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ABSTRACT @ RISC-V + Accelerators|

Artificial intelligence (AI) based wearable applications collect and
process a significant amount of streaming sensor data. Transmitting
the raw data to cloud processors wastes scarce energy and threatens
user privacy. Wearable edge Al devices should ideally balance two
competing requirements: (1) maximizing the energy efficiency using
targeted hardware accelerators and (2) providing versatility using
general-purpose cores to support arbitrary applications. To this end,
we present an open-source domain-specific programmable system-
on-chip (SoC) that combines a RISC-V core with a meticulously
determined set of accelerators targeting wearable applications. We
apply the proposed design method to design an FPGA prototype and
six real-life use cases to demonstrate the efficacy of the proposed
SoC. Thorough experimental evaluations show that the proposed
SoC provides up to 9.1X faster execution and up to 8.9x higher
energy efficiency than software implementations in FPGA while
maintaining programmability.
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1 INTRODUCTION

Wearable devices have many promising applications ranging from
activity recognition to early diagnosis and prognosis of diseases
through continuous monitoring of health-related signals [10]. The
emergence of new device form factors, such as electronic patches
and devices embedded into clothing, further amplifies the potential
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Figure 1: Main steps in a typical wearable edge AI app.
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impact of wearables on everyday life. However, widespread adop-
tion of wearable devices has so far been hindered due to frequent
maintenance and charging requirements despite their potential [3].

Wearable devices collect data from various sensors, such as ac-
celerometers and biopotentials, to enable sophisticated health moni-
toring applications, as illustrated in Figure 1. The decadal plan from
the Semiconductor Research Corporation highlights that the collec-
tive data acquisition rate of sensors will be as high as 102° bits/sec
by 2032 [16]. Offloading the sensor data to another device or cloud
is prohibitive since wireless data transfer is power-hungry [14, 16].
Therefore, wearable devices must be capable of implementing com-
plex artificial intelligence (AI) and signal processing algorithms at
the edge, which requires powerful microprocessors. At the same
time, wearable devices also have severely limited battery and en-
ergy harvesting capacity due to small form factor requirements.
For example, the Fitbit Inspire 2 consumes ~1.5 mW on average,
while wearable energy harvesting potential hardly reaches 100 W,
leading to a substantial (>15%) gap between the required and avail-
able energy budget [10, 18]. Therefore, there is a strong need for
approaches that enable practical wearable devices that satisfy both
computational power and energy requirements.

The energy gap can be bridged by two complementary efforts:
reducing the energy consumption requirements and increasing the
harvested energy. This paper focuses on the former; we propose a
domain-specific system-on-chip (SoC) for wearable edge Al-based
health monitoring devices that satisfy two competing requirements:
programmability and high energy efficiency. General-purpose mi-
croprocessors have been favorable for implementing wearable ap-
plications since they provide the flexibility to implement a wide
range of applications. Indeed, most commercial hardware platforms
employ Arm or RISC-V cores as the primary processor [5, 13, 14].
However, the software (SW) programmability comes at the expense
of low energy efficiency. Custom hardware (HW) accelerators ad-
dress this problem and provide 2-3 orders of magnitude higher
energy efficiency by achieving faster operation and lower power
consumption [1, 4, 9]. However, their benefits diminish if program-
ming the SoC requires significant human effort to support rapidly
evolving applications [7, 16]. Hence, there is a strong need for SoCs
that can approach the energy efficiency of custom designs while
preserving programmability.
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To our knowledge, this paper presents the first domain-specific
SoC that targets wearable applications through a systematic anal-
ysis. We identify the most frequently used preprocessing, feature
extraction, and classification tasks in wearable health monitor-
ing applications by analyzing 282 recently published articles in
this domain. We judiciously selected five tasks among them with
the highest execution time and energy consumption. Then, we
designed HW accelerators to accelerate them. Thus, the SoC inte-
grates a general-purpose RISC-V core with five HW accelerators for
frequently used compute-intensive tasks. The RISC-V core enables
programmability while the HW accelerators boost the energy ef-
ficiency of the most frequently used tasks. The proposed SoC can
implement any application and accelerate hundreds of applications
that use a subset of the most frequent tasks we identified. As a case
study, we implement six representative real-world wearable appli-
cation use cases to demonstrate the capabilities of the proposed SoC.
Extensive evaluations on Xilinx ZCU102 FPGA demonstrate that
the proposed SoC boosts the energy efficiency of wearable health
monitoring applications by up to 8.9x compared to the reference SW
implementations running only on the RISC-V core. Furthermore,
our domain-specific SoC design approach preserves the program-
ming flexibility and facilitates adding new HW accelerators and
implementing new applications. Our major contributions are:

