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Learning-Based MIMO Channel Estimation under
Practical Pilot Sparsity and Feedback Compression

Mason del Rosario and Zhi Ding

Abstract—Wireless links using massive MIMO
transceivers are vital for next generation wireless
communications networks. Precoding in Massive MIMO
transmission requires accurate downlink channel state
information (CSI). Many recent works have effectively
applied deep learning (DL) to jointly train UE-side
compression networks for delay domain CSI and a
BS-side decoding scheme. Vitally, these works assume that
the full delay domain CSI is available at the UE, but in
reality, the UE must estimate the delay domain based on a
limited number of frequency domain pilots. In this work,
we propose a linear pilot-to-delay estimator (P2DE) that
acquires the truncated delay CSI via sparse frequency
pilots. We show the accuracy of the P2DE under frequency
downsampling, and we demonstrate the P2DE’s efficacy
when utilized with existing CSI estimation networks.
Additionally, we propose to use trainable compressed
sensing (CS) networks in a differential encoding network
for time-varying CSI estimation, and we propose a
new network, MarkovNet-ISTA-ENet (MN-IE), which
combines a CS network for initial CSI estimation and
multiple autoencoders to estimate the error terms.
We demonstrate that MN-IE has better asymptotic
performance than networks comprised of only one type
of network.

Index Terms—Massive MIMO, Deep learning CSI, effi-
cient feedback, CSI estimation.

I. INTRODUCTION

Large scale multiple-input multiple-output
(MIMO) technologies are critical to achieving high
link capacity in modern wireless networks [1].
To this end, MIMO base stations (BS) require
accurate downlink channel state information (CSI)
for transmit precoding and beamforming. While
uplink-downlink reciprocity in TDD systems
[2]–[4] often simplifies the task of downlink CSI
acquisition at BS, the predominant approach relies
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on downlink CSI estimation and feedback from
UEs in UE-specific precoding and/or beamforming
at BS.

A number of recent works have studied deep
learning (DL) for CSI compression by UE and
subsequent estimation by the BS. Recent advances
include the use of convolutional neural networks
(CNNs) as autoencoder [5]–[8], the integration
of magnitude-reciprocity between uplink/downlink
CSIs for decoding [9], and the exploitation of tem-
poral CSI coherence [10], [11]. These successes
motivate further investigative efforts into learning-
based CSI estimation to overcome several remaining
practical challenges in high rate massive MIMO
networking.

This work addresses two major practical issues in
MIMO CSI feedback compression.

1) Frequency domain pilots for delay domain
feedback: First, many existing DL frame-
works rely on the condition that full down-
link CSI or CSI estimates in time-frequency
domain are available at the UE. However,
practical wireless standards such as 4G/5G
by 3GPP, only provide sparse position pi-
lot reference configurations in time-frequency
domain. See, e.g., [12]. With sparse pilots,
only sparse downlink CSI is available at the
UE instead of full time-frequency CSI. There-
fore, practical DL algorithms for downlink
CSI estimation and decoding must start with
low-resolution, undersampled CSI in time-
frequency domain under potential noisy con-
ditions without assuming full ground truth
CSI.
Several recent works have addressed the prob-
lem of pilot-based CSI estimation. In [13], the
authors propose a two-stage approach to pilot-
based CSI estimation: 1) coarse estimation of
pilots via spatial correlation between adjacent
subcarriers and 2) pilot CSI refinement via a
UE-side CNN. In [14], the authors propose a
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fully-connected network (FCN) to adaptively
design pilots for UE-side channel estimation.
In [15], the authors propose to train FCNs
to design pilots and further propose to re-
duce pilot overhead by gradually pruning the
FCNs, thereby reducing the pilot overhead
and improving spectral efficiency. The pro-
posed FCN outperforms a conventional least-
squares approach to pilot-based CSI estima-
tion.
Importantly, the above works focus on pilot-
based CSI estimation and feedback stages in
the traditional spatial-frequency domain. On
the other hand, other recent works on deep
learning based CSI feedback have demon-
strated the benefits of compressing CSI in the
delay domain (i.e., the IFFT of the frequency
domain). Taking advantage of the sparsity in
multipath channel delays, transforming CSI
into delay domain makes it possible to com-
press CSI feedback through simple truncation
before encoding and feedback. This step im-
proves feedback efficiency substantially (see
[5], [10], for example). Thus, explicitly link-
ing the sparsely placed frequency domain
pilots in practical wireless systems to the
dominant delay domain CSI represents a crit-
ical step in deep-learning based CSI feedback
framework.

