Adaptive Anomaly Detection for Internet of Things in
Hierarchical Edge Computing: A Contextual-Bandit
Approach

MAOQO V. NGO, Singapore University of Technology and Design, Singapore
TIE LUQO, Missouri University of Science and Technology, USA
TONY Q. S. QUEK, Singapore University of Technology and Design, Singapore

The advances in deep neural networks (DNN) have significantly enhanced real-time detection of anomalous
data in IoT applications. However, the complexity-accuracy-delay dilemma persists: Complex DNN models
offer higher accuracy, but typical IoT devices can barely afford the computation load, and the remedy of
offloading the load to the cloud incurs long delay. In this article, we address this challenge by proposing
an adaptive anomaly detection scheme with hierarchical edge computing (HEC). Specifically, we first con-
struct multiple anomaly detection DNN models with increasing complexity and associate each of them to
a corresponding HEC layer. Then, we design an adaptive model selection scheme that is formulated as a
contextual-bandit problem and solved by using a reinforcement learning policy network. We also incorporate
a parallelism policy training method to accelerate the training process by taking advantage of distributed
models. We build an HEC testbed using real IoT devices and implement and evaluate our contextual-bandit
approach with both univariate and multivariate IoT datasets. In comparison with both baseline and state-of-
the-art schemes, our adaptive approach strikes the best accuracy-delay tradeoff on the univariate dataset and
achieves the best accuracy and F1-score on the multivariate dataset with only negligibly longer delay than
the best (but inflexible) scheme.

CCS Concepts: « Computer systems organization — n-tier architectures; Sensor networks; « Computing
methodologies — Intelligent agents;

Additional Key Words and Phrases: Internet of things, anomaly detection, hierarchical edge computing, rein-
forcement learning, autoencoder, LSTM

ACM Reference format:

Mao V. Ngo, Tie Luo, and Tony Q. S. Quek. 2021. Adaptive Anomaly Detection for Internet of Things in
Hierarchical Edge Computing: A Contextual-Bandit Approach. ACM Trans. Internet Things 3, 1, Article 4
(October 2021), 23 pages.

https://doi.org/10.1145/3480172

This research is supported in part by the National Research Foundation, Singapore and Infocomm Media Development
Authority under its Future Communications Research & Development Programme, in part by MOE ARF Tier 2 under Grant
T2EP20120-0006, and in part by the National Science Foundation (NSF) under Grant CNS-2008878. Any opinions, findings
and conclusions or recommendations expressed in this material are those of the author(s) and do not reflect the views of
National Research Foundation, Singapore and Infocomm Media Development Authority, or National Science Foundation.

Authors’ addresses: M. V. Ngo and T. Q. S. Quek, Singapore University of Technology and Design, 8 Somapah Road, 487372,
Singapore; emails: vanmao_ngo@mymail.sutd.edu.sg, tonyquek@sutd.edu.sg; T. Luo (corresponding author), Department
of Computer Science, Missouri University of Science and Technology, Rolla, MO 65401; email: tluo@mst.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

2577-6207/2021/10-ART4 $15.00

https://doi.org/10.1145/3480172

ACM Transactions on Internet of Things, Vol. 3, No. 1, Article 4. Publication date: October 2021.

https://doi.org/10.1145/3480172
mailto:permissions@acm.org
https://doi.org/10.1145/3480172

4:2 M. V. Ngo et al.

1 INTRODUCTION

The proliferation of smart Internet of Things (IoT) devices has spurred global deployment of
smart factories, smart homes, autonomous vehicles, digital health, and so on. The gigantic net-
work of these IoT devices generates a sheer amount of sensory data that can be exploited to ex-
tract knowledge insights or detect anomalous events by leveraging recently developed machine
learning and especially deep learning techniques [2, 13, 14, 16]. Certain IoT applications, such as
collision avoidance for autonomous vehicles, fire alarm systems in factories, or fault diagnosis
of automatic industrial processes, are time critical and require fast anomaly detection to prevent
unexpected breaks that can lead to costly or even fatal failures. In such cases, the traditional ap-
proach of streaming all the IoT sensory data to the cloud can be problematic as it tends to incur
high communication delay, congest backbone network, and pose a risk on data privacy.

To this end, the emerging edge or fog computing [3, 10] provides a better alternative by perform-
ing anomaly detection (AD) in the proximity of the sources of sensory data. However, pushing
computation from cloud to the edge of networks faces resource challenges especially when the
model is complex (such as deep learning models) and the edge device only has limited computa-
tion power, storage, and energy supply, which is the case for typical IoT devices.

A possible solution is to transform a large complex model into one that fits the IoT device’s
capability. For example, model compression [6] achieves this by pruning redundant and unimpor-
tant (near-zero) parameters as well as by quantizing weights into bins, or Hinton et al. [7] pro-
posed a knowledge distillation technique that transfers the knowledge learned by a large-original
model to a smaller-distilled model by training a distilled model to learn the soft output of the large
model. However, such approaches need to handle each AD model on a case-by-case basis via fine-
tuning or are only applicable to a few specific types of deep neural networks (DNNs) with large
sparsity.

There are also other proposed approaches [8, 26] on distributed anomaly detection, but over-
all, we identify three main issues in most existing works: (1) attempting “one size fits all”—use
one AD model to handle all the input data, while overlooking the fact that different data sam-
ples often have different difficulty levels in detecting anomalous events; (2) focusing on accuracy
or F1-score without giving adequate consideration to detection delay and memory footprint; and
(3) lacking appropriate local analysis in distributed systems and thus often transmitting data back
and forth between edge sources and the cloud, which incurs unnecessary delay and bandwidth
consumption.