o Identifying the most commonly used tasks in wearable health
monitoring literature and designing HW accelerators for them,

e An energy-efficient domain-specific SoC for health monitoring
that integrates our HW accelerators and RISC-V cores,

e Demonstrating the proposed SoC using six representative end-
to-end use cases,

e Extensive power, performance, and energy evaluations with a
prototype on the Xilinx ZCU102 FPGA.

2 RELATED WORK

State-of-the-art wearable edge Al applications are typically imple-
mented in SW on low-power microcontroller units (MCUs). For
example, Samie et. al present an IMU-based human activity recog-
nition (HAR) implementation on a TI CC1350 MCU (housing an
Arm Cortex M3 core) [14], with average power and energy con-
sumptions of 9.45 mW and 142.48 pJ per classification. Similarly,
the authors in [13] implement a stress detection application that
uses electrocardiography (ECG) and galvanic-skin-response data
on a custom SoC with a RISC-V core. Another study presents a
prototype device that collects and processes electroencephalogra-
phy (EEG) signals to extract evoked potentials [5]. They use an
STM32F412 MCU with an Arm Cortex M4 core that consumes ~18
mW of power. The power consumption of SW implementations
motivates researchers to seek more energy-efficient solutions.
ASIC solutions provide much higher energy efficiency than
general-purpose cores. For example, authors in [4] present a 30.6
puW dedicated HAR HW accelerator implemented with TSMC 65nm
LP library. Similarly, another study demonstrates an ECG peak de-
tector that consumes ~30 pW power in ASIC [9]. However, the
increased energy efficiency comes at the expense of flexibility, mak-
ing custom designs suitable to only a handful of applications.
Domain-specific SoCs support a wide range of applications by
combining general-purpose cores with a targeted set of HW acceler-
ators. Using domain-specific accelerators has been recognized as a
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promising way to boost energy efficiency and performance [1]. For
example, recent work focused on accelerating the localization and
perception functions in the autonomous driving domain, demon-
strating up to 34X higher power efficiency than Intel i7 [8]. Similarly,
significant benefits are demonstrated for other domains, including
speech recognition and deep learning [19]. However, there is no
domain-specific HW platform for resource-constrained wearable
edge devices, despite their critical need for energy efficieny.

3 PROPOSED DOMAIN-SPECIFIC SOC DESIGN

To overcome the shortcomings of SW implementations and custom
designs, we present a domain-specific SoC for wearable devices.
The proposed design addresses the challenges mentioned above
by integrating a programmable subsystem for flexibility and exten-
sible HW accelerator cluster for improving energy efficiency and
performance, as illustrated in Figure 2. Since different applications
in a domain use various tasks for data processing, the proposed
design features a programmable subsystem built around a general-
purpose RISC-V core. In addition, we integrate an extensible HW
accelerator cluster to boost the energy efficiency of frequently used
compute-intensive tasks in wearable applications.

3.1 Programmable Subsystem

The programmable subsystem is based on the open-source PULPis-
simo microcontroller architecture [15]. The PULPissimo platform
is used for three reasons. It (1) allows for end-to-end customization
thanks to its open-source availability; (2) incorporates low-power
components (e.g., RISC-V core and interconnects) and DMA for
low-energy data movement; and (3) is silicon-proven. It utilizes
a RISC-V processor, an in-order single-issue 4-pipeline stage 32-
bit core. The RISC-V core can be enhanced at design time to in-
clude floating-point unit (FPU), DSP, and SIMD extensions. The
PULP infrastructure also provides a software development kit (SDK)
with pre-built APIs and libraries to utilize the on-chip computing
resources. The SoC also includes an L2-memory subsystem that
allows different cores to share data, as shown in Figure 2. A pe-
ripheral AXI bus interconnects the RISC-V core, peripherals, and
the control plane of the HW accelerator cluster. The control plane
uses the simple advanced peripheral bus (APB) protocol suitable for
rare and sporadic transactions. The tightly coupled data memory
(TCDM) on-chip network enables high-bandwidth streaming data
communication between the RISC-V core, L2 memory, and the HW
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Figure 2: The proposed domain-specific SoC architecture.
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accelerator cluster. The TCDM interconnect enables single-cycle
transactions between the initiators and responders on-chip. This
functionality is supported by providing tDMA units and interrupt
controllers to issue handshake signals and move data in a streaming
manner over the TCDM interconnect. The RISC-V core does not
consume energy for relaying data into the accelerators since the
HW accelerators read data directly from L2 memory with the help
of the uDMA units. Finally, applications running in the RISC-V core
easily utilize our HW accelerators using memory-mapped regis-
ters. For instance, a neural network (NN) inference call in the user
program issues transactions and initiates the computation in the
NN accelerator. Hence, the application developers can conveniently
utilize the proposed HW accelerators instead of SW routines.

