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Qubit decoherence under two-axis coupling to low-frequency noises
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Many solid-state qubit systems are afflicted by low-frequency noise mechanisms that operate along two
perpendicular axes of the Bloch sphere. Depending on the qubit control fields, either noise can be longitudinal or
transverse to the quantization axis of the qubit, thus affecting its dynamics in distinct ways, generally contributing
to decoherence that goes beyond pure dephasing. Here, we present a theory that provides a unified platform
to study dynamics of a qubit subjected to two perpendicular low-frequency noises (assumed to be Gaussian
and uncorrelated) under dynamical decoupling pulse sequences. The theory is demonstrated by the commonly
encountered case of power law noise spectra, where approximate analytical results can be obtained.
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I. INTRODUCTION

Decoherence of qubits can be calculated relatively easily in
two cases: that of pure dephasing due to Gaussian longitudinal
noise acting along the energy quantization axis of the qubit
[1,2] and that of Markovian evolution of open systems that
applies when the relevant environmental fluctuations (coupled
along any axis) act on timescales shorter than that of the open
system dynamics of the qubit [3,4]. However, many solid-
state qubits decohere due to environmental fluctuations with
nonnegligible correlation times that couple along at least two
perpendicular axes. Born-Markov treatment of both relaxation
and dephasing is then inapplicable, and a general solution
beyond the pure dephasing case is out of reach [5,6]. In the
often-encountered case of noises with spectra concentrated at
low frequencies—quasistatic or 1/f type [1]—an adiabatic
treatment of qubit dynamics caused by multi-axis noise is
possible [7,8]. Our focus here is on two-axis coupling of a
qubit to such low-frequency noises, and we develop an ap-
proximate analytical solution to decoherence for a qubit that
is freely evolving or subjected to dynamical decoupling (DD)
sequences [2,9-14].

The Hamiltonian of the qubit-environment system can be
written quite generally as

H(1) = 5[B+E0)] -0, ey

where B is a vector of the qubit control fields, &(¢) is a vector
of environmental quantum operators or classical stochastic
functions representing noise, and ¢ is the vector of Pauli ma-
trices. Strictly speaking, the qubit control fields are not static,
as they typically include DD pulse sequences, but here, we
assume instantaneous pulses that result in perfect 7 rotations
of the qubit state around the y axis, perpendicular to both
control and noise directions.
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Solid-state devices are abundant with sources of low-
frequency excitations such as slowly switching two-level
fluctuators responsible for 1/ f noise [1]. Prominent examples
of solid-state-based qubits affected by two-axis low-frequency
noise include those based on two [15-17] or three [18-22]
exchange-coupled semiconductor quantum dots (QDs) con-
taining at least two electrons and both charge and flux
superconducting (SC) qubits [23-25]. In all these devices,
electronic charge noise and flux noise spectra follow power
law 1/f* over a wide range of frequencies, with o generally
falling in the range of o = 1-1.25 [26-30]. Several experi-
ments reported other power laws, including o« =0.9 for flux
noise in a SC qubit [23], « = 0.7 for charge noise in GaAs
QDs [31], « = 1.93 in a charge-tunable SC device inflicted
with anomalous large-amplitude charge noise [32], and a dual
power law of o = 1.48/1.97 of charge noise in Si QD, where
the higher power law was measured at extremely low frequen-
cies <10~ Hz [33].

We focus here on the case of a two-electron singlet-
triplet (S — Tp) qubit in a double QD (DQD), for which B =
(8h,0,J), where §h is the interdot magnetic field gradient
across the QDs, and J is the exchange coupling [17,34].
The latter originates from Coulomb interaction and as such
exhibits slow fluctuations [31,35-38] caused by 1/f* charge
noise. Finite 64 arises due to a spatially dependent field from
a nanomagnet [33,39—41] or inhomogeneous nuclear spin po-
larization resulting in an Overhauser field gradient [42,43].
In the latter case, nuclear noise is concentrated at very low
frequencies [44,45], and the quasistatic approximation breaks
down only at timescales >10 us [46—48]. However, charge
noise leads to stochastic shifts of the electron wave functions
with respect to the frozen nuclei, thus making the Overhauser
fields experienced by the electrons inherit the characteristics
of charge noise [45,48]. The same happens when 84 results
from an external magnetic field gradient: charge noise induces
variations in electron positions that translate into fluctuations
of their spin splitting, thus 4. Consequently, noise in both 5k
and J is of 1/f“ type at high frequencies, with an additional
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zero-frequency component for §i accounting for nuclear spin
diffusion. In GaAs QDs, 5k noise power spectra characterized
by o = 1-2.6 were measured at frequencies between ~1 kHz,
below which classical nuclear spin diffusion results in a
Lorentzian, quasistatic noise, and ~100kHz [44,45,49,50].
It should be stressed that our model for two low-frequency
noises applies to all the abovementioned qubits, so while we
present below results for the S-7; qubit, our theory applies to
a wide class of systems.

Energy relaxation of the qubit depends on the availability
of environmental excitations with appreciable transverse (with
respect to the quantization axis set by B) coupling to the
qubit and energy that is comparable with its level splitting. In
contrast, environmental degrees of freedom with any energy
contribute to pure dephasing of superpositions of the qubit
eigenstates. In devices with strong low-frequency noises, the
timescales of dephasing and relaxation are thus often well
separated, with coherence becoming limited by relaxation
only after application of a very large number of DD pulses
[23]. This justifies our neglect of relaxation and focus on
effects of dephasing and tilting of the quantization axis of the
qubit. A crucial element of our theory follows from the fact
that transverse noise couples to the qubit phase nonlinearly
(quadratically in the lowest order). As a result, even a noise
with Gaussian statistics becomes effectively non-Gaussian,
and calculation of its higher-order cumulants, beyond the sec-
ond one, is necessary to correctly evaluate the dephasing of
the qubit [7,51-53].

