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An Adversarial Learning Based Approach for 2D

Unknown View Tomography
Mona Zehni, Zhizhen Zhao

Abstract—The goal of 2D tomography is to recover an image
given its projections from various views. It is often presumed
that viewing angles associated with the projections are known
in advance. Under certain situations, however, these angles
are known only approximately or are completely unknown. It
becomes more challenging to reconstruct the image from a col-
lection of random projections with unknown viewing directions.
We propose an adversarial learning based approach to recover
the image and the viewing angle distribution by matching the
empirical distribution of the measurements with the generated
data. Fitting the distributions is achieved through solving a min-
max game between a generator and a critic based on Wasserstein
generative adversarial network structure. To accommodate the
update of the viewing angle distribution through gradient back
propagation, we approximate the loss using the Gumbel-Softmax
reparameterization of samples from discrete distributions. Our
theoretical analysis verifies the unique recovery of the image and
the projection distribution up to a rotation and reflection upon
convergence. Our extensive numerical experiments showcase the
potential of our method to accurately recover the image and the
viewing angle distribution under noise contamination.

Index Terms—2D unknown view tomography, generative ad-
versarial learning, Hartley-Bessel expansion, Gumbel-softmax,
categorical distribution

I. INTRODUCTION

Multitude of imaging modalities rely on reconstructing an

unknown signal either in 2D or 3D domain given a set of

partial measurements. Examples of such are medical imaging

and cryo-electron microscopy (cryo-EM) for imaging macro-

molecules, to name a few. More specifically, in a tomography

setup, the measurements i.e. projections, are the line or plane

integrals of the underlying object along various angles. In

imaging applications such as computed tomography (CT), the

viewing angles are known a-priori through the acquisition

process. However, this does not hold when reconstructing

macromolecular structures in cryo-EM [1]. Thus, it is im-

portant to develop solutions for tomography with unknown

projection directions. In this paper, we focus on 2D unknown

view tomography (UVT) with the goal of jointly recovering the

unknown 2D image and the viewing angle distribution given

a large set of noisy projections.

Tomographic inversion with known viewing angles is typi-

cally a linear inverse problem and is solved by filtered back-

projection (FBP), direct Fourier methods [2], or solving a regu-

larized optimization problem [3]–[6]. Moreover, deep learning

solutions, training on rich datasets, exist that either learn the

reconstruction from sinogram to image [7]–[11], denoise the
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FBP reconstructed images from a low-dose sinogram [12]–

[17] in a supervised manner or provide a prior i.e. regularizer,

over the space of target images [18], [19].

However, the knowledge of the viewing angles is not always

available or accurate. To avoid adverse effects on the quality

of the reconstructed image, it is important to account for

uncertainties in the viewing angles. Previous methods devoted

to 2D UVT estimate the viewing angles either prior to [20]–

[25] or jointly with the image reconstruction [26]. In addition,

in limited settings, [27]–[30] bypass the estimation of the

projection views via the use of invariant features.

In this paper, we present an unsupervised adversarial learn-

ing based approach for 2D tomography with unknown random

viewing angles, namely UVTomo-GAN. Our approach does not

require large paired training sets and reconstructs an image

given merely its unordered tomographic measurements. By

employing generative adversarial networks (GAN) [31], our

approach recovers the image and viewing angle distribution

through matching the distributions of the generated projections

with the measurements. Our proposed method is inspired by

CryoGAN [32] in which a 3D cryo-EM map is reconstructed

given a large set of noisy projection images with unknown

orientations by employing Wasserstein-GAN [33]. The main

assumption in CryoGAN is that the distribution of the orienta-

tions of the particles is known beforehand. However, in cryo-

EM experiments, the distribution of the orientations is hard

to obtain a-priori. Therefore, under the 2D UVT set-up, we

remove the assumption that the viewing angle distribution is

given and develop a new approach to recover both the viewing

angle distribution and the 2D image simultaneously.

To recover the viewing angle distribution in a GAN frame-

work, the original generator’s loss involves sampling from

the viewing angle distribution which is non-differentiable. To

enable the flow of gradients in the backward pass through

this non-differentiable operator, we modify the loss function

at the generator side using Gumbel-Softmax approximation

of samples from a categorical distribution [34]. Our proposed

idea is general and applicable to a vast range of similar inverse

problems which involve latent variables with unknown proba-

bility distributions such as multi-segment reconstruction [35].

This manuscript is an extension of our previous work [36].

In this paper, we use the truncated Hartley-Bessel expansion of

the image in the Hartley domain in our reconstruction pipeline.

This truncated expansion regularizes the images and allows

for the direct use of central slice theorem (CST) to generate

the projections efficiently. As noted in [24], 2D tomography

from noisy projections taken at unknown random directions

with non-uniform distribution is more challenging than its

3D analogue, since we cannot directly use the geometric
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constraints given by CST in 3D. Our theoretical analysis and

numerical results affirm the ability of our method in recovering

the image and projection distribution accurately from both

clean and noisy measurements.

