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An Adversarial Learning Based Approach for 2D
Unknown View Tomography

Mona Zehni, Zhizhen Zhao

Abstract—The goal of 2D tomography is to recover an image
given its projections from various views. It is often presumed
that viewing angles associated with the projections are known
in advance. Under certain situations, however, these angles
are known only approximately or are completely unknown. It
becomes more challenging to reconstruct the image from a col-
lection of random projections with unknown viewing directions.
We propose an adversarial learning based approach to recover
the image and the viewing angle distribution by matching the
empirical distribution of the measurements with the generated
data. Fitting the distributions is achieved through solving a min-
max game between a generator and a critic based on Wasserstein
generative adversarial network structure. To accommodate the
update of the viewing angle distribution through gradient back
propagation, we approximate the loss using the Gumbel-Softmax
reparameterization of samples from discrete distributions. Our
theoretical analysis verifies the unique recovery of the image and
the projection distribution up to a rotation and reflection upon
convergence. Our extensive numerical experiments showcase the
potential of our method to accurately recover the image and the
viewing angle distribution under noise contamination.

Index Terms—2D unknown view tomography, generative ad-
versarial learning, Hartley-Bessel expansion, Gumbel-softmax,
categorical distribution

I. INTRODUCTION

Multitude of imaging modalities rely on reconstructing an
unknown signal either in 2D or 3D domain given a set of
partial measurements. Examples of such are medical imaging
and cryo-electron microscopy (cryo-EM) for imaging macro-
molecules, to name a few. More specifically, in a tomography
setup, the measurements i.e. projections, are the line or plane
integrals of the underlying object along various angles. In
imaging applications such as computed tomography (CT), the
viewing angles are known a-priori through the acquisition
process. However, this does not hold when reconstructing
macromolecular structures in cryo-EM [1]. Thus, it is im-
portant to develop solutions for tomography with unknown
projection directions. In this paper, we focus on 2D unknown
view tomography (UVT) with the goal of jointly recovering the
unknown 2D image and the viewing angle distribution given
a large set of noisy projections.

Tomographic inversion with known viewing angles is typi-
cally a linear inverse problem and is solved by filtered back-
projection (FBP), direct Fourier methods [2], or solving a regu-
larized optimization problem [3]-[6]. Moreover, deep learning
solutions, training on rich datasets, exist that either learn the
reconstruction from sinogram to image [7]-[!1], denoise the
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FBP reconstructed images from a low-dose sinogram [12]—
[17] in a supervised manner or provide a prior i.e. regularizer,
over the space of target images [18], [19].

However, the knowledge of the viewing angles is not always
available or accurate. To avoid adverse effects on the quality
of the reconstructed image, it is important to account for
uncertainties in the viewing angles. Previous methods devoted
to 2D UVT estimate the viewing angles either prior to [20]-
[25] or jointly with the image reconstruction [26]. In addition,
in limited settings, [27]-[30] bypass the estimation of the
projection views via the use of invariant features.

In this paper, we present an unsupervised adversarial learn-
ing based approach for 2D tomography with unknown random
viewing angles, namely UVTomo-GAN. Our approach does not
require large paired training sets and reconstructs an image
given merely its unordered tomographic measurements. By
employing generative adversarial networks (GAN) [31], our
approach recovers the image and viewing angle distribution
through matching the distributions of the generated projections
with the measurements. Our proposed method is inspired by
CryoGAN [32] in which a 3D cryo-EM map is reconstructed
given a large set of noisy projection images with unknown
orientations by employing Wasserstein-GAN [33]. The main
assumption in CryoGAN is that the distribution of the orienta-
tions of the particles is known beforehand. However, in cryo-
EM experiments, the distribution of the orientations is hard
to obtain a-priori. Therefore, under the 2D UVT set-up, we
remove the assumption that the viewing angle distribution is
given and develop a new approach to recover both the viewing
angle distribution and the 2D image simultaneously.

To recover the viewing angle distribution in a GAN frame-
work, the original generator’s loss involves sampling from
the viewing angle distribution which is non-differentiable. To
enable the flow of gradients in the backward pass through
this non-differentiable operator, we modify the loss function
at the generator side using Gumbel-Softmax approximation
of samples from a categorical distribution [34]. Our proposed
idea is general and applicable to a vast range of similar inverse
problems which involve latent variables with unknown proba-
bility distributions such as multi-segment reconstruction [35].

This manuscript is an extension of our previous work [36].
In this paper, we use the truncated Hartley-Bessel expansion of
the image in the Hartley domain in our reconstruction pipeline.
This truncated expansion regularizes the images and allows
for the direct use of central slice theorem (CST) to generate
the projections efficiently. As noted in [24], 2D tomography
from noisy projections taken at unknown random directions
with non-uniform distribution is more challenging than its
3D analogue, since we cannot directly use the geometric
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constraints given by CST in 3D. Our theoretical analysis and
numerical results affirm the ability of our method in recovering
the image and projection distribution accurately from both
clean and noisy measurements.

The organization of this paper is as follows. Section II
summarizes related work to UVT. We introduce the projection
formation model and the reconstruction method in sections III
and IV. The analysis and experimental results are described
in V and VI. The discussions and future directions are pre-
sented in VII. We conclude the paper in VIIIL.

II. RELATED WORK

In this section, we review related literature on 2D UVT and
unsupervised solutions for 3D UVT task.
2D UVT: One family of 2D UVT solutions determine the
viewing angles first [20]-[25] and reconstruct the image given
the estimated views subsequently. Other approaches include
iterative methods that solve for the 2D image and the view-
ing angles in alternating steps [26]. While proven effective,
these methods are computationally expensive and sensitive
to initialization. In another class of methods, to circumvent
the estimation and refinement of the viewing angles, a set
of rotation invariant features are estimated from the noisy
projections. These features are later on used to reconstruct
the unknown image [27]-[30]. Note that these methods re-
quire only one pass through the projection dataset and are
therefore computationally more efficient. However, they are
mainly used, when the underlying object is sparse [27], [28],
projections in the form of tilt series are available [30] or to
recover a low-resolution ab-initio model [29].
Adversarial Learning for 3D UVT: Gupta et al in
CryoGAN [32] proposed an unsupervised learning approach
through a distribution matching lens for cryo-EM single par-
ticle reconstruction. In CryoGAN, the goal is to estimate
the underlying 3D density such that the distribution of the
observed projection image dataset and the one generated from
the estimated volume match. Due to its distribution matching
criterion, CryoGAN bypasses the estimation of individual
projection parameters. In CryoGAN, the distribution distance
is chosen as Wasserstein-1 (W), i.e. Earth Mover’s distance.
Thus, the reconstruction problem is stated as:

vt = argmin Wl (P)sim (’U; plalent)a R’eal) (1)

v
where P, is the distribution of the observed (i.e. real) pro-
jection image dataset. Also, Pym(; Pratent) 18 the distribution
of the simulated projection image dataset generated from the
volume v following an a-priori known distribution for the
latent variables piaent. In a cryo-EM setup, each projection
image is obtained from the volume following a forward model.
This forward model is parameterized by the projection view,
in-plane translation and the contrast transfer function (CTF)
parameters corresponding to the projection image. Given a
projection image dataset, the collection of these parameters
(projection view, in-plane translation and CTF parameters), is
considered a random latent variable with piyen probability
distribution, which in CryoGAN is assumed to be known.
Thus, to sample from Py, given v and piaent, One samples
latent variables based on piaene and then adopt the projection
forward model to generate random simulated projections of v.

