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We introduce an ensemble of artificial intelligence models for gravitational wave detection
that we trained in the Summit supercomputer using 32 nodes, equivalent to 192
NVIDIA V100 GPUs, within 2 h. Once fully trained, we optimized these models for
accelerated inference using NVIDIA TensorRT. We deployed our inference-optimized
Al ensemble in the ThetaGPU supercomputer at Argonne Leadership Computer Facility
to conduct distributed inference. Using the entire ThetaGPU supercomputer, consisting
of 20 nodes each of which has 8 NVIDIA A100 Tensor Core GPUs and 2 AMD Rome
CPUs, our NVIDIA TensorRT-optimized Al ensemble processed an entire month of
advanced LIGO data (including Hanford and Livingston data streams) within 50 s. Our
inference-optimized Al ensemble retains the same sensitivity of traditional Al models,
namely, it identifies all known binary black hole mergers previously identified in this
advanced LIGO dataset and reports no misclassifications, while also providing a 3X
inference speedup compared to traditional artificial intelligence models. We used time
slides to quantify the performance of our Al ensemble to process up to 5 years worth of
advanced LIGO data. In this synthetically enhanced dataset, our Al ensemble reports an
average of one misclassification for every month of searched advanced LIGO data. We
also present the receiver operating characteristic curve of our Al ensemble using this 5
year long advanced LIGO dataset. This approach provides the required tools to conduct
accelerated, Al-driven gravitational wave detection at scale.

Keywords: gravitational waves, black holes, Al, HPC, GPU-accelerated computing

1. INTRODUCTION

The international network of ground-based gravitational wave interferometers—advanced
LIGO (Abbott et al., 2016a,b), advanced Virgo (Acernese et al., 2015; Acernese et al., 2020),
and Kagra (Akutsu et al.,, 2020)—have completed three observing runs, reporting the detection
of tens of gravitational wave sources (Abbott et al., 2021b). Within the next decade, these
scientific facilities will usher in the era of precision gravitational wave astrophysics, shedding new
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light into the astrophysical properties of gravitational wave
sources, likely formation scenarios, and the nature of the
environments where they reside (Abbott et al., 2021d). We have
already witnessed the transformational power of gravitational
wave astrophysics in fundamental physics, cosmology, chemistry
and nuclear physics (Yunes et al., 2016; Abbottet al., 2017a,b;
Abbott et al., 2017c, 2021a,c; Mooley et al.,, 2018; Miller and
Yunes, 2019; Tan et al., 2020). These are only a few glimpses
of the scientific revolution that may take place within the next
decade (Couvares et al., 2021; Kalogera et al., 2021; McClelland
etal., 2021; Punturo et al., 2021; Reitze et al., 2021) if we translate
the data deluge to be delivered by gravitational wave detectors
into the required elements to enable scientific discovery at scale.

Realizing the urgent need to develop novel frameworks for
scientific discovery that adequately address challenges brought
about by the big data revolution, and acknowledging that
many disciplines are undergoing similar transformations thereby
increasing the demand on already oversubscribed computational
resources, scientists across the world are eagerly developing
the next generation of computing frameworks and signal
processing tools that will enable the realization of this research
program (Huerta et al., 2019).

