped with the hyperbolic metric (equation 3) arising from its identification
with the upper half plane. Then the restricted roots map R : H2

Coefs → H2
Roots is an isometry.

Proof. Observation 4.4 implies the roots map is a homeomorphism on the total space of projec-
tivized quadratics and their roots, so restricting to polynomials with a complex conjugate pair
of roots, R remains a homeomorphism from H2

Coefs to H2
Roots. Equipped with their respective

metrics dCoefs and dRoots referenced in the theorem statement, we show that R is an isometry
by proving for each pair of quadratics f, g with complex roots,

dCoefs(f, g) = dRoots(R(f),R(g)).

Fix such an f and g. Because hyperbolic geometry is homogeneous, there is some isometry
A of H2

Coefs which takes f to any point of our choosing. To leverage this symmetry in our
computations, we choose A to be the isometry taking f to [1 : 0 : 1], which represents the
polynomial x2 + 1. But furthermore the hyperbolic plane is isotropic (looks the same in every
direction); consequently we may find another isometry B which fixes Af = [1 : 0 : 1] and
rotates about it, taking A.g to a point of the form [1 : 0 : a2] lying on the geodesic [1 : 0 : t]
through [1 : 0 : 1]. As C = BA is an isometry it leaves distances invariant, and so

dCoefs(f, g) = dCoefs(C.f, C.g) = dCoefs

(︁
[1 : 0 : 1], [1 : 0 : a2]

)︁
This final quantity is straightforwward to compute directly from the definition of the distance
function:

dCoefs

(︁
[1 : 0 : 1], [1 : 0 : a2]

)︁
= acosh

(︄
2 + 2a2 − 0√︁
(−4)(−4a2)

)︄
= acosh

(︃
1

2

(︃
a+

1

a

)︃)︃
(6)

Now, we turn to the computation of dRoots(R(f),R(g)). The symmetry C we leveraged in
Equation 6 is a linear transformation preserving the hyperboloid ∆(f) = −1 in R3, and hence
C lies in the image of the representation ρ, so we may write C = ρ(M) for some M ∈ PSL(2;R).
Now, we can use the equivariance of the root map R to simplify things:

dRoots (R(f),R(g)) = dRoots (M.R(f),M.R(g)) = dRoots (R (ρ(M).f) ,R (ρ(M).g))

where the first equality follows as M is an isometry of dRoots, and the second is equivariance
(Equation 2). But this is just the distance between the roots of C.f = x2+1 and C.g = x2+a2;
which is the length of the hyperbolic geodesic connecting i to ia in the upper half plane. Using
the expression for dRoots in Equation 3, we see

dRoots(i, ia) = acosh

(︃
1 +

(0− 0)2 + (1− a)2

2(1)(a)

)︃
= acosh

(︃
1

2

(︃
a+

1

a

)︃)︃
(7)
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Putting these two computations together, we see that for any f, g the distance dCoefs(f, g) in
the domain is equal to the distance dRoots(R(f),R(g)) in the range, so R is an isometry as
claimed.

□

Wemay use this to derive the quadratic formula from hyperbolic geometry. Fix any quadratic
f (say, x2 + 1) with complex root r (here i) in the upper half plane, and let A ∈ PSL(2;R).
By equivariance, the polynomial with root A.r is ρ(A).f for ρ : PSL(2;R) → PSL(3;R) the
representation from Equation 1. Writing this out, we see the polynomial with roots x ± iy =
( y x
0 1 ) .{±i} has coefficients ρ (( y x

0 1 )) .[1 : 0 : 1] = [1 : −2x : x2 + y2]. This is an explict
formula for the inverse of the roots map, R−1 : H2

Roots → H2
Coefs, sending the roots {x ± iy}

to the polynomial with (projectivized) coefficients [1 : −2x : x2 + y2]. Inverting the relation

[1 : −2x : x2 + y2] = [a : b : c] gives x = −b/2a and y =
√︁

c/a− x2, or

x+ iy =
−b

2a
+ i

√
4ac− b2

2a
.

Theorem 4.9 allows us to compute any geometric quantity of interest using either the roots
or coefficients. This simplifies certain calculations. In particular, if α, β ∈ C are complex
roots of the real quadratics fα, fβ respectively, we may avoid using equation (3) to compute
dRoots(α, β), and instead compute dCoefs(fα, fβ) using equation (5). This is used for the results
in Section 6.

Figure 22. Isometry from the projective model {[a : b : c] | 4ac > b2} and
the upper half plane model of the hyperbolic plane, given by the quadratic
formula.

Corollary 4.10. After the projective change of coordinates RP2 → RP2 given by [a : b : c] =
[w+u

2 : v : w−u
2 ], the quadratic formula is precisely the usual isometry from the Klein disk model

of H2 to the upper half plane model,

[u : v : 1] ↦→ −v ± i
√
1− u2 − v2

1 + u
.

Qualitatively, this provides a complete understanding of the roots map22: affine lines in the
space of coefficients are geodesics in the projective model of H2, and so the roots of such a
1-parameter family of polynomials form a geodesic in the upper half plane model: generalized
circles orthogonal to R ⊂ C.

There is also a very nice geometric interpretation of the roots map for quadratics with two
real roots, a patch of which is visualized in Figure 9. We do not give many details here, as
these quadratics do not occur in the starscape images. Nonetheless, we cannot resist telling the
beginning of the story.

22As particular examples, the 1-parameter families of quadratics with coefficients [1 : 0 : t], and [1 : t : 1]

project under the roots map to the vertical geodesic and unit circle through i ∈ C respectively.
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Observation 4.11. The roots map for quadratics with a double root is the continuous extension
of R : H2

Coefs → H2
Roots to the ideal boundary of the hyperbolic plane. For polynomials of positive

discriminant, the roots map decomposes geometrically as follows:

(1) Send the polynomial with coefficient vector v = [a : b : c], thought of as a point in the
Möbius band RP2\H2

Coefs, to the set {w1, w2} ∈ ∂∞H2, where the line through v and wi

is tangent to the ideal boundary. See figure 23.
(2) Follow by applying to each wi the homeomorphism ∂∞H2

Coefs → ∂∞H2
Roots sending the

projectivized lightcone to the extended real line in CP1. The resulting two points are the
roots of f(x) = ax2 + bx+ c.

We may reduce the proof of this observation to checking its truth at a single point using two
facts: the transitivity of this PSL(2;R) action (via ρ) on the space of quadratics with positive
discriminant, and the fact that as linear linear transformations preserving the lightcone, ρ(A)
preserves the colledtion of tangent lines to the ideal boundary for each A ∈ PSL(2;R). Choosing
a point at which to verify the assertion: note the polynomial f(x) = (x+1)(x−1) has coefficients
v = [1 : 0 : −1] and roots {1,−1} ∈ R. These roots are identified with the polynomials (x± 1)2

on the lightcone, so wi = [1 : ±2 : 1], and the lines through v and wi are easily verified to be
tangent to the discriminant locus, as claimed.

Figure 23. The roots map for quadratics with two real roots associates a
point exterior to the hyperbolic plane in RP2

Coefs to its two points of tangency
with ∂∞H2

Coefs.

4.2.5. Applications to quadratic algebraic numbers. We now can apply this to the original case
of interest: quadratic algebraic numbers and integer quadratic polynomials. The integer poly-
nomials form a Z3 lattice in the space R3 of coefficients, and its image in RP2 can be interpreted
as what it would look like to see the integer lattice from the origin (much like we saw for QP1

and Z2 in Figure 16). The quadratics of interest lie inside of the cone cut out by the discrimi-
nant, with planes through the origin projecting to lines in the disk H2

Coefs. And as the roots map
realizes an isometry onto the upper half plane model (for specificity, by selecting the root in the
complex conjugate pair with positive imaginary part), we know the image of these geodesics are
also geodesics - here represented by circles orthogonal to the boundary. This explains the small
scale patterns visible everywhere in the picture of the integer quadratic numbers - they are just
the perspective view of a cubic lattice, distorted by the isometry taking the Klein model to the
upper half plane model.

The natural PSL(2;C) action on roots and coefficients does not preserve the Z3 lattice. The
subgroup which does is isomorphic to PSL(2;Z) (it is the intersection of ρ(PSL(2;C)) with
PSL(3;Z), and it will play an important role in Sections 5 and 6).

The two-dimensional sublattices of Z3 will play a special role in what is to come. The planes
such a sublattice can span are exactly planes with rational normal vector. These project to lines
in H2

Coefs which we will call rational geodesics. These are the dominant features in Figure 1a.
There are a few important facts to collect about rational geodesics; these are just immediate
consequences of the geometry.
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Figure 24. The lattice of integer quadratic polynomials, and its image under
the roots map, decomposed as a sequence of geometric steps, from top left to
bottom right. The lattice points lying within the light cone of the discriminant
represent quadratics with a complex conjugate roots. Their projectivization is
a collection of points in a projective model of the hyperbolic plane, and the
roots map is an isometry onto the upper half plane model. See Theorem 4.9.

Observation 4.12. (1) For z ∈ C, its corresponding point {z, z} in root space pulls back
to [1 : −z − z : zz], and so z lies on a rational geodesic if and only if 1, z + z and zz
are Q-linearly dependent.

(2) Any two quadratic irrationalities z, w ∈ C share a unique rational geodesic, since any
two points in RP2 determine a unique line. Any quadratic irrationality lies on infin-
itely many rational geodesics, and any two rational geodesics intersect at a quadratic
irrationality.

(3) The images of rational geodesics under the roots map are exactly the hyperbolic geodesics
of the upper half plane given by the upper half circles centred on a rational number,
whose radius squared is rational. In other words, the limit points form a conjugate pair
of points in a real quadratic field, or a pair of rational points.

(4) The group PSL(2;Z) acts as change of variables on the quadratic form associated to
the geodesic23.

The geometric description of the roots map for quadratics with two real roots (Observation
4.11) has a nice interpretation for geodesics. Realizing such a geodesic γ as the intersection of
a plane S with the cone of positive discriminant, denote the normal to S by n (well defined up
to scaling; lying outside the lightcone) and the endpoints of γ by x, y on the ideal boundary
of H2

Coefs (the projectivized lightcone of the discriminant). In the projective model one may

23In this way the orbits of rational geodesics under PSL(2;Z) are identified with the narrow ideal classes of

real quadratic fields K. See [21, Section B.7].
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recover these endpoints x, y (and hence the geodesic γ itself) directly from the normal n via
a purely geometric construction. There are precisely two planes containing the line defining n
which are tangent to the lightcone, and projectivizing these lines of tangency gives the ideal
endpoints {x, y} of the geodesic associated to n. But by Observation 4.11, the map sending n
to its two points of tangency with ∂∞H2, followed by the isometry from the projective to upper
half plane model of H2 is none other than the roots map on quadratics of positive discriminant.
Thus, if we think of a geodesic as determined by its normal vector n = (n2, n1, n0) (often
computationally an attractive thing to do), we may directly recover24 the geodesic from n as
its endpoints are precisely the roots of n2x

2 + n1x+ n0 = 0. This25 is visible in Figure 23.

4.3. Beyond discworld: the geometry of cubics. Similarly to the quadratic case, we begin
with the space of all complex homogeneous polynomials together with the PSL(2;C) action
arising from precomposition with Möbius transformations. Cubics are the highest degree26

where this action is enough to equip the various open subsets of generic cubics (components
of the complement of the discriminant locus) with the structure of homogeneous geometries.
Because PSL(2;R) is so tightly linked to H2, the hyperbolic plane remains a prominent actor
in this story. Indeed, restricting to real cubics with negative discriminant, the complex root
determines a point in H2 and the real root a direction - identifying this geometry as the unit
tangent bundle27 to the hyperbolic plane. Both the spaces of coefficients and roots form models
of this geometry, related by the roots map, resulting in an analogous theorem to Theorem 4.3.

Theorem 4.13. Let {[a : b : c : d] | ∆3(a, b, c, d) < 0} be the set of real cubics with exactly
one real root, where ∆3 is the discriminant for cubics, and {{r, z, z} | r ∈ RP1, z ∈ C\R} be
the set of their root-sets. Each of these spaces admits a natural PSL(2;R) action (the former
by precomposing the polynomial with a linear transformation, the latter by applying a Möbius
transformation to each root). Finally, equipped with these actions, each of these spaces is
isomorphic to the unit tangent bundle to the hyperbolic plane.

We will prove this theorem in two pieces, Proposition 4.17 and Corollary 4.18. Beyond this,
we will see that there is a natural way to equip each of these spaces with a Riemannian metric
and with respect to these metrics, the roots map R is actually an isometry (exactly analogous
to the quadratic case). After developing the necessary pieces, this is stated precisely and proven
in Theorem 4.26. Utilizing this geometry both on the spaces of roots and coefficients provides a
geometric description of the cubic formula, which we again pre-emptively state here. We state
and prove the full version in Theorem 4.27.