The organization of this paper is as follows. Section II

summarizes related work to UVT. We introduce the projection

formation model and the reconstruction method in sections III

and IV. The analysis and experimental results are described

in V and VI. The discussions and future directions are pre-

sented in VII. We conclude the paper in VIII.

II. RELATED WORK

In this section, we review related literature on 2D UVT and

unsupervised solutions for 3D UVT task.

2D UVT: One family of 2D UVT solutions determine the

viewing angles first [20]–[25] and reconstruct the image given

the estimated views subsequently. Other approaches include

iterative methods that solve for the 2D image and the view-

ing angles in alternating steps [26]. While proven effective,

these methods are computationally expensive and sensitive

to initialization. In another class of methods, to circumvent

the estimation and refinement of the viewing angles, a set

of rotation invariant features are estimated from the noisy

projections. These features are later on used to reconstruct

the unknown image [27]–[30]. Note that these methods re-

quire only one pass through the projection dataset and are

therefore computationally more efficient. However, they are

mainly used, when the underlying object is sparse [27], [28],

projections in the form of tilt series are available [30] or to

recover a low-resolution ab-initio model [29].

Adversarial Learning for 3D UVT: Gupta et al. in

CryoGAN [32] proposed an unsupervised learning approach

through a distribution matching lens for cryo-EM single par-

ticle reconstruction. In CryoGAN, the goal is to estimate

the underlying 3D density such that the distribution of the

observed projection image dataset and the one generated from

the estimated volume match. Due to its distribution matching

criterion, CryoGAN bypasses the estimation of individual

projection parameters. In CryoGAN, the distribution distance

is chosen as Wasserstein-1 (W1), i.e. Earth Mover’s distance.

Thus, the reconstruction problem is stated as:

v∗ = argmin
v

W1(Psim(v; platent), Preal) (1)

where Preal is the distribution of the observed (i.e. real) pro-

jection image dataset. Also, Psim(v; platent) is the distribution

of the simulated projection image dataset generated from the

volume v following an a-priori known distribution for the

latent variables platent. In a cryo-EM setup, each projection

image is obtained from the volume following a forward model.

This forward model is parameterized by the projection view,

in-plane translation and the contrast transfer function (CTF)

parameters corresponding to the projection image. Given a

projection image dataset, the collection of these parameters

(projection view, in-plane translation and CTF parameters), is

considered a random latent variable with platent probability

distribution, which in CryoGAN is assumed to be known.

Thus, to sample from Psim given v and platent, one samples

latent variables based on platent and then adopt the projection

forward model to generate random simulated projections of v.

As computing W1 between two high-dimensional distribu-

tions is highly intractable, W1 minimization is often done in

its dual form, following Kantrovich-Rubinstein duality [33]:

v∗=argmin
v

max
f :‖f‖L≤1

(Ey∼Preal
[f(y)]−Ex∼Psim(v;platent)[f(x)])

(2)

where f represents a 1-Lipschitz function, mapping its input

(i.e. a projection image) to a single real-valued score.

Due to the close link between (2) and Wasserstein-GAN

(WGAN) frameworks [33], CryoGAN specifically proposes

the use of WGAN with gradient-penality (GP) (WGAN-

GP) [37] to solve (2). In a WGAN-GP setup, the mapping f is

modeled via a neural network named critic and its 1-Lipschitz

continuity constraint is enforced via the GP term.

In this paper, we extend the CryoGAN framework for the

2D UVT problem defined in section III. In a 2D UVT setting,

the projection views form the underlying latent variable.

Unlike CryoGAN, we assume the latent variable probability

distribution (platent in CryoGAN context) is unknown and we

develop a novel approach to handle its joint recovery with

the image. In addition, we compare our method against the

baselines formed by the adaptations of CryoGAN for 2D UVT

in section VI.

III. PROJECTION FORMATION MODEL AND PROBLEM

FORMULATION

We define the 1D projection formation model as,

ζ` = Pθ`I + ε`, ` ∈ {1, 2, ..., L} (3)

where I : B2 → R1 is an unknown 2D compactly supported

image in the unit ball B2 we wish to estimate. We restrict I
to the space of absolute and square integrable functions on

B2, i.e. I ∈ L1(B2) ∩ L2(B2). Pθ denotes the tomographic

projection operator that takes the line integral along the paral-

lel beams whose normal direction makes an angle θ ∈ [0, 2π)
with the x-axis,

(PθI)(x) =

∞∫

−∞

I(Rθ x)dy (4)

where x = [x, y]T represents the 2D Cartesian coordinates. Rθ

is a 2×2 rotation matrix associated with θ. As I is compactly

supported in B2, its projection along any direction would also

be compactly supported in the unit ball, i.e. PθI ∈ L1(B1) ∩
L2(B1). We assume the viewing angles {θ`}L`=1 are unknown

and randomly drawn from an unknown distribution p. Finally,

the discretized projection lines of length m are corrupted by

additive white Gaussian noise ε` with zero mean and variance

σ2. Here we consider σ to be known, although an unbiased

estimator of σ is attainable from the variance of the boundary

pixels of the projections that only contain noise [24].

In this paper, given a large set of noisy projections, i.e.