Over the last few years, it has become apparent that
the convergence of artificial intelligence (AI) and innovative
computing provides the means to tackle computational grand
challenges that have been exacerbated with the advent of large
scale scientific facilities, and which will not be met by the
ongoing deployment of exascale HPC systems alone (Asch
et al., 2018; Huerta et al., 2020). As described in recent
reviews (Huerta and Zhao, 2020; Cuoco et al., 2021), Al and high
performance computing (HPC) as well as edge computing have
been showcased to enable gravitational wave detection with the
same sensitivity than template-matching algorithms, but orders
of magnitude faster and at a fraction of the computational
cost. At a glance, recent Al applications for gravitational wave
astrophysics includes classification or signal detection (Gabbard
et al., 2018; George and Huerta, 2018a,b; Dreissigacker et al.,
2019; Fan et al, 2019; Miller et al., 2019; Rebei et al., 2019;
Beheshtipour and Papa, 2020; Deighan et al., 2020; Dreissigacker
and Prix, 2020; Krastev, 2020; Li et al., 2020a; Schafer et al., 2020,
2021; Skliris et al., 2020; Wang et al., 2020; Gunny et al., 2021;
Lin and Wu, 2021; Schifer and Nitz, 2021), signal denoising and
data cleaning (Shen et al., 2019; Ormiston et al., 2020; Wei and
Huerta, 2020; Yu and Adhikari, 2021), regression or parameter
estimation (Gabbard et al., 2019; Chua and Vallisneri, 2020;
Green and Gair, 2020; Green et al.,, 2020; Dax et al., 2021a,b;
Shen et al, 2022) Khan and Huerta!, accelerated waveform
production (Chua et al,, 2019; Khan and Green, 2021), signal
forecasting (Lee et al., 2021; Khan et al., 2022), and early warning
systems for gravitational wave sources that include matter, such
as binary neutron stars or black hole-neutron star systems (Wei
and Huerta, 2021; Wei et al., 2021a; Yu et al., 2021).

! Khan, A., and Huerta, E. A. (under review). Al and extreme scale computing
to learn and infer the physics of higher order gravitational wave modes of
quasicircular, spinning, non-precessing binary black hole mergers. arXiv preprint
arXiv:2112.07669.

In this article, we build upon our recent work developing
Al frameworks for production scale gravitational wave
detection (Huerta et al., 2021; Wei et al., 2021b), and introduce
an approach that consists of optimizing AI models for accelerated
inference, levering NVIDIA TensorRT (NVIDIA, 2021). We
describe how we deployed our TensorRT Al ensemble in the
ThetaGPU supercomputer at Argonne Leadership Computing
Facility, and developed the required software to optimally
distribute inference using up to 20 nodes, which are equivalent
to 160 NVIDIA A100 Tensor Core GPUs. We quantified the
sensitivity and computational efficiency of this approach by
processing the entire month of August 2017 of advanced LIGO
data (using both Hanford and Livingstone datasets). Our analysis
indicates that with our proposed approach, we are able to process
these datasets within 50 s using 20 nodes in the ThetaGPU
supercomputer at Argonne Leadership Computing Facility. Most
importantly, we find that these optimized models retain the same
sensitivity of traditional Al models, since they are able to identify
all binary black hole mergers in this month-long dataset, while
also reporting no misclassifications, and reducing time-to-insight
by up to 3X compared to traditional Al models (Huerta et al.,
2021).

This article is organized as follows. Section Materials and
Methods describes the approach we followed to train our
Al models, optimize them for accelerated inference, and
then combined them to search for gravitational waves as an
ensemble. We also describe the advanced LIGO datasets used
for training, validation and testing. We summarize our findings
in section Results. We outline future directions of work in
section Conclusion.

2. MATERIALS AND METHODS

Here, we describe the Al architecture used for these studies, the
modeled waveforms and advanced LIGO data used to train and
test a suite of AI models. We then describe the procedure to
optimize an ensemble of AI models for accelerated Al inference,
and the approach followed to deploy this AI ensemble in the
ThetaGPU supercomputer to optimally search for gravitational
waves in advanced LIGO data at scale.

2.1. Modeled Waveforms

In this study, we consider binary black hole mergers, and
produce synthetic signals that describe them with the SEOBNRv 3
waveform model (Pan et al., 2014) that is available in the open
source PyCBC library (Nitz et al., 2021). We densely sample a
parameter space that comprises black hole binaries with mass-
ratios 1 < g < 5, individual spins s{zl)z} € [-0.8, 0.8], and
total mass M € [5Mg, 100Mg]. We used a training dataset of
over 1,136,415 waveforms, and a validation and testing datasets
of over 230k waveforms, sampled at 4096 Hz, to create a suite of
Al models in the Summit supercomputer.

2.2. Advanced LIGO Data

We used advanced LIGO data available through the Gravitational
Wave Open Science Center (Vallisneri et al., 2015). The three
data segments we consider have initial GPS times 1186725888,
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1187151872, and 1187569664, and are 4,096 s long. Each of these
segments include both Hanford and Livingstone data, and do not
include known gravitational wave signals.