In this article, we propose an adaptive distributed AD approach that leverages the hierarchi-
cal edge computing (HEC) architecture by matching input data of different difficulty levels with
AD models of different complexity on the fly. Specifically, we construct multiple anomaly detection
DNN models (using autoencoder and long short-term memory (LSTM)) of increasing complex-
ity, and associate each of them to an HEC layer from bottom to top, e.g., IoT devices, edge servers,
and cloud. Then, we propose an adaptive model selection scheme that judiciously selects one of the
AD models based on the contextual information extracted online from input data. We formulate
this model selection problem as a contextual bandit problem, which is characterized by a single-step
Markov Decision Process (MDP), and solve it using a reinforcement learning policy network. The
single-step MDP enables quick decision-making on model selection, and the decisions thus made
avoid unnecessary data transmission between edge and cloud, while retaining the best possible
detection accuracy.

We build an HEC testbed using real IoT devices and implement our proposed contextual-bandit
approach on the testbed. We evaluate our approach using both univariate and multivariate IoT
datasets in our HEC testbed, in comparison with both baseline and state-of-the-art schemes. In
summary, this article makes the following contributions:

ACM Transactions on Internet of Things, Vol. 3, No. 1, Article 4. Publication date: October 2021.

Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge Computing 4:3

e We identify three main issues in existing IoT anomaly detection approaches, namely using
one universal model to fit all scenarios, one-sided focus on accuracy, and lack of local analysis
that results in unnecessary network traffic.

e We propose an adaptive AD approach that differentiates inputs by matching data of different
difficulty levels with AD models of different complexity in an HEC. Our approach uses a
contextual-bandit theoretical framework and the solution is obtained via a reinforcement
learning policy network.

e In our implementation of the proposed approach on an HEC testbed, we propose and incor-
porate an accelerated policy training method, which introduces parallelism by leveraging
the distributed environment and achieves 4-5 times faster training time than traditional,
sequential training.

e We build a real HEC testbed and evaluate our proposed approach with baseline and state-of-
the-art schemes, using real-world IoT datasets (including both univariate and multivariate).
Our approach strikes the best accuracy-delay tradeoff on the univariate dataset and achieves
the best accuracy and F1-score on the multivariate dataset with only negligibly longer delay
than the best (but inflexible) scheme.

2 RELATED WORK

Anomaly detection has been extensively studied in several surveys [2, 5, 16]. Here we give a brief
discussion of some works related to our approach, and refer readers to these surveys for a more
in-depth discussion. Deep learning is becoming increasingly popular in anomaly detection for IoT
applications [2, 13, 14, 16, 20, 21]. For univariate data, Luo and Nagarajan [13] proposed an autoen-
coder (AE) neural network-based model to learn patterns of normal data and detect outliers (based
on reconstruction errors) in a distributed fashion in IoT systems. Their AE model can be deployed
atIoT devices to perform detection, but the model is fairly lightweight and may not be able to detect
some complex anomalous events or high-dimensional data. For multivariate data, an LSTM-based
encoder-decoder model was proposed in Reference [14] to learn normal data pattern and predict
a few future timesteps based on a few historical timesteps. Su et al. [21] proposed a complex AD
model, which glues GRU (a variant of RNN), variational autoencoder, and planar normalizing flows,
to robustly learn temporal dependence and stochasticity of multivariate time series. However, this
model does not suit resource-constrained IoT devices due to its high computational cost.

On another line of research, some other distributed machine learning models split complex mod-
els and deploy partial models at different layers of HEC [8, 11, 26, 29]. Zhou et al. [29] presented a
method to reduce the inference time of a DNN model in HEC by splitting and allocating an appro-
priate partial DNN model to each layer of HEC. Teerapittayanon et al. [25] proposed a BranchyNet
architecture for an image classification task that can early “exit” from a multi-layer DNN during
inference based on the confidence of inference output. Later, the same authors [26] deployed differ-
ent sections of BranchyNet in an HEC system to reuse extracted features from lower layers to do
inference at a higher layer. This requires less communication bandwidth and allows for faster and
localized inference due to the shallow model at the edge. However, this approach has to make in-
ferences sequentially from the very bottom to the top of HEC, which can lead to unnecessary delay
and inference requests to lower layers when detection is hard. Also, it requires all the distributed
models to use the same architecture, while our approach has the flexibility of using different mod-
els at different layers of HEC.

Our work is inspired by the observation that input data often consists of different levels of dif-
ficulty in analysis (e.g., easy, medium, and complex) that should be treated differently to achieve
the best inference performance. Given the generality of this idea, some similar forms appeared
in prior work [12, 24, 28], but there are key differences from this work. Reference [24] used

ACM Transactions on Internet of Things, Vol. 3, No. 1, Article 4. Publication date: October 2021.

4:4 M. V. Ngo et al.

TrainAD | | Anomaly Scores
A\ o —L Data Pr_e- Models = Threshold Selection
Univariate data | Processing '}| Extract Train Deploy
1Lt Contextual {4 Policy | Deploy thresholds
| | Information | | Network \ AD models
iVl i loT Device I OnIin.e nomalyl Anomaly
| i ,1 Detection [Score | Result
1 Extract . .
T L -l Contextual by ooy i
Multivariate data " Network Either at loT Device,
Information
or Edge, or Cloud

— Flow of training AD models; =% Flow of training policy networks; =* Flow of online detection.