In this paper, we develop a unified theory for the time
evolution of a qubit state under two uncorrelated, zero-mean,
low-frequency Gaussian noises that operate on perpendicular
axes [54]. Our theory extends a previous analysis made by
Barnes et al. [8] for S-Tj qubits in two respects: (i) we perform
the calculation to the second order in &(¢), such that (quadrat-
ically coupled) transverse noise is considered, and (ii) we
include DD control pulse sequences, accounting for qubit evo-
lution outside the free induction decay (FID) case. The latter is
made possible by the former, as effects of transverse noise are
typically overshadowed by the longitudinal one when no DD
filtering of the lowest-frequency longitudinal noise is done.
We also include contributions resulting from the nontrivial
interplay of longitudinal and transverse noises, as well as axis-
tilting effects, thus providing a complete analytical treatment
of the problem of decoherence due to two-axis slow noises.

II. FORMALISM

We specify the qubit working position for a two-axis con-
trol field B = (B, 0, B;) using the angle ¥ = arctan(B,/B;),
so that &, &, in the Hamiltonian, Eq. (1), represent fluctuations
of the respective control fields. We assume that these act on a
much slower timescale, as compared with the qubit dynam-
ics, allowing us to take the adiabatic limit, where the qubit
evolution operator is approximated by applying instantaneous
eigenstates of H(z) [8]. The resulting instantaneous unitary
evolution reads

U(t)%<

cos ¢ — isin ¢ cos x

—isin¢ sin x

—isin ¢ sin x
cos¢ +isingcosy )’

2

where the noises impact the evolution by modifying the rota-
tion axis x (¢) and the accumulated rotation angle ¢ (¢):

_ B)C + g}( _—
x (t) = arctan <m) =x+6x(@), 3)
P(t) = ¢(t) + 89 (1). 4)

Without noise, we have ¢(t) = % fot dt’ f;(t")B, sec’y, where
/(¢ is the switching function corresponding to the employed
pulse protocol, whose Fourier transform f;(w) is known
as the filter function [55]. For FID, ¢(t) = VB? +B2t/2,
whereas any balanced pulse protocol yields ¢(r) = 0 since
[ f:(#))dt" = 0. One can split the qubit-environment term in
the Hamiltonian, Eq. (1), into parts that are parallel and per-
pendicular to the qubit control axis, using & = &,siny +
&, cosy and &, =&, cosy — &, siny. To second order in &,
[ €{|l, L}, we have

Sx (1) ~ COSXM)[l - COSXs”(t)}, )

B B
cos

1 t
39() ~ 5 /O dt/ﬁ(r/)[s”(z’wWsim} ©)

Utilizing the qubit Hamiltonian eigenstates in the tilted
rotation axis 7/ = (siny, 0, cos Y):

cos % —sin %
|+> - sin X ) |_> - cos e ) (7)
2 2

and the perpendicular state |x') = %(|+) + |—)), the effects of

the two noises can be quantified by the coherence function:

N T (1) —
W) = [{p— () _ <(+|U(t)IX><XIU Q] )>‘
[{p+-(0))] (+x) x| +)

= [(1 —2sin¢ cosdy(cosdy sing + icos¢))|

oA

¢ (o200 _ %(axz(cos 2¢ + e_zw’))’, ®

where (-) denotes Gaussian averaging over both &, and &,, and
the last row is correct to the second order in these noises,
with the first (second) term corresponding to the rotation angle
(axis tilting) error.

The presence of quadratic noise terms in §¢ requires a full
cumulant expansion in the averaging since £/ (¢) are no longer
Gaussian distributed [53]. For zero-mean Gaussian noises,
(EX(t)) = 0 for odd k, and even-power terms factorize to
two-point correlators (£(f)&(t,)) = S(t12), where t, =1t —
t,. Addressing first the dominant contribution due to rotation
angle errors, we have

(e¥200) = exp {2&1‘%% } )

where C; generalize the standard noise cumulants [56] for two
uncorrelated noises and are given explicitly in terms of their
noise power spectra in Sec. I of the Supplemental Material
[57].
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The structure of the kth cumulant reveals two types of
contribution§ that we coin linked R (t) (with k correlators) and
semilinked R, (t) (with k — 1 correlators):

R 1/i\* [*do - 3
k(t)—_ﬁ(_>/ n_—ft(a)u) - fi(wrr)
k
x [ Jsin® XS.(@i)+ cos® XSc(@)], (10)
i=1
1 dwl da)k_l
Ri(t) = ——(—) (B, smx)f —
X fi(—oD[S.(01) — S fi(@i2)
k—2
x [ [ fi(@iiin)lsin® X3(wi)+ cos® XS(wi)]
i=2
x fi(@r-DISo(@r-1) — Sx(@r—1)} (11)

In Egs. (10) and (11), S.(w) and S (w) are the power spectra
of the two noises. The linked diagrams involve only &2 con-
tributions, whereas the semilinked diagrams include a mixing
of (Ei and & terms. Equation (9) then reads

(e = c.(t)ey (1) expl—(Sax + )]

X explEi(Tax1 + Zoes)], 12)

where Tpr=)"_| Ru(t) [Ex =D i > Ror(1)] and By =
i3 pmoRor1 (1) [Xopr1=i)_  Ryy1(1)] are the summa-
tions over linked (semilinked) even and odd diagrams,
respectively, and we singled out the semilinked contributions
in the second cumulant that are accounted for in Ref. [8]:

c.(t) = exp {—cos27 / N ;Em(w)ﬁ&(w)},
0 T

cx(t) = exp {—sin27/ Z—”|ﬁ(w>|2sx<w>}. (13)
0 T

For an odd number of DD pulses, f;(w) is an odd function,
and only even cumulants survive. In this case, the phase terms
in Eq. (12) vanish, and only signal decay remains.

The evaluation of the axis-error, transient contribution in
Eq. (8) is more involved, and the calculational details can be
found in Sec. II of the Supplemental Material [57]. We note
here that the leading terms in this contribution vanish for any
balanced DD pulse sequence. Finally, we provide for com-
pleteness formulas for singlet and | 1) return probabilities,
correct to the second order in noise amplitudes, under any DD
pulse sequence [57], corresponding to experiments reported in
Refs. [45,58], respectively.

