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ABSTRACT

The problem of quickest detection of a change in the distribution
of a sequence of independent observations is considered. The pre-
change distribution is assumed to be known and stationary, while the
post-change distributions are assumed to evolve in a pre-determined
non-stationary manner with some possible parametric uncertainty.
In particular, it is assumed that the cumulative KL divergence be-
tween the post-change and the pre-change distributions grows super-
linearly with time after the change-point. For the case where the
post-change distributions are known, a universal asymptotic lower
bound on the delay is derived, as the false alarm rate goes to zero.
Furthermore, a window-limited CuSum test is developed, and shown
to be asymptotically optimal. For the case where the post-change
distributions have parametric uncertainty, a window-limited gener-
alized likelihood-ratio test is developed and is shown to be asymp-
totically optimal. The analysis is validated through numerical re-
sults on synthetic data. The use of the window-limited generalized
likelihood-ratio test in monitoring pandemics is also demonstrated.

Index Terms— Quickest change detection (QCD), non-stationary
observations, generalized likelihood-ratio (GLR) test, pandemic
monitoring, window-limited sequential test.

1. INTRODUCTION

The problem of quickest change detection (QCD) is of fundamental
importance in mathematical statistics (see, for example, [1, 2] for
an overview). Given a sequence of observations whose distribution
changes at some unknown change-point, the goal is to detect the
change in distribution as quickly as possible after it occurs, while
not making too many false alarms.

In the classical formulations of the QCD problem, it is assumed
that the pre- and post-change distributions are known and stationary,
and that the pre-change distribution is independent and identically
distributed (i.i.d.). In many practical situations, while it is reason-
able to assume that we can accurately estimate the pre-change dis-
tribution, the post-change distribution is rarely completely known.
Furthermore, while it is reasonable to assume that the system is
in steady-state before the change-point and producing stationary
observations, the post-change distribution may typically be non-
stationary. For example, in the pandemic monitoring problem,
the distribution of the number of people infected daily might have
achieved a steady-state before the start of a new wave. At the onset
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of the new wave, the post-change distribution is constantly evolving
(see Section 4).

In this paper, our main focus is the QCD problem with indepen-
dent observations, where the pre-change distribution is assumed to
be known and stationary, while the post-change distribution is al-
lowed to be non-stationary and have some parametric uncertainty.

There has been prior work on extensions of the classical QCD
framework to the case where the pre- and/or the post-change dis-
tributions are not stationary. One approach is based on a minimax
robust [3] formulation of the QCD problem, where it is assumed
that the pre- and post-change distributions come from mutually
exclusive uncertainty classes. Under certain conditions, e.g., joint
stochastic boundedness [4] and weak stochastic boundedness [5],
low-complexity tests that either coincide with [6] or asymptotically
approach [7] the optimal test can be found. There is also a body of
work on the problem of detecting transient changes (see, e.g., [8]),
and persistent changes with some transient dynamics [9].

There have also been extensions of the classical formulation to
the case where the pre- and/or post-change distributions are not fully
known. In the generalized likelihood ratio (GLR) approach, intro-
duced in [10], it is assumed that the pre- and post-change distri-
butions are i.i.d. and come from one-parameter exponential fami-
lies, respectively, and the post-change parameter is unknown. The
GLR approach is studied in detail for the problem of detecting the
change in the mean of a Gaussian distribution with unknown post-
change mean in [11]. Both the mixture [12] and the GLR approaches
are studied in detail for the case where pre- and post-change dis-
tributions are non-i.i.d. and the post-change distribution has para-
metric uncertainty in [13], where it is assumed that the cumulative
Kullback-Leibler (KL) divergence between the post-change and the
pre-change distributions grows linearly in the number of observa-
tions.

In some application (e.g., the pandemic monitoring problem),
the post-change distributions are non-stationary in a way such that
the cumulative KL divergence grows super-linearly after the change-
point, in which case we say that the post-change distribution is
detection-favorable. This is the setting we consider in this paper.
Our contributions are as follows:

1. We extend the universal lower bound on the worst-case delay
given in [13] to the more general detection-favorable setting.

2. We develop a window-limited CuSum test that asymptotically
achieves the lower bound on the delay when the post-change
distribution is detection-favorable and fully known.