Fig. 1. Overall structure of training and online detection dataflows of the anomaly detection models. The
black solid line denotes flow of training AD models, the transparent purple line denotes flow of training
policy networks, and the transparent orange line denotes flow of online detection.

multiple k-Nearest Neighbor (kNN) classification models to train a selection model to choose a
proper inference model (among several models within an embedded device) for a given input im-
age and desired accuracy. Lin et al. [12] proposed a dynamic neural networks pruning framework
at runtime by using a reinforcement learning (RL)-based approach to decide to prune or keep
each convolutional neural networks (CNN) layer conditioned on difficulty levels of input sam-
ples, resulting in reducing average inference time while achieving high accuracy overall. Similarly,
Reference [28] proposed a BlockDrop scheme that learns to dynamically drop or keep a residual
block of a trained deep residual networks during inference, to minimize the number of residual
blocks and preserve recognition accuracy. The key differences of our work from the above are as
follows. First, these prior works deal with the task of image classification in the computer vision do-
main, while our work deals with the task of anomaly detection in IoT and edge computing. Second,
using multiple sequentially kNN classifiers as in Reference [24] does not scale well. In contrast, we
use a single policy network that directly outputs a suitable model based on contextual information,
without the need for checking each model (e.g., KNN) one by one until meeting a certain accuracy.
It is also lightweight and runs quickly and can be easily scaled to a large number of devices. Third,
our RL-based approach deals with a distributed computing environment with multiple models,
while the above prior works [12, 28] deal with a single model in a central environment.

This article is a significant extension to our preliminary work [17, 18], including new training
methods, new state-of-the-art schemes in comparison, newly designed experiments, and new re-
sults, as described in Sections 4.2, 4.3, 5.4, and 5.5.

3 CONTEXTUAL-BANDIT ANOMALY DETECTION
3.1 Overall Approach

Figure 1 shows the overall structure of the adaptive anomaly detection approach, which consists
of three flows: (1) training multiple AD models (black solid line), (2) training policy networks
(transparent purple line), and (3) online adaptive detection (transparent orange line). A common
stage for all three flows is Data Pre-processing, which has input either univariate or multivariate
data. In this stage, the training dataset is standardized to zero mean and unit variance. Then an
according training scaler is used to transform the validation/test set and used for online detection.
The standardized datasets are segmented into sequences through sliding windows.

In the first flow, Training AD Models stage constructs multiple AD models (with increasing com-
plexity) based on the training time-series sequences that are pre-processed. The AD models capture

ACM Transactions on Internet of Things, Vol. 3, No. 1, Article 4. Publication date: October 2021.

Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge Computing 4:5

normal patterns of data (either univariate or multivariate, which are presented in Subsection 3.2).
Then, the Anomaly Scores stage finds anomaly scores and thresholds for detecting anomaly during
validation and online detection phases. These trained AD models with increasing complexity and
their appropriate thresholds are deployed at different layers of HEC from bottom to top.

In the second flow, we design and train the policy networks based on extracted contextual
information (e.g., encoded feature representation) of input sequences to adaptively select the
best AD models on the fly, to achieve high accuracy and low detection delay simultaneously
(Subsection 3.3).

Finally, during the online adaptive detection phase, the trained policy network deployed at IoT
device can select the best-suited AD model on the fly during testing phase.

3.2 Constructing Multiple Anomaly Detection Models in HEC

We consider a K-layer distributed HEC system: IoT devices at layer-1, edge servers at layer-2 to
layer-(K — 1), and the cloud at layer-K. We choose K = 3 as a typical setting for a K-layer HEC
[10, 16, 19] (but our approach applies to any K in general, i.e., multiple layers of edge servers).
We consider two types of data: univariate and multivariate. In this subsection, we construct K AD
models for each data type, with increasing complexity, and associate those models with the HEC
layers from 1 to K.

3.2.1 AD Models for Univariate Data. For univariate IoT data, we adapt the AE model with a
single hidden layer from Reference [13], which has proved the feasibility of running this model on
IoT devices. In Reference [13], the compression ratio between the dimension of the encoded layer
and that of the input layer is 70%; while in our case, we use a much lower ratio of 30% to fit more
diverse low-cost IoT devices. Simulation shows that our model under this ratio can still reconstruct
normal data very well (see Figure 3). For edge servers (e.g., IoT gateways or micro-servers), we
consistently use the AE-based model with more hidden layers to enhance the capability of learning
better features to represent data. We add one more encoder layer and one more decoder layer to
the previous AE model to obtain a model that we call AE-Edge. For the cloud, we further add one
more encoder layer and decoder layer to have a deep AE model, which we refer to as AE-Cloud.

The detailed setup of the above AE-based models is shown in the first column of Figure 2. Each
number beside a layer of the AE-based model is the number of neural units of a corresponding
layer. We train AE-based models with stochastic gradient descent to minimize the mean absolute
reconstruction error between the reconstructed outputs and the expected outputs (which are equal
to the inputs). The reconstruction error is e; = |x; — x;|, where x; is input data and ¥; is the cor-
responding reconstructed output. To avoid overfitting, we use £;-norm regularization for weights
and add a dropout rate of 0.3 after each hidden layer. In accordance with the different complexities
of these models, we train them over 4,000, 6,000, and 8,000 training epochs for AE-IoT, AE-Edge,
and AE-Cloud, respectively.

3.2.2 AD Models for Multivariate Data. The simplicity of AE-based models does not well cap-
ture representation features for high-dimensional IoT data. Hence in the multivariate case (18
dimensions in our evaluated dataset), we use sequence-to-sequence (seq2seq) model [22] based
on LSTM to build an LSTM encoder-decoder as the AD model. Such models can learn represen-
tations of multi-sensor time-series data with 1 to 12 dimensions [14]. In our case, we apply our
LSTM-seq2seq model to an 18-dimensional dataset, deploy the model on the IoT device, and name it
LSTM-seq2seq-IoT. The multivariate IoT data are encoded into encoded states by an LSTM-encoder,
and then an LSTM-decoder learns to reconstruct data from previous encoded states and previous
output, one step a time. For the first step, a special token is used, which in our case is a zero vec-
tor. For the edge layer, we build an LSTM-seq2seq-Edge anomaly detection model with a double

ACM Transactions on Internet of Things, Vol. 3, No. 1, Article 4. Publication date: October 2021.

