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Abstract—Wireless links using massive MIMO
transceivers are vital for next generation wireless
communications networks. Precoding in Massive MIMO
transmission requires accurate downlink channel state
information (CSI). Many recent works have effectively
applied deep learning (DL) to jointly train UE-side
compression networks for delay domain CSI and a
BS-side decoding scheme. Vitally, these works assume that
the full delay domain CSI is available at the UE, but in
reality, the UE must estimate the delay domain based on a
limited number of frequency domain pilots. In this work,
we propose a linear pilot-to-delay estimator (P2DE) that
acquires the truncated delay CSI via sparse frequency
pilots. We show the accuracy of the P2DE under frequency
downsampling, and we demonstrate the P2DE’s efficacy
when utilized with existing CSI estimation networks.
Additionally, we propose to use trainable compressed
sensing (CS) networks in a differential encoding network
for time-varying CSI estimation, and we propose a
new network, MarkovNet-ISTA-ENet (MN-IE), which
combines a CS network for initial CSI estimation and
multiple autoencoders to estimate the error terms.
We demonstrate that MN-IE has better asymptotic
performance than networks comprised of only one type
of network.

Index Terms—Massive MIMO, Deep learning CSI, effi-
cient feedback, CSI estimation.

I. INTRODUCTION

Large scale multiple-input multiple-output
(MIMO) technologies are critical to achieving high
link capacity in modern wireless networks [1].
To this end, MIMO base stations (BS) require
accurate downlink channel state information (CSI)
for transmit precoding and beamforming. While
uplink-downlink reciprocity in TDD systems
[2]-[4] often simplifies the task of downlink CSI
acquisition at BS, the predominant approach relies
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on downlink CSI estimation and feedback from
UEs in UE-specific precoding and/or beamforming
at BS.

A number of recent works have studied deep
learning (DL) for CSI compression by UE and
subsequent estimation by the BS. Recent advances
include the use of convolutional neural networks
(CNNs) as autoencoder [5]-[8], the integration
of magnitude-reciprocity between uplink/downlink
CSIs for decoding [9], and the exploitation of tem-
poral CSI coherence [10], [11]. These successes
motivate further investigative efforts into learning-
based CSI estimation to overcome several remaining
practical challenges in high rate massive MIMO
networking.

This work addresses two major practical issues in
MIMO CSI feedback compression.

1) Frequency domain pilots for delay domain
feedback: First, many existing DL frame-
works rely on the condition that full down-
link CSI or CSI estimates in time-frequency
domain are available at the UE. However,
practical wireless standards such as 4G/5G
by 3GPP, only provide sparse position pi-
lot reference configurations in time-frequency
domain. See, e.g., [12]. With sparse pilots,
only sparse downlink CSI is available at the
UE instead of full time-frequency CSI. There-
fore, practical DL algorithms for downlink
CSI estimation and decoding must start with
low-resolution, undersampled CSI in time-
frequency domain under potential noisy con-
ditions without assuming full ground truth
CSIL
Several recent works have addressed the prob-
lem of pilot-based CSI estimation. In [13], the
authors propose a two-stage approach to pilot-
based CSI estimation: 1) coarse estimation of
pilots via spatial correlation between adjacent
subcarriers and 2) pilot CSI refinement via a
UE-side CNN. In [14], the authors propose a
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fully-connected network (FCN) to adaptively
design pilots for UE-side channel estimation.
In [15], the authors propose to train FCNs
to design pilots and further propose to re-
duce pilot overhead by gradually pruning the
FCNs, thereby reducing the pilot overhead
and improving spectral efficiency. The pro-
posed FCN outperforms a conventional least-
squares approach to pilot-based CSI estima-
tion.

Importantly, the above works focus on pilot-
based CSI estimation and feedback stages in
the traditional spatial-frequency domain. On
the other hand, other recent works on deep
learning based CSI feedback have demon-
strated the benefits of compressing CSI in the
delay domain (i.e., the IFFT of the frequency
domain). Taking advantage of the sparsity in
multipath channel delays, transforming CSI
into delay domain makes it possible to com-
press CSI feedback through simple truncation
before encoding and feedback. This step im-
proves feedback efficiency substantially (see
[5], [10], for example). Thus, explicitly link-
ing the sparsely placed frequency domain
pilots in practical wireless systems to the
dominant delay domain CSI represents a crit-
ical step in deep-learning based CSI feedback
framework.

Improving temporal correlation-based net-
works: A second practical consideration is
the need to exploit CSI temporal coherence
without significantly increasing DL complex-
ity (e.g., via LSTM layers [10]). Our prior
work has adopted a simple yet effective dif-
ferential encoder, MarkovNet, based on an ap-
proximate first order Markov model of time-
varying CSI [11]. MarkovNet relied on CNN
autoencoder architecture for each timeslot,
a design choice made in many works on
trainable CSI feedback compression [5], [7],
[9]. Yet recent work in CSI estimation has
demonstrated that trainable compressed sens-
ing (CS) networks can yield state-of-the-art
performance [16]. For periodic CSI estimation
and feedback, we propose a novel architec-
ture that integrates the differential encoding
concept of MarkovNet with a trainable CS
network.