{ζ`}L`=1, we aim to recover the image I and the unknown

distribution of the viewing angles p.

IV. METHOD

A. Image Representation

To alleviate the computational cost of generating projections

in practice, (3) is evaluated in Fourier domain using non-

uniform fast Fourier transform [38] according to central slice
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Algorithm 1 UVTomo-GAN

Require: αφ, αc, αp: learning rates for φ, c and p. ndisc: the

number of updates of the critic per generator update.

Input:
{
ζ̃ real
`

}L

`=1
. Random initialization of c. The distribu-

tion p is initialized with Unif(0, 2π).
Output: Estimates of I and p.

1: while φ has not converged do

2: for t = 0, ..., ndisc − 1 do

3: Sample a batch from real data,
{
ζ̃breal

}B

b=1
.

4: Sample a batch of simulated projections using

estimated c and p, i.e.
{
ζ̃bsyn

}B

b=1
following (10).

5: Update the critic following gradient ascent steps

using the gradient of (13) with respect to φ.

6: end for

7: Sample a batch of {ri,b}Bb=1 using (19).

8: Update c and p using stochastic gradient descent steps

by taking the gradients of (20) with respect to c and p.

9: end while

where L denotes the loss, B and b represent the batch size

and the index of a sample in the mini-batch, respectively.

Also, ζ̃real and ζ̃syn mark the real and synthesized projections in

Hartley domain. ζ̃syn is generated from the estimated image ĉ

and projection distribution p̂ following ζ̃syn = Hθ ĉ+ ε̃, θ ∼ p̂.

In our experiments, we used spectral normalization (SN) [42]

to regularize the critic and found that SN is sufficient for stabi-

lizing the training. Following common practice, we solve (14)

by alternating updates between φ and the generator’s variables,

i.e. c and p, based on the associated gradients.

The loss at the generator side for a fixed Dφ is,

LG(c, p) = −
B∑

b=1

Dφ(Hθbc+ ε̃b), θb ∼ p. (15)

While (15) is differentiable with respect to c, its gradient of p
is not defined, as it involves sampling θb from the distribution

p. This hinders updating p through gradient back-propagation.

To address this, we aim to design an alternative approximation

of (15) which is differentiable with respect to p.

To accommodate this approximation, we first discretize the

support of the viewing angles, i.e. [0, 2π) into Nθ equal-sized

bins. This makes p a probability mass function (PMF) of

length Nθ with the following properties:
Nθ−1∑

i=0

pi = 1, and pi ≥ 0, ∀i ∈ {0, ..., Nθ − 1}. (16)

Now p corresponds to a discrete or categorical distribution

over θ, which implies the sampled viewing angles from p can

only belong to Nθ discrete categories. Therefore, we re-write

the loss function (15) as:

LG(c, p)=−
B∑

b=1

Nθ−1∑

t=0

δ(θt−θb)Dφ(Hθtc+ ε̃b), θb ∼ p. (17)

A closer look at (17) reveals that δ(θt − θb), θb ∼ p is a

sample from the discrete distribution p. This enables us to

incorporate the notion of Gumbel-Softmax distribution and

approximate (15) as:

LG(c, p) ≈ −
B∑

b=1

Nθ−1∑

i=0

ri,b(p)Dφ(Hθic+ ε̃b), (18)

ri,b(p)=
exp ((gb,i + log(pi))/τ)

Nθ−1∑
j=0

exp ((gb,j+log(pj))/τ)

, gb,i∼Gumbel(0, 1),

(19)

where τ is the softmax temperature factor. As τ → 0,

ri,b(p)→ one-hot (argmaxi[gb,i+log(pi)]). Moreover, to ob-

tain samples from the Gumbel(0, 1) distribution, it suffices to

draw u ∼ Unif(0, 1), g=− log(− log(u)) [34]. Note that due

to the reparametrization trick applied in (18), the approximated

generator’s loss has a tangible gradient with respect to p.

We also add prior knowledge on the image and projection

distribution in the form of regularization terms. Hence, the

regularized loss function we optimize at the generator side is:

L(c, p)=LG(c, p)+γ1gTV(c)+γ2‖c‖2+γ3TV(p)+γ4‖p‖2,
(20)

where we include total variation (TV) and `2 regularization

terms for the image, with γ1 and γ2 weights. To construct

the TV of the image in terms of c, we use (11) to render I
on a Cartesian grid in spatial domain and then compute total

variation of I . Furthermore, we assume that the unknown PMF

is a piece-wise smooth function of viewing angles (which is a

valid assumption especially in single particle analysis in cryo-

EM [43]), therefore adding TV and `2 regularization terms for

the PMF with γ3 and γ4 weights. We present the pseudo-code

for UVTomo-GAN in Alg. 1.

C. Maximum Marginalized Likelihood Estimation via

Expectation-Maximization

As a baseline for UVTomo-GAN, we consider maximum

marginalized likelihood estimation (MMLE). We solve MMLE

in Fourier domain via expectation-maximization (EM) and

represent F(I) with its expansion coefficients a on Fourier-

Bessel bases. Thus, MMLE is formulated as

â, p̂=argmax
a,p

L∑

`=1

log

(
Nθ−1∑

i=0

P (F(ζ`)|a, θi)pi
)
. (21)

To solve (21), we take the gradients with respect to a and p
and set them to zero. For p, we further impose

∑Nθ−1
i=0 pi = 1.