III. CUMULANT RESUMMATION FOR
LOW-FREQUENCY NOISES

We use the resummation technique of Ref. [53] to derive
analytical results for the cumulant sums found in the rota-
tion angle error contribution, Eq. (12), and for the various
time derivatives of these sums in the axis-error contribution
[57]. We split the noise into a dominant low-frequency, static
component and a high-frequency, time-dependent component
& = &'+ &M(r) and denote the standard deviations of the

low- and high-frequency noise components as

2 Vdw ) ®dw .
oy = / —Si(w), o= / —Si(w), (14)
o T w1 T
where wy is a low-frequency cutoff, determined by the shorter
of the noise correlation time and the total acquisition time,
both of which are typically much longer than 7, and w; can
be taken as 1/t or otherwise as a fixed ultraviolet cutoff.
Our approximate calculation of the cumulant sums rests on
the assumption that 0,7 < (TO2] for both noises at timescales
relevant for the qubit operation. This assumption holds for any

power law noise with o > 1.

Replacing each noise correlator with  S;(#;;) =
(& lhf ()& lhf @)nf + 0021 and keeping only terms with maximal
power of a&, we derive explicit expressions for the cumulant
terms and their time derivatives [57] and perform the
summations in Eq. (12). Whereas for any balanced DD
sequence this procedure amounts to replacing every second
correlator with 0021, in the FID case, all correlators are
replaced with 0021. The linked and semilinked even sums are
found respectively as

Vn@), DD
exp (—XZxy) = 1/4 ’ (15
Mp (), FID
and
—hf =
s |76 5[ 7205 (t)od_ +ISM ()52} DD
%= ’
ﬂFI;(r) I;)zo'g 5(2)+l4, FID
(16)

where we have defined

—p ohf -1 —4 2\ I

0.5, (1) 0.t
n(t)= {1+°+B—;} P nen()= <1+OB+) - a7
In Egs. (16) and (17), oozi = O’OZZ + 0’02x, (?gi = sin? 70022 +
cos*X¥og,, and similarly, the high-frequency combined
noise correlators are given by Sf(t) = S?f(t) + Si,‘f(t),
E}I(t) = sin® ¥SM (1) & cos? xS (1), where  SM(1) =
f;}c 42| f/()|*)(w). The sums over odd diagrams in Eq. (12)
are nonzero only for FID, giving a nontrivial phase shift in
W (¢) that is characteristic for free evolution dephasing due to
low-frequency transverse noise [7,59,60]:

FID ! _%th
)32k+1(t)— arctan 5 )

sin” 2 4.3
t . 18

3B nFp (1)0g_ (18)

We calculated the highest subleading contribution due to

linked odd diagrams with one less 0021 factor, showing it to be
negligible for experimentally relevant noise parameters [57].

2R =

IV. RESULTS

We now demonstrate the versatility of our two-axis noise
theory in predicting decoherence at arbitrary working posi-
tions by considering real-life noise parameters pertaining to
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FIG. 1. FID decoherence function, Eq. (8), calculated to the first
order (dashed lines) and with a full cumulant summation (solid
lines). (a) J = 0.5 ueV, sh =0 (}x =0), ogy = 0.1 eV relevant
for GaAs QDs, op; = 1 neV (blue lines) and 5 neV (red Lines),
and A; = oy, /5. The perpendicular noise contribution becomes dom-
inant with smaller charge noise amplitudes. (b) J = 0, 64 = 0.1 eV
(X =7m/2), ooy = 10neV, and A; = 0.20y;. We consider low static
magnetic noise values ooy = 1 and 0.1 neV with the latter relevant
for isotopically purified Si QDs with micromagnets [33,40].

the charge (J) and magnetic (H) control fields in singlet-
triplet spin qubits. We consider oy = oy = 1, such that
Sim = Aj /@ for both noise spectra with a low-frequency
cutoff of wg = 1 Hz, and include for the nuclear noise a qua-
sistatic contribution SIqj:aOzH(S (w). Unless otherwise noted,
we take the high-frequency nuclear noise amplitude as Ay =
66 peV [50], attributed to shaking of the electronic wave func-
tion by charge noise. For oy =1, we have A; = oy;/5 at typical
wo values and A; ~ 1073/, as was measured in Ref. [31].

In Figs. 1(a) and 1(b), we consider FID at ¥ =0 and
m /2, respectively, focusing on scenarios where the transverse
(L) noise contribution is comparable or greater than the lon-
gitudinal (]|) one. In either case, the main contribution to
the longitudinal noise comes from c./;, Eq. (13), resulting
in dephasing time of Ty = +/2/0g|, whereas the dominant
contribution to the transverse noise comes from the linked
terms, Eqs. (15) and (17), resulting in dephasing time of
T ~ 7.3BH/<702l [61]. For ¥ = 0, the transverse (nuclear)
noise contribution can easily dominate dephasing due to
the relatively large Overhauser field gradient static noise of
ooy = 0.1 peV, measured for GaAs QDs [50] [see Fig. 1(a)],
but at ¥ = m /2 [Fig. 1(b)], the transverse (charge) noise
contribution becomes important only for a quiet magnetic
environment, e.g., by implementing a field gradient with local
micromagnets (ogy < 0.1neV was measured in isotopically
purified Si QDs with nanomagnets and charge noise domi-
nating spin dephasing [33,40]). As the quantization axis tilts
X 2 0, the longitudinal noise contribution includes a nuclear
noise component, thus becoming dominant with a resulting
Gaussian decay. This is demonstrated in Fig. 2(a), where
we provide T, FID times vs 6h for J = 0.5 ueV. With in-
creasing 8h, decay is dominated by longitudinal contribution,
adequately described by the first-order calculation.