To summarize our works that target the above
practical considerations in real-world wireless net-
works, we highlight our major contributions in this
work as follows:

« Pilots-to-Delay Estimator (P2DE): Based on

a limited number of pilot-based estimates, we
propose an accurate linear estimator of the
truncated delay-domain CSI at the UE. We
begin by quantifying the sparsity of the de-
lay domain CSI, allowing us to specify the
required amount of pilot downsampling in the
frequency domain (see Section II-C, Figure 2).
Next, to bridge the gap between prior works in
feedback compression using delay domain CSI
and 3GPP specifications which specify pilot
locations in the frequency domain, we propose
the Pilots-to-Delay Estimator (P2DE), which
relates the pilot-based downsampled frequency
domain CSI to the the truncated delay domain
CSI (see Section III-A). To demonstrate the
practicality of the P2DE, we outline a parame-
terized pilot allocation in the time-frequency
resource grid based on CSI-RS/DMRS loca-
tions (see Section III-B). Using the P2DE as
the input to a range of deep learning-based CSI
compression networks, we show that this esti-
mator provides a suitable surrogate for ground-
truth delay domain CSI under noise-free and
noisy conditions (see Section VI-A, Figures 8
and 9).

CS-based Differential Encoding with Pilot-
based CSI: Using the proposed P2D estimates
at the UE, we propose to encode and feed
back the estimation error. To compress the
error terms, we compare unrolled optimiza-
tion networks, which enable trainable com-
pressive sensing algorithms via deep learning,
with autoencoder networks, which have been
commonly used in CSI feedback literature.
We show that a differential network com-
bining both unrolled compressed sensing net-
works and autoencoders can outperform prior
autoencoder-based approaches to differential
encoding.

II. PRACTICAL CHANNEL ESTIMATION
PROBLEM

This section provides background information
regarding the modeling of OFDM CSI in MIMO
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Fig. 1: (a) LTE resource blocks with CSI-RS locations. (b) 5G NR resource blocks with DM-RS locations.

networks. Section II-A describes the system model
for an OFDM network. Section II-B details how
pilots are used in the LTE/NR specifications to
estimate downlink CSI. Section II-C provides an
empirical analysis of the sparsity in MIMO CSI.

A. OFDM Downlink System Model

Without loss of generality, we consider a single-
cell MIMO system with N, > 1 antennas at the
BS serving multiple UEs, each with a single receive
antenna. The network operates under orthogonal fre-
quency division multiplexing (OFDM) with band-
width divided into Ny uniform subcarriers. Focusing
on the downlink of a given OFDM symbol, the
received signal on the m-th subcarrier/subband for
the i-th UE out of Nyg UEs is given by

H
YUmi = N ;Wi iZm i + Mo s, (D

for m € {1, 2, .., Ny} and i €
{1, 2, Nug}, and h,,; € C™*! is the
downlink CSI vector of the m-th subcarrier, w,, ; €
CNexl denotes the precoding vector, z,,; € C is
the m—th data symbol of the OFDM symbol, and
n, € C denotes corresponding subcarrier additive
noise, and () denotes conjugate transpose. The
downlink CSI spatial-frequency matrix for the ¢-th
user is H; = {hl,i hg’i s th,i} € CNoxNy
Throughout this work, we present results from
the perspective of a single UE feedback though
the proposed framework is directly applicable for
multiple UEs. For ease of notation, we omit the UE-
specific subscript when referring to CSI matrices

(e.g., H rather than H,). Note that this choice does
not limit the applicability of the proposed methods
to a multi-user system as described above, and in
future works, there may be opportunities to improve
network performance via CSI correlation between
different users.

B. Sparse Pilots in Practical Networks

Prior works using deep learning algorithms for
pilot-based CSI estimation generally discuss how
pilots are allocated along the spatial-frequency di-
mensions (i.e., transmitter antennas and subcarriers).
In order to make pilot estimation practical, we
discuss below how pilots are allocated to time-
frequency resources per 3GPP protocols, and later
(i.e., Section III-B) we will explicitly show how
we allocate the spatial-frequency domain pilots to
logical antenna ports in the time-frequency domain.

In most deployed networks, transmitters provide
pilot reference signals for the receivers to estimate
the physical wireless CSI. Furthermore, in well
known 3GPP standard cellular networks such as 4G
(LTE) and 5G (NR) systems, BS facilitate downlink
CSI estimation by allocating sparse pilots for N,
antennas and Ny subcarriers to a small number of
time-frequency positions on G; x G grids to pre-
serve spectrum efficiency (where G, is the number
of symbols per subframe and Gy is the number of
subcarriers to be allocated).

Consider the 3GPP placement of DMRS of
PDSCH specified in §7.4.1.1.2 [12]. The down-
link pilots (i.e., demodulation reference signal or
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Fig. 2: Energy CDF for 5000 CSI samples of
32 antennas and 1024 subcarriers, generated from
COST2100 outdoor models described in Section
[17]. Mean percentage of energy in CSI matrix up to
index is shown with 90% confidence intervals. The
index denotes the amount of energy accounted for
up to the corresponding frequency/delay element.
The truncated angular-delay CSI contains a mean
energy of 96.2% (c.i. 89.2%, 99.1%), while the trun-
cated frequency-spatial CSI only contains a mean
energy of 3.1% (c.i. 1.2%, 5.4%).