4:6 M. V. Ngo et al.

Univariate Models HEC Testbed Multivariate Models
I I |I I :> hy, ¢y
859 = AN n 3
W8 “wgﬁ Cloud server X1 X; X3 Xp
S © (DevBox with BiLSTM-seq2seq-Cloud
AE-Cloud 4 GPUs TitanX) (BILSTM-Encoder with 2x200 LSTM units, LSTM-Decoder 400 units)

@ Encoded states | %1 Y2 y?\ Yn
g . T] o i A
| R R Ll LS
©S0 N v
| EREY
S

Edge server X1 Xy

~ X3 Xn
(%]
° E| (Jetson TX2 LSTM-seq2seq-Edge
AE-Edge § () (100 LSTM units for Encoder and Decoder)
Policy | .. ‘
Network 1
| o HE S ey
I y V'S R N I
Y - Qf’y Xy X2 X3
NN ./
N loT device LSTM-seq2seq-loT
AE-loT (Raspberry Pi 3) (50 LSTM units for Encoder and Decoder)

Fig. 2. Overview of proposed approach: different AD models are deployed at different layers in a HEC archi-
tecture (consisting of hardware choices from our testbed), with a contextual-bandit policy network residing
at each loT device.

2000
—— Ground truth

E ~—— Reconstructed train_iot
=1500 —— Error
c
S
a
£ 1000
(72}
c
Q
o
g 500
o
o

0 N DA s e AN e AP et it e
0 100 200 300 400 500 600 700
Time steps

Fig. 3. Reconstruction error of AE-loT model.

number of LSTM units for both encoder and decoder, which can learn a better representation of
a longer sequence input. For the cloud layer, we build a BiLSTM-seq2seq-Cloud anomaly detection
model with a bidirectional-LSTM (BiLSTM) encoder to learn both backward and forward di-
rections of the input sequence to encode information into encoded states (i.e., by concatenating
encoded states from two directions). These are depicted in the third column of Figure 2. To train
these LSTM-seq2seq models, we use a teacher forcing method [1] with the RMSProp optimizer and
{,-norm kernel regularizer of 1e—4 to minimize the mean squared reconstruction error. The output
of LSTM-decoder is dropped out with a drop-rate 0.3, and then passes through a fully connected
layer with the linear activation function to generate a reconstruction sequence.

3.2.3 Anomaly Score. The training process shows that the above models can well capture the
normal data pattern, indicated by low reconstruction error for normal data and high error for
abnormal data. Therefore, the reconstruction error is a good indicator for detecting anomalies. We

ACM Transactions on Internet of Things, Vol. 3, No. 1, Article 4. Publication date: October 2021.

Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge Computing 4:7

Detector
Layer K
(Cloud)

Policy Det(;ctor
network Layer k &WM

(Edge layer-k)

State Z,,
(extracted Detector
features) Layer 1

(loT devices)

Fig. 4. Contextual-bandit model selection with a policy network.

assume that reconstruction errors generally follow Gaussian distribution! N (g, ¥), where p and
> are the mean and covariance matrix of reconstruction errors of normal data samples. We use
logarithmic probability densities (logPD) of the reconstruction errors as anomaly scores, as
in References [15, 17, 20]. Normal data will have a high logPD while anomalous data will have a
low logPD (note logPD is negative). We then use the minimum value of the logPD on the normal
dataset (i.e., the training set) as the threshold for detecting outliers during testing.

We consider a detection as confident if the input sequence being detected satisfies one of these
two conditions: (i) at least one data point has a logPD of less than a certain factor (e.g., 2X) of the
threshold and (ii) the number of anomalous points is higher than a certain percentage (e.g., 5%) of
the sequence size.

3.3 Adaptive Model Selection Scheme

As AD models are deployed at the IoT, edge, and cloud layers of HEC, respectively, we propose
an adaptive model selection scheme to select the most suitable AD model based on the contextual
information of input data, so that each data sample will be directly fed to its best-suited model.
Note that this is in contrast to traditional approaches where input data will either (i) always go
to one fixed model regardless of the hardness of detection [3] or (ii) be successively offloaded to
higher layers until meeting a required or desired accuracy or confidence [26].

Our proposed adaptive model selection scheme is a reinforcement learning algorithm that adapts
its model selection strategy to maximize the expected reward of the model to be selected. We frame
the learning problem as a contextual bandit problem [23, 27] (which is also known as associative RL,
one-step RL, associative bandits, and learning with bandit feedback) and use a single-step Markov
decision process to solve it.

The contextual-bandit model selection approach is illustrated in Figure 4. Formally, given the
contextual information z, of an input data x, where z is a representation of the input data, and
K trained AD models deployed at the K layers of an HEC system, we build a policy network that
takes zy as the input state and outputs a policy of selecting which model (or, equivalently, which
layer of HEC) to do anomaly detection, in the form of a categorical distribution,

K
mo(alze) = | s, ()

k=1
wherea = (ay, ay, ..., ax), ar € {0, 1}, is the actions encoded as a one-hot vector that defines which

model (or HEC layer) to perform the task, s = (s1,5$2,...,5x) = fo(zx), sk € [0,1], is a likelihood
1We use univariate/multivariate Gaussian distribution for univariate/multivariate dataset, respectively.

ACM Transactions on Internet of Things, Vol. 3, No. 1, Article 4. Publication date: October 2021.