As computing W; between two high-dimensional distribu-
tions is highly intractable, W; minimization is often done in
its dual form, following Kantrovich-Rubinstein duality [33]:

v*=argmin max (E,. —E.up (v T
gq) f”fHLSl( Y~ Preal [f(y)] Ps:m( ,pla(em) [f( )])
(2)

where f represents a 1-Lipschitz function, mapping its input
(i.e. a projection image) to a single real-valued score.

Due to the close link between (2) and Wasserstein-GAN
(WGAN) frameworks [33], CryoGAN specifically proposes
the use of WGAN with gradient-penality (GP) (WGAN-
GP) [37] to solve (2). In a WGAN-GP setup, the mapping f is
modeled via a neural network named critic and its 1-Lipschitz
continuity constraint is enforced via the GP term.

In this paper, we extend the CryoGAN framework for the
2D UVT problem defined in section III. In a 2D UVT setting,
the projection views form the underlying latent variable.
Unlike CryoGAN, we assume the latent variable probability
distribution (Paens in CryoGAN context) is unknown and we
develop a novel approach to handle its joint recovery with
the image. In addition, we compare our method against the
baselines formed by the adaptations of CryoGAN for 2D UVT
in section VI.

III. PROJECTION FORMATION MODEL AND PROBLEM
FORMULATION

We define the 1D projection formation model as,

Co="Po, I +eo, L€ {1,2,...,L} 3)
where I : B, — Ry is an unknown 2D compactly supported
image in the unit ball B, we wish to estimate. We restrict [
to the space of absolute and square integrable functions on
Bo, ie. I € L1(B2) N L2(B2). Py denotes the tomographic
projection operator that takes the line integral along the paral-
lel beams whose normal direction makes an angle 6 € [0, 27)

with the z-axis,
oo

o)) = [ 1(Rox)dy @
— o0
where x = [z, |7 represents the 2D Cartesian coordinates. Ry
is a 2 x 2 rotation matrix associated with 6. As I is compactly
supported in B, its projection along any direction would also
be compactly supported in the unit ball, i.e. Pol € £1(B1) N
L2(B1). We assume the viewing angles {,}}_, are unknown
and randomly drawn from an unknown distribution p. Finally,
the discretized projection lines of length m are corrupted by
additive white Gaussian noise €; with zero mean and variance
2. Here we consider o to be known, although an unbiased
estimator of ¢ is attainable from the variance of the boundary
pixels of the projections that only contain noise [24].
In this paper, given a large set of noisy projections, i.e.
{¢}E_ |, we aim to recover the image I and the unknown
distribution of the viewing angles p.

IV. METHOD
A. Image Representation

To alleviate the computational cost of generating projections
in practice, (3) is evaluated in Fourier domain using non-
uniform fast Fourier transform [38] according to central slice
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theorem (CST). CST states that the Fourier transform of the
projection corresponds to the central slice in the 2D Fourier
domain,

F(Pol)(§) = F(I)(&,0). 5)

with F denoting the Fourier transform and (&, 6) the polar co-
ordinates. This motivates us to directly adopt CST to generate
the projections. Therefore, in our pipeline we seek to recover
the image in Fourier domain rather than pixel domain.

We use the Hartley transform of the images, which is a real
representation closely related to Fourier transform and defined
as:

H(I) =real{F(I)} — imag{F(I)}, (6)
where H denotes the Hartley transform. We assume the image
I has essential bandlimit 0 < s < % and is concentrated
in the spatial domain with radius R < % Therefore, H(I)
can be expanded on an orthonormal basis on a disk of
radius s. We choose real-valued steerable Hartley-Bessel (HB)
expansion as a continuous representation which implicitly
regularizes the image I and enables the use of CST for
generating the projections. Based on the Fourier-Bessel basis
introduced in [39], [40], we construct the real-valued HB basis

uk4(¢,0) = JF4(€)cas(kO) with radial functions
3 <
oty = [ Noale (Ruuf) . €5 )
07 g > 8,

where Jj, is the Bessel function of the first kind and integer
order k, Ry, denotes the g-th root of Ji, and N, =
(/7|41 (Ry.q)|)~t is the normalization factor. The angular
part of the HB basis is cas(kf) = cos(kf) + sin(kf). We can
expand H(I) on the HB basis,

DD g (©)

k=—o00 q=1

Note that, ¢ and k correspond to radial and angular frequen-
cies. We can truncate the expansion in (8) for functions that are
well concentrated in real and Fourier space using a sampling
criterion Ry, < 2mwsR [39], [4]1]. The maximum angular
frequency index is denoted by Kp,x and the maximum radial
frequency for k-th angular frequency is denoted by pj. The
expansion coefficients ¢ = {c 4 | V(k,q) s.t. |k| < Kpmax, 1 <
q < pi} are the unknown parameters of [ we aim to recover.
For an image with s < 0.5 or R < %, ¢ has less number
of terms than the number of pixels I, 1 e. the cardinality of
¢ < m?. Thus, ¢ would constitute a compressed representation
of the image.

Given the image expanded on HB basis, following CST, the
Hartley transform of the projection from angle 6, is simply
obtained by setting 0= 95 in (8) and is written as:

Z ch o9 (€)cas(kOy) = Hp, ()c. (9)
k=—Kmxq=1
Therefore, we rewrite (3) in Hartley domain as:

C¢=Hp,c+&p,0p~p, (e{l,2,.. L}, (10)
with ¢ = H(¢) and & = #(e). The Hartley transform is unitary
due to its self-adjoint and self-inverse properties. Therefore,
the distribution of the Gaussian additive noise is preserved
after taking the Hartley transform, i.e. £, ~ N(0,,,0%1,,)

cas(k0). (8)

H(Po Y&

= \L
{Gealt o1
H 1

A

Tt}lllographic projection

Csyn = Hpc+¢€
O~p

Eln] ~ N(0,0%)

T Gradients of loss with respect to ¢ and p

V)
{Great} i1

Fig. 1: An illustration of our pipeline for adversarial learning based
2D UVT. Given the projections {¢,}F_, (green dashed box), we
recover the truncated Hartley-Bessel expansion coefficients ¢ of the
image and viewing angle distribution p (blue dashed box).

where 0,, is a vector of zeros of length m and I, is an
m X m identity matrix.

From the HB expansion coefficient ¢, we can reconstruct
the image in the spatial domain,

Kmlx
Ire)= > ch H(up?) (rp) (1)
k—_ max 4= 1

where
2v/21s(—1) DRy, ,Ji (27sr) T
k,q _ 54 k n
H(us )<T7(p) (QWST)Z—R%ﬂ OS( (P+ 4)a
(12)

and | = k—;rl for odd k£ and [ = g for even k. Since we
have the analytical form of the basis function, we can easily
evaluate the function values on Cartesian coordinates [z, y]

with x = rcos ¢ and y = rsin ¢.

B. Adversarial Learning for 2D UVT

Similar to CryoGAN, our reconstruction criterion is match-
ing the distribution of the real projection dataset and the
projections generated by ¢ and p following (10). As GANs
have proven suitable for matching a target distribution, we
employ an adversarial learning framework presented in Fig. 1.