3.2 Identifying the Tasks to Accelerate

The potential benefits of domain-specific SoCs depend on identi-
fying the tasks to accelerate. This decision is a function of both
the prevalence of the task and the energy-performance benefits of
accelerating it. We analyze the full text of relevant research papers
published between 2015 and 2020 on arXiv. We chose arXiv specifi-
cally as it provides open access to the full-text articles. The analysis

covers 282 publications found by the following search query:
wearable & 1)

(‘health || healthcare || medical ) & (2)
(device || iot || technology || sensing || edge ||
system || computing || monitoring ) & (3)
('signal processing || algorithm || method || technique ||

approach || implementation || application || hardware ) )

We first build a custom dictionary composed of 164 technical
keywords, summarizing the commonly used tasks in wearable ap-
plications, such as filtering and statistical features. Then, we find
the frequency of these keywords in the selected publications. This
analysis summarized in Figure 3 provides the following insights:

(a) Signal statistics (e.g., min, max, mean, variance) are the most
common features;

(b) NN, support-vector-machines (SVM), and decision trees (DT)
are commonly used for classification;

(c) Windowing (e.g., Hamming window), standardization (e.g.,
mean removal and normalization), filtering, segmentation, and
resampling are commonly used for signal-preprocessing;

(d) Temporal (e.g., peak count), correlation (e.g., covariance), spec-
tral analysis (e.g., fast Fourier transform (FFT)), and vector mag-
nitude computation are frequently used for feature generation.

Using an HW accelerator for a given task is profitable only if the
execution time and energy consumption savings surpass the offload
overhead. Therefore, we implemented these most frequently used
tasks on the proposed SoC using only the RISC-V core to profile
their execution time and power consumption. As a result of this
analysis (detailed in Section 5), we designed HW accelerators for
NN, correlator, resampling, magnitude computation, and used an
open-source FFT core [11], as discussed next.

3.3 Design of the Proposed HW Accelerators

NN accelerator: Our design implements the inference of multi-
layer perceptron-based neural networks. It has two input channels
(one for the weights and another for input features) and a single
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output channel that emits the output probabilities. It incorporates a
parameterized neuron submodule and multiply-accumulate engine.
Hence, it can be configured to implement NNs with an arbitrary
number of layers and neurons. For example, a 3-layer network
with 4-8-8 neurons in its layers takes 163 cycles to execute and is
pipelined to provide a throughput of 1 output every 127 cycles.
Correlation (Corr) accelerator: The correlation engine calculates
the cross-correlation between any two equal-length vectors. For
example, we use it to calculate the autocorrelation of a signal with
time-lagged versions of itself. For efficient vector multiplication,
we leverage the Multiply-Accumulate engine released by the devel-
opers of the PULPissimo system [15] in the correlation accelerator.
It can output one sample per cycle when fully pipelined.

A ReSampling (RS) accelerator: Resampling changes the sam-
pling rate of a discrete signal either by dropping samples or by
interpolating new samples. In wearable edge Al applications, reduc-
ing the number of samples is helpful to conserve memory and de-
crease the processing effort. Thus, we implemented a programmable,
broadly usable accelerator that can be configured to downsample
from an arbitrary N number of samples to M samples. It has one
input channel and one output channel. The operating principle of
the RS accelerator is as follows: It retains the first and last samples
in an array. Then, if N/M is an integer number, it retains every
N/M™ sample and discards the remaining samples. If N/M is not
an integer number, it retains samples such that the average interval
between the samples is N/M. Thus, it outputs one sample every
N/M cycles on average and has a latency of N + M + 2 clock cycles.
A MAGnitude (MAG) accelerator: The MAG accelerator calcu-
lates the magnitudes of a vector of 2-3 tuples. The mode of opera-
tion is programmable, such that developers can use it for different
purposes. For example, it can be used in the 3-tuple mode to com-
pute the body-acceleration by, from accelerometer samples com-

ing from a three-axis IMU (ax, ay, az), where bgcc = ai + ai + a%.