Theorem 4.14. On the set X ⊂ PCoefs of polynomials which have exactly one real root,
we define the complex-root-map RC as follows. For f ∈ X a polynomial, let RC(f) = z be
the unique complex root of f with positive imaginary part. Then, equipping domain with the

24Topologically, this describes a map which takes the projectivization of the exterior of the lightcone (a

Möbius band) to the set of unordered pairs of distinct points on the circle (or SP2(S1), which is also a Möbius
band, as depicted in Figure 19).

25Geometrically one may tell a beautiful story here quite analogous to Theorem 4.9, where the roots map is
an isometry between a pair of Lorentzian metrics defined on each of these Möbius bands, though investigation

of this would take us too far afield from the goals of this paper.
26This action has finitely many orbits as PSL(2;C) acts simply transitively on ordered triples of distinct

elements of CP1. Thus, some of these orbits are open. In higher degree, there are a continuum of orbits, which

are parameterized by the moduli of n possibly indistinct points in CP1 up to projective transformations (see
also Remark 4.16).

27Given a manifold X, the set of all tangent vectors to X at a point p is called the tangent space to X at p.
You can think of this as a ’linear approximation’ to X near that point. If we restrict our attention to only unit
vectors, we define the unit tangent space at p (for 2-dimensional geometries X, the unit tangent space at every

point is just a circle). Collecting all the tangent spaces for every point of X gives the tangent bundle TX to X,
and collecting only all unit vectors gives the unit tangent bundle UTX. For an introduction smooth manifolds

and their tangent bundles, see [38].
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geometry of the hyperbolic plane’s unit tangent bundle, the map RC factors geometrically as the
projection UTH2 → H2 onto the projective model H2

Coefs of the hyperbolic plane, followed by the
isometry H2

Coefs → H2
Roots ⊂ C of Theorem 4.9.

Coefs UTH2

H2
Coefs H2

Roots C

∼=

RC

π

R2

Said briefly, the map sending a real cubic to its complex root in the upper half plane used
to draw cubic starscapes is topologically conjugate to the projection UTH2 → H2 defining
the hyperbolic plane’s unit tangent bundle. We may use this geometry to understand some of
the interesting interesting 1 and 2 dimensional families of cubic polynomials, producing linear
and planar starscapes respectively. Some such linear starscapes are highlighted in the planar
starscapes below (Figure 25). In particular, this gives a simple condition for when a starscape
(thought of as a projective subspace of the set of cubics) embeds in the complex plane under the
projection onto the complex root (Figure 25a) and when it is singular, collapsing some curve
to a point (Figure 25b).

(a) (b)

Figure 25. Some linear starscapes, shown in red and black, within planar
starscapes, the other points are shown in grey. The black points are quadratic
roots, where the real root is rational. In (25a) some of the projective lines
(corresponding to 2d sublattices of the lattice of coefficients) through the root
of x3 − 2x2 + 1 are plotted in the depressed cubic starscape (also shown in
Figure 2a). In (25b) some of the lines through the root of x3 − x2 − 1 are
plotted in the starscape for the family ax3+ cx2+ bx+ c (also shown in Figure
1b). In the latter, these lines all also pass through i, which is the projection of
a fibre (dx+ e)(x2 + 1) = dx3 + ex2 + dx+ e. This can be seen in a different
way on the right in Figure 32b.

Corollary 4.15. Let S be a one or two dimensional affine space of real cubics in the space
of projectivized coefficients, and RC|S : S → C the projection onto the complex root. Under
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the geometric identification of this space with the unit tangent bundle of the hyperbolic plane
(Theorem 4.13), the space of coefficients is foilated by simple closed curves (fibers of the unit
tangent bundle). Then RC|S is an embedding if and only if S is everywhere transverse to this
fibration.

For this failure of embedding to actually be visible in a cubic starscape, it must occur at
some cubic or quadratic number, and accounting for this gives the more refined statement of
Corollary 4.30. Quadratics are too low-degree for any interesting analogs of this behavior to
occur28, but it persists in higher degree (Figure 2), making cubics an important testing ground.
We fill in the details of this picture below.

4.3.1. General Complex and Real Coefficients. A homogeneous cubic in two variables has the
form ax3 + bx2y + cxy2 + dy3, so the sets of coefficients of all such cubics naturally identifies
with C4. As previously, we are mostly concerned with cubics only up to a global scaling, and
so take the space of projectivized coefficients PCoefs = CP3, together with the natural action
of PSL(4;C) as our starting point.

From the perspective of their solutions, cubics may be identified with unordered triples of
(possibly coincident) points in the extended complex plane, so Roots = SP3(CP1) is the third
symmetric power of the sphere. The symmetric power admits a natural action of PSL(2;C)
coming directly from its usual action on CP1 by Möbius transformations. More precisely, the
action of A = ( p q

r s ) on the triple of points {z1, z2, z3} is

A.{z1, z2, z3} =

{︃
pz1 + q

rz1 + s
,
pz2 + q

rz2 + s
,
pz3 + q

rz3 + s

}︃
. (8)

Again, the roots map R : PCoefs → Roots realizes a homeomorphism from PCoefs = CP3

to Roots = SP3(CP1). Conjugating the PSL(2;C) action on Roots by R gives an action on
PCoefs, which is compatible with its natural PSL(4;C) action: it is the projectivization of
the representation SL(2;C) → SL(4;C). As in Section 4.2.2, the explicit formula for this
representation is defined by ρ(A).f(x) = f(A−1.x):

(︃
p q
r s

)︃
ρ−→

⎛⎜⎜⎝
s3 −rs2 r2s −r3

−3qs2 2qrs+ ps2 −qr2 − 2prs 3pr2

3q2s −q2r − 2pqs 2pqr + p2s −3p2r
q3 pq2 −p2q p3

⎞⎟⎟⎠ (9)

Recall the PSL(2;C) action on the plane acts triply transitively (see [53] for an introduction to
real and complex projective geometry). This implies that the space of cubics divides up into
three distinct orbits under this action: cubics with three distinct roots, cubics with a pair of
coincident roots, and cubics with a triple root. As each component is an orbit of the action,
PSL(2;C) acts transitively on each.

Remark 4.16. Here the (real) dimension of the space of homogeneous cubics is 6, which coincides
with the dimension of PSL(2;C). Thus, cubics are the last dimension on which this PSL(2;C)
action remains transitive on the open subset of generic cubics, giving it the structure of a
PSL(2;C) homogeneous space.

Restricting to real cubics replaces the space of coefficients CP3 with RP3, and its image under
the roots map is an embedding of real projective 3-space in SP3(CP1). The restricted PSL(2;R)
action divides RP3 into four components. The discriminant locus ∆0 := P∆−1(0) consists of the
union of the orbits with triple and double roots, and is homeomorphic to a torus29. Over R the

28For quadratics, the roots map is a homeomorphism on the entire space: there are no 2-dimensional sub-

families, and all 1-dimensional curves are geodesics.
29Note this torus is not smoothly embedded in the space of coefficients, and is singular along the circle

parameterizing cubics with a triple root.
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generic case splits into polynomials with three distinct real roots ∆+ (positive discriminant)
and those with a complex conjugate pair of complex roots ∆− (negative discriminant). We
see below each of ∆± are individually homeomorphic to a solid torus, forming the standard
Heegaard decomposition of RP3.

(a) Triple Root (b) Double Root (c) 3 Real Roots (d) 1 Real, 2 Complex
Conjugate Roots

Figure 26. The four PSL(2;R) orbits on the RP3 of real cubics described in
Section 4.3.1, as subsets of RP3. Compare with the quadratic case in Figure
20. As in Figure 17, the topology of each component is recovered by identifying
points on the boundary sphere via the antipodal map.

The action of PSL(2;R) is transitive on all four components, so we may consider each as a
homogeneous geometry. Like in the complex case, via dimension count we see that dim∆+ =
dim∆− = dimPSL(2;R), so this action has at most a discrete stabilizer. For ∆+, this stabilizer
is the symmetric group on three elements30, as PSL(2;R) acts simply transitively on the space
of ordered distinct triples in RP1. For ∆− however, this action is free. In the following section
we look in detail at this geometry both from the coefficients and roots perspectives.

4.3.2. Cubics and the Unit Tangent bundle to H2. Each cubic in ∆− has a real root and complex
conjugate pair of complex roots. The image under R in SP3(CP1) is easily described, as

R(∆−) =
{︁
{r, z, z} | r ∈ RP1, z = x+ iy for x, y ∈ R, y > 0

}︁
.

This is exactly an embedding of the product of RP1 and the upper half plane in SP3(CP1), so
this describes the homeomorphism of ∆− with a solid torus, as observed in Figure 26d. As z
is a point in the upper half plane being acted on by PSL(2;R) it is tempting to think of it as
a point of H2. From this perspective, the real root r ∈ RP1 lies on the ideal boundary of the
upper half plane model of H2, so we may think of it as specifying a direction. We make this
precise in the following proposition, which is the first half of Theorem 4.14 highlighted in the
introduction to this section.

Proposition 4.17. Let R(∆−) = {{r, z, z} | z = x + iy, x ∈ R, y ∈ R+, r ∈ R} denote
the space consisting of the roots of all cubics in ∆−, equipped with the PSL(2;R) action by

30Thus the space of cubics with three distinct roots is an infinite volume three dimensional orbifold with a

geometric structure modeled on ˜︂SL2(R)
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Möbius transformations acting on each root described above, and let UTH2 = {(p, v) | p ∈
H2, v ∈ TpH2, ∥v∥ = 1} denote the unit tangent bundle to the hyperbolic plane. Define the map
Φ: R(∆−) → UTH2 by sending each triple {r, z, z} to the point z and the unit tangent vector
v ∈ TzH2 such that v is the initial tangent vector to the geodesic ray γ starting at z and limiting
to the ideal point r = γ(+∞). Then Φ is an isomorphism of geometries.

Proof. First we note that Φ is in fact a homeomorphism: given any point z in the upper half
plane and any real number r, there is a unique circle passing through z which intersects the real
axis at r. Taking the tangent vector to this circle at z defines the desired unit tangent v and
noting that geodesics are uniquely determined by these tangent vectors completes the proof
that Φ is a bijection. That Φ is in fact continuous with continuous inverse follows directly from
constructions in Euclidean geometry31 (since, in the upper half plane model here, all hyperbolic
geodesics are simply Euclidean circles meeting the real axis along a diameter).

To see this is an isomorphism of geometries, we must further show the natural actions of
PSL(2;R) are preserved by Φ. That is, we need that A.Φ({z, z, r}) = Φ(A.{z, z, r}) for all
A ∈ PSL(2;R) and all points of R(∆−). The action on R(∆−) is given by equation (8), where
A acts on both z, r by the same Möbius transformation of CP1. The action on UTH2 is given
by the differential of its action on H2 by isometries. The compatibility of these actions follows
immediately from the fact that geodesics (and thus their endpoints at infinity) are determined
by their initial conditions. That is, Φ({A.z,A.z, A.r}) is the tangent vector based at A.z
pointing in the direction of A.r, which is the image of the tangent vector Φ({z, z, r}) under A,
by existence and uniqueness of solutions to the geodesic equation.

□

Figure 27. Cubic on upper halfplane (black point) and the real conjugate
(white point), showing the geodesic between them and the direction from the
complex root looking along the geodesic to the real root.

Above we saw that the space R(∆−) of roots of the cubics in ∆− can be identified with
the unit tangent bundle to H2 by constructing a homeomorphism between these spaces which
was equivariant with respect to the PSL(2;R) action on each side. But, as we have already
seen, the roots map R is itself a homeomorphism from ∆− to R(∆−), which is equivariant with
respect to the PSL(2;R) actions on each. Thus, this map defines an isomorphism of geometries
∆− ∼= R(∆−), and thus, transitively, between ∆− and UTH2.

31Computing expressions for Φ and its inverse we see they are compositions of elementary (continuous)

functions: Φ(x ± iy, r) = (v1, v2)x+iy =

(︃
w√

1+w2
, 1√

1+w2

)︃
x+iy

for w =
2x(x−r)

x2+y2−r2
and Φ−1(v1, v2)x+iy =

{x± iy, r} =

{︄
x± iy, x+

(︄
v2
v1

+

√︃
1 +

(︂
v2
v1

)︂2)︄
y

}︄
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Corollary 4.18. The geometry of ∆− equipped with the PSL(2;R) action defined by Equation
9 is isomorphic to the geometry of the unit tangent bundle to the hyperbolic plane.

