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Quickest Change Detection with Controlled Sensing

Georgios Fellouris,

Abstract—In the problem of quickest change detection, a
change occurs at some unknown time in the distribution of a
sequence of random vectors that are monitored in real time,
and the goal is to detect this change as quickly as possible
subject to a certain false alarm constraint. In this work we
consider this problem in the presence of parametric uncertainty
in the post-change regime and controlled sensing. That is, the
post-change distribution contains unknown parameters, and the
distribution of each observation, before and after the change,
is affected by a control action. In this context, in addition to a
stopping rule that determines the time at which it is declared
that the change has occurred, one also needs to determine a
sequential control policy, which chooses the control action at
each time based on the already collected observations that is
“best” for the unknown post-change parameter. We formulate
this problem mathematically using Lorden’s minimax criterion,
and assuming that there are finitely many possible actions and
post-change parameter values. We establish a universal lower
bound on the worst-case detection delay, as the mean time to
false alarm goes to infinity, which needs to be satisfied by any
procedure for quickest change detection with controlled sensing.
We then propose a specific procedure for this problem, which we
call the Chernoff-CuSum procedure, for which the conditional
expected detection delay, for any fixed value of the change-point,
matches the universal lower bound up to a first-order asymptotic
approximation as the mean time to false alarm goes to infinity.

Index Terms—Sequential change detection; Experimental de-
sign; Observation control; CuSum test.

I. INTRODUCTION

The problem of detecting changes or anomalies in stochastic
systems and time series, often referred to as the quickest
change detection (QCD) problem, arises in various branches of
science and engineering. The observations of the system are
assumed to undergo a change in distribution at the change-
point, and the goal is detect this change as soon as possible,
subject to false alarm constraints. See [1], [2], [3], [4] for
books and survey articles on the topic.

In this paper we study an interesting variant of the QCD
problem that was introduced in recent work [5], to which the
authors refer as the “bandit” QCD problem. In this setting,
the distribution of the observations is not only affected by
the change but also through a control (action) variable that
is chosen by the observer. As described in [5], a canonical
example application for such a setting is in surveillance sys-
tems in which sensors can be switched and steered (controlled)
to look for targets in different locations in space, and only a
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subset of locations can be probed at any given time. The policy
for controlling the sensors has to be designed jointly with
the change detection algorithm to provide the best tradeoff
between detection delay and false alarm rate. A number of
other applications contexts for the “bandit” QCD problem are
described in [5].

On a fundamental level, the QCD problem in which the
distribution of the observations is affected by control actions
falls squarely within the larger context of sequential decision-
making problems with observation control (or controlled
sensing [6]). Such controlled sensing problems have a rich
history going back to the seminal work of Chernoff [7] on
the sequential design of experiments, in which a sequential
composite binary hypothesis testing problem with observation
control is studied. Other works on sequential hypothesis testing
with observation control include [8], [9], [10], [11], [12], [13]
and more recently [14], [15], [16], [17]. There has also been
considerable progress on the special “multi-channel” case of
sequential hypothesis testing with observation control, which
is also commonly referred to as sequential anomaly detection.
In this context, there are multiple data streams, some of which
are anomalous, and the goal is to accurately pick out the
anomalous ones among them, while observing only a subset
of the streams at each time-step [18], [19], [20], [21], [22],
[23], [24]. The QCD problem in the multi-channel setting with
observation control has been studied recently in [25], [26],
[27]. In this context, an unknown subset of the streams undergo
a change in their distributions at the unknown change-point,
and only a subset of them can be observed at each time-step.

Our work is inspired by [5], in which a general setting for
QCD with controlled sensing is considered. In particular, it
is assumed that the pre- and post-change distributions can be
affected by the choice of a control action, which takes values
in a finite set. Furthermore, the post-change is allowed to have
parametric uncertainty within a finite parameter set.