DMRS) decoding the Physical Downlink Shared
Channel (PDSCH) must share resources with user
data. The pilots for different physical antennas are
assigned to “antenna ports,” i.e., mutually orthogo-
nal subframes on time-frequency resource grids. The
number of antenna ports being used is determined
by system configuration parameters, including a
DMRS length parameter (1 or 2) and a DMRS
configuration Type (1 or 2). When the DMRS legnth
is 1, the number of antenna ports available is either

4 (Type 1 DMRS configuration) or 6 (Type 2 DMRS
configuration). When DMRS length is 2, the number
of antenna ports available is either 8 (Type 1 DMRS
configuration) or 12 (Type 2 DMRS configuration).
As seen from Figure 1(b), which shows an antenna
port under Type 1 DMRS configuration and DMRS
length of 2, the antenna ports include a relatively
small number of pilots in each slot. Therefore, for
any given slot, the UE can only directly estimate a
few sparse elements of the downlink CSI matrix H,
instead of the full H considered in most existing
works.

Without loss of generality, we consider a well
defined case when the sparsity follows a regular
downsampling pattern on the N, x Ny grids such
that the UE can obtain a downsampled CSI matrix
H, € CYo*Mr where sampling of M; < N; takes
place along the frequency dimension. The rows of
H are related to the rows of H, as follows,

m MNaq
n n
H=| 7| H=| @)
M, Na,nN,

where 7, ; is downsampled by matrices denoting
CSI-RS/DMRS reference positions for N, antenna
ports P; of size Ny x My

3

The product (3) represents a downsampled fre-
quency domain CSI for antenna j. Note that each
column of P; is a one hot vector of all zeros
except for a single element equal to 1, indicating
the selected subcarrier. In most cases, the down-
sampling matrix P; may be chosen from one of a
few predefined matrices.

We now face the challenge of recovering the full
downlink CST H at BS based on low rate feedback
from the UE, even though the UE itself only has a
pilot-based estimate of the downsampled CSI matrix
H,.

Nai = NP i=1, -+, Ny

C. Downlink CSI Sparsity Analysis

Prior works have recognized the low delay spread
of most downlink CSI within N; columns after
IFFT. This represents a structured sparsity that can
be exploited in CSI feedback compression. Figure 2

demonstrates such sparsity of CSI generated with
the COST2100 outdoor channel model [17] of 32



antennas and 1024 subcarriers (more detailed sys-
tem parameters are given in Section VI). In this
case, the first 32 columns of the delay domain
CSI contain roughly 96% of CSI energy, meaning
we can safely truncate the delay domain CSI (i.e.,
keeping the delay domain CSI in the first 32 delay
elements and discarding the rest). We refer to the
delay-domain CSI after truncation as the “trun-
cated delay-domain CSI.” Leveraging this sparsity,
a 32/1024 reduction in feedback via downsampling
should be possible.

In the next section, we present an algorithm to
directly estimate angular-delay domain CSI using
sparse spatial-delay domain pilots.

III. LINEAR PREDICTION OF DELAY-DOMAIN
CSI via FREQUENCY-DOMAIN PILOTS

Using the limited number of frequency domain
pilots available at the UE, we can estimate the
truncated delay domain data. This delay domain
estimate is directly compatible with the commonly
used CSI basis in prior deep learning based CSI
compression works [5], [11], which have demon-
strated high estimation accuracy under substantial
compression.

A. P2DE: Pilots-to-delay Estimator

Here, we describe the linear estimator for the
truncated delay domain CSI using the pilot-based
frequency domain CSI. Note that 7, is one of the
rows of the spatial-frequency matrix H. Consider
the case where downsampling is performed along
the frequency axis such that M, subcarriers of the
original Ny subcarriers remain. Downsampling is
done by applying the pilot matrix P € CN/*Ms
to the frequency domain vector 7),, resulting in the
pilot vector n,; € CMr.

To relate the frequency and delay domain, denote
the Discrete Fourier Transform (FFT) matrix F €
CNs*Ns with which

n,F=m, ie{l,..., Ny}

Note that 7, is the time/delay domain CSI row
vector. Applying the pilot sampling matrix to both
sides, we have

7,FP, = P,
If”LQl = Tld,ia

for Q; = FP, € CNr*My,

Our previous experiments (see Figure 2) confirm
the phenomenon reported in other prior works [5]
that for most wireless CSI models, the delay domain
CSI vectors 7, exhibit a clear sparsity as a result
of short multipath delay spread. Without loss of
generality, we can characterize the sparsity of 77, by
noting that its trailing elements are approximately
zero and can be replaced by zeros without intro-
ducing significant CSI estimation error.

Given the sparsity of CSI in the delay domain,
we may truncate (Q; to the first N; rows and restrict
our attention to the truncated delay domain vector,
7. € CYNt, Thus, denoting the first N; rows of Q;
by Q. and defining

M = [Mei Oix(vi—n)) 4)

we have

f'zQz = 'f’c,ch,i-
Now the task of downlink CSI estimation at the
BS is transformed into the feedback and estima-
tion of the lower dimensional vectors 7).;, @ €
{1, -, N}

From the downsampled pilot positions, the UE
can estimate the CSI in frequency domain in the
form of n,,, i€ {1, ---, Ny}, from which we
can estimate the most significant part of time/delay
domain CSI vector 7). ; based on the relationship of

f’c,z’QC,i =Mg; O 7. = nd,iin (5)

where Qf; = Q.i(Q.:Q)™" denotes the
(pseudo)inverse of Q.; such that Qc,iin =1
under the condition that N, < M. The estimator
Qf:- relies solely on the downsampling matrix, P;,
and the FFT matrix, F, and we call this estimator
the Pilots-to-Delay Estimator (P2DE) since it uses
sparse frequency domain pilots to estimate the delay
domain CSI for feedback compression.