From now on, we will denote this collection of polynomials as ∆− = UTH2
Coefs and their

associated roots as R(∆−) = UTH2
Roots, to emphasize this geometric structure. To be able to

measure distances in these geometries (which right now are only spaces together with a group
of symmetries) we need to specify a distance function on each of UTH2

Coefs and UTH2
Coefs. As

in the case of the hyperbolic plane (Section 4.2.3) we specify this metric indirectly: first we
define a norm on each tangent space (induced by an inner product: the Riemannian metric),
then we define the length of curves by integrating the norm of their tangent vectors with respect
to this, and finally we define the distance between two points to be the length of the shortest
curve between them. See [38] for an introductory account of Riemannian manifolds and their
metrics.

Definition 4.19 (The Metric on UTH2
Roots). As a point in UTH2

Roots may be represented

unambiguously as a pair {a, z} for a ∈ RP1 and z in the upper half plane, a tangent vector to
UTH2

Roots at {a, z} is a pair {u, v} where x ∈ R and v ∈ C. Fixing the basepoint {0, i}, we
define the norm squared of the tangent vector {u, v} at {0,±i} as

∥{u, v}∥2 = u2 + |v|2.
That is, if we think of the tangent vector (u, vRe, vIm) as a vector in R3, we are employing
the standard Euclidean inner product at the basepoint. We use the free and transitive action
of PSL(2;R) to translate this to every tangent space, equipping UTH2

Roots with a PSL(2;R)
invariant Riemannian metric.

Definition 4.20 (The Metric on UTH2
Coefs). As a point in UTH2

Coefs may be represented
unambiguously as a monic cubic f (with coefficients the projective point [1 : a : b : c]), a
tangent vector to UTH2

Coefs at f is an infinitesimal deformation of this cubic which leaves it
monic. That is, tangent vectors to UTH2

Coefs are represented by quadratic equations ux2+vx+w
(we write this as (u, v, w) when thinking of it as a tangent vector to the 3-dimensional affine
patch [1 : a : b : c]). Fixing the basepoint f = x(x2 + 1), we define the norm squared of the
tangent vector (u, v, w) as

∥(u, v, w)∥2 =

(︃
u− w

2

)︃2

+
(︂v
2

)︂2
+ w2.

We use the free and transitive action of PSL(2;R) to translate this to every tangent space,
equipping UTH2

Roots with a PSL(2;R) invariant Riemannian metric.

We quickly comment on the form of the metric on UTH2
Coefs, which is the natural choice32,

with respect to the correct choice of affine patch. We may embed the space of quadratics with
complex roots into the space of cubics by taking a quadratic f to the polynomial xf(x) which
has a unique real root at x = 0. Following the previous section, as the space of quadratics
can be identified with the hyperbolic plane, we may expect this collection of cubics to look
something like an embedding of a projective model of the hyperbolic plane. And it does – with
respect to the original affine patch it appears as the paraboloid model of the hyperbolic plane,
but changing patch gives a round Klein disk, as in Figure 22: and it is with respect to an affine
patch of this form that we take the metric to look Euclidean at the basepoint33.

32In fact, while any choice of inner product on the tangent space to our basepoint can be promoted to a

Riemannian metric where PSL(2;R) acts by isometries, this metric is the most symmetric possible choice: its

isometry group is 4-dimensional, whereas a generic inner product only leads to a 3-dimensional isometry group.
33More precisely, we take the Euclidean form of the metric on the affine patch where the following three

curves of polynomials are orthogonal at the polynomial x(x2 +1): (1)those with fixed imaginary root i, varying
real root t, (2) those with fixed real root 0, varying real part of complex root, and (3) those with real root 0,

varying imaginary part of complex root
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These choices of Riemannian metrics will make clear the importance of hyperbolic geometry
to the study of cubics. Indeed, we will see in Proposition 4.26 that these metrics are actually
isometric to each other, and that the roots map provides an isometry between them, in direct
analogy to what the quadratic formula provided for H2.

To make use of this geometry in our analysis of cubics, we need to introduce some facts
about the hyperbolic plane’s tangent bundle. First, the circle of unit tangent vectors at each
point provides a foliation by circles: every point of UTH2 is the unit tangent vector to some
unique point of H2 and thus lies on a unique one of these circles. But we may also define a
collection of sections of H2 → UTH2 of the unit tangent bundle such that every point lies on
exactly one such hyperbolic plane. For a given ideal point r ∈ ∂∞H2, at each z ∈ H2 we select
the unit vector vr ∈ TzH2 which points34 to r. This mapping z ↦→ vr ∈ TzH2 provides one such
section, and varying r ∈ ∂∞H2 foliates the unit tangent bundle with translates of this.

It is straightforward to give an explicit example of one of each of these, passing through
the basepoint for the space. Considering UTH2

Coefs with f = x(x2 + 1) as the basepoint (the
corresponding statements are equally true for UTH2

Roots and {0,±i} as the basepoint), the circle
fiber through f is just all cubics in UTH2

Coefs with x2 + 1 as their irreducible quadratic factor,
and the hyperbolic plane through f is all such cubics having x as their linear factor. Using the
metric from Definition 4.20, these two spaces are seen to intersect each other orthogonally at
f . But as the metric on the entire space is built from the metric at this basepoint, we conclude
that the same behavior is observed at every point. We note this precisely in the following
observation.

Observation 4.21. The foliation of UTH2
Roots by circles (the fibers of the bundle) correspond

to collections of cubics with a fixed complex root RP1
z = {{a, z, z} | a ∈ RP1}, as the real root

varies. Conversely, fixing the real root a ∈ RP1 and letting the complex conjugate roots vary
over C\R gives the foliation by disks H2

a = {{a, z, z} | z ̸∈ R}. with respect to the Riemannian
metric on UTH2

Roots, these two foliations are orthogonal at every point. The first consists of
geodesic circles all of length 2π, and the second of isometrically embedded hyperbolic planes.

Together, these foliations provide a trivialization of the unit tangent bundle: an explicit
choice of homeomorphism35 UTH2 → H2×S1, sending each v ∈ UTH2 to its basepoint z ∈ H2,
and the angle θ that v makes with respect to the direction field associated with some fixed ideal
point. Working in the upper half plane model, it is easiest to choose this as the direction field
associated to ∞; as in the euclidean coordinates z = x + iy this is simply the direction made
with the vertical at every point. Explicitly, the point (z, r) in the space of roots, identified with
the unit tangent vector v ∈ TzH2, is sent to (z, θ) for

θ = 2arctan

(︃
r − x

y

)︃
. (10)

Remark 4.22. Using a Möbius transformation to send the upper half plane to the unit disk,
we may represent the space of roots as the interior of a solid torus of revolution in R3, as in
Figure 28b. This homeomorphism provides the beautiful pictures visible in Figure 10 produced
by David Dumas’ wonderful program.

This geometric perspective provides a nice way of thinking about the space of roots, avoiding
the complicated space SP3(CP1) in which it was originally defined. The upper half plane model
of H2 is a subset of CP1, so the map Φ in Proposition 4.17 above explicitly identifies R(∆−)
with a subset of UTCP1. But, as CP1 is topologically the 2-sphere (Remark 4.2), UTCP1 is just

34That is, choose v so that the geodesic γv with initial tangent v at z has limt→∞+ γ(t) = r.
35Note however this homeomorphism is not an isometry of the metrics we have defined with the product

metric on H2 × R.
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the unit tangent bundle of the sphere36, which is topologically RP3. As the space of coefficients
is naturally a subset of RP3, this provides a uniform means of drawing both spaces, see Figures
28a and 30.

(a) (b)

Figure 28. Foliation of UTH2
Roots by circles and hyperbolic planes. In (A)

we view UTH2
Roots in an affine patch of UTCP1 = RP3, where the hyperbolic

foliation is visible as parallel disks. In (B), it is realized as the interior of a
torus of revolution in R3 via Remark 4.22.

Remark 4.23. This also provides the means to represent cubics literally as unit tangent vectors
in H2: As θ is measured with respect to geodesics limiting to ∞ in the upper half plane, we may
depict the cubic with roots {z, z, r} by the unit vector at z pointed along the geodesic37 to r. As
this depicts a 3-dimensional space using 2-dimensions, we cannot understand the entire space
of cubics this way - however it provides a useful means of looking at 2-dimensional families,
such as Figure 29.

We next turn to the description of this geometry on the space of coefficients, which we likewise
denote UTH2

Coefs. Here, the surface cut out by the discriminant represents the ideal boundary of
the geometry, whose points correspond to the polynomials with negative discriminant, depicted
in Figure 26d. The important geometric information is a description of the S1 fibers, which
provide the structure of the unit tangent bundle, and a choice of section H2 → UTH2

Coefs giving
a trivialization. Via Observation 4.21, the choice made in the roots model has a convenient
description in terms of their corresponding polynomials, which we summarize below.

Observation 4.24. The trivialization in Observation 4.21 is expressed in the space of coeffi-
cients as:

• Each fiber of the S1 foliation passes through a unique cubic with real root at infinity,
identified with the quadratic ax2 + bx+ c ∈ H2. The fiber passing through this point is
parameterized by [a : b − ra : c − rb : rc] in the space of coefficients, for r ∈ RP1 =
R ∪ {∞}.

• Each fiber of the H2 foliation has constant real root r ∈ RP1. This fiber is parameterized
by [1 : −2u− r : 2ru−u2− v2 : −ru2− rv2] for u, v ∈ R, v > 0 representing the varying
complex root u+ iv ∈ H2.

36One shows the isometries of S2 act freely and transitively on the unit tangent bundle, which then provides a
diffeomorphism from Isom(S2) = SO(3) and UTS2. Finally, we recall that SO(3) is topologically real projective

3-space (for example, by noting that it is double covered by SU(2) ∼= S3).
37Using the coordinates z = x + iy on the upper half plane, this vector is in the direction (2y(r − x), (r −

x)2 − y2).
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(a) (b)

Figure 29. Cubic numbers as a vector field, as shown in Figure 27. The roots
of the polynomial family ax3 + bx2 + cx+ a (29a), and all cubics (29b).

Exactly as in Observation 4.21, with respect to the choice of metric in Definition 4.20, these
two spaces of fibers are orthogonal at every point of intersection. Every circle fiber has metric
length 2π and every plane in the H2 foliation is an isometrically embedded hyperbolic plane
(thus justifying the name).

As in the quadratic case, the natural geometry is more difficult to see at first from the
coefficient perspective. However, drawing UTH2

Coefs in the affine patch which puts quadratics
at infinity, we see the hyperbolic foliation consists of copies of the now familiar parabola model
of H2. Choosing other affine patches may render (some of) these as copies of the more familiar
Klein disk model. These two foliations of the space of cubics, by hyperbolic planes and by
circles, provide convenient means of keeping track of information about cubics. We see some
examples of this below as we seek a geometric understanding of the roots map.

Figure 30. Foliation of UTH2
Coefs by hyperbolic planes and circle fibers
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4.3.3. Geometry of the Roots Map. The roots map R : PCoefs → Roots restricts on the space
of real cubics of negative discriminant to a homeomorphism UTH2

Coefs → UTH2
Roots equivariant

with respect to the PSL(2;R) actions given by equations (8) and (9). We noted earlier (Propo-
sition 4.17 and Corollary 4.18) that this implies R is an isomorphism of geometries in the sense
of Klein. Following this, we saw that both the space of roots and coefficients can be equipped
with a natural choice of Riemannian metric in definitions 4.19 and 4.20. We now strengthen our
original proposition, and show that with respect to these two metrics in fact R is an isometry.
Because computing the actual geodesic metric distance here is quite challenging (see [24] for a
computation of the geodesic curves), we adopt a different approach than our proof of Theorem
4.9 for quadratics, and work locally, leveraging the equivariance of R with respect to the group
actions to reduce the problem to showing R induces an isometry of tangent spaces at a single
point. This technique relies on a useful lemma of Riemannian geometry, stated below.

Lemma 4.25. Let (X, gX) and Y, gY ) be Riemannian manifolds, each equipped with a transitive
action of some Lie group G by isometries. Suppose further that f : X → Y is a diffeomorphism
which is equivariant with respect to these G actions. Then, f preserves the inner product at
any point p ∈ X, it is an isometry.

The proof of this lemma is a straightforward computation using the fact that G acts on both
sides via isometries. See again [38] for an introduction to the tools utilized in such arguments.
We sketch the proof below.

Sketch. Let p be any point in X. We wish to see that the map f preserves the inner product
at p. But using the homogeneity of the G action we can choose some isometry taking the fixed
point x in the theorem statement to p. Then using equivariance of the G action with respect to
f , we see this same isometry element takes f(x) to f(p). We can use this isometry to transfer
any local computation at p to a local computation at x, and similarly for f(p) and f(x). Putting
this all together, we see that our map f preserves the inner product at p if and only if it does
at x. But this latter condition was precisely our assumption: thus f is a Riemannian isometry.

We now use this result to prove the proposition of interest.