4:8 M. V. Ngo et al.

vector representing the likelihood of selecting each model k, and Zle ar =1, Zle sk = 1. We set
ar = 1if k = arg maxy (sr) and ax = 0 otherwise, and we denote the selected action as |a| = k.

The policy network fp(.) is designed as a neural network with parameters 0. To make the policy
network small enough to run fast on IoT devices, we use extracted features zy instead of the raw
input data x to represent the contextual information of input data (i.e., a state vector). Specifically,
for the univariate data, we define the contextual state as an extracted feature vector that includes
min, max, mean, and standard deviation of each day’s sensor data. For the multivariate data, we
use the encoded states of the LSTM-encoder to represent the input for the policy network.

The policy network is trained to find an optimal policy 7g- that maps a state (of input) to an
action (i.e., a model or layer) to maximize the expected reward of the selected action. We train
the policy network using the policy gradient [23, 27] method to minimize the negative expected
reward:

min £(0) =~ E [R(az)], (2)

where R(a, z,) is a reward function of action a given state zy. The gradient of £(6) is derived as
follows:

Vol = —fR(a, zx)Vomp(alzx)da

_ f R(a,z,()%ﬁ'z;"n@(aux)da

=—fR(a,zX)V9 log 79 (alzx) g (alzx)da

=- E [R(a,zx)Volog(mp(alzx))] -
a~1mg
To reduce the variance of reward value and increase the convergence rate, we utilize a rein-
forcement comparison with a baseline R(a, zx) that is independent of output actions [27]. We use
the baseline R(a, z) as the best observed reward [23], which is empirically shown to boost con-
vergence rate. In addition, we add a {;-norm regularization term to the loss function to prevent
over-fitting problem. So £(0) is rewritten as follows:

L0) =~ E [Raz) - RGz)] + L1101k)

a~Jtg

where y is a regularized parameter. By choosing a baseline R(a, zy) that is independent of output
actions [27], this can be rewritten as follows:

L(0) =- E [R(a.z5)] + R@,zy) + gnenz.

a~ig

Similarly to the original objective function, we minimize Equation (3) by utilizing the policy
gradient method with REINFORCE algorithm [27] to compute the gradient of £(6) as follows:

VoL == E [(R@a,2) - R(E2))Vo log(r(alz))] + 0 (4)
K

=~ B |(Ra.z) ~RG2) Vo) ailog(se) | + 6. (5)
o k=1

ACM Transactions on Internet of Things, Vol. 3, No. 1, Article 4. Publication date: October 2021.

Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge Computing 4:9

where we substitute Equation (1) into Equation (4) to get Equation (5). We also note that Equation
(4) is an unbiased estimator, because the separated gradient term of baseline reward is zero:

E [R(a,2x)Vglog(ma(alzy))]

a~ig

=R(a,zy) aEg [Volog(mg(alzy))]

- R(3.2,) f Vo log (o (alz)) 70 (alz)da
i, 22) f Vomo(@lz) | alzy)da

mo(alzx)
~RG@.2)%0 [mofalzn)da
=R(a,zx)Vyl = 0.
The original REINFORCE algorithm updates policy gradient over one sample for each training
step, which also causes a high variance problem. To reduce this problem, at each training step, we

use a mini-batch training of N contextual states and update the gradient by averaging over these
N contextual states zx. Equations (3) and (5) may therefore be rewritten as follows:

N

S) - R ze)] +
L0 =5 2, B, [Ram) ~RG 2]+ 5101k, (©)
1 N K
VoL=-% 2, E |(R@zx) = R 2))Vo) axlog(se)| + 0.)
i=1 k=1

To encourage the selection of an appropriate AD model for jointly increasing accuracy and
reducing the cost of offloading tasks by pushing the chosen AD model to the edge of networks, we
propose a reward function as follows:

R(a, zx) = accuracy(x) — C(a, x), (8)

where accuracy(x) is the accuracy of detecting an input x, and C(a, x) is the cost function of of-
floading the detection task to a layer k = |a| for data x. We define the cost function C(a, x) as a
function that maps the end-to-end detection delay ez (X, a) to an equivalent accuracy in the range
[0, 1] with intuition that a higher delay will result in a greater reduction of accuracy:

a - lege (X’ a)

Clax)= —————,
(a,%) 1+ a - tege(x,a)

)
where « is a tuning parameter used to tradeoff between the end-to-end delay and the accuracy
(through the reward function (8)). For example, C(Edge, X)l,,,=250 ms = 0.1 means the end-to-end
detection delay cost of offloading a sample x to an edge server 250 ms is equivalent to a reduction
0.1 in accuracy. The end-to-end delay t.z.(x, a) consists of the communication delay of transmis-
sion data x from an IoT device to a server at the layer k = |a| of HEC, and the computing delay of
executing the detection task at the layer k.

We summarize the procedure of training policy network as Algorithm 1.

To balance between exploration and exploitation during training, we apply a decayed-e-greedy
algorithm for action selection. We train the policy network over a number of epochs Nepochs With
an initial exploration probability of p; that decays over A steps to a final value of p,. So in each
training episode, the actual € is calculated as Lines 5 and 6 of Algorithm 1. Then, an action is

ACM Transactions on Internet of Things, Vol. 3, No. 1, Article 4. Publication date: October 2021.

4:10 M. V. Ngo et al.

ALGORITHM 1: REINFORCE algorithm

Input: contextual states zx € Zy, policy network g,
learning rate o, regularizer y, Nepochs:

A, // Number steps of decayed-e for expoloration
pi €[0,1],// Initial exploration probability
pe €10, 1]. // Ending exploration probability
Output: trained policy mg-«.