For convenience of notation, we form the trun-
cated spatial delay domain CSI matrix H, and its
FFT, respectively, as

nc,l

~ T’c,Z ind

HT = ) HT = FNbHT (6)

nc,Nb

where Fy, € CNo*M is the DFT matrix. H., is often
known as the angular-delay domain CSI [5].
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Fig. 3: Compressive CSI estimation based on linear P2D estimator. First, we use downlink pilots to
generate a sparse, frequency domain CSI estimate of size M; << N;. We then apply the P2D estimator,
QT\G of (4), to establish the truncated delay domain CSI estimate. We train a learnable encoder, f(z), and
decoder, g(x), to compress and decode the feedback, respectively. The BS recovers the frequency domain

CSI from the decoded delay domain CSI estimate.

In practice, once ﬁc,i is recovered at the BS,
we can directly obtain the full delay domain and
frequency CSI vectors through zero padding and
FFT

)
®)

n;, = [ﬁc,i OlX(Nf*Nt)}F = 'f’c,iFC
= "?d,iQfﬁFc

where F. denotes the first /V; rows of the N; x
Ny DFT matrix F. Using (8), the final frequency

~

domain estimate H can be recovered as

m, MNa le
I:I _ 77.2 _ nd,Q.Qc,Q Fc c CN"XN‘.
'f’ij nd,N,._, Q ff\]b
&)

In contrast with a “Compression Ratio (CR)” that
is typically reported in the feedback stage, the P2ZDE

is associated with a “Frequency Downsampling Ra-
tio (DRy),” which is given as

(10)

Figure 3 shows where the P2D estimator (P2DE)
fits into the overall CSI feedback and estimation
process.

B. Diagonal Pilot Patterns for LTE/5SG Compatibil-
ity

In the 4G/LTE specification, downlink pilots for
antenna ports are allocated to specific resource
elements (CSI-RS) in the time-frequency resource
grid [18], [19]. Similarly in 5G/NR, downlink pilots
locations are reserved for resource elements called
demodulation reference signal (DMRS) [?]. For a
MIMO array, the different antenna ports are allo-
cated to CSI-RS/DMRS locations in the resource
grid, and multiple subframes might be necessary to
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is inversely proportional to D.

Algorithm 1 Pilots-to-delay Estimator (P2D) for
Diagonal Pilot Pattern

1: Input. P2DE Matrices, Qf?-, 7€ {1,
. Input: Pilot spatial-frequency CSI,
CN"-’ x My
. Initialize: Spatial-delay CSI, H, € CNo*N:
Initialize: Angular-delay CSI estimate, H, €
CN"" K N
for i =1,2,...,N, do
# Index for j-th pilot matrix
j=((i—1)mod D)+ 1
# Apply P2D to i-th antenna port
72(1,1‘. = Hd("i: :)
H.(i,:) = T?d,foé,j
end for
# Convert from spatial to angular
H.=FyH:
Return H.

B

O 00 =1 N L

11:
12:
13:
14:

acquire a downsampled CSI matrix. The number of
subframes necessary depends on two parameters:
1) the size of the diagonal pattern, DD, and 2) the

é. The pilot matrix P; indicates the downsampling
The number of subframes necessary to populate (b)

number of antennas, Nj.

Figure 4(a) illustrates our proposed pilot allo-
cation for a 4G/LTE time-frequency resource grid,
and Figure 4(b) shows the resulting downsampling
pattern in the spatial-frequency domain. Based on
Figure 4, the benefit of diagonal pilot patterns be-
comes apparent, as the number of subframes needed
to acquire the downsampled CSI matrix, H,; at the
UE shrinks with increasing D. For example, the
given diagonal size DD = 4 requires 4 subframes
(ms) to acquire Hy, while D =1 (i.e., no diagonal
pattern or vertical columns of pilots) would require
16 subframes (ms) to acquire H,.

Similarly, Figure 5(a) illustrates the proposed pi-
lot allocation for a SG/NR scenario, and Figure 5(b)
shows the resulting downsampling pattern in the
spatial-frequency domain. The given diagonal size
D = 4 requires 2 subframes (ms) to acquire Hy,
while D = 1 (i.e., no diagonal pattern or vertical
columns of pilots) would require 8 subframes (ms)
to acquire Hy.

To utilize the P2DE with diagonal pilot patterns,
it is necessary to account for different pilot matrices,
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P, for j € [1,..., D], used with different antennas.
These different pilot matrices result in D different
P2DEs, ij. Algorithm 1 outlines the process for

acquiring H, by applying the P2DEs to H,.

C. Regularization of P2DE

Whenever pilot locations are spaced equidistantly
and regularly, the pseudoinverse matrices QC#1 =
Q..i(Q. Q)" are typically well-conditioned and
invertible. However, whenever the pilot placement
is less regular (e.g., as in the proposed diagonal
pattern of P2DE-Diag), then the pseudoinverse ma-
trices Qi can be ill-conditioned, making the P2DE
unstable. Consequently, the P2DE benefits from
regularization of the matrix QCJin. This can be
done via off-diagonal regularization (ODIR), where
all off-diagonal elements are scaled down by a fixed
constant. Denote A = Qmei as a matrix to be
regularized where A(j, k) is the element in the j-
th row and k-th column. ODIR scales each off-
diagonal element of A (i.e., A(j, k) where j # k)

uniformly by (1+6)~! where for § > 0. In practice,
the choice of ¢ is determined empirically.