Proposition 4.26. Let UTH2
Coefs be the set of real cubics with exactly one real root, UTH2 =

{[a : b : c : d] | ∆3(a, b, c, d) < 0}, and UTH2
Roots = {{r, z, z} | r ∈ RP1, z ∈ C\R} be the set of

their root-sets. Equipping each with the PSL(2;R) metric identifying them with the unit tangent
bundle to the hyperbolic plane, the roots map R : UTH2

Coefs → UTH2
Roots is an isometry.

Proof. By the above proposition and the equivariance of the PSL(2;R) actions by isometries,
it is enough to show that R defines a Riemannian isometry at any single point. We choose
to compute at the basepoint f = x(x2 + 1) in UTH2

Coefs and its image R(f) = {0,±i} in
UTH2

Roots. Because writing an actual formula for the roots map in degree 3, we opt instead
to work with its inverse (if R−1 is a Riemannian isometry then so is R). This inverse takes
the point {r, z, z} to the polynomial that has r and z, z as roots: written in the affine patch of
monic cubics, this has the explicit formula

R−1({r, z, z}) = (x− r)(x− z)(x− z) = (x− r)(x2 + 2Re(z) + |z|2).
Let {u, v+ iw} denote a tangent vector to {0,±i} as in Definition 4.19. We may realize this

tangent vector as the derivative at t = 0 of the path {tu, i+ t(v+ iw)}. Thus we may compute
the result of applying R−1 to this tangent vector by looking at the path R−1({tu, i+t(v+iw)})
and taking its derivative in the space of coefficients. Performing this computation, we arrive at
the path of polynomials

x3 + (2tv − tu)x2 + (1− 2t2uv + t2v2 + 2tw + t2w2)x− (tu+ t3uv2 + 2t2uw + t3uw2)

differentiating at t = 0 gives the tangent vector, realized a quadratic polynomial as in Definition
4.20.

(2v − u)x2 + 2wx− u



42 EDMUND HARRISS, KATHERINE E. STANGE, STEVE TRETTEL

Having these two vectors on hand, the rest of the proof is a direct computation: we compute
the norm of each with respect to the Riemannian metric on each respective space, and then see
the results are equal. First, in the space of roots, using Definition 4.19 we see the norm square
of {u, v ± iw} is simply its Euclidean value:

∥{u, v ± iw}∥2Roots = u2 + v2 + w2.

Performing the analogous computation in coefficient space, we take the coefficient vector (−(u+
2v), 2w,−u) of the quadratic above, and apply the norm squared of Definition 4.20:

∥((2v − u), 2w,−u)∥2Coefs =

(︃
(2v − u) + u

2

)︃2

+

(︃
2w

2

)︃2

+ (−u)
2

= v2 + w2 + u2

Thus R−1 induces an isometry between the tangent spaces T{0,±i}UTH2
Roots to the roots and

Tx(x2+1)UTH2
Coefs to the coefficients at our chosen basepoint, as required. □

After the right preliminary work, the proof of our main theorem, (the analog of Theorem 4.9
but for cubics) reduced to checking a simple computation at the basepoint. But, we can say
even more than this, and relate exactly how this isometry acts with respect to the foilations of
the space of cubics by circles and hyperbolic planes (Observation 4.21).

Theorem 4.27. The roots map R : PCoefs → Roots, restricted to the space UTH2
Coefs of real

cubics with negative discriminant, factors as R3 = (R1,R2) ◦ (π1, π2) where π = (π1, π2) is
the trivialization of the unit tangent bundle given by the foliations by circles, and hyperbolic
planes, respectively, in Observation 4.24, and R1,R2 are the root maps for linear and quadratic
polynomials. This is best seen diagrammatically: compare the diagram below with Figure 31.

PCoefs RP1
Coefs RP1

Roots

UTH2
Coefs f

(︃
f1
f2

)︃ (︃
r
z

)︃
{r, z, z} UTH2

Roots

H2
Coefs H2

Roots Roots

∼=

R1

π1

π2

∼=

R2

Proof. This is not deep, and follows directly from our geometric interpretations of the space of
quadratic and linear polynomials. As isometries of UTH2 preserve the fiber bundle structure,
R preserves the RP1 foliation, and similarly the H2 foliation described in Observations 4.21 and
4.24. By Observation 4.21, we may identify these foliations with the preimages of projections
π1, π2 onto the linear and irreducible quadratic factors respectively. As these are preserved by
the roots map, R3 factors through the trivialization π to a pair of maps sending these factors
to their roots. But these are already familiar: they are just the lower dimensional roots maps
R1 and R2.

□

The bottom row of this diagram gives the formula for the complex root as in Theorem 4.14;
the top row gives the analog returning the real root. Choosing to identify the base H2

Coefs with
one of the sections of Observation 4.24, one may see the solution to the cubic as a process as
follows. (For simplicity of exposition, we identify it with the fiber of cubics with real root zero
here.) Starting with a point f ∈ UTH2

Coefs (recall Figure 30 as a visual aid here), we slide along
the fiber through f until reaching the hyperbolic sheet specified by the section. The real root
is given by the distance traveled along this fiber, and the complex root is given by taking the
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resulting point, which is now a cubic of the form (ax2 + bx + c)x and applying the isometry
from the parabola model of H2 in [a : b : c] to the upper half plane.

Figure 31. Geometric factoring of the roots map R3 : UTH2
Coefs → UTH2

Roots

of Theorem 4.27, using the root maps R1,R2 of lower degrees. On the left, the
space UTH2

Coefs ⊂ RP3 is depicted together with the trivialization determined

by fixing a real or complex root. On the right is the space UTH2
Roots ⊂ UTCP1

of unordered roots with the same trivialization. Compare with the diagram in
Theorem 4.27.

Remark 4.28. One may derive an expression for the cubic formula from this procedure, similarly
to what was done in Remark 4.10, using the parameterization of the RP1 and H2 factors in
Observation 4.24 and attempting to invert their dependence of the coefficients [a : b : c : d]
on the parameters u, v. Of course, the inherent messiness of the cubic formula must make this
challenging at some point, which we can now specify: it lies in giving explicit formulas for the
projections of UTH2

Coefs onto its foliations38.

4.3.4. Applications to Cubic Numbers. When reasoning about cubic numbers, we often want
to deal just with the points in C themselves, and not the abstract space of roots. Thus, from
the perspective of polynomials, we are interested in the image of the projection UTH2

Roots →
H2

Roots ⊂ C, not the space of roots itself. This is yet another place where the circle and hyper-
bolic fibrations of the space of cubics are important, as they are the kernel and 1-eigenspaces
of the differential of this projection, respectively.

One place this may arise is in trying to bound distances between cubic numbers. Thus,
to control distances between cubic numbers in terms of their minimal polynomials, we do not
need to use a full expression39 for the unit tangent bundle metric on UTH2

Coefs but rather
just a means of measuring the hyperbolic distance between their projections to the base H2.
While abstractly this is given exactly by the pull back of the metric on H2

Coefs by the bundle
projection UTH2 → H2, any sufficiently simple expression for this would hopefully make some
of the analysis of Section 6 in the quadratic case extendable to cubics.

38In light of Theorem 4.27 it cannot be anywhere else: as the only remaining portion to the cubic formula
from this perspective is to solve the associated quadratic and linear equations: both of which have simple roots

maps as we have seen before.
39While the Riemannian metric here is easy to describe by translating the standard euclidean metric on some

tangent space to a point p ∈ UTH2
Coefs ⊂ RP3 around by action given by the representation ρ, its expression is

complicated, making the computation of a distance function unwieldy.
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Another place this arises is in the study of one and two parameter families of cubics. Let
F : Rn → PCoefs be a smooth map for n ∈ {1, 2} tracing out a submanifold of the space of
cubics. A natural question for the production of good images, is when does the result of drawing
the complex root of each polynomial in the family produce a coherent image in C: that is, when
is the composition RC ◦F a homeomorphism onto its image? Given that on the space of roots,
the projection onto the complex root is directly collapsing the RP1

Roots factor, we recall RC is
the projection along the RP1 fibers of Observation 4.24, followed by an isometry. This gives an
explicit condition on F .

Observation 4.29. Let F : Rn → UTH2
Coefs be a family of real cubics in the space of projec-

tivized coefficients, for n ∈ {1, 2}. Then the map RC ◦ F sending a cubic to its complex root is
an embedding if F is everywhere transverse to the RP1 fibration of UTH2

Coefs.

Restricting attention to planar starscapes, the relevant families F : R2 → RP3 are those
whose image is some affine plane S ⊂ RP3 (that is, the projectivization of some R3 through
the origin) intersected with the space of cubics of negative discriminant, as in Corollary 4.15
highlighted in the introduction to this section. Examples include the accompanying figure (25)
as well as the gallery Figures 2a, 2b and 7a–7d. The fiber above any point r ∈ C is a line
(R2π2)

−1(r) = Lr (parameterized as in Observation 4.24), thus any affine plane S ⊂ UTH2
Coefs

containing Lr fails to embed under projection onto the complex root. As we may find an affine
plane containing any projective line we like, this can happen at any point in the upper half
plane. The fact that this can only happen at a single point in a single starscape is implied by
the fact that the fibers of UTH2

Coefs are pairwise skew lines in RP3, and thus no two are ever
contained in a plane.

Corollary 4.30. Let S ⊂ UTH2
Coefs be an affine 2-dimensional projective subspace, and

R|S : S → C be the projection onto the complex root. Then R|S is singular along at most
one projective line L ⊂ S. Furthermore, for a planar starscape (i.e. S has rational normal
vector), this line, if it exists, corresponds to a rational polynomial with a linear factor over Q
(i.e. a quadratic point in the complex plane). Finally, every such polynomial gives a singularity
for RS for some planar starscape S.

To see the statement that the line lies over a quadratic point, suppose the projective line
corresponds to roots {r, z, z}, where r is the varying real root, while z and z are fixed. Then
the projective line has an expression as

[1 : −z − z − r : zz + (z + z)r : −zzr]. (11)

If this lies in a planar starscape, then it lies in a projective plane with rational normal, i.e.
there is a rational vector [r : s : t : u] such that

(︃
1 −z − z zz 0
0 1 −z − z zz

)︃⎛⎜⎜⎝
r
s
t
u

⎞⎟⎟⎠ = 0.

In particular, this implies 1, z+z and zz are Q-linearly dependent. If they have rank two, then
this implies that [r : s : t] = [s : t : u], which implies [r : s : t : u] has the form [1 : x : x2 : x3];
this further implies z is rational (as the projective line in coefficient space has a fixed rational
root x). If they have rank one, then z lies on the intersection of two rational geodesics, i.e. is
quadratic (see Observation 4.12).

For the final statement, suppose the projective line L is as in (11) above. Then it lies on
infinitely many rational geodesics; taking any two will span an appropriate S.
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(a) ax3 + cx+ d (b) ax3 + bx2 + cx+ b

Figure 32. 2-parameter projective families of cubics, plotted in coefficient
space together with their projection onto their complex root. The family on
the left is transverse to the S1 fibers of UTH2

Coefs, and so the projection onto
roots is an embedding. The family on the right is not transverse to the S1
foliation, and contains the fiber (x2+1)(px+ q). Thus the projection onto the
complex root is not an embedding, and collapses an entire curve above i.

5. Diophantine approximation

5.1. Classical Diophantine approximation. The study of Diophantine approximation is
the study of the relative placement of real or complex numbers with regards to their arithmetic
complexity. To illustrate, we consider the unit interval [0, 1]. We measure the complexity of a
rational number p/q in lowest terms by its denominator, defining its height to be q. Then we
observe a fundamental phenomenon one might call repulsion: distinct rationals of low height
cannot be too close to one other. Explicitly,⃓⃓⃓⃓

p1
q1

− p2
q2

⃓⃓⃓⃓
≥ 1

q1q2
. (12)
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This leads one to consider the question of good approximations: fix α ∈ [0, 1] and ask
whether there are rational p/q which are surprisingly close to α, in terms of their height. One
asks whether there are infinitely or finitely many p/q such that⃓⃓⃓⃓

α− p

q

⃓⃓⃓⃓
<

1

qk
. (13)

The behaviour with regards to exponent k = 2 distinguishes rationals from irrationals.

Theorem 5.1 (Dirichlet [23]). Let α ∈ R. Then α is irrational if and only if there exist
infinitely many distinct p/q ∈ Q such that

|α− p/q| < 1/q2.

In other words, rationals are “poorly approximable” and irrationals are “well approximable.”
This can be proven by a simple pigeonhole principle argument, which we include here for the
sake of exposition, as later proofs will imitate the method.