Our adversarial learning approach consists of a critic Dy and
a generator G. Unlike classic GAN models with generators
parameterized by neural networks with learnable weights,
we specify the generator G by the known projection model
defined in (10), the parameters of the image and viewing
angle distribution, i.e. ¢ and p. The generator’s goal is to
output Erojections that are close to the real projection dataset
{Créeal}iﬂ
model, the unknowns we seek to estimate at the generator side
are ¢ and p. On the other hand, the critic Dy, parameterized
by ¢, tries to distinguish between the observations and the
generated projections. Our pipeline is depicted in Fig. 1.

We use WGAN [33] loss and express the loss function in
terms of ¢, p and ¢ and state the min-max problem as,

in distribution and hence fool the critic. For our

‘C C N ZD¢ Creal D¢(Csyn) (13)
b=1
¢,p = argmin mgx L(e,p, d), (14)
c.p
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Algorithm 1 UVTomo-GAN

Require: o, o, o, learning rates for ¢, ¢ and p. ngis: the
number of updates of the critic per generator update.

Input: {Ceal}
tion p is 1n1t1al1éed with Unif(0, 27).
Output: Estimates of I and p.

. Random initialization of ¢. The distribu-

1: while ¢ has not converged do
2: for t =0,...,ngisc — 1 do

~ B
3: Sample a batch from real data, {(f;al}

4: Sample a batch of siénulated projections using
¢t } following (10).

estimated ¢ and p, i.e. { wn

5: Update the critic following gradient ascent steps
using the gradient of (13) with respect to ¢.

6: end for

7. Sample a batch of {r;,}2 | using (19).

8: Update c and p using stochastic gradient descent steps

by taking the gradients of (20) with respect to ¢ and p.
9: end while

where £ denotes the loss, B and b represent the batch size
and the index of a sample in the mini-batch, respectively.
Also, Creal and qun mark the real and synthesized projections in
Hartley domain. (g, is generated from the estimated image ¢
and projection distribution p following Esyn = Hyc+¢, 0 ~ p.
In our experiments, we used spectral normalization (SN) [42]
to regularize the critic and found that SN is sufficient for stabi-
lizing the training. Following common practice, we solve (14)
by alternating updates between ¢ and the generator’s variables,
i.e. ¢ and p, based on the associated gradients.

The loss at the generator side for a fixed Dy is,
B

ZD¢ H9b6+€b) 0, ~ .
b=1
While (15) is differentiable with respect to ¢, its gradient of p

is not defined, as it involves sampling 6} from the distribution
p. This hinders updating p through gradient back-propagation.
To address this, we aim to design an alternative approximation
of (15) which is differentiable with respect to p.

La(e,p) (15)

To accommodate this approximation, we first discretize the
support of the viewing angles, i.e. [0, 27) into Ny equal-sized
bins. This makes p a probability mass function (PMF) of
length Ny with the following properties:

Np—1

Z pi = 1,and p; > 0,Vi € {0, ...,

i=0
Now p corresponds to a discrete or categorical distribution
over 6, which implies the sampled viewing angles from p can
only belong to Ny discrete categories. Therefore, we re-write

the loss function (15) as:

B Ng—1

Z Z 0(0: —0y)Dy(Hp,c+¢p), Oy ~p. (17)
b=1 t=0

A closer look at (17) reveals that §(6; — 0;), 0, ~ p is a
sample from the discrete distribution p. This enables us to
incorporate the notion of Gumbel-Softmax distribution and

Ny —1}. (16)

LG(Cvp) =

4
approximate (15) as:
B Ng—1
A=Y ris(p)De(Hpc+5), (18
b=1 i=0
ex i +log(pi)/T
sz(p) NH 1p ((gb g(p ))/ ) 7gb,iNGumbel(O,1>7
> exp (g1, Hos(2:))/7)
j=

(19)
where 7 is the softmax temperature factor. As 7 — 0,
7,5(p) — one-hot (argmax;[g ; +1og(p;)]). Moreover, to ob-
tain samples from the Gumbel(0, 1) distribution, it suffices to
draw u ~ Unif(0, 1), g=—log(— log(u)) [34]. Note that due
to the reparametrization trick applied in (18), the approximated
generator’s loss has a tangible gradient with respect to p.
We also add prior knowledge on the image and projection
distribution in the form of regularization terms. Hence, the
regularized loss function we optimize at the generator side is:

L(c,p)=La(c,p)+rgrv(c) +r2lell*+4sTV (p) +74lpl?,

(20
where we include total variation (TV) and /- regularization
terms for the image, with v; and 7. weights. To construct
the TV of the image in terms of ¢, we use (11) to render [
on a Cartesian grid in spatial domain and then compute total
variation of . Furthermore, we assume that the unknown PMF
is a piece-wise smooth function of viewing angles (which is a
valid assumption especially in single particle analysis in cryo-
EM [43]), therefore adding TV and /5 regularization terms for
the PMF with ~3 and 4 weights. We present the pseudo-code
for UVTomo-GAN in Alg. I.

C. Maximum Marginalized Likelihood Estimation via
Expectation-Maximization

As a baseline for UVTomo-GAN, we consider maximum
marginalized likelihood estimation (MMLE). We solve MMLE
in Fourier domain via expectation-maximization (EM) and
represent F(I) with its expansion coefficients a on Fourier-
Bessel bases. Thus, MMLE is formulated as

No—1
F(Ge)la, 0:)p ) (2D

a,p= rgmaleog( Z P(F
To solve (21), we take the gradlents with respect to a and p

and set them to zero. For p, we further impose Zf\fofl pi = 1.
This yields the following alternating updates for a and p, in

the form of:
( ||f(<i>—Heja“|2)
exXp = E—
, (22)

No—1 ) t—1(2
t—1 |7 (i) —Ho a1 ||
>, Py exp (——205 )

(E-step) : 7 ; =

7=0
Atat — bt,
L t
(M'Step) t i=1 " (23)
pJ: I3 9—1 )
where
Ne
AL((k,q), (K, q) =Pk — k)Y JEUETET(€) (24
£=1
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~ N1 . 2rkj
ph(k) = Y plexp <—Z N ) (25)
=0 o
Ne No1 27kyj L
=3 Y- e~ 7)Y )
£=1 j=0 i=1

(26)
where r; ; denotes the probability that the i—th projection
is associated with 6; angle and ¢ is the iteration index.
Also, Hya generates the projection at 6 direction in Fourier
domain given FB expansion coefficients a. In (23), A’ is
indexed by (k,q) and (K',q’) pairs and the discretization
in ¢ is identical to the projection dataset. The advantages
of using truncated FB expansion is that: (1) similar to HB
representation, it provides an implicit regularization on the
image, and (2) building matrix A? in (22) in each iteration
only requires rescaling the entries of a pre-computed matrix

Ne ., ~
J((k,q), (K, q')) = 521 JEUETET(E) by p(k — k).

In (22)-(23), we update the probabilistic angular assign-
ments for the projections in the E-step while updating a and p
in the M-step. Note that, in the absence of noise, i.e. ¢ = 0, the
E-step reduces to template matching [44]. To solve a’ from the
equation A*a? = b, we use preconditioned conjugate gradient
descent [45].