IV. DIFFERENTIAL ENCODING VIA LEARNED
COMPRESSED SENSING

To further improve the accuracy of CSI estimation
under the P2DE, we can exploit the temporal coher-
ence of the channel. Under typical circumstances,
the channel does not change substantially for a
given window of time, i.e. the coherence interval.
Exploiting this coherence is beneficial from an
information theoretic point of view [11]. Denote two
subsequent timeslots within a coherence interval as
ty and ¢, the entropy of the CSI at ¢, as H(H, ;)
and the conditional entropy of the CSI at ¢, given
ty as H(H,»|H, ;). Prior work in time-varying CSI
estimation has demonstrated that the conditional
entropy is always lower than the entropy [11], i.e.,

H(I:IT,Q‘I:IT,I) S H(I:IT,I)' (ll)

A reduction in entropy means a reduction in the
rate of the compressed feedback, highlighting the
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Fig. 6: Diagram of a CSI estimation network using compressed differential feedback based on the linear
P2DE. First, downlink pilots are used to estimate a downsampled frequency domain CSI estimate, H; €
CM>*M; where M; << Ny at the ¢-th timeslot. Then, the P2DE Qﬁf of Algorithm 1 is applied to estimate
H,. After P2DE, the learnable transforms f,(x) and ¢,(z) are used to compress and decode the feedback,
respectively. For ¢ = 1, the encoder/decoder are applied directly to H;. In all subsequent timeslots (¢ > 1),
the differential term E; is compressed and fed back.

utility of differential feedback. Instead of directly We apply the encoding/decoding process to the

encoding/decoding the CSI (e.g.. g(f(H,))), we
propose to encode/decode the difference,

~

Ei = I:IT,i - HT,i

= H‘r,i - ’*/Hr,zel, (12)
where I:Im = ’\/I:Im; 1 1s the least-squares estimate
for H.; of the current ¢—th timeslot based on

the estimate in the previous timeslot, H.; ;. Since
the channel statistics are not known a-priori, we
estimate the least-squares coefficient, 4, as in [11],
. Trace (F{H,H;_,})
"\f —
ElH|?

(13)

error term, B; = g.(f.(E;)), and the resulting CSIT
estimate can be written as

~

H,, =E; + A/I:I'r,i—l-

While the feedback is based on the error under
the P2DE, the network at each timeslot is opti-
mized using the mean-squared error loss function
with respect to the error under the ground truth,

Ei == I:Iq-’i - A:/I:IT,?:—la
1 Arba[ch () . ()
Lnisp = E;"” — E"|32 14
MSE Nbatch ; || t i HQ ( )



where 7 indexes over the Ny, samples of a training
batch.

Figure 6 demonstrates the principle of differential
encoding used with P2D estimates. Notably, both
the BS and the UE need access to a copy of the
decoder, ¢¢(x), in order to derive the error term
E; based on (12). Since both the encoder and the
decoder are required on the UE side, we seek to
design a differential encoding scheme with a small
number of parameters.

A. CNN Autoencoders for CSI Feedback

Prior work utilized CNN autoencoders to imple-
ment a trainable differential encoding network for
CSI estimation [11]. Using autoencoders in a dif-
ferential encoding network, each timeslot ¢; utilizes
a CNN-based encoder (f;(x)) and decoder (g;(z)).
Early work in deep learning-based CSI compression
concluded that convolutional autoencoders consis-
tently outperformed traditional compressed sensing
(CS) approaches [5].

In this work, we investigate two autoencoder
networks to realize our differential encoding net-
work. First, we utilize CsiNet Pro [20], an im-
proved version of CsiNet which utilizes a symmetric
encoder/decoder structure without residual connec-
tions, and ENet [21], another symmetric architecture
applied independently to the real and imaginary
channels to produce a complex-valued matrix. These
two networks can be viewed at the bottom of
Figure 7.

B. Iterative Optimization Networks for Compressed
Sensing-based CSI Feedback

While CNN autoencoders have been dominant in
CSI estimation, recent work from image processing
has shown promise in using trainable CS algorithms
based on CNNs. These works treat iterative CS
algorithms as sequential networks by “unrolling”
them into discrete blocks [22], [23]. Investigating
unrolled CS algorithms for CSI estimation warrants
consideration, as CS algorithms can have guaranteed
convergence under mild sparsity conditions (in con-
trast with CNNs autoencoder approaches, which do
not have such guarantees). Since CSI data exhibits
sparsity in the delay domain, specifying an appro-
priate compressed sensing approach could provide
appreciable performance gains in our differential
CSI encoding architecture.
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To exploit the temporal coherence of the MIMO
channel, we propose to construct a differential
encoding network using an unrolled optimization
network based on a trainable version of the iterative
shrinkage-thresholding algorithm (ISTA), called IS-
TANet+ [23]. See the top of Figure 7 for a diagram
of ISTANet+. Denote measurement matrix for the
ISTANet+ as

@ c RNtmalCRXNtotal. (15)

For compressed sensing approaches, the measure-
ment matrix is analogous to the ‘encoder’ for au-
toencoder approaches, i.e., f(x) = Pz. The ‘de-
coder’ consists of K iterations of the following
update steps,

rF) — X(k’—l) — p(/f)@T((@X(k—l) —y) (16)

94 g0 (A (soft (HO(DH (), 60))))
(17)

where y = ®&x, x(© = Ry, and Ry =
XY(YY')! is the initialization matrix for the
training data matrix X = [X1,X2,...,XN,,]
and the training measurement matrix Y =
[Y1,¥2, -+ YNy, - ‘soft(-)” denotes the soft thresh-
old function,

soft(x, #) = sign(xz)ReLU(|z| — 6).