2.3. Data Preparation

We used advanced LIGO data to compute power spectral density
(PSDs) estimates using open source software available at the
Gravitational Wave Open Science Center. We used these PSDs
to whiten both modeled waveforms and advanced LIGO strain
data, which are then linearly combined to simulate a wide range
of astrophysical scenarios, covering a broad range of signal-
to-noise ratios. Following best practices for the training of Al
models, we normalized the standard deviation of training data
that contain both signals and noise to one. We combined our
set of 1,136,415 modeled waveforms with advanced LIGO noise
by randomly sampling 1 s long contiguous data samples. To
be precise, since we use advanced LIGO data sampled at 4,096
Hz, this means that a 1 s long segment may be described as
a set of continuous samples covering the range [if, ..., is096]-
In the same vein, another noise realization may be given by
the samples [is20, .. .,i4506], etc. This means that in any of the
4,096 s long advanced LIGO data segment we use for training,
we could draw 4096 x 4096 — 4096 + 1 contiguous, 1 s long
noise segments. Since we consider 3 x 4096s long advanced
LIGO data segments per detector, then it follows that we have
at our disposal about 50M noise realizations per detector. Notice,
however, that each input that we feed into the net is distinct to
each other. This is because each whitened waveform has unique
astrophysical parameters, (M, g, 55, s3), and is linearly combined
with a whitened noise realization that simulates a variety of signal
to noise ratio scenarios. On the other hand, we actually find that
the number of noise realizations we use for training per detector
is given by (# of training iterations xbatch size). In our case (#
of training iterations — 2,556,933) and (batch size — 16). In
other words, we use about 40M noise realizations to produce Al
models that exhibit strong convergence and optimal performance
for gravitational wave detection.

2.4. Al Architecture

We designed a modified WaveNet (van den Oord et al., 2016)
architecture that takes in advanced LIGO strain, both from
Livingston and Hanford, sampled at 4096Hz. The two outputs
of these models (one for each advanced LIGO strain data) are
combined and then fed into a set two convolutional layers whose
output consists of a classification probability for each time step.
The AT architecture used in these studies is depicted in Figure 1.

2.5. Al Ensemble Construction

During training, the ground-truth labels are curated such that
each time step after the merger of a given modeled waveform
is classified as “noise”, whereas all the preceding time steps are
classified as “waveform”. We used the AI architecture described
above and trained a suite of tens of AI models with the
Summit supercomputer. We used the same architecture but
allowed for random initialization of weights. Each model was
trained using 32 Summit nodes, equivalent to 192 NVIDIA V100
GPUs. We then picked a sample of the best ten models and

quantified their classification accuracy. We did so by leveraging
the feature we encoded in the models to flag the transition
between “noise” and “waveform”, which corresponds to the
location of the merger of a binary black hole merger. Thereafter,
we took the output of these models and post-processed it with
the find_peaks algorithm, a SciPy’s oft-the-shelve tool, to
accurately identify the location of these mergers. Finally, we
created several combinations of these models and quantified the
optimal ensemble that maximized classification accuracy while
also reducing the number of false positives in minutes-, hours-,
weeks-, and a month-long advanced LIGO strain datasets. This
entire methodology, from data curation to model training and
testing is schematically presented in Figure 2. Having identified
an optimal Al ensemble, we optimized it for accelerated inference
using TensorRT.

2.6. Optimization With NVIDIA TensorRT
To further reduce time-to-insight with our AI ensemble,
we converted our existing AI models, which were originally
created in TensorFlow 1 to TensorRT 8 engines. The
first step in the conversion process requires us to convert our
HDF5 files containing the architecture and weights into the
TensorFlow SavedModel format. We then make use of
tf2onnx (TensorFlow-ONNX, 2021), an open-source tool for
converting SavedModels to the Open Neural Network
Exchange (ONNX) format (ONNX Community, 2021). Next,
we created a script to describe and build our TensorRT
engines and accordingly specified the following parameters: the
maximum amount of memory that can be allocated by the
engine, which was set to 32 GB (NVIDIA A100 GPUs have 40GB
of memory), allowed half-precision (FP16) computation where
possible, the input dimensions of the model including the batch
size (1024, 4096, 2), the output of the model (1024, 4096, 1), and
a flag that allows the built engine to be saved so that the engine
will not have to be reinitialized in subsequent runs. TensorRT
applies a series of optimizations to the model by running a GPU
profiler to find the best GPU kernels to use for various neural
network computations, applying graph optimization techniques
to reduce the number of nodes and edges in a model such as layer
fusion, quantization where appropriate, and more. We found that
the TensorRT ensembles allowed us to increase the batch size
from 256 to 1024 due to the compressed architecture generated
by TensorRT and found an overall average speedup of 3X when
using the entire ThetaGPU systems for accelerated gravitational
wave inference.