Proof. Let α be irrational. Choose an integer Q > 1. Divide the unit interval [0, 1] into Q
even subintervals. Then, among the real numbers 0, α, 2α, . . . , Qα, there must be two, say
iα and jα, where 0 ≤ i < j ≤ Q, whose fractional parts fall into the same subintervals.
Then we have |(j − i)α − p| < 1/Q for some integer p. Letting q = j − i, observe that
q ≤ Q, and we obtain |α − p/q| < 1/qQ ≤ 1/q2. As α is irrational, we may choose Q′ to
be such that |qα − p| > 1/Q′, and run the argument again; by construction, we discover a
new, distinct rational approximation. In this way, if α is irrational we discover infinitely many
such approximations. By contrast, if α is rational, then (12) limits the ability to find good
approximations. □

Dirichlet’s Theorem is illustrated in Figure 14; if one places disks over each rational p/q with
radius 1/q2, then the irrationals are covered by infinitely many disks, while rationals by only
finitely many. We can create a more starscape-esque version by a constant scaling, in Figure
15. This latter version has a different feel, and more vividly illustrates the mutual repulsion of
rational numbers.

The natural accompaniment to Dirichlet’s elementary result is a deep one of Roth: if the
exponent 2 is strengthened to 2+ ϵ for any positive ϵ, then all algebraic α fail to have infinitely
many good approximations [54].

Theorem 5.2 (Roth [54]). Let ϵ > 0. Let α ∈ R be algebraic of degree ≥ 2. Then there are
only finitely many distinct p/q ∈ Q such that

|α− p/q| < 1/q2+ϵ.

This finiteness is in fact true for almost all real numbers α (in the sense of Lebesgue measure),
a result due to Khintchine [36, Theorem 29].

However, one can construct real numbers which are well-approximable to all higher expo-
nents, called Liouville numbers after Liouville’s famous construction [42]. The key to construct-
ing a Liouville number is to artificially build something incredibly close to a series of rational
numbers. The simplest example is

∑︁∞
k=0

1
10k! : the partial sums form rational approximations

that are too good to allow for a finiteness property like Theorem 5.2, even for any fixed positive
exponent of q. These were the first explicit transcendental numbers.

Having studied the exponent k in approximation within 1/qk, we can turn to a finer question
of constants. For example, does Dirichlet’s Theorem hold if 1/q2 is replaced with 1/Cq2 for

various increasing values of C? The theorem holds until C =
√
5, above which the golden ratio

and certain of its relatives are no longer approximable by infinitely many rationals. This state of
affairs continues until another tipping point, C = 2

√
2, above which

√
2 is poorly approximable,

and so on. These tipping points form the beginning of the theory of the Lagrange spectrum.
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For the rich theory of Diophantine approximation, including further historical context for
these results, the reader may begin with [16, 33, 58].

The Diophantine approximation of the complex plane away from the real line is less well-
studied. Here we may ask the approximants to come from number fields: in our context, it is
natural to stratify these by degree, and ask: how well-approximable is a complex number by
algebraic numbers of degree ≤ d?

In order to do so, we need to generalize the notion of height, to measure the arithmetic
complexity of algebraic numbers in general.

5.1.1. Measuring arithmetic complexity with the näıve height of a polynomial. The simplest
notion of arithmetic complexity may be with reference to the coefficients of its minimal polyno-
mial. Recall that an algebraic number has a unique minimal polynomial, most often taken to be
the unique monic irreducible f(x) ∈ Q[x] for which it is a root. We may take this polynomial
to be in Z[x] by scaling up the denominator, which causes us to lose the monic condition. We
will write fα for the unique scaling whose coefficients are integral but with no common factor,
and positive leading coefficient, and refer to this as the minimal polynomial, following much of
the literature of Diophantine approximation (for example [17]).

Consider any polynomial f = adx
d + · · · a1x + a0 ∈ Z[x]. Then the näıve height of f is

defined as
H(f) := max

0≤i≤d
|ai|.

This measure has the advantage of simplicity, and a close connection to the linear algebra of
the lattice of polynomials of degree d in the space of coefficients. It is also clear that there are
only finitely many polynomials of bounded degree and height.

We will write H(fα) for the height of the minimal polynomial fα of α, which measures the
arithmetic complexity of α.

5.1.2. Good approximations drawn from fixed degree. To generalize Dirichlet’s Theorem 5.1,
one might ask to approximate by algebraic numbers of bounded degree d (so that Dirichlet’s
Theorem becomes the case of d = 1, i.e. approximation by rationals). One can define, following
Koksma [37] the quantity kd(α) to be the surpremum of all k such that there are infinitely many
algebraic numbers β of degree ≤ d satisfying

|α− β| < 1

H(fβ)k
.

Dirichlet’s Theorem 5.1, in this language, states that k1(α) ≤ 2 for α rational and k1(α) ≥ 2
for α real and irrational. Roth’s Theorem 5.2 is that k1(α) = 2 for α real and algebraic.

As regards the real case, Wirsing conjectured that for transcendental α ∈ R, kd(α) ≥ d+ 1
[67]. This is known for d = 1 (from Dirichlet’s Theorem) and for d = 2 [22].

For general degree, Sprindz̆uk gave an answer for almost all α (generalizing Khintchine’s
statement). We see a qualitative difference between real and non-real α.

Theorem 5.3 (Sprindz̆uk, [61]). For almost all α ∈ R, kd(α) = d+1. For almost all α ∈ C\R,
kd(α) = (d+ 1)/2.

This gives us a better idea of the natural sizing for algebraic points in the complex plane: a
sizing of 1/H(fα)

(d+1)/2 would be the natural analogue of Figure 15. See Figure 35.
Next, we may consider the generalisation of Roth’s Theorem 5.2 governing the approxima-

bility of algebraic numbers. Schmidt showed that for algebraic α ∈ R of degree at least 2,
kd(α) = min{deg(α), d + 1} [56]. For complex numbers away from the real line (our concern
here), it is slightly more complicated.

Theorem 5.4 (Bugeaud, Evertse [17], Theorem 2.1, Corollary 2.4). For algebraic α ∈ C\R,
kd(α) = min{deg(α)/2, (d+ 1)/2}
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except in the case that deg(α) ≥ d+2 and d is even. In this case, kd(α) ∈ {(d+1)/2, (d+2)/2}.
In particular, for d = 2, we have k2(α) = 2 if and only if the quantities 1, αα and α+α are

Q-linearly dependent (and k2(α) = 3/2 otherwise).

In degree d > 2, Bugeaud and Evertse give precise conditions for determining which of the
two possibilities for kd(α) is correct in most cases, but were not able to compute it in all cases.

Let us consider the dichotomy given for d = 2, where Theorem 5.4 says that some α are much
more approximable than others, based on whether 1, αα and α + α are Q-linearly dependent.
To see why this is the case, we recast this characterization more geometrically: such α have
the property that they lie on rational hyperbolic geodesics, i.e. those geodesics corresponding
to rational planes in coefficient space. These are exactly the rational geodesics discussed in
Observation 4.12.

This dichotomy is illustrated in Figure 33. In fact, we will show in Section 6 that this
dichotomy holds even for non-algebraic α.

Note that cubics cannot lie on rational geodesics40, an effect which is quite prominent in
Figure 1c. This is why k2(α) ∈ {3/2, 2} (i.e., we do not need to allow for k2(α) = deg(α)/2
separately).

Based on this geometric interpretation of the d = 2 case of Bugeaud and Evertse, one wonders
if the exceptional cases all have similar geometric interpretations. We muse on this briefly in
Section 7.

5.2. Measuring approximation: heights and distances.

5.2.1. The importance of PSL(2;Z) and the hyperbolic metric. There is a natural symmetry of
the algebraic numbers in the upper half plane: the action of PSL(2;Z). That is, the equivariant
action of PSL(2;C) on coefficient and root space, restricted to those elements which preserve the
lattice Z3 in the space R3 of coefficients (see Section 4.2.5). In this work, we extol the philosophy
that, for Diophantine approximation away from the real line, this action should be built into
our definitions. Hyperbolic distance and complex distance are conformally equivalent41, and
this symmetry respects the former. Therefore the relative hyperbolic positions of the algebraic
numbers are preserved under PSL(2;Z). Several of the notions of arithmetic complexity in the
literature partially respect this symmetry. If they do not, then, given any complex Diophantine
approximation statement (such as those of Bugeaud and Evertse), it seems natural to translate
by PSL(2;Z) until the statement is strongest (by which we mean, translate by PSL(2;Z),
find the best approximations according to the theorem, and then transport the constellation
back to the original region of interest, where perhaps a priori only worse approximations were
guaranteed).

Perhaps our position is most simply stated in terms of our visualizations: the positions of
the dots are periodic under PSL(2;Z) and therefore we argue the sizings of them should be too.
We illustrate this in Figure 34, showing the transport of a constellation of algebraic numbers
under PSL(2;Z), but shown in the euclidean metric and the height sizing. The varying sizes
and distances of the dots illustrate the changing levels of approximation from the classical
perspective.

While H(fα) = H(f1/α), unfortunately H(fα) ̸= H(fα+1). Consequently, the näıve height
is not invariant under the action of PSL(2;Z) on α. For non-real numbers, the height does,

40One way to see this is to reduce to the unit circle; cubics cannot lie on the unit circle αα = 1 unless their

real root r is rational, since the constant coefficient of the minimal polynomial ααr is rational.
41That is, locally the hyperbolic metric and the euclidean metric are very nearly multiples of each other.

This becomes exact at the level of tangent spaces for the Riemannian metric, where ds2Hyp = 1
Im(z)

ds2Euc.
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(a)

Figure 33. Quadratics shown in gray, quartics shown in light blue (if they
have no real conjugates) and dark blue (if they do). The quartics which lie off
such geodesics (such as the one highlighted in the top right) are approximated
only by quadratics at some distance on these geodesics. In contrast quartics
on a geodesic such as the unit circle have more quadratics near them as shown
in the lower highlight.

(a)

Figure 34. Cubic algebraic numbers in the näıve height, using the maximum
coefficient, plotted in the euclidean metric. PSL(2;Z) orbits are shown for the
complex roots of x3 + x − 1 (red), x3 + x2 − 1 (purple) and x3 + x2 + x − 1
(blue).
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however, attain a minimum on its full PSL(2;Z) orbit. Therefore we define42

HPSL(f) = min{H(f ◦A) : A ∈ PSL(2;Z)}.
To compute this minimum, there is a recent algorithm due to Stoll-Cremona and Hutz-Stoll
which may43 be helpful [34, 62].

5.2.2. Weil height. A more nuanced generalisation of the notion of height is the Weil height,
defined in terms of the absolute values of an ambient number field. For an algebraic number α
contained in a number field K, the Weil height is defined44 as

H(α) =
∏︂

v∈MK

max{1, ||α||v}, (14)

where the product is over the set MK of all normalized absolute values ||α||v = |α|[Kv:Qv]/[K:Q]
v

of K. Here, Kv and Qv are the completions of K and Q at v. For further details, a nice
introduction to this is available in [33, Section B.1–B.2]. This is actually independent of the
choice of K containing α. This definition is a generalisation of the case K = Q, namely

H(p/q) =
∏︂

v∈MQ

max{1, |p/q|v}, (15)

where | · |v ranges over all p-adic absolute values, as well as the archimedean one. This case can
be more simply and intuitively rewritten as

H(p/q) = max{|p|, |q|},
if p and q are taken to be coprime and integral. Fortunately, the Weil height and näıve height of
its minimal polynomial are closely related by a well known relationship in terms of the degree
d := [Q(α) : Q] of α [16, Lemma A.2] (note that the Mahler measure satisfies M(fα) = H(α)d

[10, Proposition 1.6.6]): (︃
d

⌊d/2⌋

)︃−1

H(fα) ≤ H(α)d ≤
√
d+ 1H(fα). (16)

Here it is important that fα is minimal in the sense of coprime integer coefficients.
Note that H(α) = H(1/α). For the same reasons discussed in the previous section, it is

natural to define

HPSL(α) = min{H(A.α) : A ∈ PSL(2;Z)}.

5.2.3. Repulsion in the complex plane in terms of Weil height. We can now state a generaliza-
tion of the repulsion statement (12).

Proposition 5.5 ([10, Theorem 1.5.21]). Suppose α ̸= β are distinct algebraic numbers, and
let d ≥ 1 be the degree of a field containing both. Then

|α− β|2 ≥ 1

2dH(α)dH(β)d
. (17)

The exponent 2 on the left can be removed if α, β ∈ R.

See [16, Section A.2] for a version in terms of the näıve height.

42Although the definition, and much of the discussion, works for R as well as C, PSL(2;Z) doesn’t preserve

any meaningful metric on the real line, and all of Q falls into a single orbit: this definition would lose too much
information.

43It generalizes the reduction theory of binary quadratic forms with respect to PSL(2;Z) to general binary
forms. It is not known how small a height one is guaranteed under their algorithm, nor where the minimum is

attained.
44We beg the reader’s forgiveness for the use of H for both näıve height of a polynomial and Weil height of

a number; they do not satisfy H(fα) = H(α), but the notation is standard in the literature.
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5.2.4. Discriminant as a measure of arithmetic complexity. From the perspective of the geom-
etry discussed in the previous section, and the images we’ve drawn, one might consider the
measure of arithmetic complexity given by the discriminant.