To provide an intuitive explanation for the decoherence
in a DD setting, we consider spin echo (SE) as an example,
assume quasistatic nuclear noise (Ay = 0), and again limit
our discussion to the linked terms, Eqs. (15) and (17) (this

(@) (b)
FID R G, =5 neV
- \ c,,=1nev
=Rl 3 6,,=0.05 J 3
o
Full
w0k T 1sr Order
sl aul sl aul 10 al
10" 10° 10° 10" 10° 10°
Sh (ueV) J (ueV)

FIG. 2. Dephasing times for quasistatic nuclear noise (opy =
0.1 eV, Ay = 0) as a function of (a) §4 for FID at J = 0.5 ueV,
ooy = 1 neV and (b) J for spin echo (SE) at & = 0.5 peV. Several
charge noise models are shown in (b), including o, = 5 neV (red), 1
neV (green), and 0.05J (blue). Solid lines depict full cumulant sum-
mation, and dashed lines show first-order calculation. In all cases,
A J = OpJ / 5.

picture is largely unchanged if small dynamic nuclear noise is
added). Starting at )y = 0, we have Gaussian decay due to lon-
gitudinal noise 7)° &~ 3/A,, while the quasistatic transverse
noise is echoed away. As ¥ increases, the longitudinal de-
phasing time becomes TzlﬁD = TPP/ cos x, whereas under the
reasonable assumptions A; > Ay, ooy < ooy, Eq. (17) gives
TAP ~ 2BT))" /(ooy sin 2) as long as tany < ooy /0oy is
met. As x approaches /2, longitudinal noise becomes ir-
relevant, whereas the transverse dephasing time saturates at
TAP ~ BT,5P /oy,. Figure 2(b) illustrates this nontrivial two-
axis behavior, showing a crossover from the power law to
Gaussian decay for SE.

Finally, Eq. (17) suggests that the transverse dynamic
noise contribution is renormalized by o3 > Tesulting in an
unexpected effect whereby longitudinal quasistatic noise can
impact decoherence under DD. This effect is demonstrated
in Fig. 3, where we consider 4 >> J and show that increas-

0.8+ ) .\'\‘ Gy, =0-01 peV |
G,,=0.1 ueV
0.6 | ‘\\\ ) <.\_.\.. _
0.4} A\ ]
0.2} S
0 . s
0 10 20 30 40

T (us)

FIG. 3. Decoherence function vs time for SE at §2 = 0.1 ueV,
J =0.02 ueV. The charge noise parameters are og; = 5 neV and
A; = 0y;/5, and we compare nuclear quasistatic noise of ogy =
0.01 peV (dashed red) and 0.1 ueV (dashed blue). Solid lines depict
decoherence with additional dynamic nuclear noise with amplitude
Ay =66 peV. Dotted lines illustrate the results for Ay =0 excluding
the semilinked contribution from Eq. (16).
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ing the (predominantly) longitudinal nuclear quasistatic noise
from ooy = 0.01 to 0.1 weV results in 25% (37%) reduction
in dephasing time with (without) additional dynamic noise.
We note that additional longitudinal-transverse noise mix-
ing originates from the semilinked contributions, as seen by
comparing dashed lines (full calculation) with dotted lines
(excluding semilinked terms) in Fig. 3.

V. CONCLUSIONS

We have developed a theory to evaluate qubit state evo-
Iution under two perpendicular low-frequency noises and
obtained closed-form results for the decoherence in both FID

and DD settings by utilizing cumulant summations. Our the-
ory captures the dynamics of the qubit at any working point,
including the optimal point, where transverse noise (missing
in previous first-order treatments) dominates and, near that
point, where the interplay between longitudinal and transverse
noises leads to nontrivial dynamics.
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I. CUMULANTS FOR TWO PERPENDICULAR NON-CORRELATED NOISES

Starting with Eq. (6) in the main text, we perform Gaussian averaging of 2d¢ over both £, and £,. Assuming zero-mean
noises, we keep only terms with even powers of either &;, and find the first few cumulants of the combined two noises as:

C1=(20¢) = [sin?XS.(0) + cos® X5, (0)] / dt1fi(t1) (L1)

COs X

z

27
Ca=((200)%) - (20¢)* :/dtldtht( )ft(t2){ 232X [sin® XS (t12) + cos® XSz (t12)] [sin® XS- (t21) + cos® XSa (ta1)] +
[0082 YSZ (tlg) + sin2 YSQC (tlg)] } (L.2)

Cy=((260)%) — 3((206))(266) + 2(266)° = /dtldmdtgft<t1>ft<t2>ft<t3>

3 k=3
Lo _ 3 9
{ o8 X [sm2 XSz (tiiv1) + cos? XSz(ti,i+1)] —|—§ cos® Y sin? X [S. (t13) — Sz (t13)] [S.(t23) — Sy (taz)] 1.3)

=1
(k+1=1)

Ca=((209)") — 4((200)°)(209) — 3((200)*)* +12((26¢)%)(20¢)* — 6(20¢)" /dt1 sdta fy(ta) - felta)

3costy - 12 .
{ Bi X H [Sln2 XS (ti,i+1) + cos? XSz (ti,,‘+1)} + ? cos? YSIH2 X [Sz (tlz) — S (tlg)] X
T ey :

[Sln2 XS- (t23) +COS2 XSz (tgg)] [Sz (t34) -5, (t34)] } (1.4)

We note that the last term in C results in the rotation angle error contribution found in [1], whereas all other terms and cumulants
are absent in the first-order calculation.
In terms of the noise power spectra and the Fourier transformed filter functions:

Sy(w) = / - et S (t)dt, (L.5)
Filw) = / et f (1)t (1L6)

the kth cumulant (for £ > 3) is found as:

o _(k=1)! (cosx k/wdwl dwkf( " ﬁ[ 5. (wi)+ 25 )}_’_k' cosy )" 2
FET B, T w12 +(wk1) 11 sin? XS, (w;) +cos® XS, (w; : B

k—2

sin? 2y /OOOdwldwklft( )[ (w1)— S, (w )} ft(w12) H ft(wi,i+1) [Sinz X‘gz (wi) + cos® Ygz(wz)}

=2
Felwr) [Se(wrm1)=Salwr-)] (L.7)
where w;; = w; — w;. We identify two types of terms in the above result: linked terms (first line) with £ correlators and semi-

linked terms (lines 2-3) with k& — 1 correlators in the kth cumulant. These two contributions correspond to the linked (R (t))
and semi-linked (Ry) diagrams given in the main text in Egs. (10)-(11).
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II. AXIS-ERROR CONTRIBUTIONS