2.7. Inference-Optimized Al Ensemble
Deployment in ThetaGPU

We developed software to optimally process advanced LIGO
data using the ThetaGPU supercomputer. We quantified the
performance of this approach using 1, 2, 4, 8, 12, 16, and 20 nodes
to demonstrate strong scaling. Parallelization was done with
mpi4dpy built on OpenMPI 4. Each GPU, in every ThetaGPU
node, acts as one MP I process in our parallel inference script.
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step whether the input advanced LIGO data contains “noise” or a “waveform”.

| Concatenate l—l

FIGURE 1 | Al architecture. Modified waveNet model used for gravitational wave detection. Each branch processes concurrently one of the two advanced LIGO data
streams—Hanford or Livingston. The output of the two branches is then concatenated and fed into a pair of convolutional layers whose output indicates at each time

— Output

Dilated Conv

Conv 1x1

— Hanford

3. RESULTS

We present three main results: statistical analysis, noise anomaly
processing, and computational efficiency of our Al-driven search.

3.1. Event Detection

We used our inference-optimized Al ensemble to process hours-
, days-, weeks-, and a month-long advanced LIGO dataset. We
found that this AT ensemble was able to identify all binary black
hole mergers reported throughout the second observing run
that covered the month of August 2017. Figures 3, 4 show the
distinct, sharp response of each of our AI models in the ensemble
when they identify real gravitational wave signals. Notice also
that the individual models report no other noise trigger of
importance within 1 h of data of these four events GW170809,
GW170814, GW170818, and GW170823. While Figures 3, 4
show the response of our Al ensemble in the vicinity of these
events, we conducted a systematic analysis for all the noise
triggers reported by the ensemble upon processing the entire

month of August 2017. Triggers that were reported by all Al
models in the ensemble, and which were coincident within a time
window of 0.5 s were flagged as gravitational wave events. Our
analysis only reported four noise triggers of that nature, namely,
GW170809, GW170814, GW170818, and GW170823.

3.2. Noise Anomaly Processing

We quantified the performance of our Al ensemble to discard
noise anomalies. To do so, we considered three real glitches
in August 2017, namely those with GPS times 1186019327
and 1186816155. In Figure 5, we show the response of our Al
ensemble to each of these noise triggers. We notice that the
individual AI models in the ensemble do not agree on the nature
of these noise triggers, and thus we readily discard them as
events of interest. Key features that our find_peaks algorithm
utilizes to discard these events encompass the jaggedness and
inconsistent widths of these peaks. Since our Al ensemble only
identified actual gravitational wave events as relevant noise
triggers throughout August 2017, we conclude that our AI
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FIGURE 2 | Model creation. Methodology used for data curation, model training, and testing.

ensemble was capable of discarding all other glitches in this 1
month long data batch.

3.3. Statistical Analysis

We have quantified the performance of our AI classifiers by
going beyond the 1 month worth of data that we used in the
previous section for event detection and noise anomaly rejection.
To do this, we use time slides to synthetically enhance the
month long August 2017 advanced LIGO dataset. Using the
approach described in Schifer and Nitz (2021), we produced
datasets that span between 1 and 5 years of advanced LIGO
data. Our findings show that our AI ensemble reports, on
average, about 1.3 false positives per month. Specifically, we
found that the number of false positives for each time-shifted
dataset are:

1 year worth of data. 22 false positives

2 years worth of data. 35 false positives
3 years worth of data. 53 false positives
4 years worth of data. 68 false positives
5 years worth of data. 79 false positives