2) Improving temporal correlation-based net-
works: A second practical consideration is
the need to exploit CSI temporal coherence
without significantly increasing DL complex-
ity (e.g., via LSTM layers [10]). Our prior
work has adopted a simple yet effective dif-
ferential encoder, MarkovNet, based on an ap-
proximate first order Markov model of time-
varying CSI [11]. MarkovNet relied on CNN
autoencoder architecture for each timeslot,
a design choice made in many works on
trainable CSI feedback compression [5], [7],
[9]. Yet recent work in CSI estimation has
demonstrated that trainable compressed sens-
ing (CS) networks can yield state-of-the-art
performance [16]. For periodic CSI estimation
and feedback, we propose a novel architec-
ture that integrates the differential encoding
concept of MarkovNet with a trainable CS
network.

To summarize our works that target the above
practical considerations in real-world wireless net-
works, we highlight our major contributions in this
work as follows:
• Pilots-to-Delay Estimator (P2DE): Based on

a limited number of pilot-based estimates, we
propose an accurate linear estimator of the
truncated delay-domain CSI at the UE. We
begin by quantifying the sparsity of the de-
lay domain CSI, allowing us to specify the
required amount of pilot downsampling in the
frequency domain (see Section II-C, Figure 2).
Next, to bridge the gap between prior works in
feedback compression using delay domain CSI
and 3GPP specifications which specify pilot
locations in the frequency domain, we propose
the Pilots-to-Delay Estimator (P2DE), which
relates the pilot-based downsampled frequency
domain CSI to the the truncated delay domain
CSI (see Section III-A). To demonstrate the
practicality of the P2DE, we outline a parame-
terized pilot allocation in the time-frequency
resource grid based on CSI-RS/DMRS loca-
tions (see Section III-B). Using the P2DE as
the input to a range of deep learning-based CSI
compression networks, we show that this esti-
mator provides a suitable surrogate for ground-
truth delay domain CSI under noise-free and
noisy conditions (see Section VI-A, Figures 8
and 9).

• CS-based Differential Encoding with Pilot-
based CSI: Using the proposed P2D estimates
at the UE, we propose to encode and feed
back the estimation error. To compress the
error terms, we compare unrolled optimiza-
tion networks, which enable trainable com-
pressive sensing algorithms via deep learning,
with autoencoder networks, which have been
commonly used in CSI feedback literature.
We show that a differential network com-
bining both unrolled compressed sensing net-
works and autoencoders can outperform prior
autoencoder-based approaches to differential
encoding.

II. PRACTICAL CHANNEL ESTIMATION
PROBLEM

This section provides background information
regarding the modeling of OFDM CSI in MIMO
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antennas and 1024 subcarriers (more detailed sys-
tem parameters are given in Section VI). In this
case, the first 32 columns of the delay domain
CSI contain roughly 96% of CSI energy, meaning
we can safely truncate the delay domain CSI (i.e.,
keeping the delay domain CSI in the first 32 delay
elements and discarding the rest). We refer to the
delay-domain CSI after truncation as the “trun-
cated delay-domain CSI.” Leveraging this sparsity,
a 32/1024 reduction in feedback via downsampling
should be possible.

In the next section, we present an algorithm to
directly estimate angular-delay domain CSI using
sparse spatial-delay domain pilots.