Here we provide details on the calculation of the axis tilting, transient term, in Eq. (8) in the main text. We begin by rewriting
the time-dependent noise-induced error in the rotation angle, Eq. (6) in the main text, using distinct time dependence for each of
the error terms:

200(t)= limt{cosx /O tadt’ fr., ()& (t) + siny / v dt' fo, (1) (") + C20 :5 [sin® ¥ x
/ 4t fr, ()E2(F) + cos? X / Lo () —sin2 [ i, )| | 1)
such that Eq. (12) in the main text is replaced with
(eF29%y — }121 [ e (ta)ca (tg)e™ Timt (FD Rty taite) o= Zkza(il)kék(tu,tﬁ,tw,tg,tg)] , (I1.2)

and we singled out the semi-linked diagram in the second cumulant, given by Egs. (13) in the main text, to facilitate comparison
with Ref. [1]. The identification of the time dependencies of individual noise terms in the linked and semi-linked diagrams
(calculated explicitly for low frequency noises in Section IV of the supplemental material) allows us to selectively differentiate
with respect to the various ¢;’s and obtain the axis-tilting error contribution, as well as the corresponding contribution, Wy, given
in Eq. (IIL.4) below, for the return probabilities in specific experimental scenarios. Recalling that f;(¢) = (—1)", where n is the
number of control pulses, we find

(€, E2i00) — Fi(—1)" lim [Cz(toz) _Z(il)kaR(tmtﬁatwt&te) (e£259)
: (

cosY ti—t|cy(ta) Oto

k=3

12isey _ FI(=1)" ¢a(ts) R ORK(tas tg, by, ts,te) | Loisg
<£xe > siny t*ﬂf|‘01(t5> kzzg(il) atﬁ <€ >

? cosysin?y ti o Pt ot., Pt ot.,
; +2i(—1)"B, .. ORy(ty, ts,tc) ORk(ta,tg, by, ts5,tc) ,
2_+2i5¢\ _ k v Lo, k U5 Ly, s +2i56
(2et2i00) = T2 ol | ()P 4 Y () o (e21%0)
X k=1 J k=3 b
12isp, _ Fi(=1)"B, ) ORk(ty, Lo, te) R OR(tas tg, by, ts,te) | | soise
(€€ )= E&?};ﬁ;{}at (+1) T + ) (£1) 5 (et2199), (I11.3)
k=1 k=3
Denoting
o to, s, te oy ta,tg, Ty, ts5, te
= thglt Z%’ Si = thint ZaRk ﬁ QA2 )7 (IL4)
j=apy K ’ jma By, se k

we find the axis tilting error term in Eq. (8) in the main text as

(=n"
B

z . B B 5 ~ 1 -
(bln 26 + 56_2 ¢) [(Egkﬂ + 3041 + Z2k+1) + (Egk+1 + 55+ E%kﬂ” (COS 20+ 26_22¢>}(IL5)

f% (6x? [cos2¢ + e7%]) = cs(t)cp(t)e™ (Bar+Eae) { [(ng + 39, + Egk) (zgk +08+ 5 )}

where

(22k+1 + iZkJrl) . (11.6)

N =

o=0+

III. RETURN PROBABILITIES IN RECENT EXPERIMENTS

Here we calculate return probabilities for two, often-encountered experimental setups for singlet-triplet qubits: (i) preparing
the qubit in a singlet state, letting it precess (freely or under DD pulse sequence) for time ¢ at position dh >> J and measuring



singlet return probability, Ps(t), as was done, e.g., in [2] to obtain the noise spectrum of the nuclear environment; (ii) preparing
the qubit in a singlet state, adiabatically ramping detuning to bring the qubit to the | 1) (the ground state for 6h >> J position),
followed by a rapid increase in J to allow qubit evolution for time ¢ at J > dh, and readout to measure return probability Py (¢)
[3]. In both scenarios, the DQD potential is initially tilted to form a (0, 2) charge configuration, so that the qubit is initialized in
a singlet state. Qubit precession is then measured either between S and T (in (i)) or between | 1) and | 1) (in (ii)), exposing
the qubit predominantly to nuclear or charge noise, respectively.

Using the expansions in Egs. (5) and (6), we calculate return probabilities by performing Gaussian averaging over both &, and
&, noises, as was done to obtain Eq. (8) in the main text. For the two scenarios above, we have, to second order in &;

(Pg(t)) =1 — (sin? x(t)sin® p(t)) = 1 — %sinQy [1— cos20Wp(t) (1 + csc®> YWr(t))] (IIL1)
and
(Pry(t)) = 1 — (cos® x(t) sin® ¢(t)) = 1 — %cos2 X [1 = cos26Wp(t) (1 + sec®> XWr(1))] (1IL.2)

where (-) denotes averaging over both £, and &,. The dominant contribution to decoherence in these return probabilities, Wp (t)
is due to accumulated rotation angle errors, d¢, and is found using Eq. (12) in the main text as

Wp(t) = <COS2€§((;)> = (cos 26¢)) — tan 26 (sin 25¢) = C()Szzcz(t)cm(t)e[z2’“+i2k], (1IL.3)
cos cos

where ¢, (t) and ¢, (t) were given in Egs. (13) in the main text, and ¢ was defined in Eq. (IL6) above. The small transient
contribution due to axis tilting errors is captured by Wr(¢), which we find as

Sil’l2 2x fgp fz 1 fz gz - Sm gz
W) = g (200 (55 ) [ 15 (55 Jreoom (552
2(=1" o (C() &p\ o (G &) - s
5 {[cos X(cx(t) Y5, ) —sin“x () o (20052x+1)(22k,+ E2k>
(2cos2y—1) <ng+ f]gk) — 2cos 2%(25,6—1- i;k)} tan 2¢ + [COSQ Yizﬂm-l — sin? yf]gkﬂ-i-