We have also computed the receiver operating characteristic
(ROC) of our AI ensemble, shown in Figure 6. We computed
this ROC curve using a test set of 237,663 waveforms that

cover a broad range of signal to noise ratios. To compute the
ROC curve, we used an automated post-processing script that
takes in the output of our AI ensemble, and then uses the
find_peaks algorithm to identity peaks whose width is at least
0.5 slong. As shown in Figure 6, our Al ensemble attains optimal
true positive rate as we increase the detection threshold, or
height in our £ind_peaks algorithms, between 0 and 0.9998.
This plot indicates that our AI ensemble reports, on average,
one misclassification per month of searched data. It is worth
comparing this figure to other recent studies in the literature. For
instance, in Wei et al. (2021b), it was reported that an ensemble
of 2 AT models reported 1 misclassification for every 2.7 days
of searched data, and more basic Al architectures reported one
misclassification for every 200 s of searched advanced LIGO
data (George and Huerta, 2018a,b). For completeness, it is worth
mentioning that the results we present in Figure 6 differ from
those we computed with traditional TensorFlow models in less
than 0.01% (Huerta et al., 2021).

It remains to be seen whether adding real glitches to the
training stage further improves the detection capabilities of our
Al ensemble. We will explore the use of real glitches, e.g., using
the catalog curated by the Gravity Spy project (Zevin et al,
2017), to further improve the resilience of our AI models to
noise anomalies through adversarial training. Having developed
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FIGURE 3 | Event detection. Output of the 4 individual Al models in our
ensemble upon processing 1 h long advanced LIGO data that contains the
events GW170809 (top) and GW170814 (bottom). The insets in both panels
show the distinct, sharp response that is common among all Al models when
they identify a real signal.

the required framework to time-shift data, in future work we
will use a revised version of this AI ensemble to search for
gravitational waves over entire observing run datasets. Specific
future directions of work involve the production of software and
computing methods to post-process the output data of our Al
ensemble. At present, our Al ensemble produces about 500GB
of output data for every month of searched data. Thus, for the
5 year time-shifted advanced LIGO dataset we considered in
this article, we post-processed (5*12*500GB— 30TB) of output
data by parallelizing the computing over 1216 AMD EPYC
7742 cores. Thus, while we can now use this method to search
for gravitational waves in advanced LIGO data that encompass
entire observing run datasets, we will introduce in future work
new methods to quantify on the fly the sensitivity of our AI
ensemble using hundreds of years worth of time-shifted advanced
LIGO data.

3.4. Computational Efficiency
We trained the models in our AI ensemble using distributed
training in the Summit supercomputer. Each model was trained
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FIGURE 4 | Event detection. As Figure 3, but now for GW170818 (top) and
GW170823 (bottom).

using 192 NVIDIA V100 GPUs within 2 h. Thereafter, we
distributed the inference using 160 NVIDIA A100 Tensor Core
GPUs. Figure 7 presents scaling results as we distributed Al
inference in the ThetaGPU supercomputer using both traditional
Al models, labeled as TensorFlow, and inference-optimized
AT models, labeled as TensorRT. These results show that our
TensorRT Al ensemble provides a 3X speedup over traditional
Al models (Huerta et al., 2021). These results also indicate
that the environment setup we used in ThetaGPU optimally
handled I/O and data distribution across nodes. It is worth
mentioning that these results were reproduced using TensorRT
Al ensembles in Singularity containers, and by running our
TensorRT Al ensemble natively on ThetaGPU using a suitable
Conda environment (Anaconda, 2021). Furthermore, we found
that our TensorRT Al ensemble provides additional speedups
when we consider larger volume datasets. We will explore the
application of this approach for significantly larger datasets in
the near future, and will make available these TensorRT Al
models through the Data and Learning Hub for Science (Chard
et al, 2019; Li et al, 2020b) so that the broader gravitational
wave community may harness/extend/improve these Al tools for
accelerated gravitational wave data analysis.
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FIGURE 5 | Noise anomalies response of our Al ensemble to real glitches
located at GPS times 1186019327 (top) and 1186816155 (bottom).