D. Computational Complexity

We conclude this section by comparing the computational
complexity per iteration of UVTomo-GAN and EM.
UVTomo-GAN Complexity: Based on Alg. 1, we split the
computational cost of UVTomo-GAN between: 1) the critic
and 2) the generator (i.e. ¢ and p) updates. Let Cp denote a
fixed computational cost related to forward and backpropaga-
tion passes through the critic Dy. As expected, Cp depends on
the batch size, network architecture and the size of its input.
Thus, the larger the critic network, the higher the C'p. For
our critic architecture, we use a cascade of N < m fully
connected (FC) layers with intermediate ReLU non-linearities.
Therefore, C'p points to the cost of matrix multiplications
and backward passes through these N layers. Furthermore,
we keep the input and output sizes of these FC layers to
be O(m) (m is the image/projection size). Therefore, Cp =
O(m?N) = O(m?). As these operations can be parallelized
on GPU, forward and backward passes through D, are time-
efficient. For batch size B = O(m), the cost of critic update
is O(BCp) = O(m?).

For updating the generator according to (18), first we
generate Ny = O(m) projections or templates. This is done
in O(m?). A thorough discussion on the derivation of this
computational complexity term is deferred to Appendix IX-A.

In our implementation of (18), instead of using B different
noise realizations {,}2_, for each of the clean templates,
we consider Ny noisy templates in total. This means the loss
function we use at the generator side is:

B N
La(e,p) =~ — Z Z Ti,6(p)Dy(Hp,c + &;).

b=1 i=1
Indeed in the absence of noise, (27) matches (18). However, in
the noisy case, the benefits of (27) are two-fold: 1) having the

27

same performance as (18) empirically, 2) reducing the number
of passes through the critic.

Consequently, adding up the cost of passing Ny projection
templates through Dy leads to a total computational cost of
O(m3 +mCp) per generator update step. We update ¢ and p
every ngsc iterations. Therefore, the average cost of UVTomo-

GAN per iteration including the generator and critic’s updates
is O( (ndi\c—1)7713+(m,3+mCD)) _ O(mg)

MNdisc

EM Complexity: For EM, we specify the computational
cost of E-step and M-step. At each E-step, we generate
Ny projection templates. If these templates are generated
following CST and using the non-uniform Fourier transform of
the image, they require O(m?logm) computations. Next, we
update the angular assignments of L projections by comparing
them against O(m) templates, hence a cost of O(m?L). Then,
the total cost of E-step is O(m?logm + m2L) = O(m?L).
For the M-step, computing b’ from the projections costs
O(m2L) (or O(mlogmlL) if using FFT) while updating FB
coefficients a in (23) using conjugate gradient descent has
O(y/kw) computational cost [45] where w is the number of
non-zeros of A’ and k is its condition number. Note that
w = O(nm?) depends on the number of non-zero elements in
pt, i.e. n. If all entries in p* are non-zero (n = O(m)), then the
M-step’s computational cost is O(y/km*). Finally, the overall
computational complexity for EM is O(y/knm3 + m?2L).

In terms of convergence, we empirically observe that
UVTomo-GAN requires more training iterations. We attribute
this to the difference between the convergences of stochastic
gradient descent used in UVTomo-GAN versus full batch
processing in EM. On the other hand, we show that while
UVTomo-GAN is robust to the choice of initialization, EM
is likely to get stuck in a bad locally optimal solution with
random initialization. This observation is also reported in cryo-
EM settings in [43], [46].

V. ANALYSIS

In this section, we first define our notations and then for-
mally state the reconstruction guarantees of UVTomo-GAN.

A. Notations

We assume the image f € £1(B3)NL2(B2) has a bandlimit
0 < s < 0.5 and compactly supported in the unit ball B,. In
addition, f € span{uj  }ao, @ = {(k,q)[[k] < Kpax,1 <
q < pr} with ub? = Jka(¢)cas(kf). Thus, the Hartley
transform of f is expanded on a HB basis set. A measurement
¢ associated with the projection angle 0 ~ pis ( = Pof + ¢
with e[n] ~ g, denoting additive IID noise. We assume ¢. has
full support in Fourier domain, i.e. {Fq.}(w) # 0, Vw.

Let O(2) denote the group of all possible rotations and
reflections, i.e. T7T = I and det(T") = 41, VI' € O(2). The
action of the O(2) group on f is defined as,

(Tf)(x) = f(I"'x), VI € O(2) (28)
where x = [z,y] denotes the Cartesian coordinate. On the
other hand, the action of I" on a probability distribution p de-
fined over [0, 27r) manifests as a combination of flip or circular
shift. The group O(2) partitions the space of span{u;, ,}q into
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Fig. 2: Samples of clean (blue) and noisy (red) projections in spatial
(first row) and Hartely (second row) domain. For noisy data SNR =3.

Fig. 3: Examples of the initialization images used in EM.

a set of equivalence classes where [f] = {I'f, VI' € O(2)}.
Let P{*" and ansy denote the probability distributions in-
duced by clean and noisy projections, i.e. (cean = Pof and
Cnoisy = Po f + € with 6 ~ p, respectively.

B. Theoretical Results

Here we elaborate upon the theoretical reconstruction guar-
antees of our proposed method.
Theorem 1: Consider f,g € L1(B3) N L3(B2) and the
associated bounded probability distributions py and p, on the
viewing angles distributed in [0, 27). Then,

PEgt = Pyt = [f] = [g], [ps] = [pg).

Furthermore, if f =T'g, I' € O(2), then p; = I'pg.
The proof is provided in Appendix IX-B. Intuitively, Theorem
1 states that if f and g have the same induced clean projec-
tion distribution, then the underlying objects and projection
distributions are equivalent up to a rotation and reflection. We
link the proof of this theorem to unique angular recovery in
unknown view tomography [20], [21].
Theorem 2: Assume f € L1(Bs) N L2(By) denoting the
ground truth (GT) image and p representing the bounded GT
probability distribution over the viewing angles 6 € [0, 27).
Let f and p stand for the recovered image and the bounded
probability distribution after the convergence of UVTomo-
GAN. Consider the asymptotic case as L — oco. Then,

P = PN & FoTf, p=Tp,
for a unique T € O(2).

The proof is available in Appendix IX-C. This theorem val-
idates that upon the convergence of UVTomo-GAN in the
presence of noise and infinite number of noisy projections,
the GT image and viewing angle distribution is recovered up
to a rotation-reflection transformation. We defer the study of
sample complexity of UVTomo-GAN with finite size projec-
tion dataset to future work.