(2cos 2Y+1) (EngJr ing) + (2cos 27— 1) (23,€+1+ ig,m) +2cos2Y (Egkﬂ + igkﬂ)} } . (I1L.4)

IV. DETAILS OF CUMULANT RESUMMATION FOR LOW-FREQUENCY NOISES

The evaluation of the linked and semi-linked diagrams in Egs. (10)-(11) in the main text, and their time derivatives in Egs. (IL.3)
above, is made possible by reexpressing them in terms of time integrals:

k%)

1 . s 2m 9y _ k—2m
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m=0 i=1
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T e ) fr(tin) = Foo (6) Fos (b1)] [S=(ts 1) St jaa) + Sa(ty 1) Sz (tjr,j42)] av.n
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and
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In the above expressions, we have kept explicit time dependencies, ¢;, corresponding to the various noise terms, to facilitate the
evaluation of the transient axis-tilting error contributions (see Section II of the supplemental material). It can be verified directly
that in the limit ¢; — ¢, Eqs. (IV.1)-(IV.2) reduce to Egs. (10)-(11) in the main text.

In what follows, we assume a DD scenario and discuss the FID case separately below. Replacing each noise correlator in
Egs. (IV.1)-(IV.2) with S;(¢;;) = (€M (¢:)€M ()t + 02, and keeping only terms with maximal power of o2;, the even and odd
linked diagrams read

RQk(t’ya t67 te) =

(_1)k+1 s ! (Qk—m

k—m m
% — ) [s01(ty,ts5)] [so2(ty,ts,te)] (IV.3)
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[so2(ty, ts, te)]™, (Iv.4)

where we defined

sty ta)= [ % [sint x| o )] 820 + cost x| i) 821w+
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and

© 92—
sin“ 2 dw
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0

and denoted S lhf(w) as the high-frequency part of the noise spectra (see main text below Eq. (17)). The even and odd semi-linked
diagrams read
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B (9 +6) (2]“""‘4) (501 (£, )] [SUz(twtéate)]mH} , av)

m=0

and

5 i(=1)k ? (ki) N [ 2k—m—2 k—m—1 m
Rogr (s g, by ta te) = ey 2) RS (T lsou(t t)) T [soa(t ts 8] +

m=0

'£
B
9 1+(2k+1) = k m—3 k—m—2 m+1
B°F, Sol(t,y,t(;)] [SO’Q(tW,t(;,te)] . Iv.8)

m=0



In the above equations:
FPY =od f2.(0) [sin? XM (1, £) +cos® TSHI (¢, 15)] +0p f2(0) [sin2 XS (£5, 1) + cos? XM (t5, £5)] —
203,00, f1,,(0) fi, (0) [sin® XM (te, t) +cos® XS (te, t5)]
Fy*M =03, f2.(0) cos® X + 03, f2,(0) sin? X, (IV.9)
G =03, 5in® X [ (Fa 1) S (b, t) + S5 (19, ) B (£, t5) = S2 (b, t) ST () — ST (Fas 8 ST (8, 1)) +
031 COS X [Shf(tm i )Shf(t5a ) Shf(tﬁv t5)S;l (t57 tﬁ) - S?f(tm tE)So}clf(ttsv tﬁ)*sgf(tm te)S?f(t(sa tﬂ)]
G = cos? XS (o, to) + sin? xS (tg, ) (IV.10)
and
FPD =08, [ o (0052 (s o) + Fun (0)S2 by ) = Fon (0)SEF (3, ) = o (0)SE (s )] +
0B [ Fia )82t )+ Fou (0)SH (15, t3) = Fon (0)S2 (b, t0) — Fi, (0)SE" (ters )]
FP*Y = £, (0)02, cos? X [sin? XS (ta, ) +c0s> XS (ta, ts)] + fr, (0) 03, sin® X [sin? XS (t5, )+
cos XSE (1, 1)) + [sin? X i, (0)08, +0052 i (0)08, | [sin? XS (15, 14) +05? XS (ta, ta)] , (AV.IT)

where we have defined

d ~ ~ -
SH (13, 1;) = / ) ) + ] 3 ), (v.12)
0
such that
o0 d - 2 "
St )]0y = SP0 = [ 2] S, (IV.13)

Within the low-frequency noise approximation, the above formulae for the linked and semi-linked terms can be shown to
converge to their original expressions, Egs. (10)-(11) in the main text, when the ¢; — ¢ limit is taken. Notice that f;(0) =
J fi(¥)dt' = t for the case of FID, otherwise for any balanced pulse sequence it is zero. As a result, under any DD pulse
sequence, all odd terms and their derivatives vanish to leading order. We provide their expressions and summations here for
completeness and to facilitate the FID results stated at the end of this section. Sub-leading terms to Roj1(¢) and its derivatives
that are nonzero for balanced sequences, are provided in Section V of the supplemental material, but their contribution is
negligible for any experimentally-relevant noise parameters. Similarly, the semi-linked even terms, Ro(t), given in Eq. (IV.7)
include AE%) (leading) contributions that vanish except for FID and BZ-(%) (sub-leading) contributions with one less 0(2)1 factor,
that remain nonzero in all cases [see Egs. (IV.9)-(IV.10)].

We can now carry out the explicit time derivatives needed to evaluate the axis-tilting contributions in Eqgs. (IL.5) and (II1.4).