For a polynomial f = adx
d + · · · + a1x + a0 = ad

∏︁d
i=1(x − αi) ∈ Z[x], let ∆f denote the

discriminant of f . Recall that the discriminant is a measure of the differences between the
roots:

∆f = a2d−2
d

∏︂
i<j

(αi − αj)
2.

We will refer to an algebraic number as having a discriminant, namely the discriminant of
its minimal polynomial, and write ∆α := ∆fα . This has the particular advantage of being
invariant under PSL(2;Z).

How do the previously defined heights and the discriminant relate? Mahler proved a rela-
tionship in one direction [44], namely:

|∆α| ≤ ddH(α)d(2d−2). (18)

By using (16), we obtain the related inequality:

|∆α| ≤ dd(d+ 1)d−1H(fα)
2d−2. (19)

In general one doesn’t expect a converse inequality, since the discriminant is invariant under
f(x) ↦→ f(x+1), while the Weil height would be expected to grow. Even within one fundamental
region of the upper half plane, one doesn’t expect a tight relationship. For example, it is
possible to define a family of quadratic irrationalities (αn)n≥1 such that H(αn)

4/|∆αn | → ∞
as n → ∞. Namely, the polynomials x2 + n have upper-half-plane roots αn approaching ∞
along the imaginary axis, and 4H(αn)

4/|∆αn
| = 4n2/4n = n → ∞.

5.2.5. Sizing in starscape images. In light of the comparisons (16), (18), and (19), as well as
Theorems 5.3 and 5.4, one might compare the näıve sizings in Figures 12 and 13 with slightly
more nuanced versions given in Figure 35. These latter sizings are all chosen to match Theorem
5.3 just as Figure 15 matches Dirichlet’s Theorem 5.1.

6. Diophantine approximation in the quadratics

We now revisit the basic theory of Diophantine approximation by complex quadratic irra-
tionalities, from the starscapes perspective: we use the hyperbolic distance to measure distance
and the discriminant to measure arithmetic complexity. We give analogs of repulsion (as in (12)
and (17)), Dirichlet’s Theorem 5.1 guaranteeing infinitely many approximations, and Roth’s
Theorem 5.2 on the approximation of algebraic numbers, in this new situation. In this way, we
recover the d = 2 case of Theorem 5.4, with some additional geometric nuance (we distinguish
between approximations coming from different rational geodesics). The proofs are elementary
(with the exception that they depend on Schmidt’s Subspace Theorem), and are based on the
geometry of Section 4. We work in the coefficient space and transport the results to the complex
plane afterward.

This perspective offers a few benefits. First, it respects the natural PSL(2;Z) symmetry.
Second, the geometry nicely explains the special cases that arise in Theorem 5.4, and we can now
observe that the same dichotomy holds for non-algebraic complex numbers: those on rational
geodesics are better approximable. In particular, Theorem 6.3 implies that k2(α) ≥ 2 for any
complex number on a rational geodesic, whereas Theorem 5.3 says we have k2(α) = 3/2 for
almost all complex non-real numbers. Also, our method discriminates between approximations
taken from fixed rational geodesics. The relationship between our hyperbolic/discriminant
statements and the classical exponents k2(α) is explained in Section 6.3.

Throughout this section, it will be convenient to use Vinogradov notation: that is, f ≪α g
denotes that f is bounded above by a constant multiple of g, where the constant may depend
on α.
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(a) Discriminant: |∆α|(d+1)/(4d−4)

(b) Näıve height: H(fα)
(d+1)/2

(c) Weil height or Mahler measure: H(α)d(d+1)/2 =

M(f)(d+1)/2

Figure 35. Several natural choices of sizing by arithmetic complexity of the
roots of cubics to match Theorem 5.3, scaled so that the complex root of
x3+x−1 is the same size. The roots plotted are the family ax3+ cx2+ bx+ c.
Compare with Figures 12 and 13.

6.0.1. Repulsion amongst imaginary quadratics. Recall that with the Weil height function we
have a simple repulsion principle, (17):

|α− β|2 >
1

2dH(α)dH(β)d
.

Using the hyperbolic metric (denoted dhyp) and the discriminant, we obtain the following
version of repulsion.

Theorem 6.1. Let α ̸= β be two non-real quadratic irrationalities, of discriminants ∆α and
∆β respectively. Then the hyperbolic distance between α and β, considered in the upper half
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plane, is at least

dhyp(α, β) ≥ acosh

(︄√︄
1 +

1

∆α∆β

)︄
.

If ∆α = ∆β, then

dhyp(α, β) ≥ acosh

(︃
1 +

1

|∆α|

)︃
.

Proof. Suppose α and β are associated to some vectors fα, fβ in coefficient space. By (5), the
distance between them is

dCoefs(fα, fβ) = acosh

(︄
|⟨fα, fβ⟩|√︁
|∆α∆β |

)︄
.

Since α ̸= β, this distance is greater than 0. However, it lies in

acosh

(︄
Z√︁

∆α∆β

)︄
,

which is a discrete set of values whose smallest positive value is

acosh

(︄
n√︁

∆α∆β

)︄
,

where n is the smallest integer greater than
√︁
|∆α∆β |. In particular, n2 − ∆α∆β ≥ 1. This

implies that

n√︁
∆α∆β

≥

√︄
1 +

1

∆α∆β
.

The special case is the case that n = |∆α|+ 1. □

6.0.2. Fundamental geometric lemma. Fix α ∈ C\R, not quadratic. We will consider approxi-
mations by quadratic irrational β. We can give corresponding vectors in coefficient space:

fα = [α1 : 1 : α2], fβ = [p1 : n : p2]

where p1, n, p2 ∈ Z and α1, α2 are not both rational. More precisely, we have α1 = 1/(α + α)
and α2 = (αα)/(α+ α).

We wish to compute the hyperbolic distance between fα and fβ . Our proofs will rely on a
fundamental lemma which relates this distance to linear forms, with coefficients depending on
α, in fβ ’s coordinates.

45

Lemma 6.2. Suppose α ∈ C\R is a fixed non-quadratic, with fα = [α1 : 1 : α2].
Let β be quadratic, with fβ = [p1 : n : p2], where n, p1, p2 ∈ Z.
Define the linear forms:

L1 := L1(p1, n, p2) = nα1 − p1,

L2 := L2(p1, n, p2) = −nα2 + p2,

L3 := L3(p1, n, p2) = α1p2 − α2p1.

(1) We have

dhyp(α, β) ≤ acosh

(︃
1 +

max{|L1L2|, L2
3}

|∆β |

)︃
.

45This generalizes the rational approximation case, since there the angle θ between the projective lines [α : 1]
and [p : q] satisfies

cos θ =
⟨(α, 1), (p, q)⟩

||(p, q)||||(α, 1)||
=

|qα− p|
||(p, q)||||(α, 1)||

.
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(2) Suppose β is sufficiently close to α, namely dhyp(α, β) < acosh 2. Then

dhyp(α, β) ≥ acosh

(︃
1 +

mα|L1L2|
|∆β |

)︃
,

for some constant mα > 0 depending only on α.

Proof. Recall that the distance is invariant under scaling, so we will temporarily replace fα
with f ′

α = nfα, so the middle coordinates of the two vectors agree. We have

⟨f ′
α, fβ⟩2

||f ′
α||2||fβ ||2

− 1

=
(n2 − 2nα1p2 − 2nα2p1)

2 − (n2 − 4n2α1α2)(n
2 − 4p1p2)

||f ′
α||2||fβ ||2

= 4n2 (α1p2 − α2p1)
2 + (nα1 − p1)(nα2 − p2)

||f ′
α||2||fβ ||2

= 4
L2
3 − L1L2

||fα||2||fβ ||2

Evidently,

L2
3 − L1L2 ≤ 2max{|L1L2|, L2

3}.
Therefore

⟨fα, fβ⟩2

||fα||2||fβ ||2
≤ 1 +

2max{|L1L2|, L2
3}

||fβ ||2
.

Hence,

−⟨fα, fβ⟩
||fα||||fβ ||

≤ 1 +
max{|L1L2|, L2

3}
||fβ ||2

.

Next we show

L2
3 − L1L2 ≫α min{|L1L2|, L2

3}.
By the definitions of the Li, we have

L1α2 + L2α1 = L3.

In particular,

L2
3 − L1L2 = (L1α2 + L2α1)

2 − L1L2 ≥ (4α1α2 − 1)L1L2

by the arithmetic-geometric mean inequality. Note that Kα := 4α1α2 − 1 > 0 since α is not
real. Thus if L1L2 is positive, we are done. On the other hand, if it is negative, then

L2
3 − L1L2 = L2

3 + |L1L2| ≥ |L1L2|.

We have shown that, for some constant m′
α > 0 depending only on α,

⟨fα, fβ⟩2

||fα||2||fβ ||2
≥ 1 +

m′
α|L1L2|
||fβ ||2

.

Therefore, for β sufficiently close to α (i.e., so that
⟨fα,fβ⟩2

||fα||2||fβ ||2 < 2), this implies (taking

mα = (
√
2− 1)m′

α) that

−⟨fα, fβ⟩
||fα||||fβ ||

≥ 1 +
mα|L1L2|
||fβ ||2

.

□

6.1. Quadratic Dirichlet’s Theorem.
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6.1.1. Quadratic Dirichlet’s Theorem on a rational geodesic. We first consider the question of
Diophantine approximation on a single rational geodesic, i.e. the image of a rational plane
in coefficient space (see Section 4.2.5). This is motivated by the observation that each such
geodesic looks, in Figure 1a, like a copy of Figure 15, so we expect it to have Diophantine
approximation properties similar to the rationals. It will turn out that points lying on such
geodesics are better approximable than points elsewhere in C: see Figure 33. Recall that, given
α ∈ C\R, α lies on a rational geodesic if and only if 1, α+ α and αα are Q-linearly dependent
(Observation 4.12).

We begin with an analogue to Dirichlet’s Theorem 5.1, asserting the existence of infinitely
many good approximations on a rational geodesic.

Theorem 6.3. Let α ∈ C\R not be quadratic irrational, but lying on a rational geodesic. Then
there exists a constant Kα > 0, depending only on the PSL(2;Z) orbit of α, such that there are
infinitely many quadratic irrational β lying on that rational geodesic, with

dhyp(α, β) ≤ arcosh

(︃
1 +

Kα

|∆β |2

)︃
.

Proof. Suppose α ∈ C\R is a fixed non-quadratic, with fα = [α1 : 1 : α2]. The theorem
statement is invariant under PSL(2;Z) (i.e. replacing α and all candidate β with their images
under the action of some element of PSL(2;Z), we preserve ∆β and the hyperbolic distances).
We assume α is on a rational geodesic, so aα1 + b + cα2 = 0. We may translate by PSL(2;Z)
until max{|a|, |b|, |c|} is minimal; this is a constant depending only on the PSL(2;Z) orbit of α.
We can actually choose a canonical geodesic amongst these finitely many in any way we wish;
say the one of smallest radius, and amongst those, center nearest the origin but to its right.
We set some such convention.

Let Q > 0 be an integer.
We use the classical method of proof of Dirichlet’s Theorem 5.1 to find a solution (n0, q0) ∈ Z2

to

|n0α1 − q0| ≤ 1/Q, n0 ≤ Q.

Namely, we divide the unit interval into Q even subintervals, and the box principle guarantees
some iα1 and jα1, for some 0 ≤ i < j ≤ Q, lie in the same interval modulo Z; we let n0 = j− i.
We have an0α1 = −bn0 − cn0α2, so that

|cn0α1 − cq0| ≤ |c|/Q, |cn0α2 + bn0 + aq0| = | − an0α1 + aq0| ≤ |a|/Q.

We let fβ = [p : n : q] = [cq0 : cn0 : −bn0 − aq0]. The corresponding β ∈ C is a candidate good
quadratic irrational approximation to α.

Increasing Q and finding a new approximation, we can in fact produce infinitely many such
fβ which are linearly independent, and such that the resulting infinite sequence of distinct β
approach α.

It remains to show that these β are indeed good approximations. We have the following
observations:

n ≪α Q, |L1L2| ≪α 1/Q2,

L2
3 = |L1α2 + L2α1|2 ≪α max{|L1|2, |L2|2} ≪α 1/Q2.

Here and for the entire proof, the constants in the Vinogradov notation depend on α, but this
in the canonical choice of α within its PSL(2;Z) orbit, so the constants actually only depend
on the orbit.