1 Initialize policy g, ne < 0;

2z while ne < Ngpeps do

3 Select a mini-batch of size N of zy;

4 Calculate the current output of policy 7p;

5 r=maX(A;1"E,O);

6 € «— (pi = pe)r + Pe;

7 Select actions a based on decayed-e-greedy method;

8 Getting accuracies and end-to-end delays from corresponding AD models;
9 Calculate costs as (9) and rewards R(a, zx);

10 Calculate gradient according to (7);

11 Update the parameters of network 6 « 6 — aVy L(0);
12 Update baseline R(a, zx);

13 Ne < Ne + 1;

14 end

randomly selected to explore with probability e, while with probability (1—¢€) an action is greedily
selected based on output of the current policy network.

4 IMPLEMENTATION AND EXPERIMENT SETUP
4.1 Dataset

We evaluate our proposed approach with two public datasets. The data are standardized to zero
mean and unit variance for all of the training tasks and datasets.

Univariate dataset. We use a dataset of power consumption? of a Dutch research facility that
has been used in References [9, 14, 20]. It comprises 52 weeks of power consumption and consists
of 35,040 samples recorded every 15 minutes. The data have a repetition of weekly cycle of 672
timesteps with five consecutive peaks for five weekdays and two lows for weekends. Abnormal
weeks could have less than five consecutive peak days on weekdays (perhaps due to a holiday),
or high power consumption on a weekend. Examples of normal and abnormal weeks are shown
in Figure 5. Hence, each input datum is a sequence of one week of data with 672 timesteps. We
manually label a day as abnormal if it is a weekday with low power consumption or it is a weekend
with high power consumption; other days are labeled as normal. For the AD task, we split the
dataset into train and test sets with ratio 70:30, or equivalently 37 weeks:15 weeks. The training
set only contains normal weeks and the test set contains the remaining normal weeks and all the
8 anomalous weeks, each having at least one abnormal day. For training the policy network, we
choose a training set that contains all the 8 abnormal weeks and 7 normal weeks and a test set that
is the whole dataset to verify the quality of the policy network.

http://www.cs.ucr.edu/~eamonn/discords/.

ACM Transactions on Internet of Things, Vol. 3, No. 1, Article 4. Publication date: October 2021.

http://www.cs.ucr.edu/~eamonn/discords/

e
5 &
g 3
s 8

Power Consumption (KW)
5
3
8

2o
5 B
g 3
s 8

Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge Computing 4:11
week 2.0 week 18.0

£ 1600
§ 1400
£

2 1200
g

%lOOO
¢ 800

13 14 15 16 17 18 19 5 06 07 08 09 10 11

jan
1997

Time Stamp

(a) Normal week

=
5
<

1997

Time Stamp

(b) Abnormal week

Fig. 5. Example weeks of univariate dataset (i.e., power consumption).

0.5
0.0
-0.5

o

-100

20

)

=20

0.5
0.0
=05

—— AccX_RW 04— AccX_RW
— AccY_RW ~—— AccY_RW
—— AccZ_RW _10] — AccZRW
0 20 40 60 80 100 120 0 20 40 60 80 100 120
-~ ~ — — 1
— oraw P T ——————————
o Gy:ZiRW 0o — cyrvRW
e — I~ — GyrZ_RW
0 20 40 60 80 100 120 0 20 40 60 80 100 120
50 —— MagX_RW
N — MagY W
—— MagX_RW MagZiRW
—— MagY_RW 0d Wwﬂ, o
—— MagZ_RW
0 20 40 60 80 100 120 0 20 40 60 80 100 120
— AccX_LA ol Ay
—— AccY_LA —— AccX_LA
— AccZ LA —— AccY_LA
~/\/ -109 — AccZ_A
0 20 40 60 80 100 120 0 20 40 60 80 100 120
— GyrX_LA 051 — GyrX_LA
—— GyrY_LA 004 — Gyrv LA
— Gyrz_LA — GyrZ_LA
e e e B0 (e
0 20 40 60 80 100 120 501
—— MagX_LA o
—— MagY_LA
—— MagZ_LA
0 20 40 60 80 100 120
Time step Time step

(a) Normal window (Walking).

(b) Abnormal window (Cycling).

Fig. 6. Example time windows of multivariate dataset (i.e., MHEALTH).

Multivariate dataset. We use the MHEALTH dataset,® which consists of 12 human activities
of 10 different people. And each person wore two motion sensors: one on left-ankle and the other
on right-wrist. Each motion sensor contains a 3-axis accelerator, a 3-axis gyroscope, and a 3-axis
magnetometer; hence the input data have 18 dimensions. The sampling rate of these sensors is
50 Hz. We use a window sequence of 128 timesteps (~2.56 s) with a step-size of 64 between two
windows. Adopting the common practice, we choose the dominant human activity (e.g., walking)
as normal and treat the other activities as anomalous. Figure 6 shows an example of normal and
abnormal window sequences. For the AD task, we select 70% of normal samples of all the subjects
(people) as the training set and the remaining 30% of normal samples plus 5% of each of the other
activities as the test set. To train the policy network, we select 30% of normal samples and 5% of
each of the other activities as the training set and the whole dataset as the test set.

Shttp://archive.ics.uci.edu/ml/datasets/mhealth+dataset.

ACM Transactions on Internet of Things, Vol. 3, No. 1, Article 4. Publication date: October 2021.

http://archive.ics.uci.edu/ml/datasets/mhealth+dataset

4:12 M. V. Ngo et al.

4.2 Implementation of Anomaly Detection Models and Policy Network

We use Tensorflow and Keras to implement the AD models* (i.e., three AE models and three LSTM-
seq2seq models as shown in Figure 2) and the policy network model. For the univariate time-series
dataset, the input is a sequence of 672 timesteps—a week of measured power consumption. We use
tanh as the non-linear activation function for all the hidden layers and the linear function for
output layer of the autoencoder models. To prevent the overfitting problem, we apply dropout
technique with rate 30% during training and add a {;-regularization term. We train and test the
three models separately with fivefold cross-validation.