Similarly, it can be used in the 2-tuple mode to compute the magni-
tudes of a vector of complex numbers, such as the output of an FFT
operation. It can output one sample per cycle when fully pipelined
and has a 90 clock cycle end-to-end latency.

A Fast-Fourier-Transform (FFT) accelerator: We generate an
optimized 64-point FFT core with a 233 cycle latency using the Spiral
IP generator [11] to accelerate the FFT computation. It has two
input channels for two complex samples (16 bits each for real and
imaginary), and similarly two output channels. The FFT accelerator
supports a maximum throughput of 2 complex words per cycle.

3.4 Accelerator Integration to the SoC

The RISC-V core controls the operation of HW accelerators through
the APB bus. The control interface of each HW accelerator exposes
memory-mapped registers in the L2 memory to the APB bus. These
registers are responsible for the control operations, such as trigger-
ing the operation of an accelerator, and other runtime configuration
parameters, such as the input size. We extend the PULP-SDK for
each accelerator and provide APIs specific to each accelerator. At
runtime, the APIs in the SDK transfer the configuration parameters
from the SW code to the specific HW accelerators. For example, we
configure the RS accelerator to downsample the accelerometer and
stretch sensor 64 and 32 data points, respectively. Providing such
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Figure 3: Frequency of keywords in 282 Figure 4: Applications used for the evaluation of the proposed SoC - a) Step counter,

papers from relevant literature.

handles to the developers allows for the easy runtime programma-
bility of the SoC. Offloading the computation from SW to an HW
accelerator comprises the following steps:

(1) transfer the input data to a chosen buffer space in L2 memory,
(2) program the accelerator’s parameters and address space,
(3) initiate accelerator computation,

(4) wait for accelerator completion, and

(5) read the output data from L2 memory buffer space.

Table 1 presents the speedup of tasks in HW accelerators compared
to computation in the RISC-V core. We emphasize that the presented
speedups include all the additional programming and data transfer
overheads, and hence are realistic speedups that users will observe
when the respective tasks are accelerated in HW.

Table 1: Sample exec. times of accelerated tasks (at 10 MHz).

NN Corr RS MAG FFT

(4-8-8) (80x80) (205—64) (64 3-tuples) (64-point)
SW-RISC-V (ms) 10.80 15.50 5.10 1.80 29.82
Accelerated (ms)  0.63 2.11 0.31 0.06 1.53
Speedup (X) 17.25 7.36 16.71 29.51 19.55

4 DRIVER APPLICATION USE CASES

We implemented three popular applications to demonstrate the
proposed SoC: (1) Step counter, (2) HAR, and (3) EEG analytics.
They are representative examples since 11 out of 13 tasks in these
applications are among the most commonly used kernels listed
in Figure 3. Furthermore, we analyze the concurrent execution of
these three applications as additional real-life use cases.

Step counter: This application is implemented in most wearable
devices due to the strong correlation between daily walking ac-
tivity and cardiovascular health [6]. A recent study claims that
step counter-based interventions that aim to increase daily walking
activity lead to significantly fewer new cardiovascular events in
the long term [6]. The authors further state that step counter is an
essential tool to set realistic daily goals for each individual. In our
study, we use an auto-correlation-based step counting algorithm
presented in [12], which is outlined in Figure 4a). We adapt an
open-sourced implementation of the algorithm?.

Human Activity Recognition: HAR is a critical enabler for a
broad range of healthcare and fitness applications [2]. It can help
Parkinson’s disease patients by enabling auditory cues when symp-
toms like tremor or freezing of gait occur. Due to its importance,
there are numerous HAR implementations and datasets in the liter-
ature. We use the w-HAR dataset that contains data collected from

!Neraj Bobra. https://github.com/nerajbobra/embedded_pedometer

b) HAR, c) EEG analytics.

an inertial measurement unit at the ankle and a stretch sensor on
the knee for 22 users and seven activities [2]. The authors provide
the algorithm summarized in Figure 4b).