Combining these with Lemma 6.2,

cosh dCoefs(fn, fβ)− 1 ≪α
1

n2|∆β |
.
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Let Cα = |ℜ(α)|/2|ℑ(α)|. This is a positive constant depending only on α. Then for all β
sufficiently close to α, |ℜ(β)| > Cα|ℑ(β)|. We consider only those solutions β which are at least
that close. Then n/2p > Cα|∆β |1/2/2p, hence n > Cα|∆β |1/2. Using this fact, we obtain

cosh dCoefs(fn, fβ)− 1 ≪α
1

|∆β |2
.

This proves the theorem. □

It is interesting to note that the constant Kα depends on a particular ideal class of a real
quadratic field, since by Observation 4.12, it can only lie on one rational geodesic and that
geodesic is associated to such an ideal class. In the proof, the constant Kα directly depends on
the class. It is natural to wonder about a Lagrange spectrum for α on rational geodesics.

Also interesting is that all α lying on rational geodesics are exceptions to Sprindz̆uk’s Theo-
rem 5.3. It is likely possible to prove using Khintchine’s classic methods, that, within a single
geodesic, almost all α have k2(α) = 2.

6.1.2. Quadratic Dirichlet’s Theorem in general. In the general case, where α may not lie on a
geodesic, we have weaker approximation guarantee, with a similar proof.

Theorem 6.4. Let α ∈ C\R not be a quadratic irrational. Let K > 0 be any constant. Then,
there are infinitely many quadratic irrationalities β with

dhyp(α, β) ≤ acosh

(︃
1 +

K

|∆β |3/2

)︃
.

Proof. Let Q > 1 be an integer.
Let fi = [iα1 : i : iα2] = ifα for positive integers i. Divide the unit interval into Q equal

subintervals, and consider the vectors fi modulo [Z : Z : Z]. Then, by the pigeonhole principle,
there are some 0 ≤ i < j ≤ Q2 such that fi and fj have first and third coordinates lying in the
same pair of subintervals modulo Z. Let n := j − i. Note that 0 < n ≤ Q2.

By construction, we have |nα1 − p1| < 1/Q and |nα2 − p2| < 1/Q for some integers p1 and
p2. Defining fβ = [p1 : n : p2], we have a corresponding β ∈ C: this is the candidate good
approximation we seek.

Choose Q′ large enough such that |nα1 − p1|, |nα2 − p2| > 1/Q′ for all n < Q2, p1, p2 ∈ Z.
Then, running this argument again with Q = Q′, we obtain a new solution f ′

β that is linearly
independent of fβ . By this method, there are infinitely many such solutions, with β approaching
α.

It remains to show that these β are indeed good approximations. We have the following:

n ≤ Q2, |L1L2| ≤ 1/Q2, L2
3 = |L1α2 + L2α1|2 ≪α max{|L1|2, |L2|2} ≤ 1/Q2.

Combining these with Lemma 6.2,

cosh dCoefs(fn, fβ)− 1 ≪α
1

n|∆β |
.

Note that the theorem statement is invariant under the action of PSL(2;Z). Therefore, we
may assume without loss of generality that ℜ(α) > Cℑ(α) for any positive constant C, by
translation by Z. This implies the same fact about all β sufficiently close to α: that for any
fixed positive C, we can guarantee n/2p > C|∆β |1/2/2p, hence n > C|∆β |1/2. Using this fact,
we obtain

cosh dCoefs(fn, fβ)− 1 ≪α
1

C|∆β |3/2
.

This proves the theorem. □
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6.2. Poor approximation of algebraic numbers by quadratics. In this section, we will
give a complementary result to Theorems 6.3 and 6.4, showing that algebraic numbers are not
any better approximable than those theorems guarantee.

Most of the deep results in the Diophantine approximation of algebraic numbers, including
Roth’s Theorem 5.2 and Theorem 5.4 of Bugeaud and Evertse, are consequences of the following
far-reaching result.

Theorem 6.5 (Schmidt’s Subspace Theorem [57, 58]). Let n ≥ 2, and let L1, . . . , Ln be linearly
independent linear forms in n variables, with real algebraic coefficients. Let ϵ > 0 be real. Then
the solutions x ∈ Zn to

|L1(x)L2(x) · · ·Ln(x)| <
1

(max{1, |x1|, . . . , |xn|})ϵ

lie in finitely many proper subspaces of Qn.

As an example, if one takes α ∈ R to be algebraic, Roth’s Theorem 5.2 can be reformulated
as the statement that there are only finitely many solutions to

|q||qα− p| < 1

qϵ
. (20)

To recover this assertion from Schmidt’s Subspace Theorem, one can choose L1(p, q) = q and
L2(p, q) = qα− p.

Theorem 5.4 of Bugeaud and Evertse uses Schmidt’s Subspace Theorem on the space of
coefficients. To approximate an algebraic number α, the coefficient vector f is subject to a
linear form given by |f(α)| (so the coefficients of the linear form are the powers of α). In our
case, the application is different: we work again on the space of coefficient vectors, but our
linear form is given in terms of 1, α + α and αα. That is, in terms of the coefficient vector
associated to α, instead of a vector of its powers. We are, in effect, searching for approximations
to the coefficient vector fα of α within the coefficient space. It is interesting to ask whether
this method extends to higher degree.

We will now use Schmidt’s Subspace Theorem 6.5 to deduce the main result of this section.

Theorem 6.6. Suppose that α ∈ C\R is algebraic and non-quadratic. Let η > 0. If α lies on
a rational geodesic, then there are only finitely many quadratic irrationals β on that geodesic
such that

dhyp(α, β) ≤ acosh

(︃
1 +

1

|∆β |2+η

)︃
. (21)

Amongst quadratic irrationals β not sharing a rational geodesic with α, there are only finitely
many such that

dhyp(α, β) ≤ acosh

(︃
1 +

1

|∆β |3/2+η

)︃
. (22)

In particular, if α is not on any rational geodesic, then there are only finitely many quadratic
irrational β satisfying (22) at all.

Proof. Note that, by Theorem 6.1, at most one β having ∆β = ∆ can satisfy (21) or (22),
for each ∆. Therefore, by throwing away at most finitely many approximations β, we can
reduce to considering β having discriminant |∆β | exceeding any fixed bound, or, consequently,
to considering β sufficiently close to α.

First, we will show that there are only finitely many β which are not on the same rational
geodesic as α (where α may or may not be on any rational geodesic), and which satisfy

dCoefs(fα, fβ) ≤ acosh

(︃
1 +

1

|∆β |3/2+η

)︃
.
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For β sufficiently close to α, Lemma 6.2 implies that any such solution β satisfies

|L1L2| ≪α 1/|∆β |1/2+η.

For β sufficiently close to α, we also have

|ℜ(β)| ≫≪α |ℑ(β)|. (23)

In particular,

n ≫≪α |∆β |1/2.
Therefore (altering η),

|n||L1(p1, n, p2)||L2(p1, n, p2)| ≪α
1

|n|η
.

These three linear forms are independent. So by Schmidt’s Subspace Theorem 6.5, these so-
lutions lie on finitely many proper subspaces, i.e. rational geodesics. Note that this finite
collection of orbits depends only on α. Choose any one geodesic. In particular, assume that
ap1 + bn+ cp2 = 0. In particular, |a|, |b|, |c| are bounded above by a constant depending only
on α.

Then, what we have is actually

|nα1 − p1||cnα2 + ap1 + bn| = |nα1 − p1||nα2 − p2||c| ≪α
1

|n|1+η
<

1

|n|η
.

Since α is not on the geodesic, aα1 + b + cα2 ̸= 0, which implies these are independent linear
forms in two variables n and p1. Again by Schmidt’s Subspace Theorem 6.5, the solutions lie
on finitely many lines in (non-projectivized) coefficient space. Hence there are finitely many
solutions.

Next, we show that there are only finitely many solutions β which are on the same rational
geodesic as α (thus we are in the case that α is on a rational geodesic), and which satisfy

dhyp(α, β) ≤ acosh

(︃
1 +

1

|∆β |2+η

)︃
.

For such β sufficiently close to α, by Lemma 6.2,

|L1L2||∆β | ≪α 1/|∆β |η.

By the same argument surrounding (23) (altering η),

|n|2|nα1 − p1||nα2 − p2| ≪α
1

|n|η
.

Assume that this geodesic is characterised by ap1+b+cp2 = 0, and therefore aα1+b+cα2 = 0.
Therefore |nα2 − p2| = |a/c||nα1 − p1| and so this becomes (altering η):

|n||nα1 − p1| ≪α
1

|n|η
.

These are independent linear forms in two variables, so by Schmidt’s Subspace Theorem 6.5
on the two-dimensional space in n and p1, we have solutions on only finitely many lines in
coefficient space. This means there are only finitely many β. □

6.2.1. Complex Liouville numbers. We demonstrate that there are non-quadratic complex num-
bers which are extremely well-approximable by quadratic irrationals (in particular, so as to be
necessarily non-algebraic, as a result of Theorem 6.6).

In analogy with the classical case, we will call α ∈ C a complex quadratic Liouville number
if, for every positive integer m, there are infinitely many quadratic irrational β such that

dhyp(α, β) ≤ acosh

(︃
1 +

1

|∆β |m

)︃
. (24)
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To accomplish this, we will construct a Cauchy sequence of quadratic irrationals βk. Calling
the limit α, we will show that the hyperbolic distance between α and βk satisfies (24). The
construction is simple: we only require at each stage that

dhyp(βk, βk+1) < acosh

(︃
1 +

1

|∆βk
|k

)︃
, |∆βk

| ≥ 2. (25)

As the quadratic irrationals of absolute discriminant ≥ 2 are dense, this is possible. To see that
the sequence is Cauchy and the limit satisfies (24), we can compute, for M > m,

dhyp(βM , βm) ≤
M−1∑︂
k=m

dhyp(βk, βk+1)

≤ dhyp(βm, βm+1)

M−1∑︂
k=m

dhyp(βk, βk+1)

dhyp(βm, βm+1)

≪ dhyp(βm, βm+1)

≤ acosh

(︃
1 +

1

|∆βm
|m

)︃
.

Note that the step in which the sum symbol disappears follows from (25) and the series expan-
sion as x → ∞,

acosh(1 + 1/x2) =

√
2

x
− 1

6
√
2x3

+
3

80
√
2x5

+ · · · . (26)

This implies (24).
As this construction has a great deal of freedom, we can construct quadratic Liouville num-

bers on any fixed rational geodesic, for example. The countability of the rational geodesics also
implies we can construct quadratic Liouville numbers not lying on any rational geodesic.46

6.3. Comparison with classical results. We wish to compare Theorems 6.4 and 6.6 with
Theorem 5.4. In other words, to compare the classical approach to Diophantine approxima-
tion in the complex plane with the approach we consider here, using hyperbolic metric and
discriminant sizing.

We begin with the following Lemma 6.7, relating the näıve height and the discriminant as
measures of arithmetic complexity. In the case of quadratics, and taking into account PSL(2;Z)
invariance, (19) becomes

|∆α| ≤ 12HPSL(fα)
2. (27)

As discussed above, we don’t expect an inequality in the other direction in general. However,
if we take into account the PSL(2;Z) action, and loosen the exponents, then we can prove such
a thing in the quadratic case.

Lemma 6.7. Suppose β is of degree 2. Then

|∆β | ≥ 3HPSL(fβ), (28)

and also,

|∆β | ≥
3HPSL(fβ)

2

NPSL(β)
, (29)

where NPSL denotes the norm of the element of its PSL(2;Z) orbit which lies in the standard
fundamental region.

46To see this, count the geodesics and assign a tubular neighbourhood of width 1/n to the n-th such geodesic;

require all terms βk past the n-th to avoid the first n tubular neighbourhoods; each term has finitely many
restrictions placed upon it. (To make this work, the geodesics must be ordered as the terms are created, i.e. the

n-th geodesic is always chosen so that the closure of its neighbourhood does not include βn.)
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Proof. The quantities involved are all invariant under the action of PSL(2;Z), so it suffices
to assume β lies in the usual PSL(2;Z) fundamental region. For β an imaginary quadratic
irrationality satisfying ax2 + bx+ c = 0, lying in the usual fundamental region,

H(fβ) = max{|a|, |b|, |c|}, N(β) = |c/a| ≥ 1, |ℜ(β)| = |b/2a| ≤ 1/2.

From this we conclude that |b| ≤ |a| ≤ |c| hence H(fβ) = |c| and b2 < |ac|. Then we have

|∆β | = 4|ac| − b2 ≥ 3|ac| ≥ 3|c| = 3H(fβ).

Alternately, we use N(β) = |c/a| for the second inequality. □

Next, we recall that the hyperbolic metric and euclidean metric are locally conformally
equivalent. More precisely, for β sufficiently close to α in either metric,

(1− ϵ)ℑ(α)dhyp(α, β) < |α− β| < (1 + ϵ)ℑ(α)dhyp(α, β). (30)

Finally, we need the series expansion as x → ∞ for the inverse hyperbolic cosine given in (26).
Collecting the above relationships, it is a simple computation to derive the following:

Lemma 6.8. (1) Suppose

dhyp(α, β) < acosh

(︃
1 +

C

|∆β |k

)︃
.