For the multivariate time-series dataset, the input is a sequence of 128 timesteps of 18-
dimensional data. The LSTM-seq2seq-IoT model, which will be deployed on Raspberry Pi 3, con-
sists of 50 vanilla LSTM units for each encoder and decoder. Since the edge server and cloud
server are empowered with GPU, we implement the LSTM-seq2seq-Edge and BiLSTM-seq2seq-
Cloud models based on CuDNNLSTM units to accelerate training and inference time. Before deploy-
ing the LSTM-seq2seq-IoT and LSTM-seq2seq-Edge models on Raspberry Pi3 and Jetson-TX2, we
compress them by (i) removing the trainable nodes from the graph and converting variables into
constants and (ii) quantizing the model parameters from floating-point 32-bit (FP32) to FP16. We
observe no performance decrease of these compressed AD models, while the average inference
delay of these compressed AD models running on Raspberry Pi3 and Jetson-TX2 are reduced by
61 and 126.1 ms, respectively.

The policy network requires low complexity and needs to run fast on IoT devices without con-
suming enough resources to affect to the IoT detection task. So the state input to the policy network
needs to be small but still well represent the whole sequence of input data. For the univariate data,
we define the contextual state as an extracted feature vector that includes min, max, mean, and
standard deviation of each day’s sensor data. Thus the dimension of the contextual state is just
4 x 7 = 28. For the multivariate data, we use the encoded states of the LSTM-encoder to represent
the input state for the policy network; hence, the dimension of the contextual state, which is the
encoded states constructed by concatenation of (h,c), is 50 + 50 = 100. Subsequently, we build the
policy network as a single hidden neural network (with 100 and 300 hidden units for univariate

exp(0:)
T, exploy)’
which indicate the likelihood of choosing one of three AD models. We train the policy network
as described in Section 3.3 with 6,000 and 600 episodes® for univariate and multivariate datasets,
respectively; and the initial € = 0.5 is gradually decreased to zero after half the number of episodes.
We empirically select @ = 0.0005 (as shown in Section 5.3) for both univariate and multivariate
datasets to calculate the cost of executing detection as given by Equation (9).

and multivariate data, respectively) and a softmax layer with 3 output units, i.e., 6 (0;) =

4.3 Accelerated Training of Policy Network

Recently, Google has published a distributed mechanism to efficiently accelerate the training pro-
cess for deep reinforcement learning problems [4]. Inspired by this work, we can accelerate our
training policy network with mini-batch training as in Algorithm 1 by modifying Line 8 as follows:
(i) Instead of sequentially querying reward of each input sample, we group inputs that belong to

4We can package each AD model in a Docker container, a light-weight virtual computing software environment and run
the container within an edge server or cloud server, which will make deployment of edge computing systems much easier
and more scalable, as studied in References [10, 19].

>The univariate dataset needed more episodes than the multivariate dataset, because the size of univariate dataset is smaller
(even though we repetitively replay the training set with randomly shuffling the input sequences) and, as a result, the
convergence of the reward value of the policy network was observed to be slower. In addition, the convergence rate is also
dependent on the parameter o, and we set the number of training episodes to the maximum corresponding to the worst a.

ACM Transactions on Internet of Things, Vol. 3, No. 1, Article 4. Publication date: October 2021.

Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge Computing 4:13

.\A‘Z’

(o‘a

‘ Communication I 6‘0
services >

Edge server

Communication
services

‘ AD-Cloud ’
model

Cloud server

GUI
(User Interface)

[}
v

’ Communication services

model
1
1

Encoder
model

Emulated sensor
(Data replay)

loT device

Fig. 7. Software architecture of our HEC system that consists of different AD models at loT device, edge
server and cloud server, and a contextual-bandit policy network residing at the loT device.

the same action and send them to the appropriate AD model to do parallel inference in a batch
manner, and (ii) we also can concurrently do inference from multiple AD models at K layers of
HEC if there are more than one AD model in the action outputs of the e-greedy method.

With this proposal (called the parallel approach), we expect to reduce time to train policy net-
work because of (1) reduction of communication overhead between the training server and multi-
ple AD models at multiple layers of HEC and (2) leveraging mini-batch inference at each AD model
instead of one single input detection. The results will be analyzed in Section 5.4. Note that, when
training the parallel approach, the detection delay is measured for multiple samples due to concur-
rently querying multiple samples. Therefore, we use the average of the end-to-end detection delays
for each HEC layer that were collected from the normal training approach to calculate rewards.

4.4 Software Architecture and Experiment Setup

The software architecture of our HEC system® is shown in Figure 7. It consists of a GUI, the

adaptive model selection scheme based on the policy network, and the three AD models at the
three layers of HEC. The GUI allows a user to select which dataset and model selection scheme to
use, as well as to tune parameters, as shown in Figure 8(a), and displays the sensory raw signals
and performance results, as shown in Figure 8(b). All the communication services use keep-alive
TCP sockets after opening in order to reduce the overhead of connection establishment. Network
latency (round-trip time) as shown in Figure 2 is configured by using the Linux traffic control
tool, tc, to emulate the WAN connections in HEC. The hardware setup for the HEC testbed is
shown in Figure 9. To emulate an environment with high-speed incoming IoT data that requires
fast anomaly detection, we replay the datasets with increased sampling rates. For the univariate
dataset (power consumption), we replay it with a sampling rate of 672 samples per second during
the experiments, as compared to the dataset’s original sampling rate, which is one sample per 15
minutes. As such, a whole year of power consumption data was replayed and processed within
minutes in our experiments. For the multivariate dataset (healthcare), we replay the sensory data
with a simulated sampling rate of 128 samples per second, as compared to the original sampling
rate 50 samples per second.