The formulation of the optimization problem to obtain the
best tradeoff between detection delay and false alarm rate in
[5] is not consistent with standard formulations of the QCD
problem [3]. In particular, the false alarm constraint used in
[5] is one where the probability of stopping (and declaring a
change) before a fixed time m under the pre-change regime is
constrained to some level . Under such a constraint, if the
change happens at any time after m + 1, then the delay can
be made to be equal O by simply stopping at time m + 1, if
the test did not stop before, while maintaining the false alarm
constraint. The authors of [5] refer to [28] to justify their false
alarm constraint, but the false alarm constraint proposed in
[28] requires the probability of stopping in any time-window
of size m in the pre-change regime be small (see [28, Section
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IL.B]), not just the window from 0O to m. Furthermore, it is
more common in the QCD literature to constrain the mean
time to false alarm [3], which is also a constraint used in [28,
Section I].

Another issue with the formulation in [5] is that the measure
of delay being used is not specified clearly. There are standard
ways to measure delay in QCD problems where no prior is
assumed on the change-point, by taking the supremum of the
expected delay over all possible change-points (see, e.g., the
Lorden and Pollak formulations [3]), but these do not appear
to be used in [5]. Furthermore, the asymptotic upper bound
on the delay (for a fixed change-point) given in [5, Theorem
3] is larger than the corresponding lower bound given in [5,
Theorem 2] (which assumes that the change happens at time 1)
by a factor greater than 160. In contrast, first-order asymptotic
optimality results in the QCD literature require the ratio of the
upper and lower bounds on the delay metric to converge to 1,
as the false alarm rate goes to 0 [3].

The e-GCD procedure proposed in [5] for change detection
with observation control uses at each time instance a maximum
likelihood estimate (MLE) of the post-change parameter to
determine the best action at each time step, except that with a
fixed probability €, the action is chosen uniformly at random.
The MLE at each time instance is determined only by those
samples that resulted from random exploration. The use of
the current maximum likelihood estimate for determining the
current action is in fact the key feature in Chernoff’s proposed
control policy in [7] for the problem of sequential composite
binary hypothesis testing problem with observation control.
The need for random exploration of actions in that context
arises because the actual post-change parameter may not be
distinguishable from other possible post-change parameter
values under certain actions. However, exploring at random
with probability € > 0 at each time instance will generally
lead to substantial performance loss (by roughly a factor of
1/(1 — €)) relative to that of an oracle that knows the post-
change parameter. Another consideration with the use of the
MLE that relies on data from the beginning to estimate the
post-change parameter in the QCD setting (in contrast to the
sequential hypothesis testing setting) is that it could potentially
be biased away from the true post-change parameter due to the
pre-change observations if the change-point is not small, as we
discuss in Section V.

Our goal in this paper to precisely formulate the QCD
problem with controlled sensing, as well as to propose and
analyze a novel algorithm for this problem. As described in
Section II, we use Lorden’s metric [29] for the delay, and
we pose the optimization problem as the minimization of
this delay metric, under a constraint on the mean time to
false alarm (MTFA). In Section III, we derive a universal
lower bound on the delay of any procedure, under the MTFA
constraint. In Section IV, we develop a procedure for change
detection based on the CuSum rule for an abitrary control
policy, and derive some performance bounds for the procedure.
In Section V, we specialize the CuSum-based procedure for
a specific control policy, to which we refer as the Chernoff-

CuSum procedure, and we establish an upper bound on its
conditional expected delay as the MTFA goes to infinity.

II. PROBLEM FORMULATION

Let {X,, : n € N} be a sequence of random vectors whose
values are observed sequentially, let {U, : n € N} be a
sequence of random variables to be used for randomization
purposes, and let {F,,: n € N} the filtration generated by
these two sequences, i.e.,

Fni=0(Xm,Upn:1<m<n), neN.

We also denote by Fy the trivial o-algebra. We assume that,
for any n € N, U, is independent of F,_; and uniformly
distributed in [0, 1], and that X,, is independent of U,, and
conditionally independent of F,,_; given the value of a control
A,. The latter is assumed to be a measurable function of
(X1,...,Xn-1,U1,...,U,), and to take values in a finite set
A. We refer to the sequence of actions A := {A,, : n € N} as
a control policy and we denote by A the family of all control
policies, i.e., A ={A, :n €N} € A

Let also {f? : @ € ©} be a set of densities with respect to a
dominating measure, A, where © is an arbitrary finite set, and
let 8p € ©. We assume that, for any n € N and a € A, X,
has conditional density f? given that A, = a, where 6 = 6,
ifn<wvand € ®\ {6} if n > v. We refer to v as the
change-point, and we assume that it is a completely unknown
and deterministic time.