Then

|α− β| < (1 + ϵ)ℑ(α)NPSL(β)
k/2

√
2C

3k/2HPSL(fβ)k
.

(2) Suppose

dhyp(α, β) > acosh

(︃
1 +

C

|∆β |k

)︃
.

Then for |∆β | sufficiently large,

|α− β| > (1− ϵ)ℑ(α)
√
2C

12k/2HPSL(fβ)k
.

In particular, Theorems 6.1, 6.3, 6.4, and 6.6 imply statements in the euclidean metric with
the choice of the näıve height, which we collect here for completeness.

Theorem 6.9. (1) Let α ̸= β be two non-real quadratic irrationalities. Then for and
positive ϵ, and for |∆β | sufficiently large,

|α− β| ≥ (1− ϵ)ℑ(α)
√
2

2
√
3HPSL(fβ)1/2+ϵHPSL(fα)1/2+ϵ

.

If ∆α = ∆β is sufficiently large in absolute value, then

|α− β| ≥ (1− ϵ)ℑ(α)
√
2

2
√
3min{HPSL(fβ), HPSL(fα)}

.

(2) Let α ∈ C\R not be quadratic irrational, but lying on a rational geodesic. Then there
exists a constant Kα > 0, depending only on the PSL(2;Z) orbit of α, such that there
are infinitely many quadratic irrational β lying on that rational geodesic, with

|α− β| < Kα

HPSL(fβ)2
.

(3) Let α ∈ C\R not be a quadratic irrational. Let K > 0 be any constant. Then, there are
infinitely many quadratic irrationalities β with

|α− β| < K

HPSL(fβ)3/2
.
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(4) Suppose that α ∈ C\R is algebraic and non-quadratic. Let η > 0. If α lies on a rational
geodesic, then there are only finitely many quadratic irrationals β on that geodesic such
that

|α− β| < 1

HPSL(fβ)2+η
. (31)

Amongst quadratic irrationals β not sharing a rational geodesic with α, there are only
finitely many such that

|α− β| < 1

HPSL(fβ)3/2+η
. (32)

In particular, if α is not on any rational geodesic, then there are only finitely many
quadratic irrational β satisfying (22) at all. Note that in (21) and (22), HPSL can be
weakened to H.

In particular, up to constants depending on α, our theorems recover the computation of
k2(α) given by Theorem 5.4 of Bugeaud and Evertse for the quadratic case.47 Theorem 6.9
offers some refinement in terms of drawing a distinction between approximations on a geodesic
containing α or not.

However, the constants are different. As the imaginary part of α approaches ∞, the constant
Kα of item (2) of Theorem 6.9 weakens. By contrast item (1) of Theorem 6.9 becomes a stronger
statement as α → ∞. It is natural to ask whether there is an analogue to the Lagrange
spectrum for approximation by quadratic irrationals, at least for those lying on a geodesic.
The preceding discussion demonstrates that knowledge of the spectrum in one of the classical
or hyperbolic/discriminant settings would not imply the other, although there would be some
relationships.

7. To boldly go where no one has gone before

The investigation of algebraic starscapes raises a wide variety of possible future research
directions, many of which we intend to continue to investigate. We invite you to join us.

7.1. The homogeneous geometry of higher degrees. For higher degree polynomials, the
beginnings of the geometric story remain relatively unchanged, but strong conclusions such as
Theorems 4.3 and 4.27 become more complicated to draw, as the dimension of the space of
polynomials grows.

In particular, fixing a degree n ≥ 1, we have that PCoefsn ∼= CPn identifies with complex
projective space, and Rootsn ∼= SPn(CP1) is the set of unordered n-tuples in the Riemann
sphere. The roots map Rn : CPn → SPn(CP1) is a homeomorphism, and is equivariant with
respect to the natural PSL(2;C) actions on each side: given on the space of roots by precom-
position with a Möbius transformation, and on the space of coefficients by the action of the
unique irreducible representation PSL(2;C) → PSL(n;C).

Restricting to real coefficients, the fact that R is a homeomorphism implies Rn : RPn →
SPn(CP1) is an embedding, equivariant with respect to the restricted PSL(2;R) action on each
side. The orbits of this action decompose the space of degree n polynomials, whose nature
depends on the degree. For n ≤ 3, each component of the complement of the discriminant
locus comprises an entire orbit itself, and thus comes equipped with the structure of a ho-
mogeneous geometry for PSL(2;R). For n > 3, the PSL(2;R) orbits foliate each component.
Consider as an example the space of quartics. The complement of the discriminant locus has
two components; those with two pairs of complex conjugate roots, and those with a pair of
complex conjugate roots and two real roots. The PSL(2;R) action decomposes the latter into

47To see this for items (2) and (3) in Theorem 6.9 requires some consideration of the relationship between
HPSL(fα) and H(fα); we need to know the quotient is bounded in terms of the height of the relevant element

of PSL(2;Z), which is a constant in terms of α.
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a family of codimension-1 hypersurfaces, which are generically48 diffeomorphic to PSL(2;R)
itself. This complicates the overall picture, and suggests generalisations of Theorems 4.3 and
4.27 will involve fiber bundles of homogeneous spaces, rather than just the spaces themselves.

Building a more robust geometric toolkit would not only allow the extension of these ideas
to higher degree polynomials, but strong enough tools may provide a window into exploring
their solvability. In particular, while the next case of interest, quartics, admits a solution by
radicals, the quintics and beyond do not. It is an exciting prospect to try and understand this
dichotomy geometrically along our journey.

7.2. Starscape curves. Revisit Figure 25. The images of rational planes (projective rational
lines) in the coefficient space form delicate beaded necklaces (linear starscapes). Any two
algebraic numbers lie on at least one common curve (more if the point has the non-transversal
property discussed in Corollary 4.30). It is possible to give algebraic equations for these curves
in general dimension, in terms of the two associated minimal polynomials f1 and f2, namely,
viewing the complex plane as R2, the curve is ℜ(f1(x+iy))ℑ(f2(x+iy)) = ℜ(f2(x+iy))ℑ(f1(x+
iy)). We will call these starscape curves. The intricacies of some of these curves suggest that
the projective geometry of coefficient space is quite disguised by projecting onto complex roots.
Determining whether these starscape curves are related to any natural geometric structures on
the complex plane may allow us to develop further extensions of the material in Section 4 to
higher degree.

Furthermore, starscape curves appear to have a repulsion effect all their own (see the white-
space surrounding geodesics in Figure 1a, for example). Is it possible to quantify how well
approximable some complex number α is by these curves? We might measure the distance
between α and a curve. What is the height of a starscape curve?

7.3. Planar starscapes. The planar starscapes we have studied provide a two dimensional
analogue to the curves described above, with the complex quadratics (Figure 1a) providing a
primary example. As the degree of polynomials increases these families can get more compli-
cated, but the projection to the upper half-plane by complex roots is always available (although
each polynomial might be represented by increasing numbers of individual roots). Even in the
cubic case where there is at most one complex pair we start to see new behaviour with the
“blackhole”-like phenomena seen on the right of Figure 32b, where a quadratic point is the
complex root of many polynomials. The starscapes shown in Figures 2d, 2e, and 2f show fur-
ther intriguing behaviours that might be studied, such as seemingly denser regions and the
isolated quadratic and cubic points at the top middle of Figure 2f.

7.4. Algorithms to draw starscapes and Farey structure. Some of the images here have
taken minutes or even hours to compute. Can we develop faster, more intelligent algorithms?
The current images are made using a brute force approach: generate a large number of poly-
nomials, solve them, and then plot the results which fit into a desired region. The code is
short and many of the hard subproblems, like solving polynomials, are already implemented in
computer algebra environments. However, it is very inefficient: we don’t effectively sieve for
points which will end up in the desired region, and work is repeated for every point.

The geometry discussed above provides a path to improvements. Can we efficiently predict
which polynomials need to be solved for a given region? Along each curve we see a recursive
pattern resembling the rational numbers in Figure 15. An efficient way to generate rational
numbers is to use the Farey (or Stern-Brocot) tree stucture, discussed in Section 4.1.2 and shown
in Figure 18: in essence, use the mediant operation to fill in gaps, recursively. A variation on

48Indeed, by the action of PSL(2;R), the pair of complex roots can be moved to any point in H2. Fixing

this point, the remaining degree of freedom of the PSL(2;R) action acts by rotation on the ideal boundary
∂∞H2 = RP1, and each PSL(2;R) orbit is determined by the angle between these two points, measured between

the tangent vectors at the complex root pointing to the real roots, as in Equation 10.
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this can be achieved by the näıve addition of polynomials as coefficient vectors. This produces
a new polynomial with a root “between” the original two along the curve. In effect, we are
asking about higher dimensional Stern-Brocot trees [40]. It should also be possible to make use
of the PSL(2;Z) symmetry, at least in large-scale pictures.

7.5. Continued fractions. Do there exist continued fraction algorithms for approximation
by algebraic numbers of fixed or bounded degree? The Farey structure of the rationals is, in
some sense, the source of the continued fraction algorithm for real numbers approximated by
rationals (the continued fraction algorithm can be viewed both as a traversal of a Cayley graph
for PSL(2;Z) and as a geometric process of repeated mediants). Figure 1a wonders aloud,
might it be possible to extend the continued fraction method to approximate complex numbers
by quadratic irrationals? It is possible that existing multidimensional continued fraction algo-
rithms, which have a long history, may provide hints; a recent article from which to enter the
literature is [47].

7.6. Higher degree and geometry-sensitive Diophantine approximation. We have seen
that the geometry of the roots map naturally classifies certain types of approximations. Our
example is quadratic approximations from one rational geodesic, where we saw that approxi-
mations from a geodesic containing α can be better than approximations not on the geodesic.
Moving to the cubic case, one might ask how well a quadratic is approximated by cubics from a
particular planar starscape. If the quadratic is a singular point in the sense of Corollary 4.30 and
Figure 32, then we conjecture the cubics from that planar starscape are better approximations
of the quadratic than those from starscapes not having the property.

More generally, to what extent can the results of Section 6 be extended to higher degree?
Could such an extension settle the oustanding cases in the work of Bugeaud and Evertse? In
higher degree, are the exceptionally well-approximable algebraic numbers all living on starscape
curves, or are there other reasons to be well-approximable? The work of Bugeaud and Evertse
also indicates a difference in approximability based on how many real conjugates an algebraic
number has. What pictures would one draw to see this effect?

7.7. Mahler measure and Lehmer’s Conjecture. Lehmer’s famous conjecture is related to
another important measure of arithmetic complexity, namely the Mahler measure (which is not

technically any type of measure). A polynomial f = adx
d+· · · a1x+a0 = ad

∏︁d
i=1(x−αi) ∈ Z[x]

has Mahler measure

M(f) = |ad|
d∏︂

i=0

max{1, |αi|}.

The Weil height of an algebraic number is exactly related to the Mahler measure of its minimal
polynomial: M(fα) = H(α)d.

Lehmer’s conjecture states that there is a lower bound to M(f) away from polynomials
whose roots are roots of unity. The smallest known Mahler measure of a non-root-of-unity
is called Salem’s number, 1.176280818 . . . associated to the roots of the Lehmer polynomial
x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1.49 Lehmer’s Conjecture is known to hold for non-
reciprocal polynomials (those whose coefficients are not palindromic) [60], and Voutier [65]
gives an explicit lower bound in terms of the degree, implying the conjecture is true if fields
are restricted by degree. Therefore to properly visualize Lehmer’s conjecture would require
a starscape in increasing degree, and some understanding of the real roots accompanying the
complex roots.

For these various reasons, there is a sense in which Lehmer’s conjecture does not properly
belong to the complex plane and the algebraic starscapes, although it is natural to wonder

49The complex roots of Lehmer’s polynomial all lie on the unit circle, and its Mahler measure is a function

of its real roots.



64 EDMUND HARRISS, KATHERINE E. STANGE, STEVE TRETTEL

(a) Quartics (b) Sextics

(c) Octics (d) Decics

Figure 36. Pictures of roots of reciprocal polynomials off the unit circle (the
many roots on the unit circle are not plotted). For odd degrees the reciprocal
polynomials always have the root −1. The points are coloured by the number
of conjugate real roots with dark blue for 0, light blue for 2, dark red for 4
and light red for 6 (dark and light blue are swapped from Figure 33 to make
the image clearer). Note the strong repulsion of the unit circle in all cases,
especially close to i and third/sixth roots of unity. There are also denser
regions in the direction of the d-th roots of unity for degree d.

if it gives rise to any interesting images. One related image which is particularly stunning is
the reciprocal polynomials, shown in Figure 36. The image itself asks a variety of interesting
questions.
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