(29)

(30)

VI. NUMERICAL RESULTS

A. Experiment Setup

Datasets: To evaluate the generalization of our method to
images of different properties, we conduct experiments on

four different images (for additional results, refer to Ap-
pendix IX-F). Two are biomedical images of lung and ab-
domen from low dose CT (LDCT) dataset [47]. We defined the
third image as a set of randomly located and shaped ellipses
with various intensities. For the last image, we generated the
3D map of 100S Ribosome [48] using its protein sequence in
Chimera [49] and took a 2D projection of the generated map
along a random view. All images are resized to 101 x 101
dimension. We refer to these images as Lung, Abdomen,
Ellipses and a 2D projection image of 100S Ribosome (Rib-
Proj). We synthesize the real projection dataset in Hartley
domain following (10) where p is a smooth probability dis-
tribution over the viewing angles and is chosen randomly. To
generate the real dataset, we discretize the projection angle
domain [0, 7) with 240 equal sized bins and use non-uniform
polar FFT [50] and CST to generate the projections. We
also add the flipped projections to the dataset, such that
covers [0, 27). This means p(8) = p(6 + «), for § € [0, 7).
Therefore, when estimating p, we only recover p in [0, )
range. Throughout this draft, we visualize p on [0, 7). For
the reconstruction, we consider a coarser grid for the viewing
angles with Ny = 240 bins for the interval [0, 27). This way
we are taking into account the approximated discretization of
6 at the reconstruction time which might differ from how the
real viewing angles are obtained. We study two noise regimes:
1) no noise, and 2) noisy with SNR = 3, SNR denoting the
ratio of signal-to-noise variance of the projections,
SNR = Var{Cclean}
Var{Cnoisy - <clean}

where (ciean and Cpoisy Stand for the clean and noisy projections
in spatial domain, respectively. Examples of clean and noisy
projections in both spatial and Hartley domains are illustrated
in Fig. 2. In our experiments with clean data, the number of
projections before adding the flipped versions is L = 2 x 103,
while for noisy experiments, L = 2 x 10%.

Training and Network Architecture: We set a batch-size
of B = 200. We fix the regularization weights on the PMF
as v3 = 0.01 and 4 = 0.04 unless otherwise stated. For the
Lung and Abdomen images in the clean case, the default image
regularization weights are v; = 107° and v, = 5 x 107°
We set v; = 0.001 and vy = 0 for Ellipses while having
71 = v2 = 0 for the Rib-Proj reconstruction. In the noisy
case, to obtain the best results in various settings and take
into account the difference in the projection datasets, we
select ~v; from {0.0005,0.001,0.002,0.005} and - from
{0.0005, 0.005,0.02,0.04}.

We have separate learning rates for Dy, ¢ and p denoted
by a4, a. and oy, but often choose agy = a.. We select
the initial values of oy, o and ¢, from [0.002,0.01] with a
step-decay schedule. We update Dy, c and p using stochastic
gradient descent (SGD) steps. We clip the gradients of Dy and
c by 1 and 10 respectively and normalize the gradients of p to
have norm 0.1. We train the critic ngjsc =4 times per updates
of ¢ and p. Although, after training for a while, we increase
the frequency of updating ¢ and p by setting ngise = 2. Once
converged, we use the reconstructed HB expansion coefficients
to re-render the image in spatial domain according to (11).

Our critic consists of four fully connected (FC) layers with

€1y

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Transactions on Computational Imaging. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCI.2022.3197939

GLT [24]

GT MADE [25] + GL

Lung clean

PSNR=17.2dB, CC=0.89 PSNR=28.6dB, CC=0.99

Abdomen clean

PSNR=18.1dB, CC=0.89 PSNR=26.6dB, CC=0.99

Ellipses clean

PSNR=13.7dB,CC=0.71 PSNR=25.4dB,CC=0.98

Rib-Proj clean

PSNR=36.5dB, CC=1

PSNR=23.0dB, CC=0.95

EM
Best random init.

PSNR=17.9dB, CC=0.86

PSNR =32.2 dB, CC=0.99

Adapted CryoGAN Ours

Adapted CryoGAN
with unif. p [32]

Joint opt. ¢ & p

PSNR=18.5dB, CC=0.92 PSNR=29.7dB, CC=0.99

PSNR=18.0dB, CC=0.89 PSNR=29.0dB, CC=0.99

PSNR=33.5dB,CC=1. PSNR=12.8dB, CC=0.63 PSNR=33.0dB,CC=1.

PSNR=34.1dB,CC=1

PSNR=234.6dB,CC=1 PSNR =23.0dB, CC=0.95

s
0 0.2 0.4 0.6 0.8 1

Fig. 4: Visual comparison of UVTomo-GAN with different baselines in no noise setting and L = 2 x 103. The description of the columns: 1)

ground truth image (GT), 2) graph Laplacian tomography (GLT) [
4) EM with random initialization, 5) Adapted CryoGAN [

], 3) angular difference estimation [
], 6) Adapted CryoGAN [

] + graph Laplacian (MADE+GL),
] with uniform p, 7) Ours, UVTomo-GAN with

unknown p (jointly recovering ¢ and p). The PSNR and CC between the reconstructed images and the GT are provided.

£, £/2, £/4, and 1 output sizes with ReLU [51] in between.
We choose ¢ = 512 for no noise and £ = 256 for noisy exper-
iments. Our justification for adopting a smaller critic network
in noisy case is to avoid overfitting to noisy projections and
reduce the leak of noise in the final reconstruction.

To improve the stability of the GAN training, we use spec-

tral normalization [42], applied to all critic layers. To enforce
p to have non-negative values while summing up to one, we
set it to be the output of a Softmax layer. We initialize each
entry of ¢ independently with a random variable drawn from
N (0,4 x107%). We set p to be a uniform distribution initially.
For the critic, we randomly initialize the weights of the FC
layers with a zero-mean Gaussian distribution and standard
deviation 0.05 and set the biases to zero. Our implementation
is in PyTorch and runs on single GPU.
Evaluation Metrics: To assess the quality of the reconstructed
image, we use peak signal to noise ratio (PSNR) and nor-
malized cross correlation (CC). Higher value of these metrics
signals better quality of the reconstruction. Also, to evaluate p
compared to the ground truth p, we use total variation distance
(TV) defined as:

1 N
dpy = §Hp—p||1. (32)

B. Baselines

We benchmark UVTomo-GAN with unknown p against five
baselines, including graph Laplacian tomography GLT [24],
MADE [25] + GL, MMLE with EM, Adapted CryoGAN [32]
and Adapted CryoGAN with unif. p. We defer the details of
the first two baselines to Appendix IX-E.

In our first baseline GLT, the projections with unknown
views are sorted following [24] and the image is reconstructed
accordingly. Note that compared to [23], [24] is more resilient
to noise.

For our second baseline, we combine MADE [25] and graph
Laplacian (GL) to obtain the angle corresponding to each
projection. We name this baseline MADE+GL. Unlike GLT,
MADE uses a moment-based approach to estimate the angular
differences between any two projections. GL is applied to
get robust estimation of individual projection angles from the
estimates of angular differences.

As our third baseline, we compare against MMLE (21)
solved by EM (22)-(23). We initialize EM with 10 random
initializations. We test two different forms of initializations,
1) randomly located Gaussian blobs with random standard
deviations, 2) initializing each pixel with Uniform distribution
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Fig. 5: Visual comparison of UVTomo-GAN with different baselines in noisy setting, i.e. SNR = 3 and L = 2 x 10*. The description

of the columns: 1) ground truth image (GT), 2) graph Laplacian tomography (GLT) [
] with uniform p, 6) Ours, UVTomo-GAN with unknown p (jointly recovering ¢ and p). The

CryoGAN [32], 5) Adapted CryoGAN [

], 3) EM with random initialization, 4) Adapted

PSNR and CC between the reconstructed images and the GT are provided.
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Fig. 6: Comparison between the line profile (middle vertical slice) of
GT (blue) versus 1) GLT [24] (green), 2) MADE [25] + GL (red), 3)
EM (yellow), 4) UVtomo-GAN jointly optimizing ¢ and p (black).

within a circular mask, i.e., I[z,y] ~ Unif(0,1). In our
experiments, we report the best results for EM out of these
10 random initializations, hence the name EM best random
init for this baseline. Examples of initializations for EM are
provided in Fig. 3.