III. LINEAR PREDICTION OF DELAY-DOMAIN
CSI VIA FREQUENCY-DOMAIN PILOTS

Using the limited number of frequency domain
pilots available at the UE, we can estimate the
truncated delay domain data. This delay domain
estimate is directly compatible with the commonly
used CSI basis in prior deep learning based CSI
compression works [5], [11], which have demon-
strated high estimation accuracy under substantial
compression.

A. P2DE: Pilots-to-delay Estimator

Here, we describe the linear estimator for the
truncated delay domain CSI using the pilot-based
frequency domain CSI. Note that ηi is one of the
rows of the spatial-frequency matrix H. Consider
the case where downsampling is performed along
the frequency axis such that Mf subcarriers of the
original Nf subcarriers remain. Downsampling is
done by applying the pilot matrix P ∈ CNf×Mf

to the frequency domain vector ηi, resulting in the
pilot vector ηd,i ∈ CMf .

To relate the frequency and delay domain, denote
the Discrete Fourier Transform (FFT) matrix F ∈
CNf×Nf with which

η̃iF = ηi, i ∈ {1, . . . , Nb}

Note that η̃i is the time/delay domain CSI row
vector. Applying the pilot sampling matrix to both
sides, we have

η̃iFPi = ηiPi

η̃iQi = ηd,i,

for Qi = FPi ∈ CNf×Mf .
Our previous experiments (see Figure 2) confirm

the phenomenon reported in other prior works [5]
that for most wireless CSI models, the delay domain
CSI vectors η̃i exhibit a clear sparsity as a result
of short multipath delay spread. Without loss of
generality, we can characterize the sparsity of η̃i by
noting that its trailing elements are approximately
zero and can be replaced by zeros without intro-
ducing significant CSI estimation error.

Given the sparsity of CSI in the delay domain,
we may truncate Qi to the first Nt rows and restrict
our attention to the truncated delay domain vector,
η̃c ∈ C1×Nt . Thus, denoting the first Nt rows of Qi

by Qc,i and defining

η̃i = [η̃c,i 01×(Nf−Nt)] (4)

we have

η̃iQi = η̃c,iQc,i.

Now the task of downlink CSI estimation at the
BS is transformed into the feedback and estima-
tion of the lower dimensional vectors η̃c,i, i ∈
{1, · · · , Nb}.

From the downsampled pilot positions, the UE
can estimate the CSI in frequency domain in the
form of ηd,i, i ∈ {1, · · · , Nb}, from which we
can estimate the most significant part of time/delay
domain CSI vector η̃c,i based on the relationship of

η̃c,iQc,i = ηd,i, or η̃c,i = ηd,iQ
#
c,i (5)

where Q#
c,i = Qc,i(Qc,iQ

H
c,i)
−1 denotes the

(pseudo)inverse of Qc,i such that Qc,iQ
#
c,i = I

under the condition that Nt ≤ Mf . The estimator
Q#
c,i relies solely on the downsampling matrix, Pi,

and the FFT matrix, F, and we call this estimator
the Pilots-to-Delay Estimator (P2DE) since it uses
sparse frequency domain pilots to estimate the delay
domain CSI for feedback compression.

For convenience of notation, we form the trun-
cated spatial delay domain CSI matrix H̃τ and its
FFT, respectively, as

H̃τ =


η̃c,1
η̃c,2

...
η̃c,Nb

 , Hτ = FNbH̃τ (6)

where FNb ∈ CNb×Nb is the DFT matrix. Hτ is often
known as the angular-delay domain CSI [5].











10

where i indexes over the Nbatch samples of a training
batch.

Figure 6 demonstrates the principle of differential
encoding used with P2D estimates. Notably, both
the BS and the UE need access to a copy of the
decoder, gt(x), in order to derive the error term
Et based on (12). Since both the encoder and the
decoder are required on the UE side, we seek to
design a differential encoding scheme with a small
number of parameters.