3. We develop and analyze a GLR test that asymptotically
achieves the worst-case delay when the post-change distribu-
tions are detection-favorable and have parametric uncertainty.
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4. We validate our analysis through numerical results, and
demonstrate the use of our approach in monitoring pan-
demics.

Detailed proofs of all of the theoretical results are given in an
extended version of this paper [14]. Generalizations to the case with
dependent observations and change-point dependent post-change
distributions are also discussed in [14].

2. INFORMATION BOUNDS AND OPTIMAL DETECTION

Let X1, . . . , Xn, . . . be a sequence of independent random vari-
ables, and let ν be a change-point. Assume that X1, . . . , Xν−1 all
have density p0 with respect to some measure µ. Furthermore, as-
sume that Xν , Xν+1, . . . have densities p1,0, p1,1, . . ., respectively,
with respect to µ, i.e., we are implicitly assuming that the post-
change distribution is time-invariant with respect to the change-point
ν. Note that the distributions of the observations are allowed to be
non-stationary after the change-point. Let Pν denote the probability
measure on the entire sequence of observations, when the change-
point is ν, and let Eν [·] denote the corresponding expectation.

The change-time ν is assumed to be unknown but deterministic.
Let τ be a stopping time [4] defined on the observation sequence
associated with the detection rule, i.e. τ is the time at which we stop
taking observations and declare that the change has occurred.

2.1. Information Bounds for Non-stationary Post-Change Dis-
tributions

Lorden [10] proposed solving the following optimization problem to
find the best stopping time τ :

inf
τ∈Cα

WADD (τ) (1)

where

WADD (τ) := sup
ν≥1

ess supEν
[
(τ − ν + 1)+ |Fν−1

]
(2)

characterizes the worst-case delay, Fn denotes the sigma algebra
generated by X1, . . . , Xn, i.e., Fn = σ(X1, . . . , Xn), and

Cα := {τ : FAR (τ) ≤ α} (3)

with
FAR (τ) :=

1

E∞ [τ ]
.

Here, E∞ [·] is the expectation operator when the change never hap-
pens, and (·)+ := max{0, ·}.

In the classical i.i.d. model where the post-change distribution
is stationary, the cumulative KL-divergence after the change-point
increases linearly in the number of observations. We generalize this
condition as follows. Let the growth function g represent the cumu-
lative Kullback-Leibler (KL) divergence under the true distribution.
More specifically, let g : R+ → R+ be increasing and continu-
ous. Note that the inverse of g, denoted by g−1, exists and is also
increasing and continuous. It is assumed that the expected sum of
the log-likelihood ratios under Pν matches the value of the growth
function at all positive integers, i.e.,

g(n) =

ν+n∑
i=ν

Eν [Zi,ν ] , ∀n ≥ 1. (4)

Here,

Zn,k = ln
p1,n−k(Xn)

p0(Xn)
(5)

is the log-likelihood ratio where n ≥ k ≥ 1. Note that the KL
divergence is always positive, i.e.,

Eν [Zi,ν ] > 0, ∀i ≥ ν.

In this paper, we are interested in the case where the post-change
distribution is eventually persistently different from the pre-change.
Specifically, it is assumed that

∃I > 0, s.t. g(x) ≥ Ix, ∀x sufficiently large.

Lemma 2.1. Consider the growth function g(n) defined in (4). Sup-
pose that the sum of variance of the log-likelihood ratios satisfies

sup
t≥ν≥1

t+n∑
i=t

Varν (Zi,t) = o(g2(n)) (6)

where f(n) = o(g2(n)) is equivalent to f(n)/g2(n) → 0 as n →
∞. Further, suppose that

Eν [Zi,ν ] ≤ Eν [Zi+∆,ν+∆] (7)

for all positive integers ∆. Then,

sup
ν≥1

Pν

{
max
t≤n

ν+t∑
i=ν

Zi,ν ≥ (1 + δ)g(n)

}
n→∞−−−−→ 0 (8)

and

sup
t≥ν≥1

Pν

{
t+n∑
i=t

Zi,t ≤ (1− δ)g(n)

}
n→∞−−−−→ 0 (9)

for any δ ∈ (0, 1).