EEG analytics: This application computes the power spectral den-
sity of input EEG signals and divides them into distinct frequency
bands, such as the delta (0.5-4 Hz), theta (4-8 Hz), alpha (8—-12 Hz),
beta (12-30 Hz), and gamma (30-100 Hz) bands. Sleep and attention
studies usually calculate the average power in these bands relative
to each other. Increased activity in the delta band is associated
with deep sleep, whereas an attenuated delta band activity and
increased high-frequency activity is related to wakefulness [17]. In
this work, we use Welch’s method to calculate the power spectral
density (PSD) estimate of the EEG recording and calculate the area
under the PSD for the frequency band of interest. Figure 4c) shows
the steps of the algorithm. We use the publicly available EEG data
provided by the Center for Human Sleep Science at UC Berkeley 2.

5 EXPERIMENTAL EVALUATION

This section evaluates an FPGA implementation of the proposed
SoC in terms of execution time and energy efficiency benefits. To
this end, we implement the driver applications on the proposed
SoC with and without HW acceleration. Before moving to costly
tapeout, an FPGA prototype helps us validate the functionality
and obtain estimates of execution time gains. As an extra step, we
also measure the power consumption on the FPGA and analyze
the energy savings enabled by the proposed design. Although the
absolute numbers are not representative of a taped-out design, the
obtained energy savings compared to the SW implementation on
the FPGA gives a conservative estimate of the actual benefits. We
expect significantly higher energy efficiency in the taped-out de-
sign since the FPGA hardware building blocks (lookup tables and
routing matrices) consume higher power than taped-out implemen-
tations (logic gates and wires). In the following, we first introduce
the experimental setup and procedure. Then, we measure the exe-
cution times and power consumption of the applications. Finally,
we present the measurement results and our analysis.

5.1 Experimental Setup and Procedure

Setup: The proposed SoC is implemented and evaluated on the
Xilinx ZCU102 FPGA board at four different frequencies: 10 MHz,
16 MHz, 25 MHz, and 40 MHz. The entire design is mapped to the
programmable logic (PL) on the ZCU102. Since the platform does
not allow configuring the clock dividers at runtime, we synthesize

2Raphael Vallat. https://raphaelvallat.com/images/tutorials/bandpower/data.txt
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the design using Vivado v2019.2 for each frequency and verify that
FPGA utilization is similar in all synthesis results. We emphasize
that all four synthesized designs include all five accelerators, irre-
spective of whether they are utilized or not, in order to make fair
comparisons within each application and between applications.
Application use cases: The three applications presented in Sec-
tion 4 are used for evaluation. In addition to running them indi-
vidually, we also study three additional concurrent real-world use
cases by combining (1) Step counter and HAR, (2) Step counter and
EEG analytics, and (3) all three applications. We collect measure-
ments for the pure SW implementations and the corresponding
accelerated versions to evaluate all use cases at four frequencies.
Procedure: We collect (1) execution time and (2) power consump-
tion measurements from the FPGA implementation: (1) Execution
time is measured using timer functions provided in the PULP-SDK
that has 30us resolution. These measurements are used to demon-
strate the speedup enabled by the HW accelerators integrated into
the proposed SoC. (2) For power consumption measurements, we
measure the load current on the primary rails that power the pro-
grammable logic on the ZCU102 board using a National Instruments
DAQ at 250 kS/s. The primary rails are the internal supply voltage
(Vecine) and the BRAM voltage (Vocpram) rails.

Each application use case runs 1000 times to allow for averaging
of the power measurements. After averaging 1000 measurements,
we apply a moving average filter with a window of 50 samples to
reduce the high-frequency noise. A 50-sample window is chosen
to have a negligible time-shift in order not to distort the signal.
The obtained waveform allows us to clearly observe the power
consumption, as depicted in Figure 5. Then, we use the power
measurements to find the energy consumption of the SoC.

5.2 Execution Time Analysis

This section analyzes the individual applications in terms of their
execution time for SW and accelerated implementations.

Software

iMAG:,-' .;ﬁtats
/Filter;  Autocorr

Decision Tree
20 25

400
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Total Power Consumption (mW)

10 15 20 25
Time (ms)

Figure 5: Power consumption of the SW and accelerated im-
plementations of the step counter application at 10 MHz.
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Figure 6: Breakdown of execution times of the 3 applications.
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Profiling SW implementations: Figure 6 presents the execution
time breakdown of the applications when implemented in SW on
the RISC-V core. The execution time analysis shows that:

(a) the magnitude and auto-correlation computations constitute
83% of the total execution time of the step counter application;

(b) resampling, magnitude, FFT computation, and neural network
inference constitute 94% of the HAR application execution time;
(c) FFT computation constitutes 91% of the EEG analytics applica-
tion execution time.