A. CNN Autoencoders for CSI Feedback
Prior work utilized CNN autoencoders to imple-

ment a trainable differential encoding network for
CSI estimation [11]. Using autoencoders in a dif-
ferential encoding network, each timeslot ti utilizes
a CNN-based encoder (fi(x)) and decoder (gi(x)).
Early work in deep learning-based CSI compression
concluded that convolutional autoencoders consis-
tently outperformed traditional compressed sensing
(CS) approaches [5].

In this work, we investigate two autoencoder
networks to realize our differential encoding net-
work. First, we utilize CsiNet Pro [20], an im-
proved version of CsiNet which utilizes a symmetric
encoder/decoder structure without residual connec-
tions, and ENet [21], another symmetric architecture
applied independently to the real and imaginary
channels to produce a complex-valued matrix. These
two networks can be viewed at the bottom of
Figure 7.

B. Iterative Optimization Networks for Compressed
Sensing-based CSI Feedback

While CNN autoencoders have been dominant in
CSI estimation, recent work from image processing
has shown promise in using trainable CS algorithms
based on CNNs. These works treat iterative CS
algorithms as sequential networks by “unrolling”
them into discrete blocks [22], [23]. Investigating
unrolled CS algorithms for CSI estimation warrants
consideration, as CS algorithms can have guaranteed
convergence under mild sparsity conditions (in con-
trast with CNNs autoencoder approaches, which do
not have such guarantees). Since CSI data exhibits
sparsity in the delay domain, specifying an appro-
priate compressed sensing approach could provide
appreciable performance gains in our differential
CSI encoding architecture.

To exploit the temporal coherence of the MIMO
channel, we propose to construct a differential
encoding network using an unrolled optimization
network based on a trainable version of the iterative
shrinkage-thresholding algorithm (ISTA), called IS-
TANet+ [23]. See the top of Figure 7 for a diagram
of ISTANet+. Denote measurement matrix for the
ISTANet+ as

Φ ∈ RNtotalCR×Ntotal . (15)

For compressed sensing approaches, the measure-
ment matrix is analogous to the ‘encoder’ for au-
toencoder approaches, i.e., f(x) = Φx. The ‘de-
coder’ consists of K iterations of the following
update steps,

r(k) = x(k−1) − ρ(k)Φ>(Φx(k−1) − y) (16)

x(k) = r(k) + G(k)
(
H̃(k)

(
soft

(
H(k)(D(k)(r(k)), θ(k)

)))
(17)

where y = Φx, x(0) = Rinity, and Rinit =
XY(YY>)−1 is the initialization matrix for the
training data matrix X = [x1,x2, . . . ,xNtrain ]
and the training measurement matrix Y =
[y1,y2, . . . ,yNtrain ]. ‘soft(·)’ denotes the soft thresh-
old function,

soft(x, θ) = sign(x)ReLU(|x| − θ). (18)

G(k),D(k),H(k), H̃(k) indicate trainable nonlinear
mappings (in this case, CNNs), and H(k), H̃(k) are
subject to the symmetry constraint H(k) ◦ H̃(k) = I.

In the proposed differential encoding scheme, we
use an instance of ISTANet+ in the first timeslot,
t1, with a large compression ratio such that CRt1 ≥
CRti for all i > 1. This choice in compression
ratio allows us to initialize the network with a high-
quality estimate at the first timeslot. Notably, the
training data matrix, X, differs between timeslots.
For the first timeslot, the data vectors xi are vector-
ized versions of the CSI matrices,

xj = vec
(
H

(j)
τ,1

)
for j ∈ [Ntrain]. (19)

However, the data vectors for all other timeslots are
vectorized versions of the error matrices,

xj = vec
(
Ē

(j)
i

)
for j ∈ [Ntrain]. (20)

Denote the parameters for ISTANet+
in the ti-th timeslot as Θti =
{G(k),D(k),H(k), H̃(k) θ(k), ρ(k)}Kk=1. The loss
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