Example 2.1. Consider the Gaussian exponential mean-change de-
tection problem as follows. Denote by N (µ0, σ

2
0) the Gaussian dis-

tribution with mean µ0 and variance σ2
0 . Let X1, . . . , Xν−1 be dis-

tributed as N (µ0, σ
2
0), and for all n ≥ ν, let Xn be distributed as

N (µ0e
c(n−ν), σ2

0). Here c is some positive fixed constant. The log-
likelihood ratio is given by:

Zn,t = ln
p1,n−t(Xn)

p0(Xn)
=
µ0

σ2
0

(ec(n−t)−1)Xn−
µ2

0(e2c(n−t) − 1)

2σ2
0

.

(10)
Now, the growth function can be calculated as

g(n) =

ν+n∑
i=ν

Eν [Zi,ν ] =

n∑
i=0

µ2
0

2σ2
0

(eci − 1)2. (11)

Conditions (6) and (7) are checked in [14].

The following theorem gives an asymptotic lower bound on the
worst-case delay as α→ 0.

Theorem 2.2. Suppose that (8) holds. Then,

inf
τ∈Cα

WADD (τ) ≥ g−1(|lnα|)(1 + o(1)) (12)

where o(1)→ 0 as α→ 0.
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2.2. Asymptotically Optimal Detection with Non-stationary
Post-Change Distributions

Under the classical setting, Page’s CuSum test is optimal [15] and
has the following structure:

Λ(n) = max
1≤k≤n+1

n∑
i=k

Zi = (Λ(n− 1) + Zn)+

τPage (b) = inf {n : Λ(n) ≥ b} . (13)

In the above,

Zn = ln
p1(Xn)

p0(Xn)
(14)

is the log-likelihood ratio when the post-change distributions are
stationary. When the post-change distributions are potentially non-
stationary, we modify the CuSum stopping rule as:

τC (b) := inf

{
n : max

1≤k≤n+1

n∑
i=k

Zi,k ≥ b

}
(15)

where Zi,k represents the log-likelihood ratio between densities
p1,i−k and p0 for observation Xi (defined in (5)).

As shown in (13), Page’s classical CuSum algorithm admits a
recursive way to compute its test statistic. Unfortunately, despite in-
dependent observations, the test statistic in (15) cannot be computed
recursively. For computational tractability, we therefore consider a
window-limited version of the test in (15):

τ̃C (b) := inf

{
n : max

n−mα≤k≤n+1

n∑
i=k

Zi,k ≥ b

}
(16)

where mα is the window size. Throughout this paper, we require
that mα satisfy the following conditions:

lim inf mα/g
−1(|lnα|) > 1 and lnmα = o(|lnα|). (17)

Since the range for the maximum is smaller in τ̃C(b) than in τC(b),
given any realization of X1, X2, . . ., if the test statistic of τ̃C(b)
crosses the threshold b at some time n, so does that of τC(b). There-
fore, for any fixed threshold b > 0,

τC(b) ≤ τ̃C(b) a.s. (18)

In the following, we first control the asymptotic false alarm
rate of τ̃C(b) with an appropriately chosen threshold in Lemma 2.3.
Then, we upper bound the asymptotic delay of τ̃C(b) in Lemma 2.4.
Finally, we combine these two lemmas and provide an asymptoti-
cally optimal solution to the problem in (1) in Theorem 2.5.

Lemma 2.3. Suppose that bα = |lnα|+ ln(2mα). Then,

E∞ [τ̃C(bα)] ≥ α−1(1 + o(1))

where o(1)→ 0 as α→ 0.

Remark. If lnmα = o(|lnα|), then bα = |lnα| (1 + o(1)).

Lemma 2.4. Suppose that bα = |lnα| (1 + o(1)). Further, suppose
that (9) holds for Zn,k when n ≥ k. Then,

WADD (τ̃C(bα)) ≤ g−1(|lnα|)(1 + o(1))

where o(1)→ 0 as α→ 0.