Using S (¢), ?if (t), and 02, , 73, , defined below Eq. (??) in the main text, we find

iijk ti%t:(_QlB):;;H{U(QHST(t)]kISIU XUOZShf( t)

e i | A

8;? o %{Egﬁf(t)rilsm 2% [UOmS}lf< ) + nggif(t)}, (IV.14)
] Lo 0] A0 b B ) 1)
] Lo st [HO o ) )
ia%iﬂ ot Q(J;flk)jl[ﬁgff(ﬁ)} k;%f ()) 8;: : (IV.15)



and

ORor|  (—1)*Y(B,B.)? [,2 —hf

| = 5] 20 f 0o S0 + 5ot (505 0)|

OR —1)*(ByB.)?1_y —ht, qk2[ - = - d X
| =g [ ] R0 S0 + g, 5 (S0 @) |

ti—t

OR k+1(B,B. —nt, k=2 f2(0 . . - hf 1 .
2| _ (DM (B:B.)” [50+s+ (t)] { t2( Mot g8 (1) sin? 5 + 0. 5 (t)}+2 [ag+s:f(t)sgf(t)+

8t7 92 B2k+2

t;—t

2 4 hf (412 2\ 2
2 Ghf () ohf (4) w2 o | FAO)eg [SM)]T | 050y Dsoy B 5 —=hf, .1 0803
0, S™ (1) S™ (t) sin X]+(/€ 2)[ = + ?f(t) ot +2 ot + B.B. {ff( )To.+S, (t)} o [
DRy
Ots

—1)*+1(B,B, —hf F2(0) = hf 115 ¢
_CVMUB B it {A i 80 cos?x + o B 0] 43 [, 8 s o)+

232k+2 2

t;—t

) ) 0)od_, [SMW]| (9501 , 050, B \*1a 5, oht ] 9503
A0S (1) co x}+<k—2>[ ot [hf(t)j ]( o250+ (52) [0, + 52 0] 57 }

)k B o R
el w3 ] Lot S - g (s wstio) +

_ f‘t2(0)0.617 [Sﬁf(t)]Q B2 ? 72 _92 —hf 680'2
[Q(k 2)( =20 A0 +(BmBz> (ft(0)00++5’+(t)) (- (IV.16)

90+

DRy
Ot

t;—t

D) CU B o 5] { hi0 o808 8200 +i0ts 0

OR 1)*1(B, B, _ , .
D) GO [ 5] o) 3ot 0o 80 oo}

ff( ) od_Sh(t)

+2£1(0) 7= %

o045 (1)

il e [ S (1) + £(0) 82 1
5

ORoys1 (—1)*(B, B.)? {,2 —ht )} {

0so1 o2 SM(t)+02, S (t) | Osoy
k-1 21k—1 3 Z
l( ) Ot * < * sin® 2502 S™ (1) Oty
—1)*(ByB,)? [_y —ht, Jk-1 £:(0) . %
= 1.5 ) {a 5O gus) 4 f )5
t;—t
0so 02,50 (1) +03,S8(t) | Osoq
k—1 21k—1 22 z
l( T ( T nZaxel sty ) Ot

- oy 2] {0

- g2 _Shi(¢
+ 2ft(0)7gfhf() X
T04+5+ (1)

i8R2k+1
Ots

5 (SE00R.+ 82 ()08, ) — Fi(0) (S (Do, + 52 (o) +

B 2 ghf (4 2 ohf 2 ght
47,(0) T5-— Ht( ) ke 14 UOZ.SZ (i)‘ZUOthJ (t)
52,5, (1) sin® 2xo5_S™(t)

0809
at. } . av.17



In Egs. (IV.14)-IV.17) we used:

8 1 . _ hf
501 =—sin’y (Si’f(t)afpr +5, (t)0§z>
atW ti—t 2
Osoq 1 2< hf bt 2 )
= — cos Sy (t)ogy + S o
3t .- 5 X (t ) 0+ (t)ag
680’2 850—2 350'2 “hf hf
., B _ (02, + (1) (IV.18)
Ote |4,y Oty |4, R P (075 (-

Using Eqgs. (IV.3)-(IV.11), we can carry out the cumulant summations resulting in Egs. (15), (16) and (18) in the main text.
Similarly, we use Eqgs. (IV.14)-(IV.17) to derive explicit expressions for the various time derivatives of the cumulant sums as they
appear in Egs. (I.5) and (II1.4). For odd sums (linked terms start at k¥ = 0, semi-linked terms start at £ = 1) we find:

<Z2k+1 +35 2k+1 +22k+1> =

(E;k+1 Egk—i—l)

(0052 Yigkﬂ —sin? yig,m)
(E;k+1 +E2k+1 +Z2k+1)

(ngﬂ Z2k+1) =

and for even sums (start at k = 2)

. hf .
7. ﬁ<o>ST<t>n<t>+arCta“<B w451 0) by FOSL 0
2] essYe 72 5 (0) 251 (1)

32 arctan(B\/00+Sif(t)) . Fi(0) (bt Gg, -hf
= — [ft(o) — (S (t) + =5 (t)> +
T, Sy (t) 45, (1) 70-

o
Zg;ﬁ(g)) (B0 + 2 f(t))}
)| 7038 0+ 578,80 4 oyt 50
el ntod- | 2 eyt S (05 (1) - L H0)3 (1)~ F10)5 (1)
oo | v st (8 et +8" w3, ) -
O (o351 403, 5210y ) - L7 (aésf<t>+oa+shf<t>)] : (IV.19)

. . ‘e n(t) ~hf
A Y e T L UL

2B?

. . t) [=hf - hf
53, - 55, = 1) [S+ ()2 + 5 <t>cf§+}

4B?

~ ~ 2 ~2 P g
cos? Y5L, — sin? yzgk—%n(t)a& of é£0>a§,5f(t)+%% (Sf(t)Shf(t)ﬂ
3,488+ 85,= P00 [ 200108 80 (08,5 01 + W, [5850)° 5 0080
z 2 2 - n
53~ 2= Tl {50 [0t 30403, (500" (3 oms 45" (ot ) -
ﬂz(o)ag_<ag_55f(t)+ag +Sif(t)) —507*% [Sh () Shi()] — %% [Sljf(t)]z}. (IV.20)

In Egs. (IV.19) and (IV.20), n(t) is defined in Eq. (17) in the main text. Notice that since ft(()) = 0 for any balanced DD
pulse sequence, all time derivatives of odd cumulant sums vanish, except for FID. In this case, the above sums are found by



substituting Slhf(t) — o2t and dividing all sums except the odd linked ones by 2. We find for the odd sums:

~,FID 5,FID ¢,FID Uo+ UFID
(Z2k+1 +22k+1 +Z2k+1

75 77FID
(B3 - 25) ="