To be more specific, we denote by Pg 4 the underlying
probability measure, and by Eﬁ’ 4 the corfesponding expec-
tation, when the change-point is v, the post-change parameter
6 € ©\ {6y}, and the control policy A is used, which means
that for any n € N and any Borel set B we have

Jp fo dx, if n<vw

P? (X, € B|F,_1) =
val [Fn-1) {fogndA, it n>uw.

Moreover, we denote by P, 4 the underlying probability
measure, and by E 4 the corresponding expectation, when
the change never occurs and the control policy A is used,
which means that for any n € N and any Borel set B we have

POOA(XTL € B|Fn—1) = H/ fzon dA.
i=17B

A procedure for quickest change detection with controlled
sensing consists of a pair (A4,7), where A is a control
policy, i.e., A € A, and T is an {F,}-stopping time, i.e.,
{T =n} € F, for every n € N. We denote by C the family
of all procedures, i.e., (A,T) € C.

False Alarm Measure. We measure the false alarm perfor-
mance of a procedure in terms of its mean time to false alarm,
and we denote by C, the subfamily of procedures for which
the mean time to false alarm is at least 7, i.e.,

C,={(A,T)eC: EnalT] >~}
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Delay Measure. We use a worst-case measure for delay, that
is the commonly used Lorden’s measure [29]. Specifically, for
any 0 € ©\ {0y} and (A,T) € C we set

Jo(A,T) == sup ess sup Ef, , [(T—v+1)T| Fq]. (1)

v>1
Optimization Problem. The optimization problem we con-
sider is to find a test that can be designed to belong to C, for
every v > 1 and achieves

inf

AT
(A,T)GCn,ja( )

to a first-order asymptotic approximation as v — oo simulta-
neously for every 6 € © \ {0y}.

We make the following assumptions in our analysis:

Al. For every 6 € O\ {0y} and a € A we have

Jron(2 202 st an< v < . @)

A2. For every 6 € O\ {fy} there exists an a € A so that

1= / log(f /%) ¢ dX >0, 3)

i.e., the post-change distribution is distinguishable from the

pre-change distribution for at least one choice of control. This
assumption implies that

1% := max I? > 0. 4

ach ¢ ( )

A3. For every 6,0 € ©\ {6}, such that  # 6, there exists
an a € A so that:

/ log(f2/£%) f° dA > 0, 5)

i.e., the post-change distribution for two distinct values of
the post-change parameter are distinguishable by at least one
control.

We will use the two latter assumptions for the consistent
estimation of 6 in the post-change regime (see Lemma 2).

For any 6,0 € © such that § # 0 and a € A we further
define the Bhattacharya coefficient [30]:

p(6,0,a) = / 19 9 dx. ©)

By assumptions A2 and A3 it follows (see, e.g. [30]) that for
any 0,0 € © such that ¢ # 6 there exists an @ € A such that
p(0,0,a) < 1, and as a result

- 1 -
p(0.0) = o > p(0.6.a) <1. (7)

acA

We also denote by p the maximum of these quantities:

p = maxp(0,0). ®)
040

III. UNIVERSAL LOWER BOUND
For any A € A and m € N we set
b (X
A9,y = tog | D)) ©)
A (Xm)

and we observe that for any v,¢ € N we have

dp? , vt
ap = A(]:wt) = exp { Z Afn,A} .

m=v

Theorem 1. For any 6 € ©\ {0y}, as v — oo we have

. log v
f AT) > 1 1)).
(A}Tn)ecwje( ,T) > 76 (1+o0(1))