Theorem 2.5. Let bα = |lnα| + ln(2mα). Suppose that (8) and
(9) hold for Zn,k, ∀n ≥ k. Then, the stopping rule in (16) solves the
problem in (1) asymptotically as α→ 0, and

WADD (τ̃C(bα)) = g−1(|lnα|)(1 + o(1)) (19)

where o(1)→ 0 as α→ 0.

Example 2.2. Consider the same setting as in Example 2.1. We have
shown that conditions (6) and (7) hold, and thus (8) and (9) follow
by Lemma 2.1. Considering g(n) in (11) as n→∞, we obtain

WADD (τ̃C(bα)) =
1

2c
ln

(
2σ2

0(1− e−2c)

µ2
0

|lnα|
)

(1 + o(1))

= O

(
1

2c
ln(|lnα|)

)
(20)

where o(1)→ 0 as α→ 0, and bα is as defined in Theorem 2.5.

3. WINDOW-LIMITED GLR WITH UNKNOWN
PARAMETERS

We now study the case where the evolution of the post-change distri-
bution is parametrized by θ ∈ Rd. Let Xν , Xν+1, . . . be distributed
as Pθ1ν , where the corresponding densities are pθ11,0, p

θ1
1,1, . . . with re-

spect to the common measure µ. Let Θ ⊂ Rd be the parameter set
and θ1 ∈ Θ. Note that Θ does not need to be compact. The true
post-change parameter θ1 is assumed to be unknown but determinis-
tic. Let the log-likelihood ratio be re-defined as

Zθn,k = ln
pθ1,n−k(Xn)

p0(Xn)
(21)

for any n ≥ k and θ ∈ Θ. Here Xn is drawn from the distribution
with true change-point ν and true post-change parameter θ1. The
problem is to solve (1) asymptotically as α → 0 under parameter
uncertainty.

Consider the following window-limited GLR stopping:

τ̃G (b) := inf

{
n : max

n−mα≤k≤n+1
sup
θ∈Θα

n∑
i=k

Zθi,k ≥ b

}
(22)

where Θα ↗ Θ as α↘ 0. Therefore, it is guaranteed that θ1 ∈ Θα

for all small enough α. Further, let Θα ⊂ Rd be compact for each
α, and thus the maximizing θ given the pair (k, n) at the false-alarm
rate α, denoted by θ̂n,k, is contained in Θα.

If Θα is discrete-valued, the sup in (22) becomes max, and the
stopping time is equivalent to running |Θα| CuSum algorithms si-
multaneously, where τ̃G stops whenever one of the algorithms stops.
Therefore, we only consider the case where Θα is continuous.

Finally, it is assumed that the largest absolute eigenvalue of the
Hessian matrix of Zθn,k exists and is finite in the neighborhood of
θ̂n,k when the false alarm rate is small. Specifically, there exists
ε > 0 such that for any θ̂ ∈ Θ and any large enough b > 0,

sup
θ:‖θ−θ̂‖<b− ε

2

λmax

(
−∇2

θ

n∑
i=k

Zθi,k

)
≤ 2bε (23)

where λmax (A) represents the maximum eigenvalue of a matrix A.
In the following, we first upper bound the asymptotic delay of

τ̃G(b) in Lemma 3.1. Next, we control the asymptotic false alarm
rate of τ̃G(b) with some proper threshold in Lemma 3.2. Finally, we
combine these two lemmas and establish asymptotic optimality in
Theorem 3.3.
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Fig. 1: Performances of tests with different sizes of windows. The Gaussian exponential
mean-change problem is considered, with µ0 = 0.1, σ2

0 = 10000, and c = 0.4. The
change-point ν = 1.

Lemma 3.1. If θ1 ∈ Θα, then for any threshold b > 0,

WADD (τ̃G(b)) ≤WADD (τ̃C(b)) .

Corollary 3.1.1. Suppose that bα = |lnα| (1 + o(1)). Since θ1 ∈
Θα for all small α’s, the worst-case delay of τ̃G(b) satisfies

WADD (τ̃G(bα)) ≤ g−1(|lnα|)(1 + o(1))

asymptotically as α→ 0.

Lemma 3.2. Suppose that bα satisfies

2mαC
−1
d b

εd
2
α e1−bα = α (24)

where Cd is a constant that depends only on d. Then,

E∞ [τ̃G(bα)] ≥ α−1(1 + o(1))

where o(1)→ 0 as α→ 0.