This yields the following alternating updates for a and p, in

the form of:

(E-step) : rti,j =

exp

(
−‖F(ζi)−Hθj

at−1‖2

2σ2

)

Nθ−1∑
j=0

pt−1
j exp

(
−‖F(ζi)−Hθj

at−1‖2

2σ2

) , (22)

(M-step) :





Atat = bt,

ptj=

L∑
i=1

rti,j

L∑
i=1

Nθ−1∑
j=0

rt
i,j

,
(23)

where

A
t((k, q), (k′, q′)) = p̂t(k − k′)

Nξ∑

ξ=1

Jk,q
s (ξ)Jk′,q′

s (ξ) (24)
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p̂t(k) =

Nθ−1∑

j=0

ptj exp

(
−ı

2πkj

Nθ

)
(25)

b
t(k, q)=

Nξ∑

ξ=1

Nθ−1∑

j=0

Jk,q
s (ξ) exp

(
−ı

2πkj

Nθ

) L∑

i=1

ri,jF(ζi)

(26)

where ri,j denotes the probability that the i−th projection

is associated with θj angle and t is the iteration index.

Also, Hθa generates the projection at θ direction in Fourier

domain given FB expansion coefficients a. In (23), At is

indexed by (k, q) and (k′, q′) pairs and the discretization

in ξ is identical to the projection dataset. The advantages

of using truncated FB expansion is that: (1) similar to HB

representation, it provides an implicit regularization on the

image, and (2) building matrix At in (22) in each iteration

only requires rescaling the entries of a pre-computed matrix

J((k, q), (k′, q′)) =
Nξ∑
ξ=1

Jk,q
s (ξ)Jk′,q′

s (ξ) by p̂t(k − k′).

In (22)-(23), we update the probabilistic angular assign-

ments for the projections in the E-step while updating a and p
in the M-step. Note that, in the absence of noise, i.e. σ = 0, the

E-step reduces to template matching [44]. To solve at from the

equation Atat = bt, we use preconditioned conjugate gradient

descent [45].

D. Computational Complexity

We conclude this section by comparing the computational

complexity per iteration of UVTomo-GAN and EM.

UVTomo-GAN Complexity: Based on Alg. 1, we split the

computational cost of UVTomo-GAN between: 1) the critic

and 2) the generator (i.e. c and p) updates. Let CD denote a

fixed computational cost related to forward and backpropaga-

tion passes through the critic Dφ. As expected, CD depends on

the batch size, network architecture and the size of its input.

Thus, the larger the critic network, the higher the CD. For

our critic architecture, we use a cascade of N � m fully

connected (FC) layers with intermediate ReLU non-linearities.

Therefore, CD points to the cost of matrix multiplications

and backward passes through these N layers. Furthermore,

we keep the input and output sizes of these FC layers to

be O(m) (m is the image/projection size). Therefore, CD =
O(m2N) = O(m2). As these operations can be parallelized

on GPU, forward and backward passes through Dφ are time-

efficient. For batch size B = O(m), the cost of critic update

is O(BCD) = O(m3).
For updating the generator according to (18), first we

generate Nθ = O(m) projections or templates. This is done

in O(m3). A thorough discussion on the derivation of this

computational complexity term is deferred to Appendix IX-A.

In our implementation of (18), instead of using B different

noise realizations {ε̃b}Bb=1 for each of the clean templates,

we consider Nθ noisy templates in total. This means the loss

function we use at the generator side is:

LG(c, p) ≈ −
B∑

b=1

Nθ∑

i=1

ri,b(p)Dφ(Hθic+ ε̃i). (27)

Indeed in the absence of noise, (27) matches (18). However, in

the noisy case, the benefits of (27) are two-fold: 1) having the

same performance as (18) empirically, 2) reducing the number

of passes through the critic.

Consequently, adding up the cost of passing Nθ projection

templates through Dφ leads to a total computational cost of

O(m3 +mCD) per generator update step. We update c and p
every ndisc iterations. Therefore, the average cost of UVTomo-

GAN per iteration including the generator and critic’s updates

is O( (ndisc−1)m3+(m3+mCD)
ndisc

) = O(m3).

EM Complexity: For EM, we specify the computational

cost of E-step and M-step. At each E-step, we generate

Nθ projection templates. If these templates are generated

following CST and using the non-uniform Fourier transform of

the image, they require O(m2 logm) computations. Next, we

update the angular assignments of L projections by comparing

them against O(m) templates, hence a cost of O(m2L). Then,

the total cost of E-step is O(m2 logm + m2L) = O(m2L).
For the M-step, computing bt from the projections costs

O(m2L) (or O(m logmL) if using FFT) while updating FB

coefficients a in (23) using conjugate gradient descent has

O(
√
κω) computational cost [45] where ω is the number of

non-zeros of At and κ is its condition number. Note that

ω = O(ηm3) depends on the number of non-zero elements in

p̂t, i.e. η. If all entries in p̂t are non-zero (η = O(m)), then the

M-step’s computational cost is O(
√
κm4). Finally, the overall

computational complexity for EM is O(
√
κ ηm3 +m2L).