Proof. Fix (A,T) € C, and 6 € © \ {6p}. By [28, Theorem
1] it suffices to show that, for every § > 0, the sequence

v+t
supesssup P? , [ max A > T0(146)n| F,y
veN S \astsn £

converges to 0 as n — oo. Indeed, for every n,v € N we have

1<t<n

v+t
Pﬂ}A (max Z Afn’A > 19(1 +d)n | ]:1,1>

v+t
<P, ( max (A, =16 )>1%n| }'l,_1>

1<t<n £~
< nv vV
= (I%n)2  (196)2n’

Here, the first inequality follows from the fact that I < I¢
for every a € A, and the second one from a conditional version
of Doob’s submartingale inequality. We can apply the latter
because

v+t
{Yf:t,A = Z (A?TL,A - IZ,,,L),EH,t € N}

m=v

is a Pﬁ’ 4-martingale and by assumption A1 it follows that

Varg,A[YG:t,A] <Vt forall

v

teN.
O

IV. CUSUM PROCEDURE WITH CONTROLLED SENSING

In this section we design a stopping rule based on the
CuSum test for quickest change detection. Specifically, for
any A € A and 6 € © we define the CuSum statistic for
detecting the change when the true post-change parameter is
0 and control A is used, i.e.,

n

4 R 6
Wn,A = max Au,A’

1<m<n
u=m

where Ai 4 18 defined in (9), which admits the following
recursion:

Wo y=max{W)_; 4,0t +A% 4, neN, W!=o.
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The change is declared at the first time any of these statistics
exceeds a threshold b, i.e.,

Ty 4 := inf N: WY, >by.
b,A m {ne rﬁeaéc 717A—}

In what follows we simply write T3, instead of Tj 4, and we
call the pair (A4, T,) a CuSum procedure. In Lemma 1 we show
how to select b for (A, T}) to satisfy the MTFA constraint. The
proof of this result is based on upper bounding the CuSum
stopping time by the stopping time of the corresponding
Shiryaev-Roberts test (see, e.g. [3] for a similar argument for
the QCD problem without observation control).

Lemma 1. For any A € A and v > 1 we have (A,T}) € C,
when b = log(|©] 7).

In the following theorem we give a general result regarding
the delay for a CuSum procedure when v = 1 and the control
policy satisfies certain conditions.

Theorem 2. Let 6 € ©. If b = log(v|©|) and A € Ais a
control policy such that

n

> Pl {Z g <1’ > en} <oco  (10)
n=1

k=1
for every € > 0, then

log v
70 (I+0(1)) as

E‘iA [Tp] < v — oo.

Proof. In view of Lemma 1, it suffices to show that for every
€ > 0, we have

1
lim sup — E?)A [Tp] <

b—o0 b

19 — ¢

For every b > 0 we have

b
E?,A [Tb] < 79 _ ¢ + Z P?,A {Tb > n} .

n>b/ (19 —¢)

Y

By the definition of 7} it follows that for every b > 0 and
n € N we have

c v C ¢ :

{T,, >n} C {Iglgé{ZAk < b} C {ZAk < b}
k=1 k=1

Consequently, for every b > 0 and n > b/(I% — €) we have

PY A{Ty >n} <Pl , {ZAZ <n(I’ - e)} . (12)

k=1

Therefore, by (11) and (12) we have

b o0 n
ElAL] < —+> Pla {ZA% <n(I’ e)}, (13)
n=1 k=1

thus, it suffices to show that the series in the upper bound
converges. This convergence follows by using steps similar to

those used in (21) (and those leading to equation (5.10) in
[7]). Specifically, for every n € N

SOAL=D (AL =15, - a? - 15,) +

k=1

k=1 k=1 (14)

> (AL -0, ]+ A TG, <17} 4l
k=1 k=1

where A := maxyce maxqep (17 — I7).
By (11), (12), (14), the probability in (13) is bounded by

PLa{Sko (AL - T4, < =5} + Pl i 1A, < 1%} > 5%

and it suffices to show that both of these sequences are
summable. For the second one, this is trivial when A = 0
and it follows by the assumption of the theorem when A > 0.
For the first one, this can be shown using the fact that

0 0 0
Eia [Ax — 14,

f“} =0, Vk € N.

and following the steps leading to eq. (5.10) in [7]. O

V. THE CHERNOFF-CUSUM PROCEDURE

We now specialize the CuSum procedure (A4, T3) introduced
in the previous section by fixing the control policy. To this end,
we introduce, for any A € A, the MLE of 6 at time n, i.e.,

O log £ (Xom)- 15
€ argrlglggn; og f4,, (Xim) (15)
To define the proposed policy, we also need to introduce a
sequence of deterministic times,

Ny = {1} U{[n"] : L€ N},

for some n > 1.