«®) —

(18)

g D(k H(k H® indicate trainable nonlinear
mappings (in thls case, CNNs), and 7—[(’“),]—[(’“) are
subject to the symmetry constraint H*) o H*) =1.

In the proposed differential encoding scheme, we
use an instance of ISTANet+ in the first timeslot,
t1, with a large compression ratio such that CR;, >
CR;, for all ¢ > 1. This choice in compression
ratio allows us to initialize the network with a high-
quality estimate at the first timeslot. Notably, the
training data matrix, X, differs between timeslots.
For the first timeslot, the data vectors x; are vector-

ized versions of the CSI matrices,
X; = vec (H(j}) for j € [Nun].  (19)

However, the data vectors for all other timeslots are
vectorized versions of the error matrices,

X; = vec (E?’) for j € [Nean].  (20)
Denote the parameters for ISTANet+
in the {-th timeslot as O =
{G®) DR HE) HE) gk)pk)LE The  loss
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Fig. 7: Compressive CSI estimation architectures used in this work. f(z) denotes the encoder, and g(z)
denotes the decoder. Ny, = NNV, is the size of the real or imaginary channel. N; is the number of latent

channels in a convolutional layer.

function is a weighted sum of the MSE and the
symmetry constraint, i.e.,

L(Gtg) = J]-rJMSE + l(:‘U]Lsym (21)
‘V atc
J— ih x5 |2 22)
Nall i—1 ‘
J‘Vba[ch K
1 )
Lom = 5= 2 2 IHO (P () =)
=1 k=1
(23)

where Ny = Npaeh Vo Vi, Npwen 18 the batch size
used during training, N/, is the size of the trun-
cated CSI matrix, and K is the number of iterations
in ISTANet+. As denoted in equations (19) and (20),
the vectors x; depend on the timeslot.

V. RANDOM PHASE AUGMENTATION

Prior work leveraged the truncated delay do-
main, which allowed them to save large datasets
of truncated CSI matrices. In order to acquire P2D
estimates for different values of DR, and D, we
must store the full frequency domain CSI matrices.
These full matrices can be prohibitively expensive
to store under typical system parameters, meaning
we need to use a smaller dataset. Since successful
training of deep neural networks depends on a large
number of training samples, we utilize a random
phase augmentation on our smaller training data.
Such random phase augmentation has been shown
to be effective in training neural networks for CSI
feedback compression [24]. For each sample in the
training set, we sample a random phase from a
uniform distribution, ¢ ~ U(—m,7), and we rotate



TABLE I: Parameters for COST2100 model in this
work.

Environment Outdoor
Num. BS Antennas (/Vp) 32
Truncation Value (IV;) 32

Num. Subcarriers (Ny) 1024
Downsampled Subcarriers (M) | [512, 256, 128, 64]
Carrier Frequency 300 MHz

UE Starting Position 400 m %400 m
Num. Channel Samples (V) 2.5 x 107

all the elements in a given CSI matrix by this phase,

augmented

—HWe 0 i e [N].j € [My]. (24)

We define a phase augmentation factor, Nppe,
which is a multiplicative factor denoting the size
of the training dataset after performing phase aug-
mentation. For example, if we begin with a training
set of size 5000, then Ny = 2 would result
in an augmented dataset of size 10,000, meaning
each sample in the training set is augmented once.
More generally, each sample in the training set is
augmented Npp.e — 1 times.

VI. NUMERICAL RESULTS

We perform experiments using the COST2100
Model in an Outdoor scenario [17]. Table I summa-
rizes the COST model parameters used to generate
the Outdoor dataset. Importantly, the number of
channel samples in the dataset is lower than the
number used in similar works. A smaller dataset
is necessary because we store full CSI matrices
without truncating any subcarriers, which requires
32 times more space to store. For all networks, we
utilize spherical normalization [20], and we test the
networks using the following configurations:

o ISTANet+: We train the network described in
Section I'V-B for 100 epochs using the ADAM
optimizer. The network utilizes N; = 32 latent
channels, K = 9 blocks, and a symmetry
weight parameter of o = 1072

« ENet: The network hyperparameters are iden-
tical to those described by the authors of [21].
Since the training procedure was not described,
we chose one which converged in a reasonable
number of epochs (500 epochs, learning rate
of 5-10~%). As per the original paper, we train
the network on the real channel data from the
training set, then we report the validation loss
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Fig. 8: P2D estimation performance under different
frequency downsampling ratios (DR ) and diagonal
dimensions (D) for the Outdoor COST2100 dataset.
Downsampling is done along the frequency axis.

by using the network on the real and imaginary
channels from the validation set. We utilize
N, = 32 latent channels since this configuration
achieved the best performance in the original
paper.

o CsiNet Pro: The network was trained for 500
epochs with a learning rate of 5- 10~ %,

We use a 80% (20%) training (validation) split,
yielding 20,000 training samples (5000 validation
samples). Unless stated otherwise, we augment the
training set using Nppue = 4, yielding an augmented
dataset of 80, 000 samples.