These results justify our choice of accelerated tasks in the SoC.
Execution time: Figure 7-Top illustrates the execution time of
the SW and accelerated implementations of the three applications.
Utilizing the HW accelerators yields 3.6X speedup in execution time
for the step counter application at the same frequency. Specifically,
at 10 MHz, the SW implementation takes 23.0 ms to run, whereas the
accelerated implementation takes 6.4 ms. Similarly, the accelerated
HAR and EEG analytics applications are executed up to 9.1x and
8.8% faster than their SW counterparts, respectively. In addition,
execution times scale down linearly with increasing frequency.
Furthermore, the execution time speedups remain consistent across
different frequencies.

5.3 Power and Energy Analysis

This section presents the power and energy consumption mea-
surements for the SW and accelerated implementations of the six
application use cases.

Power measurements: We collect current measurements from
the FPGA as outlined in Section 5.1 to analyze the power and en-
ergy consumption of the design. The power consumption of the
Vecint and Vcpram power rails are proportional to their current
consumption since both have a fixed voltage level of 0.85 V.

The core is set to idle before and after program execution while
taking the measurements. Figure 5 illustrates the power consump-
tion measurement for the step counter application at 10 MHz. The
lower power regions in this figure correspond to the idle state, and
the higher power regions correspond to the active state. According
to the measurements, the utilization of HW accelerators does not
cause a significant change in active state power consumption. In
addition, we note that the power consumption measured from the
Veebram 1ail is a constant 75 mW for all cases. For the illustrated
case (at 10 MHz), the average idle and active power consumptions
are 416 mW and 440 mW, respectively, as shown in Table 2. Simi-
larly, for HAR and EEG analytics applications, the idle and active
power consumptions are {417, 441} mW and {419, 442} mW, respec-
tively, which suggest that power consumption on the FPGA is not a
strong function of the executed application. According to the power
measurements at different frequencies in Table 2, the average idle
and active state power consumptions increase with frequency.
Energy consumption and savings: Energy consumption is com-
puted by the area under the total power consumption curve when a

Table 2: Average power consumption of the 3 applications.

Powerin ~ Step counter HAR EEG Analytics
mW Pigte  Pact Piate  Pact Piare Pact
10 MHz 416 440 417 441 419 442
16 MHz 438 475 438 473 438 473
25 MHz 465 510 460 510 460 510
40 MHz 509 577 503 579 503 579
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Figure 7: Top) Execution times of the three applications. Bottom) Energy consumption of the six application use cases.

program is executed (i.e., active region in Figure 5). The energy con-
sumption scales with a similar factor as the execution time since the
SW and accelerated implementations have similar power consump-
tion, as summarized in Figure 7-Bottom. According to our results,
the proposed SoC achieves a 3.6 reduction in energy consumption
for the step counter application at all frequencies. For example, at
10 MHz, the energy consumption for the step counter application
reduces from 10.14 m]J to 2.83 mJ. Similarly, 8.9% and 8.6x gains
are achieved for the HAR and EEG analytics applications, respec-
tively. Moreover, the proposed SoC achieves between 5.3X to 6.7X
reduction in energy consumption for the concurrent application use
cases. The absolute power values collected from the FPGA are not
indicative of a chip design implemented with a low-power process
technology. However, power and energy consumption analysis on
the FPGA is helpful to obtain early conservative estimates and a
lower bound of the gains that the proposed SoC can achieve.

6 CONCLUSION AND FUTURE WORK

This paper presented a domain-specific SoC design that integrates
a general-purpose RISC-V core with five HW accelerators, which
are selected by analyzing the frequently used tasks in the domain
of wearable health monitoring applications. Our evaluations on an
FPGA prototype with six real-world application use cases show
that the proposed domain-specific SoC enables up to 9.1x faster
execution time and up to 8.9 higher energy efficiency than SW
implementations. As part of our future work, we aim to improve the
energy-efficiency of the proposed SoC by: i) studying the optimal
number of instances for each type of HW accelerator, and ii) further
optimizing the HW accelerators. Finally, we also plan to implement
and fabricate the design in a recent process technology and extend
our evaluations beyond the FPGA prototype.
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