Given such a sequence, we propose a control policy A*
according to which

o if n € ./\/,] or én—l = 6y, then A} is selected uniformly
at random by A, using the randomization variable U,,,

o ifn ¢ N, and én,l # 0o, A} is selected to maximize the
Kullback-Leibler divergence of the post-change versus
the pre-change distribution based on the estimate of 6
at time n — 1, i.e.,

x 0
A} € argmax [," 1.
achA

We refer to (A*,T,) as the Chernoff-CuSum procedure to
acknowledge that Chernoff [7] was the first to suggest such a
control policy for the sequential design of experiments.

Our main goal in this section is to analyze the delay of
Chernoff-CuSum procedure as v — oo. Towards this end,
we first establish an auxiliary consistency result for the MLE,
which applies to any control policy that samples uniformly at
random from the set A at the subsequence of time instances
N,. Specifically, for any 6 € © \ {6y} we bound the tail
probability of the random time

N? = inf{neN:é,,L =60 for everymZn}, (16)
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at which the MLE fixes on 6. For this bound, we recall the
definition of p in (8), and for any n > 1 we set
—logp

logn
Since p < 1, we clearly have r, €

a7

Ty =
(0, 00) for any n > 1.

Lemma 2. If A € A samples uniformly at random from A at
the subsequence of time instances N, and n > 1, then:

PY J{N?>n} < (|6]/r)n Vn > 1. (18)

Ifroof. From the definition of the MLE in (15) it is clear that
0 = 0 if S,,,(0,0) > 0 for all 6 £ 0, where

rnfl)’

. . . " f4,(X)
S, (0,0):=S" Z,.(0,0), Z.(6,0) :=1o .
(60,9) (0,0) (6,0) := g(fA( )>

Therefore,
PY J{N? > n} =P{ ,{3m >n,0+#0, st. Su(9,0) <0},
and by an application of the union bound we obtain

PO AN >0} <3 ST PY 4 {Sm(6,8) <0}

9”759 m>n

19)

Furthermore, by Markov’s inequality it follows that for every
m € N we have:

PLA(S,(0.0) <0} < €y o {-35,0.0) || 20)

By the conditional independence of Z,, (6, ) given F,,_; and
(6)-(7) we have

e, [exp {—;Zm(e,é)} ‘]—'ml]
| p(6.6) it meN _
(0,0, A%) -

otherwise
By this observation and the law of iterated expectation we

obtain:
]:mf 1‘| ]

L _
E?,A |:e_§S7n(910)1|
Repeating the same argument m — 1 times we obtain:

1 ~
E?,A [exp{—QSm(e,e)H < p\{keN:kgmH

< p(logM)/(logn) — "

l{me/\/}.

—E, [e—;sml(e,eﬁ E? [e—;zmwﬂ)

< E?,A [e—%smfl(e,é)} pHmENY

2y

Using (21), along with (19) and (20), we obtain

1
0 0
PT 4{N" >n} <0 E - Vn>1.

m=n

The result now follows by upper bounding the series in the
upper bound by the corresponding integral. O

Theorem 3. If € (1,1/\/p) and b = log(~y|©|), then for
every 6 € ©\ {0y} we have as v — oo that

S

Proof. We fix 0 € ©\ {6y}, a € A, and € > 0. By Theorem
2 it then suffices to show that (10) holds. We also fix n €
(1,1/,/p), and observe that by the definition of 7, in (17) it
follows that 1, > 2. To lighten the notation, in the rest of the
proof, we write r instead of 7.

Since the MLE fixes on 6 at time N?, defined in (16), we
have ék = 0 for every N O <k <n except for at most
logn/logn time instances after N?. Therefore,

< 511+ o(1))

- logn
1% <19y < N + ==
kz:l {14, } < +10g77

VneN.