A. Accuracy of P2D Estimator

To provide a bound on the estimation perfor-
mance at the BS, Figure 8 shows the accuracy
of the P2DE at the UE (i.e., before compression
and feedback). This performance is based on per-
fect pilot estimates (i.e., no noise in Hy). The
performance of the P2DE under multiple diagonal
sizes (D) is shown. For all P2DE tests, ODIR with
0 = 0.5 is used (see Section III-C for details).
For all tested frequency downsampling ratios (DR ),
the accuracy of the P2DE is substantial, with the
smallest DRy = % achieving about —14 dB. For
increasing D, the error of the P2DE increases;
however, the difference in performance for different
values of D becomes negligible at more aggressive

downsampling ratios, DR € [lib %} The accuracy
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Fig. 9: Accuracy of P2DE output, H,, assuming
noisy pilots, H;. Additive Gaussian noise is used to
model the error inherent in pilot estimation. Here,

D =4DR; = 4.

of the P2DE implies that it will perform well with
compressive CSI feedback networks.

To understand the effect of pilot estimation error
on the P2DE, Figure 9 shows the accuracy of the
P2DE using a noise-corrupted H,, defined below
as:

H,=H,+N

where the elements of N € CM*Mr are i.id.
zero-mean Gaussian (i.e., N;; ~ N(0,0?) V i €
[1,...,N,),7 € [1,...,My]). By varying o2, we
can control the realized SNR of I:Id. We utilize
H, as a surrogate for the estimated pilots, and we
use P2DE to estimate H, with H; as an input (see
Algorithm 1, and substitute H,; for Hy).
To understand the effect of regularization on ill-
conditioned matrices Qc,iin, we also vary the
regularization parameter, . We observe that regu-
larization of Q.; Q. is beneficial in both noisy and
low noise conditions, as & has an appreciable effect
on the accuracy of the P2DE in either case. More
specifically,
« Noisy conditions (SNR = —20 dB): Compare
6 =0 to & = 0.5, where the NMSE of H. is
—8 and —21 dB, respectively.

« Low noise condition (SNR > —10 dB):
Compare 9 = 0 to d = (0.5, where the NMSE
of H; is —9 and —30 dB, respectively.
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Fig. 10: Performance of ISTANet+ for multiple
compression ratios using P2D estimates with dif-
ferent downsampling ratios (DR; = %’:) for the
Outdoor COST2100 dataset. Non-diagonal pattern
(D = 1) is compared with a diagonal pattern of
size DD = 4. Performance for DRy = 1/1, D =41is
omitted since it is equivalent to the DRy =1, D =1
case.

Compression Ratio (CR)
1/8

1/4

1/16

Test NMSE (dB)

HE [STANet+ ENet I SphNet

Fig. 11: Performance comparison for different feed-
back compression networks using P2D estimates
(DF; = 1/16,D = 4) for Outdoor COST2100
dataset. For all tested networks, we use Nypue = 4,
resulting in an augmented training set with 80k
samples.
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quantization for different numbers of quantization bits. P2DE parameters are ) = 4, DRy = 1%

B. Accuracy of Compressive Networks with P2D
Estimates

In these experiments, we use the P2D estimate
as the input to different compressive CSI feedback
networks. In this work, we propose to use the
unrolled reconstruction network, ISTANet+ [23], as
described in Section IV-B. In Figure 10, we assess
the performance of ISTANet+ across multiple values
of DR and CR. Comparing DR = % to DRy = %6,
the accuracy of ISTANet+ is remarkably stable,
increasing negligibly for CR:% and by only 1 dB
for CR:%G.

To provide a baseline for ISTANet+, we also
compare the performance of ISTANet+ with
two autoencoder-based CSI compression networks,
CsiNet Pro [20] and ENet [21]. Figure 11 shows the
performance comparison between all networks for
the same DRy and D. For large compression ratios
(CR € [1, %]), ISTANet+ achieves a better NMSE
than the autoencoder approaches. For the smallest
tested compression ratio (CR = %6), ISTANet+ has
similar performance to ENet.

To consider the effect of noise and decoding error
during CSI feedback and estimation, we choose to
quantize the digital feedback of each CSI estima-
tion network using uniform quantization with p-
law companding (see [l11] for full details). The

resulting performance of each network for different
levels of quantization is shown in Fig. 12. Note
that 32 bit quantization corresponds to floating point
representation which is nearly ideal. We observe
that ISTANet+ exhibits superior performance over
the autoencoder networks even under aggressive
feedback quantization (i.e., 6 or 8 quantization bits).

C. Phase Augmentation Sensitivity Study

Using random phase augmentation as described
in Section V, we assess the influence of different
sized training sets on validation accuracy. We start
with a base training set of size 1000, 5000, or
20000, and we utilize multiple values of Njpase, t0
yield augmented training sets of increasing size.
We train ISTANet+ (CR:%) with P2D estimates
(DR; = %) on each of these training sets, and
we report the validation loss on the same set of
5000 samples. The resulting validation accuracy can
be seen in Figure 13. As expected, the accuracy
improves appreciably as the size of the augmented
training set is increased, and the difference between
the networks trained with 5000 and 20000 training
samples becomes negligible after augmentation.
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TABLE II: Computational complexity of networks

0 20000 40000 60000 80000 100000 120000 140000 used in this work. Bold face in a column indicates
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Fig. 13: Effect of phase randomization augmentation
on performance of ISTANet+ (CR = %) with P2D
estimates (DR = % D = 4) under different train-
ing set sizes for the Outdoor COST2100 dataset.
Downsampling is done along the frequency axis.