In terms of convergence, we empirically observe that

UVTomo-GAN requires more training iterations. We attribute

this to the difference between the convergences of stochastic

gradient descent used in UVTomo-GAN versus full batch

processing in EM. On the other hand, we show that while

UVTomo-GAN is robust to the choice of initialization, EM

is likely to get stuck in a bad locally optimal solution with

random initialization. This observation is also reported in cryo-

EM settings in [43], [46].

V. ANALYSIS

In this section, we first define our notations and then for-

mally state the reconstruction guarantees of UVTomo-GAN.

A. Notations

We assume the image f ∈ L1(B2)∩L2(B2) has a bandlimit

0 < s ≤ 0.5 and compactly supported in the unit ball B2. In

addition, f ∈ span{us
k,q}Ω, Ω = {(k, q) | |k| ≤ Kmax, 1 ≤

q ≤ pk} with uk,q
s = Jk,q

s (ξ)cas(kθ). Thus, the Hartley

transform of f is expanded on a HB basis set. A measurement

ζ associated with the projection angle θ ∼ p is ζ = Pθf + ε
with ε[n] ∼ qε denoting additive IID noise. We assume qε has

full support in Fourier domain, i.e. {Fqε}(ω) 6= 0, ∀ω.

Let O(2) denote the group of all possible rotations and

reflections, i.e. ΓTΓ = I and det(Γ) = ±1, ∀Γ ∈ O(2). The

action of the O(2) group on f is defined as,

(Γf)(x) = f(Γ−1
x), ∀Γ ∈ O(2) (28)

where x = [x, y] denotes the Cartesian coordinate. On the

other hand, the action of Γ on a probability distribution p de-

fined over [0, 2π) manifests as a combination of flip or circular

shift. The group O(2) partitions the space of span{us
k,q}Ω into
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Fig. 2: Samples of clean (blue) and noisy (red) projections in spatial
(first row) and Hartely (second row) domain. For noisy data SNR=3.

Fig. 3: Examples of the initialization images used in EM.

a set of equivalence classes where [f ] = {Γf, ∀Γ ∈ O(2)}.

Let P clean
f,p and P noisy

f,p denote the probability distributions in-

duced by clean and noisy projections, i.e. ζclean = Pθf and

ζnoisy = Pθf + ε with θ ∼ p, respectively.

B. Theoretical Results

Here we elaborate upon the theoretical reconstruction guar-

antees of our proposed method.

Theorem 1: Consider f, g ∈ L1(B2) ∩ L2(B2) and the

associated bounded probability distributions pf and pg on the

viewing angles distributed in [0, 2π). Then,

P clean
f,pf

= P clean
g,pg

⇒ [f ] = [g], [pf ] = [pg]. (29)

Furthermore, if f = Γg, Γ ∈ O(2), then pf = Γpg .

The proof is provided in Appendix IX-B. Intuitively, Theorem

1 states that if f and g have the same induced clean projec-

tion distribution, then the underlying objects and projection

distributions are equivalent up to a rotation and reflection. We

link the proof of this theorem to unique angular recovery in

unknown view tomography [20], [21].

Theorem 2: Assume f ∈ L1(B2) ∩ L2(B2) denoting the

ground truth (GT) image and p representing the bounded GT

probability distribution over the viewing angles θ ∈ [0, 2π).
Let f̂ and p̂ stand for the recovered image and the bounded

probability distribution after the convergence of UVTomo-

GAN. Consider the asymptotic case as L → ∞. Then,

P noisy

f,p = P noisy

f̂ ,p̂
⇒ f̂ = Γf, p̂ = Γp, (30)

for a unique Γ ∈ O(2).

The proof is available in Appendix IX-C. This theorem val-

idates that upon the convergence of UVTomo-GAN in the

presence of noise and infinite number of noisy projections,

the GT image and viewing angle distribution is recovered up

to a rotation-reflection transformation. We defer the study of

sample complexity of UVTomo-GAN with finite size projec-

tion dataset to future work.

VI. NUMERICAL RESULTS

A. Experiment Setup

Datasets: To evaluate the generalization of our method to

images of different properties, we conduct experiments on

four different images (for additional results, refer to Ap-

pendix IX-F). Two are biomedical images of lung and ab-

domen from low dose CT (LDCT) dataset [47]. We defined the

third image as a set of randomly located and shaped ellipses

with various intensities. For the last image, we generated the

3D map of 100S Ribosome [48] using its protein sequence in

Chimera [49] and took a 2D projection of the generated map

along a random view. All images are resized to 101 × 101
dimension. We refer to these images as Lung, Abdomen,