Moreover, for n large enough we have
PY 4 {Z W14, < 1% > en}

k=1
_ logn <
logn ) —
where the second inequality follows from Lemma 2 and the

last one because r > 2 implies » — 1 > r/2. The upper bound
is clearly summable, and this completes the proof. O

|e|/r
(en)r/2

<Py 4 {N9>

Following the same steps that led to Theorem 3, we can
bound the worst-case delay when the changepoint is v. We
state this result without proof in the following theorem.

Theorem 4. If € (1,1/,/p) and b = log(~y |©|), then for
every 0 € ©\ {6y}, and fixed v € N, we have as v — oo that

ess sup EJ . [(T—v+1)T| Fq] < 10%(1 +0(1)).

However, the o(1) term in Theorem 4 depends on v and
could possibly grow without bound as v — oo. Therefore,
this theorem does not establish the first-order asymptotic op-
timality of the Chernoff-CuSum test with respect to Lorden’s
criterion (1). As we alluded to in Section I, one of the reasons
the o(1) term in Theorem 4 can grow with v is that the MLE
as defined in (15) can become heavily biased away from 6 in
the worst case due to the pre-change observations. A possible
way to fix this issue might be to modify the MLE so that it
forgets past observations whenever there is strong evidence of
being in the pre-change regime (e.g., whenever 6, = 6y or
maxyco W;?y 4 < 0). However, the analysis of the delay with
this modification appears to be considerably more challenging.
Even with the modification, the esssup in Theorem 4 may
still grow without bound as v goes to infinity, and perhaps a
different delay measure, such as the one suggested by Pollak
[31], where one averages over the observations in the pre-
change regime, may be required to establish a first-order
asymptotic optimality result.

Authorized licensed use limited to: University of lllinois. Downloadedk8 2@ust 27,2022 at 22:18:24 UTC from IEEE Xplore. Restrictions apply.



[1]
[2]

[3]

[4]

[5]

[6]
[7]
[8]

[9]

[10]

(1]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

2022 IEEE International Symposium on Information Theory (ISIT)

REFERENCES

H. V. Poor and O. Hadjiliadis, Quickest detection.
sity Press, 2009.

A. G. Tartakovsky, I. V. Nikiforov, and M. Basseville, Sequential
Analysis: Hypothesis Testing and Change-Point Detection, ser. Statistics.
CRC Press, 2014.

V. V. Veeravalli and T. Banerjee, “Quickest change detection,” in
Academic press library in signal processing: Array and statistical signal
processing. Academic Press, 2013.

L. Xie, S. Zou, Y. Xie, and V. V. Veeravalli, “Sequential (quickest)
change detection: Classical results and new directions,” IEEE Journal
on Selected Areas in Information Theory, vol. 2, no. 2, pp. 494-514,
2021.

A. Gopalan, B. Lakshminarayanan, and V. Saligrama, “Bandit quickest
changepoint detection,” Advances in Neural Information Processing
Systems, vol. 34, 2021.

V. Krishnamurthy, Partially observed Markov decision processes: From
filtering to controlled sensing. Cambridge university press, 2016.

H. Chernoff, “Sequential design of experiments,” Ann. Math. Statist.,
vol. 30, pp. 755-770, 1959.

S. A. Bessler, “Theory and applications of the sequential design of
experiments, k-actions and infinitely many experiments, Part I: Theory.”
Department of Statistics, Stanford University, Technical Report 55, 1960.
——, “Theory and applications of the sequential design of experiments,
k-actions and infinitely many experiments, Part II: Applications.” De-
partment of Statistics, Stanford University, Technical Report 56, 1960.
A. E. Albert, “The Sequential Design of Experiments for Infinitely Many
States of Nature,” The Annals of Mathematical Statistics, vol. 32, no. 3,
pp. 774 — 799, 1961.

J. Kiefer and J. Sacks, “Asymptotically Optimum Sequential Inference
and Design,” The Annals of Mathematical Statistics, vol. 34, no. 3, pp.
705 - 750, 1963.