This study provides an exemplar that combines HPC systems
of different scale to conduct accelerated AI-driven discovery,
as shown in Figure8. We showcase how to optimally use
hundreds of GPUs to reduce time-to-insight for training
(Summit) and inference (ThetaGPU). It is worth mentioning
that we deliberately followed this approach, i.e., using two
different machines for training and inference, to quantify the
reproducibility and interoperability of our Al ensemble. Another
important consideration is that we optimized our Al ensemble
with NVIDIA TensorRT using an NVIDIA DGX A100 box
at the National Center for Supercomputing Applications. Using
this same resource, we containerized our TensorRT Al
ensemble using both Docker and Singularity. In brief, our
methodology ensures that our AI-driven analysis is reproducible,
interoperable and scalable across disparate HPC platforms.

4. CONCLUSION

The first generation of Al models for gravitational wave
detection exhibited great promise to accelerate gravitational wave
discovery (George and Huerta, 2018a,b), and increase the science
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FIGURE 6 | Receiver operating characteristic curve of TensorRT Al
ensemble. The output of our inference-optimized Al ensemble is used to
estimate the true positive rate with a test set of 237,663 modeled waveforms
whitened with advanced LIGO data, and which cover a broad range of
signal-to-noise ratios. The false positive rate is computed using a 5 year long
time-shifted advanced LIGO dataset. The gray dashed rectangle in the left of
this panel is shown in detail in the top right inset.
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FIGURE 7 | Scaling of accelerated inference in ThetaGPU. TensorRT Al
ensembles accelerate gravitational wave detection by 3 fold when compared to
traditional Al ensembles (labeled as TensorFlow). TensorRT Al ensembles
process an entire month of advanced LIGO data, including both Hanford and
Livingstone strain data, within 50 s when Al inference is distributed over 160
NVIDIA A100 Tensor Core GPUs in the ThetaGPU supercomputer.

reach of gravitational wave astrophysics. Those models provided
a glimpse of what may be accomplished if we were able to tap on
the computational efficiency and scalability of AL That vision is
gradually coming to fruition by remarkable advances by multiple
teams across the world (Huerta et al., 2019; Huerta and Zhao,
2020; Cuoco et al., 2021).

In this article we have described how to combine AI and
HPC to accelerate the training of Al models, optimize them
for inference, and then maximize their science throughput by
distributing inference over tens of GPUs. This line of work
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FIGURE 8 | Convergence of Al and HPC. Schematic representation of our methodology to harness disparate HPC platforms and data science tools to create optimal

has been explored in the context of Al-inference optimized
applications for early warning systems. For instance, PyTorch
models for AI forecasting of binary neutron star and black
hole-neutron star systems were quantized to reduce their size
by 4X and accelerate their speed 2.5X for rapid inference at
the edge (Wei et al., 2021a). Furthermore, the combination
of TensorRT AI models for data cleaning, and AI models
for black hole detection under the umbrella of a generic
inference as a service model that leverages HPC, private or
dedicating computing was introduced in Gunny et al. (2021).
On the other hand, this work is the first in the literature
to combine TensorRT Al models for accelerated signal
detection with HPC at scale to process 1 month of advanced
LIGO strain data from Hanford and Livingston within 50
s using an ensemble of 4 TensorRT AI models. We have
not compromised the classification accuracy of our models,
and have found that they can identify all four binary black
hole mergers previously reported in this data batch, namely,
GW170809, GW170814, GW170818, and GW170823, with no
misclassifications. When using a time-shifted advanced LIGO
dataset that spans 5 years worth of data, we found that our AI
ensemble reports 1 misclassification per month of searched data.
This should be contrasted with the first generation of AI models
that reported 1 misclassification for every 200 s of searched
data (George and Huerta, 2018a,b), and the other Al ensembles
that reported 1 misclassifications for every 2.7 days of searched
data (Wei et al., 2021b).

We are at a tipping point in gravitational wave astrophysics.
The number of sources to be detected in the near future will
overwhelm available and future computational resources
if we continue to use poorly scalable and compute-
intensive algorithms. We hope that the AI models we

introduce in this paper are harnessed, tested, and further
developed by the worldwide community of AI developers
in gravitational wave astrophysics. Such an approach
will provide the means to transform the upcoming
deluge of gravitational wave observations into discovery
at scale.
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