Ellipses and a 2D projection image of 100S Ribosome (Rib-

Proj). We synthesize the real projection dataset in Hartley

domain following (10) where p is a smooth probability dis-

tribution over the viewing angles and is chosen randomly. To

generate the real dataset, we discretize the projection angle

domain [0, π) with 240 equal sized bins and use non-uniform

polar FFT [50] and CST to generate the projections. We

also add the flipped projections to the dataset, such that θ
covers [0, 2π). This means p(θ) = p(θ + π), for θ ∈ [0, π).
Therefore, when estimating p, we only recover p in [0, π)
range. Throughout this draft, we visualize p on [0, π). For

the reconstruction, we consider a coarser grid for the viewing

angles with Nθ = 240 bins for the interval [0, 2π). This way

we are taking into account the approximated discretization of

θ at the reconstruction time which might differ from how the

real viewing angles are obtained. We study two noise regimes:

1) no noise, and 2) noisy with SNR = 3, SNR denoting the

ratio of signal-to-noise variance of the projections,

SNR =
Var{ζclean}

Var{ζnoisy − ζclean}
(31)

where ζclean and ζnoisy stand for the clean and noisy projections

in spatial domain, respectively. Examples of clean and noisy

projections in both spatial and Hartley domains are illustrated

in Fig. 2. In our experiments with clean data, the number of

projections before adding the flipped versions is L = 2× 103,

while for noisy experiments, L = 2× 104.

Training and Network Architecture: We set a batch-size

of B = 200. We fix the regularization weights on the PMF

as γ3 = 0.01 and γ4 = 0.04 unless otherwise stated. For the

Lung and Abdomen images in the clean case, the default image

regularization weights are γ1 = 10−5 and γ2 = 5 × 10−5.

We set γ1 = 0.001 and γ2 = 0 for Ellipses while having

γ1 = γ2 = 0 for the Rib-Proj reconstruction. In the noisy

case, to obtain the best results in various settings and take

into account the difference in the projection datasets, we

select γ1 from {0.0005, 0.001, 0.002, 0.005} and γ2 from

{0.0005, 0.005, 0.02, 0.04}.

We have separate learning rates for Dφ, c and p denoted

by αφ, αc and αp, but often choose αφ = αc. We select

the initial values of αφ, αc and αp from [0.002, 0.01] with a

step-decay schedule. We update Dφ, c and p using stochastic

gradient descent (SGD) steps. We clip the gradients of Dφ and

c by 1 and 10 respectively and normalize the gradients of p to

have norm 0.1. We train the critic ndisc=4 times per updates

of c and p. Although, after training for a while, we increase

the frequency of updating c and p by setting ndisc = 2. Once

converged, we use the reconstructed HB expansion coefficients

to re-render the image in spatial domain according to (11).

Our critic consists of four fully connected (FC) layers with
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Fig. 7: Comparison between the original GT p (green) used to sample
the viewing angles from, the empirical sample distribution of the
viewing angles (blue) and the one estimated by our method p̂ (red).
In each row, the subplots share the same vertical axis. For no noise
settings, dTV is computed between p̂ (red) and original p (green),
while for the noisy case, dTV is computed between p̂ (red) and
sample estimation of p (blue).

image emerges, the details are not successfully recovered.

This highlights the importance of updating p to retrieve

details accurately in the reconstruction. A similar observation,

although in a different setting is reported in [32], [52].

Furthermore, in the clean case, GLT is able to recover

the correct ordering of the viewing angles. However, as the

viewing angle distribution is non-uniform, assigning equi-

spaced angles to the sorted projections causes a distorted

reconstructed image. On the other hand, MADE+GL is able

to reconstruct the image accurately.

For SNR = 3, while GLT’s performance on the Lung and

Ellipses images is similar to the clean case, GLT’s sorting of

the projections for Abdomen and Rib-Proj images is erroneous

despite tuning the hyperparameters (see Appendix IX-E).

Furthermore, we find the angle differences output by MADE

for SNR = 3 extremely noisy. This led to an erroneous angular

difference estimation and incorrect projection embedding. As

MADE+GL failed in reconstructing all images at SNR = 3,

we excluded the results of this baseline in Fig. 5.

In the presence of noise, we noticed that to obtain better

results for EM starting from a random initialization, in the E-

step (22), we need to inflate the noise standard deviation σ,

otherwise EM can get stuck easily at poor local optima. In our

EM experiments, we inflated σ by
√
2 for all datasets.

Fig. 5 (and Fig. 10 in Appendix IX-F) display the effect of

noise in the final reconstruction. We observe that the presence

of noise makes the reconstruction task more challenging and

degrades the reconstruction quality compared to the no noise

case. This happens as the critic is having a harder time

distinguishing signal from noise given the noisy projections.

Overall, in the no noise setting, among baselines with unknown

or assumed uniform distribution, MADE+GL and our method

perform the best in terms of PSNR and CC. In the noisy case,

our approach alongside Adapted CryoGAN with unif. p are

the top-performing methods.