S. P. Lalley and G. Lorden, “A Control Problem Arising in the Sequential
Design of Experiments,” The Annals of Probability, vol. 14, no. 1, pp.
136 — 172, 1986.

R. Keener, “Second Order Efficiency in the Sequential Design of
Experiments,” The Annals of Statistics, vol. 12, no. 2, pp. 510 — 532,
1984.

S. Nitinawarat, G. Atia, and V. Veeravalli, “Controlled sensing for
multihypothesis testing,” IEEE Trans. Aut. Contr, vol. 58, pp. 2451—
2464, 2013.

M. Naghshvar and T. Javidi, “Active sequential hypothesis testing,” The
Annals of Statistics, vol. 41, no. 6, pp. 2703-2738, 2013.

S. Nitinawarat and V. Veeravalli, “Controlled sensing for sequential
multihypothesis testing with controlled markovian observations and non-
uniform control cost,” Sequential Analysis, vol. 34, no. 1, pp. 1-24, Feb.
2015.

A. Deshmukh, V. V. Veeravalli, and S. Bhashyam, “Sequential controlled
sensing for composite multihypothesis testing,” Sequential Analysis, pp.
1-38, 2021.

K. Cohen and Q. Zhao, “Asymptotically optimal anomaly detection via
sequential testing,” IEEE Transactions on Signal Processing, vol. 63,
no. 11, pp. 2929-2941, 2015.

A. Gurevich, K. Cohen, and Q. Zhao, “Sequential anomaly detection
under a nonlinear system cost,” IEEE Transactions on Signal Processing,
vol. 67, no. 14, pp. 3689-3703, 2019.

B. Hemo, T. Gafni, K. Cohen, and Q. Zhao, “Searching for anomalies
over composite hypotheses,” IEEE Transactions on Signal Processing,
vol. 68, pp. 1181-1196, 2020.

N. K. Vaidhiyan and R. Sundaresan, “Learning to detect an oddball
target,” IEEE Transactions on Information Theory, vol. 64, no. 2, pp.
831-852, 2018.

A. Tsopelakos, G. Fellouris, and V. V. Veeravalli, “Sequential anomaly
detection with observation control,” in 2019 IEEE International Sympo-
sium on Information Theory (ISIT), 2019, pp. 2389-2393.

A. Tsopelakos and G. Fellouris, “Sequential anomaly detection with
observation control under a generalized error metric,” in 2020 IEEE
International Symposium on Information Theory (ISIT), 2020, pp. 1165—
1170.

——, “Sequential anomaly detection with sampling constraints,” 2022.
W. Zhang and Y. Mei, “Bandit change-point detection for real-time mon-
itoring high-dimensional data under sampling control,” arXiv preprint
arXiv:2009.11891, 2020.

Cambridge Univer-

[26]

[27]

[28]

[29]

(30]

[31]

Q. Xu, Y. Mei, and G. V. Moustakides, “Optimum multi-stream sequen-
tial change-point detection with sampling control,” IEEE Transactions
on Information Theory, vol. 67, no. 11, pp. 7627-7636, 2021.

A. Chaudhuri, G. Fellouris, and A. Tajer, “Sequential change detection
of a correlation structure under a sampling constraint,” in 202/ [EEE
International Symposium on Information Theory (ISIT), 2021, pp. 605—
610.

T. L. Lai, “Information bounds and quick detection of parameter changes
in stochastic systems,” IEEE Transactions on Information Theory,
vol. 44, no. 7, pp. 2917-2929, November 1998.

G. Lorden, “Procedures for reacting to a change in distribution,” The
Annals of Mathematical Statistics, vol. 42, no. 6, pp. 1897-1908, Dec.
1971.

P. Moulin and V. V. Veeravalli, Statistical Inference for Engineers and
Data Scientists. Cambridge, UK: Cambridge University Press, 2019.
M. Pollak, “Optimal Detection of a Change in Distribution,” The Annals
of Statistics, vol. 13, no. 1, pp. 206 — 227, 1985.

Authorized licensed use limited to: University of lllinois. Downloadedk8 ztﬁust 27,2022 at 22:18:24 UTC from IEEE Xplore. Restrictions apply.