To evaluate the effect of estimating the viewing angle
distribution p, we consider two GAN-based benchmarks. In
the first, we assume that p is given in advance. For our
second GAN-based benchmark, we assume p to be a uniform

distribution. In both GAN-based baselines, we follow Alg. I.
However, we skip the SGD updates on p and instead sample
directly from the GT p or the uniform distribution and use (15)
as the generator loss. Note that, these two baselines are adapted
from CryoGAN [32] (where the distribution of the latent
variables is presumed to be known or uniform) to the 2D UVT
problem. We refer to these baselines as Adapted CryoGAN and
Adapted CryoGAN with unif. p.

C. Experimental Results

Quality of Reconstructed Image: Fig. 4-5 (and Fig. 9-10
in Appendix IX-F) compare the results of UVTomo-GAN
jointly optimizing for ¢ and p against the GT image and the
aforementioned baselines for no noise and noisy scenarios.
We also include the profiles of the middle vertical line of
the reconstructed images against GT in Fig. 6. The results
of UVTomo-GAN jointly optimizing for ¢ and p closely
resembles the Adapted CryoGAN baseline, both qualitatively
and quantitatively. However, with unknown p, the reconstruc-
tion is more challenging. Note that, although by assuming p
to be uniform (second to last column in Fig. 4-5, Adapted
CryoGAN with unif. p baseline) the overall shape of the GT
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Fig. 7: Comparison between the original GT p (green) used to sample
the viewing angles from, the empirical sample distribution of the
viewing angles (blue) and the one estimated by our method p (red).
In each row, the subplots share the same vertical axis. For no noise
settings, dry is computed between p (red) and original p (green),
while for the noisy case, dry is computed between p (red) and
sample estimation of p (blue).

image emerges, the details are not successfully recovered.
This highlights the importance of updating p to retrieve
details accurately in the reconstruction. A similar observation,
although in a different setting is reported in [32], [52].

Furthermore, in the clean case, GLT is able to recover
the correct ordering of the viewing angles. However, as the
viewing angle distribution is non-uniform, assigning equi-
spaced angles to the sorted projections causes a distorted
reconstructed image. On the other hand, MADE+GL is able
to reconstruct the image accurately.

For SNR = 3, while GLT’s performance on the Lung and
Ellipses images is similar to the clean case, GLT’s sorting of
the projections for Abdomen and Rib-Proj images is erroneous
despite tuning the hyperparameters (see Appendix IX-E).
Furthermore, we find the angle differences output by MADE
for SNR = 3 extremely noisy. This led to an erroneous angular
difference estimation and incorrect projection embedding. As
MADE+GL failed in reconstructing all images at SNR = 3,
we excluded the results of this baseline in Fig. 5.

In the presence of noise, we noticed that to obtain better
results for EM starting from a random initialization, in the E-
step (22), we need to inflate the noise standard deviation o,
otherwise EM can get stuck easily at poor local optima. In our
EM experiments, we inflated o by /2 for all datasets.

Fig. 5 (and Fig. 10 in Appendix IX-F) display the effect of
noise in the final reconstruction. We observe that the presence
of noise makes the reconstruction task more challenging and
degrades the reconstruction quality compared to the no noise
case. This happens as the critic is having a harder time
distinguishing signal from noise given the noisy projections.

Overall, in the no noise setting, among baselines with unknown
or assumed uniform distribution, MADE+GL and our method
perform the best in terms of PSNR and CC. In the noisy case,
our approach alongside Adapted CryoGAN with unif. p are
the top-performing methods.

Quality of Reconstructed p: Comparison between the GT
distribution of the viewing angles and the one recovered by
UVTomo-GAN with unknown p is provided in Fig. 7 (and
Fig. 11 in Appendix IX-F). Note that the recovered p matches
the GT distribution both visually and quantitatively in terms
of TV distance. Although, the quality of the recovered PMF
in the noisy cases (Fig. 7-(b), (d), (f), (h)) is not as good as
the no noise case, it still closely resembles the GT projection
distribution. This shows the ability of our approach to recover
p accurately under different distributions and noise regimes.
Convergence: To evaluate the effect of using HB representa-
tion on the convergence, we compare against an experiment
with pixel domain representation of the image. We call this
baseline pixel UVTomo-GAN versus our method HB UVTomo-
GAN. In this comparison, we use the same dataset, initializa-
tion, batch-size, learning rate decay and schedules for both
pixel and HB UVTomo-GANs. For HB UVTomo-GAN, to
only examine the effect of the representation, we use no TV
regularization on the image, i.e. 7v; = 0. However, for pixel
UVTomo-GAN, to further help with the convergence, we set
a small TV regularization weight as 5 x 10~° and enforce the
image to be non-negative by defining it to be the output of a
ReLU. For HB UVTomo-GAN, we choose o, = a. = 0.008,
oy, = 0.0008 while for pixel UVTomo-GAN, we fine-tuned
these parameters as «, = ay = 0.01, o, = 0.001, oy
denoting the learning rate of the image. To implement the
projection operator in pixel domain, we use Astra toolbox [53].

In Fig. 8, we show the results of this comparison. While
both representations lead to accurate image and p recovery,
their convergence behaviours are different. For HB UVTomo-
GAN, as we are operating in Hartley domain and the images
tend to have larger low-frequency components compared to the
high-frequency details, initially the gradients corresponding
to lower frequency components are larger, leading to faster
updates of ¢ 4s for smaller (k, g)s. This helps in more stable
convergence of HB versus pixel UVTomo-GAN.

Note that, for HB UVTomo-GAN, we obtain a reasonable
image and PMF at early stages of training, i.e., after 20k-40k
iterations (which takes roughly 6-12 minutes). As expected,
the image is further refined with more training iterations. In
addition, we compare the convergence of our method versus
Adapted CryoGAN in Fig. 12 in Appendix IX-G.

VII. DISCUSSION AND FUTURE WORK

As noted in [24], the angular estimation problem in 2D
UVT is more challenging than the 3D problem (such as the
cryo-EM single particle reconstruction) when the distribution
of the viewing angles is non-uniform. In the 3D problem,
the central slice theorem implies that any two central slices
share a common line of intersection that can be used to
find the unknown imaging directions even when they are
not uniformly distributed. However, in the 2D problem, since
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Fig. 8: Convergence of the reconstructed image and the viewing angle distribution throughout different iterations in a no noise setting for
1) UVTomo-GAN with HB image representation (first row), 2) UVTomo-GAN with pixel domain representation (second row). For each
iteration, we report PSNR and CC of the reconstructed image and TV distance between the recovered p (red) and GT original p (green)
from which the viewing angles are sampled, for both pixel and HB image representation (in second to last and last rows respectively). The
sample estimation of p is plotted in blue. The evolution of PSNR throughout training iterations is plotted in second row, first subplot.

central slices all intersect at the origin, we can’t directly use
the corresponding geometric relation found in 3D. In this
paper, we show that even though the distribution of the viewing
angles is non-uniform, our adversarial learning based approach
can simultaneously recover both the underlying object and
the distribution of the viewing angles and provide theoretical
justification for this.