232B2
(cos X22k+1 —sin *Egklfl ) = Znpip (t)05, 06t
232 2nr1p (1)
FID | &6.FID | &e,Fl e (t) _
(E;kﬂ +E2k+1 +E2k¢+1) = =5 e (t)og_t? (BQUéthQ - 1)
B2 2 2npip (t)o,
FID _~6,FID FID(1)05- o _
(ng-&-l -5 = —55 e (t)og o5t (320203+03 2 — 1> (v21)

0+

and for even sums (starting at k = 2)

. . . t
Z;,FID E<S,FID Ee,FID: UF?Q( )E()+t

:~,FID '6,FID777FID() —2 2
b)) -3 = 00400t

2 B, B
cos XEB FID 2 XES,;FID:2 ( ;3 z) nFID(t)Eé+a(2)7t3

3 * * B.B 2 t
S5 RSy D+ =2 ( 5 Z) nrip ()06, t° (anz( Jotae - 1)

: : B.B 2np1n (t)
JFID  &6,FID =B NFID o _ _
Yok 2ok :( 53 > nFID()Ug_tP’{ B3 0005 041" — (F.00, + 7005 )| (IV22)

V. SUBLEADING CONTRIBUTION FOR ODD LINKED TERMS FOR BALANCED SEQUENCES

For any balanced pulse sequence, both linked and semi-linked diagrams and their derivatives vanish to leading order in o;.
Here we calculate the subleading contribution for the odd linked diagrams (similar contribution to the semi-linked terms is yet
an order of magnitude smaller and is thus not considered).

The leading contribution in the odd linked terms, Eq. (IV.4), was evaluated by alternating k + 1 low-frequency o3, factors with
k high-frequency noise correlators, so as to obtain a maximal power of o3, factors. In the subleading contribution we consider &
o2, factors alternating with k + 1 high-frequency correlators. The resulting term is:

. k-1 2
sub Z(il)kJrl [Sdlt,y,t(;] 1 BTBZ k—2
Roka (ty s, te) = < popp FO(twté)T_H o Pty teyte) ( =g ) [souty,ts] 7+

m=0 (k>1) m=1 (k>2)

1 B,B.\ < 1 (2k+1-m P m—2
4F2(t,y,t5,te)< 52 )sz_QZk—i—l—m( I )[sol(tv,t(;)] [s09(ty, b, t)] (V.1)

k>3



where:

F() (t,y, t&) zsin2 YS:};?'Y + COS2 YS§276

Fi(ty, t5,t) =sin® X {Shf(tmt )Syhe — % (S8t ) S5 + Shf(tw,ta)shfﬂ)] +
cos® X [sgf@g, te)Say — % (S (ks 1) 555" + Shf(t[;,t(;)Shf’”)}
Fy(ty, ts, te)=(sin® XS2E (¢, te) + cos® XSH (5, te)) {SQJF(% )ghff _ - (SH(te,t )Shfﬁ I SQJr(tmt&)Shf,y)] B
% (sin® XS2E (¢, ty) + cos® XS (ts, 1 ))[SQ+(t5, Sy — %(Sﬂ(t(;, £)SEE0 4 SBE (45 15)ShE )] _

1, 5 _ c
3 (sin? xSM (¢, t5) + cos? XS™ (L5, 15)) [52+(t7,t )SyC — (S%(tv,t )Shf‘5+SQ+(t7,t5)Shf’7>] (V.2)

and we have defined:

Sglfl(t,y,tg, ) /dtldtgdtg [SIH Xft ( ) (tlg)+COS2thé(t1)SBf(t12)} X

[sin® X fi, (t2)00, + cos® X fis (t2)00,) fr, (t3) S (t31)
S:l’:il(t'vvttsﬂ ) Shfz Om"‘Sh“ 2
SBE (tit;) =S (i, t;)08, + SPE(ti, t;) 08, (V.3)

From these formulas, we calculate the subleading contributions to the odd linked cumulant sum, and its time derivatives as:

—hf
Sa (t)p(t
Dokt = %, (V.4)
755 (1)
and
SN0 NS0
. . . 1 cosY 1) —=hf —hf 1/ B.n(t 4 (t) 5nf
LIRS 3 SRS 3 = — ( —p(t)) S () + S, ()| + ( — —p(t)> —r— 534 (1)
( 2k+1 2k+1 2k+1> QE(ZHST@) Bz S}Jlrf(t) 3+ 3+ 2 cosX S}Jrf(t) 3+

—hf _ hf __hf __hf
. S5 (t) cosx  B.n(t) 3 S, (t)Fi _+S_(t)72 S, (1) cos’Y
255,54 (1) & X 25, (o, S34(1)

In the above formulas we have defined
Syt (t) = sin® YSEL(t) + cos® YSEL (1), (V.6)

and

p(t) = : (V.7)

and the explicit spectral integrations read:

- /m/ da;dzwg 00+§if(wl)§lhf(w2) [ft(wl — wo) fo(—w1) fe(ws) + h. C} ; (V-8)
o Jo
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and

b aSHY  9shta
.9
Sz (t)=sin X( ot + Bt

+C0827 3Shf6+85hf5
o, T ot

t;—t t;—t

dw+d ~hf ~hf b ~
/ / 52 S (w1)Sy (ws) (ft(w1 W) fu(— wl)ft(u@)) the
21 ot
bt hf,y hf,y ht,s hf,s
2 (t):SmQX(as ooy ) +COSQX<65 sy ) / / dwldeQJng

Oty Ots Oty 3t5
~hf  ~hf 9 /- . ~hf  ~hf B
[S (w1)Sy (W2)§ (ft(wl —wa) fr(~w )) fr(wa) + 84 (w1)5_ (wa) fr(wr — wa) fo(—w1) fe(w2) + h.c.|(V.9)

t;—t t;—t

with
~hf - .
S, (w) = sin? xS (w) + cos? ¥ S (w). (V.10)

We note that f(wy — wo)fi(—w1)fi(ws) in Eq. (V.8) is pure imaginary for odd number of DD pulses thus these subleading
contributions to Roy11 (t) and its time derivatives vanish in this case.
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