Remark. Re-arranging the terms, (24) becomes:

bα = |lnα|+ ln(2mαC
−1
d e) +

εd

2
ln bα. (25)

Since lnmα = o(|lnα|), bα = |lnα| (1 + o(1)) as α→ 0.

Theorem 3.3. Suppose that bα is as defined in Lemma 3.2 and that
mα satisfies (17). Further, suppose that (8), (9) and (23) hold for
Zθn,k when n ≥ k. Then, τ̃G(bα) solves the problem in (1) asymp-
totically as α→ 0, and

WADD (τ̃G(bα)) = g−1(|lnα|)(1 + o(1)) (26)

where o(1)→ 0 as α→ 0.

4. NUMERICAL RESULTS AND DISCUSSION

In Fig. 1, we study the performance of the proposed tests through
simulations for the Gaussian exponential mean-change problem (see
Example 2.1). It is observed that the delay at ν = 1 is O(ln(|lnα|))
for all sizes of windows considered, as described in (20).

Next, we apply our GLR algorithm to monitoring the spread of
COVID-19 using new case data from various counties in the US [16].
The goal is to detect the onset of a new wave of the pandemic based
on the incremental daily cases. The problem is modeled as one of

detecting a change in the mean of a Beta distribution. The Beta
distribution model is used because the daily incremental fraction is
bounded between 0 and 1; models such as Gaussian, with unbounded
support may not be appropriate. Let B(a, b) denote the Beta distri-
bution with shape parameters a and b. Let

p0 = B(a0, b0)

p1,n−k = B(a0h(n− k), b0), ∀n ≥ k (27)

Here, h is a parametric function such that h ≥ 1. Note that if a0 �
b0 and h(n− ν) is not too large,

Eν [Xn] =
a0h(n− ν)

a0h(n− ν) + b0
≈ a0

b0
h(n− ν) (28)

for all n ≥ ν. Therefore, h is designed to capture the shape of the
average fraction of daily incremental cases. Let

h(∆) = 1 +
10c0

c2
exp

(
− (∆− c1)2

2c22

)
(29)

where c0, c1, c2 ≥ 0 are all parameters. This specific choice of h
has two advantages: 1) It guarantees a rapid growth during the start
of a new epidemic wave. When n− ν is small, h(n− ν) grows like
the left edge of a Gaussian density if c1 is large. 2) It guarantees
that daily incremental cases will eventually vanish at the end of the
current epidemic wave, i.e., h(n− ν)→ 0 as n→∞.

Fig. 2: COVID-19 monitoring example. The upper row shows the four-day moving
average of the daily new cases of COVID-19 as a fraction of the population in Wayne
County, MI (left), New York City, NY (middle), and Hamilton County, OH (right). A
pre-change B(a0, b0) distribution is estimated using data from the previous 20 days
(from May 26, 2021 to June 14, 2021). The mean of the Beta distributions with the
hypothesized change-point and estimated parameters from the GLR algorithm is also
shown (in orange). The lower row shows the evolution of the GLR test statistic (de-
fined in (22)), respectively. The FAR threshold α is set to 0.01, and the corresponding
GLR test threshold is also shown (in red). The post-change distribution at time n with
hypothesized change-point k is modeled as B(a0h(n − k), b0), where h is defined
in (29). The parameters c0, c1 and c2 are assumed to be unknown. The window size
mα = 20. The threshold is set using equation (24).

In Fig. 2, we illustrate the use our GLR algorithm with the dis-
tribution model in (27) in the detection of the onset of a new wave of
COVID-19. We assumed a start date of June 15th, 2021 for the mon-
itoring, at which time the pandemic appeared to be in a steady state
with incremental cases staying relatively flat. We observe that the
GLR statistic significantly and persistently crosses the test-threshold
around late July in all counties, which is strong indication of a new
wave of the pandemic. More importantly, unlike the raw observa-
tions which are highly varying, the GLR statistic shows a clear di-
chotomy between the pre- and post-change settings, with the statistic
staying near zero before the purported onset of the new wave, and
taking off nearly vertically after the onset.
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