Quality of Reconstructed p: Comparison between the GT

distribution of the viewing angles and the one recovered by

UVTomo-GAN with unknown p is provided in Fig. 7 (and

Fig. 11 in Appendix IX-F). Note that the recovered p matches

the GT distribution both visually and quantitatively in terms

of TV distance. Although, the quality of the recovered PMF

in the noisy cases (Fig. 7-(b), (d), (f), (h)) is not as good as

the no noise case, it still closely resembles the GT projection

distribution. This shows the ability of our approach to recover

p accurately under different distributions and noise regimes.

Convergence: To evaluate the effect of using HB representa-

tion on the convergence, we compare against an experiment

with pixel domain representation of the image. We call this

baseline pixel UVTomo-GAN versus our method HB UVTomo-

GAN. In this comparison, we use the same dataset, initializa-

tion, batch-size, learning rate decay and schedules for both

pixel and HB UVTomo-GANs. For HB UVTomo-GAN, to

only examine the effect of the representation, we use no TV

regularization on the image, i.e. γ1 = 0. However, for pixel

UVTomo-GAN, to further help with the convergence, we set

a small TV regularization weight as 5× 10−5 and enforce the

image to be non-negative by defining it to be the output of a

ReLU. For HB UVTomo-GAN, we choose αϕ = αc = 0.008,

αp = 0.0008 while for pixel UVTomo-GAN, we fine-tuned

these parameters as αϕ = αI = 0.01, αp = 0.001, αI

denoting the learning rate of the image. To implement the

projection operator in pixel domain, we use Astra toolbox [53].

In Fig. 8, we show the results of this comparison. While

both representations lead to accurate image and p recovery,

their convergence behaviours are different. For HB UVTomo-

GAN, as we are operating in Hartley domain and the images

tend to have larger low-frequency components compared to the

high-frequency details, initially the gradients corresponding

to lower frequency components are larger, leading to faster

updates of ck,qs for smaller (k, q)s. This helps in more stable

convergence of HB versus pixel UVTomo-GAN.

Note that, for HB UVTomo-GAN, we obtain a reasonable

image and PMF at early stages of training, i.e., after 20k-40k

iterations (which takes roughly 6-12 minutes). As expected,

the image is further refined with more training iterations. In

addition, we compare the convergence of our method versus

Adapted CryoGAN in Fig. 12 in Appendix IX-G.

VII. DISCUSSION AND FUTURE WORK

As noted in [24], the angular estimation problem in 2D

UVT is more challenging than the 3D problem (such as the

cryo-EM single particle reconstruction) when the distribution

of the viewing angles is non-uniform. In the 3D problem,

the central slice theorem implies that any two central slices

share a common line of intersection that can be used to

find the unknown imaging directions even when they are

not uniformly distributed. However, in the 2D problem, since
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Intuitively, one can imagine two objects f and g which have

the same projections, however the order of the viewing angles

of f can be a shuffled version of the viewing angles for g.

Now the question that arises is: Given the class of functions

f and g belong to, is it possible to have two distinct objects

that produce identical projection sets?

This question is related to the feasibility of unique angle re-

covery in unknown view tomography, comprehensively studied

in [20], [21]. Based on our discussions so far, we seek to prove

the following:

{Pθif}Nθ

i=1 = {P
θ̂j
g}Nθ

j=1 ⇒ [f ] = [g]. (35)

In (35), the LHS implies that f and g have the same set

of projections, in other words we have: ∀γ ∈ {Pθif}Nθ

i=1,

γ ∈ {P
θ̂j
g}Nθ

j=1 and ∀γ′ ∈ {P
θ̂j
g}Nθ

j=1, γ′ ∈ {Pθif}Nθ

i=1. To

prove the above, we borrow the definitions and various the-

oretical results in [20]. Helgasson–Ludwig (HL) consistency

conditions [54] link the geometric moments of a 2D object to

its projections. Let v and µ define the geometric moment of

the image f and its projection as:

vi,k(f) =

1∫

−1

1∫

−1

xiykf(x, y)dxdy (36)

µd(θ; f) =

1∫

−1

xd{Pθf}(x)dx. (37)

Object moments of order d are the ones that satisfy i+k = d.

Let v(f), denote the set of geometric moments of order d ∈ D
for object f . Given the object moments v(f), we construct a

family of trigonometric polynomials as:

Qd(θ;v(f)) =

d∑

r=0

(
d

r

)
vr,d−r(f) (cos θ)

r(sin θ)d−r. (38)

Given the definition (38), we state the HL conditions as:

Qd(θ;v(f)) = µd(θ; f). (39)

We have defined equivalence for 2D images before. If two

images are equivalent, then they are related through a rotation

and reflection. Similarly, we can define equivalence on the

viewing angles. Assume two vectors of viewing angles of

length Nθ, θ, θ̂ ∈ [−π, π]Nθ . θ is said to be equivalent to

θ̂, i.e. θ ∼ θ̂, if ∃η ∈ {−1, 1} and α ∈ [−π, π] such that

θ̂i = ηθi + α+ 2πni, for ni ∈ Z.