Our framework can handle the uncertainty of various latent
variables, such as rotations and translations, i.e. elements in
SE(2) group. Such latent variables also encode the rigid
motion of an object in 2D. Furthermore, our approach can be
extended to various imaging inverse problems, including 3D
UVT. This can be explained through Fig. 1, where for a general
imaging inverse problem, Hy and 6 represent the forward
operator and the underlying random (multi-dimensional) latent
variables with unknown distribution. These extensions are
beyond the scope of this paper and we defer their study to
future work.

VIII. CONCLUSION

In this paper, we present an adversarial learning approach
for the 2D unknown view tomography problem. Since the
viewing angles and their distribution are not known a-priori,
we simultaneously recover the unknown image and the dis-
tribution of the viewing angles via a distribution matching
formulation solved through a min-max game between a critic
and a generator. To improve the computational efficiency and
regularize the image, we employ a Fourier related represen-
tation of the image with truncated Hartley-Bessel expansion.
For the GAN training, we show that the original loss function
at the generator side is non-differentiable with respect to the
viewing angle distribution. Thus, we use the Gumbel-Softmax
approximation of samples from discrete distributions to allow

the gradient update of the viewing angle distribution. Our anal-
ysis demonstrates that asymptotically unique recovery of the
image and viewing angle distribution is achieved. Moreover,
our simulation results show that our method outperforms the
state-of-the-art methods in recovering the images from noisy
projections.

IX. APPENDIX
A. Computational Cost of UVTomo-GAN

Cost of Projection Generation: To generate Ny = O(m)
projection templates following (9), we first compute the inner
summation over ¢, i.e.

Pk
Fel&) = ehaTia(&)-
q=1

On the radial line, we have O(m) equally spaced points &;.
Given that Kyn,x = O(m) and p,, = O(m), computing f(&;),
Vk, j requires O(m?) computations.

Next, using f5(§;) we compute the outer sum in (9)
with respect to k for Ny viewing angles. A naive matrix
multiplication implementation for this step leads to O(m?)
cost (multiplying two matrices of size O(m) x O(m)). This
can be further reduced using FFT to O(m? logm). Finally, the
total cost of generating Ny projections using (9) is O(m?).

(33)

B. Proof of Theorem 1

First we prove:

Poy = Pogy = (11 =19, (34)
From P{s" = Pgisin, it is implied that the support of the two

distributions are the same. This means that f and g have the
same projection set. In other words, {Py, f}X°, = {735_9};\[:"1
J

where 6 = {5] }5\21 can be a shuffled version of 8 = {6;},.
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Intuitively, one can imagine two objects f and g which have
the same projections, however the order of the viewing angles
of f can be a shuffled version of the viewing angles for g.
Now the question that arises is: Given the class of functions
f and g belong to, is it possible to have two distinct objects
that produce identical projection sets?

This question is related to the feasibility of unique angle re-
covery in unknown view tomography, comprehensively studied
in [20], [21]. Based on our discussions so far, we seek to prove
the following:

{Po.f}i2y = {Pg,9}i20 = [f] = lgl. (35)
In (35), the LHS implies that f and g have the same set
of projections in other words we have: Vy € {Py, f}ﬁvz"l,
v € {Ps 9} and V' € {Py g}, v € {Po,f}i. To
prove the above, we borrow the definitions and various the-
oretical results in [20]. Helgasson-Ludwig (HL) consistency
conditions [54] link the geometric moments of a 2D object to
its projections. Let v and p define the geometric moment of
the image f and its projection as:

Vi g ( f (z,y)dzdy (36)
[ [
a(6; f) = / 2Py} () de 37)

1
Object moments of order d are the ones that satisfy i +k = d.
Let v(f), denote the set of geometric moments of order d € D
for object f. Given the object moments v(f), we construct a
family of trigonometric polynomials as:

d
Qu(b;v(f) =) (f) Updr(f) (cosB) (sin0)?~". (38)
r=0
Given the definition (38), we state the HL conditions as:
Qa(0;v(f)) = na(0; f)- (39
We have defined equivalence for 2D images before. If two
images are equivalent, then they are related through a rotation
and reflection. Similarly, we can define equivalence on the
viewing angles. Assume two vectors of viewing angles of
length Ny, 6, 6 € [—m,7]Ne. 6 is said to be equivalent to
Q ie. @ ~ 0, if 3In € {~1,1} and a € [—, 7] such that
0; = nb; + o + 2mn;, for n; € Z.

As the projection set for f and g objects are the same (based

on (35)), we conclude V6, 360 such that:
pa(0; f) = pa(0; g)- (40)

After invoking HL conditions (39) for object f on the RHS
of (40) we get:

Qa(0;v(f)) = na(0;9), Vd=0. 41
Note that, we have narrowed down the identical projection sets
for f and g to (41). Now we restate our question as: what is
the relationship between 6 and 6?

To find the answer to this question, we first limit the set
of moment orders to d € D = {1,2} (as (41) holds for
Vd > 0, we can simply do this). Note that for 8 € [0, 27), the
projections corresponding to 6 € [, 27) are a flipped version
of projections associated to § € [0,7) and do not constitute
new information [20]. Thus, in [20], the authors limit their

analysis to the projections that are m-distinct, i.e., there are
no two angles that are different by a factor of . Following
the same lines, given the projection sets corresponding to
0, b c [0,27), we select a m-distinct projection subset by
choosing a set of projections that have positive (or negative)
Ist order geometric moment. We now invoke Corollary 5 of
Theorem 9 in [20]. We restate this corollary in the following.

Corollary 1 (Corollary 5 of Theorem 9 [20]): Suppose 6 is a
set of m-distinct view angles and Ny > 8. Suppose v satisfies
the following condition: A3,y € R such that:

Qs(0;v) = B(Qi(6;v)) +7, V0 € [0,7]  (42)
or equivalently,
v%}o v 1
det 2’(}1,01)0,1 V1,1 0 7&0 (43)
’0(2)71 0,2 1
If & ¢ UAS(v) with UAS (unidentifiable angle set) defined
as:
- —ci
UAS(v) =< arg ,arg | — (44)
Cc1 C1
where,
1 .
c1 = 5(01,0 —ivg1) (45)

then, the only view angles 9 that produce the same projection
moments of order D = {1, 2} are equivalent to ¢. This implies
that 6 ~ 6. O

Adhering to Corollary 1, if v(f) satisfies the conditions
in (42) or (43), then for d € {1,2}, the only viewing angles
6 for which (41) holds are equivalent to 6 and thus 6 ~ 6.
On the other hand, based on Corollary 1, the viewing angles
recovered for f, i.e. 0, are equivalent to the GT viewing angles
0 used for generating the projections of f, i.e 6 ~ 6. Based
on the transitivity property of equivalence relation, this leads
to 6~ 0

Given 6 ~ 0 ~ 0 and the fact that the projection sets
corresponding to the objects f and g are identical, the objects
f and g reconstructed from the projection sets and viewing
angles would also be the same (up to a rotation and reflection),
i.e. [f] = [g]. We now link the reconstructed objects and their
ground truths.