D. Differential Encoding with P2D Estimates

Figure 14 shows the performance of differen-
tial encoding when using either ISTANet+ and
ENet at each timeslot, which are respectively
named MarkovNet-ISTA (MN-I) and MarkovNet-
ENet (MN-E). For all versions of MarkovNet, CR,,
is the compression ratio in the first timeslot and CR
is the compression ratio for all following timeslots.
ISTANet+ has the benefit of providing accuracy
in the first timeslot, while ENet is better at com-
pressing the residual in each following timeslot.
Based on this observation, we also test a version
of MarkovNet which uses ISTANet+ in the first
timeslot then ENet in the following timeslots, which
we call MarkovNet-ISTA-ENet (MN-IE). For the
networks where CR;, = CR, MN-IE can outperform
MN-I, indicating that a combination of architectures
can be better than a single architecture. Such an
outcome appears reasonable given the difference in
sparsity between the first timeslot (where CSI data is
compressed) and the ensuing timeslots (where only
error terms are compressed). Since angular-delay
domain CSI is sparse, ISTANet+ (a network that
emulates compressed sensing algorithms) is suitable
for compressing this sparse CSI data. In contrast, er-
ror terms are not necessarily sparse, making the use
of an autoencoder (in this case, ENet) architecture
more suitable.

lowest value for given compression ratio. “CR” =
compression ratio, “Enc” = encoder, “Dec” = de-
coder. FLOPs indicate computation during inference
(i.e., not training/back-propagation).

Parameters (M)
Trainable All FLOPs (M)
CR Enc | Dec | Enc | Dec Enc Dec
1/2 1000 | 034 | 2.10 | 454 | 2.10 | 393.78
1/4 1000 | 034 | 1.05 | 244 | 1.05 | 373.85
ISTANet 1/8 | 0.00 | 034 | 052 | 1.39 | 0.52 | 363.89
1/16 | 0.00 | 034 | 0.26 | 0.87 | 0.26 | 35891
1/2 ] 055 | 055 | 0.55 | 0.55 | 29.98 | 29.70
ENet 1/4 1029 | 029 | 0.29 | 0.29 | 2946 | 29.18
1/8 | 0.16 | 0.16 | 0.16 | 0.16 | 29.20 | 28.92
1/16 | 0.09 | 0.09 | 0.09 | 0.09 | 29.07 | 28.79
1/2 1.06 | 1.06 | 1.06 | 1.06 | 12.16 | 12.16
CsiNet Pro 1/4 1053 ] 053] 053] 053 | IL.11 11.11
) 1/8 10271027027 | 027 [ 1059 [ 10.59
1/16 | 0.14 | 0.14 | 0.14 | 0.14 | 1033 10.33

E. Computational Complexity

Table II shows the computational complexity
of the different trainable networks used in this
work. Generally, ISTANet+ uses fewer trainable
parameters than the autoencoder networks, but the
autoencoder networks use fewer total parameters
(i.e., trainable and nontrainable parameters) than
ISTANet+. With respect to floating point operations
(FLOPs), ISTANet+ uses an order of magnitude
more FLOPs than the autoencoder approaches. This
large computational cost is primarily due to the
unrolled iterations of the compressed sensing algo-
rithm (i.e., ISTA).

The large computational complexity of ISTANet+
motivates the used of autoencoders in conjunction
with compressed sensing networks as done in MN-
IE. In differential encoding networks, both the
encoder and the decoder need to be stored and
executed at the UE. For MN-I, T' copies of the
encoder/decoder must be kept at the UE, which
would consume an unreasonable amount of memory
and compute. For example, with CRy, % CR = }1
MN-I would consume T(6.54) million parameters
and T(395.88) million FLOPs. In contrast, MN-
IE would consume 6.54 + (7" — 1)(1.1) million
parameters and 395.88 + (7" — 1)(29.84) million
FLOPs.
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Fig. 14: Compressive CSI estimation using differential encoding and linear P2D estimator (M; =
128, DRy = %, D = 4). MarkovNet-ISTA (MN-I), MarkovNet-ENet (MN-E), and MarkovNet-ISTA-ENet
(MN-IE) are tested using two different compression ratios in the first timeslot, CR;, € [l l].

VII. DISCUSSION

This work presents a novel P2D estimator for
of downlink delay domain MIMO CSI based on
sparsely populated frequency domain pilot signals.
Taking advantage of the channel coherence ex-
hibited in the final delay spread of CSI, the UE
can leverage the P2D estimator to accurately esti-
mate delay domain CSI based on practical CSI-RS
(DMRS) pilot allocations that are consistent with
the 4G/LTE (5G/NR) standards. Furthermore, we
demonstrate that CSI estimates from the P2D esti-
mator provide a suitable input to trainable compres-
sive sensing networks and autoencoder networks.
Lastly, to improve feedback efficiency for downlink
CSI recovery by BS over multiple time slots, we
integrate the concept of a differential encoding to
develop a heterogeneous deep learning network,
MarkovNet-ISTA-ENet. This new architecture com-
bines a trainable CS network with a bank of au-
toencoders designed for successive time slots to take
advantage of temporal coherence of wireless CSI by
leveraging the high initial CSI recovery accuracy of
the CS network on the first time slot to improve
CSI recovery of subsequent time slots. In future
works, it is also of interest to consider imperfect CSI
estimates at pilots as well as adaptive methods for
initial pilot estimation (see [14], [15], for example).
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