As the projection set for f and g objects are the same (based

on (35)), we conclude ∀θ, ∃θ̂ such that:

µd(θ; f) = µd(θ̂; g). (40)

After invoking HL conditions (39) for object f on the RHS

of (40) we get:

Qd(θ;v(f)) = µd(θ̂; g), ∀d ≥ 0. (41)

Note that, we have narrowed down the identical projection sets

for f and g to (41). Now we restate our question as: what is

the relationship between θ and θ̂?

To find the answer to this question, we first limit the set

of moment orders to d ∈ D = {1, 2} (as (41) holds for

∀d ≥ 0, we can simply do this). Note that for θ ∈ [0, 2π), the

projections corresponding to θ ∈ [π, 2π) are a flipped version

of projections associated to θ ∈ [0, π) and do not constitute

new information [20]. Thus, in [20], the authors limit their

analysis to the projections that are π-distinct, i.e., there are

no two angles that are different by a factor of π. Following

the same lines, given the projection sets corresponding to

θ, θ̂ ∈ [0, 2π), we select a π-distinct projection subset by

choosing a set of projections that have positive (or negative)

1st order geometric moment. We now invoke Corollary 5 of

Theorem 9 in [20]. We restate this corollary in the following.

Corollary 1 (Corollary 5 of Theorem 9 [20]): Suppose θ is a

set of π-distinct view angles and Nθ > 8. Suppose v satisfies

the following condition: 6 ∃β, γ ∈ R such that:

Q2(θ;v) = β (Q1(θ;v))
2
+ γ, ∀θ ∈ [0, π] (42)

or equivalently,

det




v21,0 v2,0 1
2v1,0v0,1 v1,1 0

v20,1 v0,2 1


 6= 0. (43)

If θ 6∈ UAS(v) with UAS (unidentifiable angle set) defined

as:

UAS(v) =

{
arg

(√
−c∗1
c1

)
, arg

(
−
√

−c∗1
c1

)}
(44)

where,

c1 =
1

2
(v1,0 − i v0,1) (45)

then, the only view angles θ̂ that produce the same projection

moments of order D = {1, 2} are equivalent to θ. This implies

that θ ∼ θ̂. �

Adhering to Corollary 1, if v(f) satisfies the conditions

in (42) or (43), then for d ∈ {1, 2}, the only viewing angles

θ̂ for which (41) holds are equivalent to θ and thus θ ∼ θ̂.

On the other hand, based on Corollary 1, the viewing angles

recovered for f , i.e. θ, are equivalent to the GT viewing angles

θ̌ used for generating the projections of f , i.e θ ∼ θ̌. Based

on the transitivity property of equivalence relation, this leads

to θ̂ ∼ θ̌

Given θ ∼ θ̂ ∼ θ̌ and the fact that the projection sets

corresponding to the objects f and g are identical, the objects

f̂ and ĝ reconstructed from the projection sets and viewing

angles would also be the same (up to a rotation and reflection),

i.e. [f̂ ] = [ĝ]. We now link the reconstructed objects and their

ground truths.

If we have sufficiently large Nθ, we can directly recover HB

expansion coefficients c by solving a set of linear equations

linking the projections to the HB expansion coefficients.

Given the HB expansion coefficients, we have a continuous

representation of the image as defined in (11). This leads to

f̂ = f and ĝ = g and finally concludes [f ] = [g].

As [f ]=[g], ∃Γ∈O(2) such that g=Γf . P clean
f,pf

=P clean
g,pg

im-

plies the TV distance between the two probability distributions

is zero, i.e.

TV (P clean
f,pf

, P clean
Γf,pg

) = 0. (46)

Invoking Lemma 1 (stated in Appendix IX-D), we know

P clean
Γf,pg

= P clean
f,Γ−1pg

, therefore (46) becomes,

TV (P clean
f,pf

, P clean
f,Γ−1pg

) = TV (pf ,Γ
−1pg)

=
1

2
‖pf − Γ−1pg‖1. (47)

Following (46), the LHS of (47) is 0. Thus, based on the non-
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Fig. 11: Comparison between the original GT p (green) used to
sample the viewing angles from, the empirical sample distribution
of the viewing angles (blue) and the one estimated by our method
p̂ (red). For more details on the computation of dTV , refer to
section VI-A and Fig. 7.

the performance of UVTomo-GAN in terms of the quality of

the recovered projection angle distribution p. We notice that

for the Walnut and Shepp-Logan images, in the noisy case, as

shown in Fig. 10-11, the reconstruction is less sensitive to the

quality of the estimated p.

G. Convergence Results

We exhibit the convergence curves in terms of PSNR

versus training iteration for no noise and noisy experiments

in Fig. 12. To obtain this curve, at each iteration, we align

the reconstructions with the GT. We compare the convergence

of UVTomo-GAN versus Adapted CryoGAN and Adapted

CryoGAN with unif. p baselines.

For Adapted CryoGAN with unif. p baseline, after a certain

number of iterations, we see no improvement in the recon-

structed image. This is attributed to having an inaccurate PMF

which hinders the correct distribution matching of synthetic

and real measurements. Thus, the high frequency details in the

final reconstructed image do not appear correctly (as also seen

in Fig. 4-5, 9-10). This once again indicates the importance

of recovering p to have high quality reconstructions.
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