If we have sufficiently large Ny, we can directly recover HB
expansion coefficients ¢ by solving a set of linear equations
linking the projections to the HB expansion coefficients.
Given the HB expansion coefficients, we have a continuous
representation of the image as defined in (11). This leads to
f = f and g = g and finally concludes [f] = [g].

As [f]=]g], 3T € O(2) such that g=T'f. PCI“}“ P;};f;" i

plies the TV distance between the two probability distributions

is Z€r0, i.e.
TV (P, PRy ) = 0. (46)

Invoking Lemma 1 (stated in Appendix IX-D), we know

Pflj‘ia}?q PJil‘l’f‘“l therefore (46) becomes,
TV (PSR PN, ) = TV (py. T p,)

1 _
=5l =T pglh. @47
Following (46), the LHS of (47) is 0. Thus, based on the non-
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Fig. 9: Visual comparison of UVTomo-GAN with different baselines in no noise setting and L = 2 x 10%. For description of each column

and the evaluation metrics refer to Fig. 4 and sections VI-A, VI-B.

negativity property of ||.||; norm, we have,
pr =T"'py = py =y

implying [p;] = [p,]. @

C. Proof of Theorem 2

Our proof follows closely the proof of Theorem 1 in [32].
We first show that,

Pnoisy _ PEOiSy = Pclean _ Pc~le~an.
Fp rp fp

(48)

fp (49)

According to the forward model (3), we have { = Pyf + ¢
where €[n] ~ ¢. an IID additive noise which is independent
of f and 6 ~ p. Note that we are considering a general model
for the noise and not confining it to be a Gaussian. As ¢ is
independent of the image and viewing angles, we have:

Py = Pigm g (50)
In Fourier domain, (50) becomes:
FIPEY = F{PR"Fla-). (51)

We have assumed ¢ to have full support in Fourier domain,
therefore we can divide both sides of (51) by F{p. }. Therefore
given F{P;*™}, we have F{P§**"} and (49) is proved. Now,
we show:

pylean — P]%‘;;‘“ = f=Tfand p=Tp (52)
for a unique I' € O(2). To prove (52), we invoke Theorem
1. Theorem 1 states that if the two images f and f have the

same distribution of the clean projections, then the objects and
their associated projection distributions are equivalent up to a
rotation and reflection. This confirms [f] = [f], and [p] = [p],
ie. f=Tfandp=Tp,foral € O(2).1

D. Lemma 1

Assume [ € L1(Bg) N L2(Bs), viewing angles 6 are
distributed following p, i.e. § ~ p and T € O(2). Then,
P, = e )
Proof: For a given (f, py), if v € O(2) is applied to both f and
p, then the induced probability distribution of the projections
would be the same, i.e. P;l;a“ = f'}?l'lp. After changing p’ =
I'p, we have P]S';‘Elp, = Pf‘;f‘;,, thus concluding the proof.

E. Details on Baselines

GLT [24]: For this baseline, a graph is constructed based on
the pairwise distances of the compressed denoised projections.
The tunable parameters in GLT are 1) number of nearest
neighbors (NN) and, 2) Jaccard index threshold (3). The
choice of NN affects the connectivity of the constructed
graph (before denoising). On the other hand, Jaccard index
thresholding reduces the shortcut edges in the graph. For the
clean case, we choose NN = 111 and 8 = 0.41 for all images
except for the Shepp-Logan for which we set NN = 68 and
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Fig. 10: Visual comparison of UVTomo-GAN with different baselines in no noise setting and L = 2 x 10*. For the description of each
column and the evaluation metrics, please refer to Fig. 5, sections VI-A, VI-B.

B = 0.03. In the noisy case, we set NN = 111 and § = 0.21,
B8 = 0.31 and 8 = 0.41 for Lung, Abdomen and Rib-Proj
images, respectively. For the rest of the images, we set the
parameters as, Ellipse: NN = 50, 5 = 0.25, 80S: NN = 1111,
B = 0.3, Lung II: NN = 1111, g = 0.3, Walnut: NN = 50,
B = 0.25, Shepp-Logan: NN = 222, = 0.11.

MADE [25] + GL: To find the angular differences between
any two projections we use MADE. The tunable parameters
for MADE are similar to GLT. For the Lung, Abdomen
and Walnut images, we set the number of nearest neighbors
NN = 70 while NN = 90 for the rest. For all the images, we
set # = 0.1. After obtaining the angular differences between
the neighbor projections, through a shortest path algorithm,
i.e. Djikstra, the absolute angle differences between any two
projections are obtained. Next, we construct a weight matrix
E based on the angle differences from MADE as:

10;—0;1>

E(i,j) = {e_fv |0; — ;] < 5°

0. 0.W.
where 6; denotes the angle corresponding to the i-the projec-
tion. In our experiments, we set € = 20. Next, we normalize F/
similar to [24] and perform eigenvalue decomposition. In the
clean case, the top two non-trivial eigenvectors of the normal-

(54)

ized matrix form the embedding of the projections which is a
circle. The angle of the i-th projection embedded on the circle
is assigned as ;. Based on the assigned viewing angles, the
image is reconstructed. For both GLT and MADE+GL base-
lines, after the estimation of the projection ordering and angles,
we reconstruct the image via a TV regularized optimization
solved by ADMM [55] using GlobalBiolm library [56].

F. Additional Numerical Results

In this section, we provide additional results on four other
images described as: 1) 80S: We generated the 3D map of 80S
Ribosome [57] using its protein sequence in Chimera [49]
and took a central slice of the 80S Ribosome molecule. 2)
Lung II: A lung CT scan [12]. 3) Walnut: Tomographic X-ray
reconstruction of a walnut. We used the projection data and
code provided in [58]' to generate this image. 4) Shepp-Logan
phantom. We generated the projection datasets for both clean
and noisy cases as described in section VI.

Fig. 9-10 compares the results of UVTomo-GAN jointly
optimizing ¢ and p versus several benchmarks, in clean and
noisy (SNR = 3) settings. Furthermore, in Fig. 11 we evaluate

Uhttp://www.fips.fi/dataset.php
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Fig. 11: Comparison between the original GT p (green) used to
sample the viewing angles from, the empirical sample distribution
of the viewing angles (blue) and the one estimated by our method
p (red). For more details on the computation of dry, refer to
section VI-A and Fig. 7.

the performance of UVTomo-GAN in terms of the quality of
the recovered projection angle distribution p. We notice that
for the Walnut and Shepp-Logan images, in the noisy case, as
shown in Fig. 10-11, the reconstruction is less sensitive to the
quality of the estimated p.

G. Convergence Results

We exhibit the convergence curves in terms of PSNR
versus training iteration for no noise and noisy experiments
in Fig. 12. To obtain this curve, at each iteration, we align
the reconstructions with the GT. We compare the convergence
of UVTomo-GAN versus Adapted CryoGAN and Adapted
CryoGAN with unif. p baselines.

For Adapted CryoGAN with unif. p baseline, after a certain
number of iterations, we see no improvement in the recon-
structed image. This is attributed to having an inaccurate PMF
which hinders the correct distribution matching of synthetic
and real measurements. Thus, the high frequency details in the
final reconstructed image do not appear correctly (as also seen
in Fig. 4-5, 9-10). This once again indicates the importance
of recovering p to have high quality reconstructions.
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