We measure end-to-end delays f.;.(x,a) on actual IoT devices, which is the interval between
the starting time when a sample input sequence is generated at an IoT device, and the end time
when the detection result is received at the IoT device. Note that the actual anomaly detection was

6 A brief introduction of our HEC testbed is also available online: https://rebrand.ly/91a71.

ACM Transactions on Internet of Things, Vol. 3, No. 1, Article 4. Publication date: October 2021.

https://rebrand.ly/91a71

4:14 M. V. Ngo et al.

2 Adaptive Anomaly Detection in Distributed Hierarchical Ed... - X

Evaluation dataset: MHEALTH — | Select

Anomaly Detection Models for Multivariate Dataset:

LSTM-seq2seq-loT LSTM-seq2seq-Edge BiLSTM-seq2seq-Cloud
Select Evaluation Scheme:

@ loT Device ¢ Edge ¢ Cloud ¢ Successive (Adaptive

Select Input Test Data:

Normal activity:

S 10 o
Anomalous activities: : %

(a) GUI: select dataset and evaluation scheme, and adjust parameters.

1 python -] X
Accelerometer (Left Ankle) Accelerometer (Right Wrist)

14:35:10 14:35:20 14:35:10 14:35:20
Gyroscope (Left Ankle) Gyroscope (Right Wrist)

14:35:10 14:35:20 2 14:35:10 14:35:20
Magnetometer (Left Ankle) . Magnetometer (Right Wrist)
200
0 \
g !
200 4
14:35:10 14:35:20 14:35:10 14:35:20

Anomaly Detection

A= LU L U]

| 14:34:30 : 14:34:40 14:34:50 14:35:00 14:35:10 14:35:20
Action of Policy Network & End-to-End Delay (s)

14:34:30 14:34:40 14:34:50 14:35:00 14:35:10 14:35:20

Accummulative Accuracy and F1-score

0.99

/Accuracy

0.98 /F1-score

14:34:30 14:34:40 14:34:50 14:35:00 14:35:10 14:35:20

(b) Result panel: raw sensory signals, AD performance and associated actions.

Fig. 8. GUI and multivariate results.

executed on exactly one of the three layers (IoT, edge, or cloud). Based on the measured tez., we
calculate the cost of detection using Equation (9). We will evaluate with different parameters « to
see the tradeoff between the offloading cost and the accuracy gain of a complex model.

User Actions: As shown in Figure 8(a), we allow users to interact and evaluate the HEC testbed
performance with (i) either univariate or multivariate datasets, (ii) different fractions of normal and

ACM Transactions on Internet of Things, Vol. 3, No. 1, Article 4. Publication date: October 2021.

Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge Computing 4:15

Cloud
Server
DevBox - 4

GPUs

‘ -, Edge
- loT Device Server

loT Device Raspberry- .
Raspberry-Pi3 Pi3 Je_lt_;;n
(Multivariate- (Univariate-
| STM-seq2seq) ¥ Autoencoder) ES S

Fig. 9. Hardware setup of our HEC testbed.

abnormal data in the datasets to use, and (iii) different schemes under evaluation: (1) the IoT Device
scheme, which always detects directly on IoT devices; (2) the Edge scheme, which always offloads to
an edge server; (3) the Cloud scheme, which always offloads to the cloud; (4) the Successive scheme,
which first executes on IoT devices and then successively offloads to a higher layer until reaching
a confident output or the cloud; or, finally, (5) the Adaptive scheme, which is our proposed adaptive
model selection scheme. After the user clicks “Start,” our result panel as in Figure 8(b) will show
the continuously updated raw sensory data (accelerometer, gyroscope, magnetometer), anomaly
detection outcome (0 or 1) vs. ground truth, detection delay vs. the actions determined by our
policy network, and the accumulative accuracy and F1-score.

4.5 State-of-the-Art Schemes in Comparison

Besides comparing our Proposed scheme with the baseline schemes (i.e., IoT Device, Edge, Cloud
and Successive schemes) described above, we compare our scheme with the state-of-the-art meth-
ods (referred to as kNN-sequence [24], and Adapted-BlockDrop [28]). In the kNN-sequence [24], a
series of light-weight kNN classifiers are used to provide decisions for choosing a proper inference
model to use. We can directly apply this method with our datasets and our trained AD models by
implementing three kNN classifiers (with k = 4) for univariate data, and three kNN classifiers
(with k = 3) for multivariate data. Note that, instead of using k = 5 as in Reference [24], we choose
k based on grid search for each dataset to achieve the best performance results.

Besides kNN-sequence, we also implement a variant of Reference [24], called kNN-single, as an-
other basis for comparison. It directly provides a selected layer for detecting anomaly based on ex-
tracted features of the input IoT data. For both kNN-sequence and kNN-single schemes, we adopt
a similar training procedure from Reference [24] to generate training data (i.e., feature inputs and
output classes) and build the classifier models.

The prior work [28] (i.e., BlockDrop) is strongly tied with the computer vision ResNet architec-
ture based on multiple stacked CNNs blocks, which can be bypassed by identity skip-connections
to reduce complexity for each image-specific input. In contrast, our article tackles sequential time-
series data and allows to use different model architectures for different complexities, resulting
in more flexibility for designing AD models at HEC layers. In terms of similarity, our approach
and Reference [28] both use a policy network to make decisions but with (i) different input (ex-
tracted feature of a sequential window vs. an image) and (ii) different output (a selected HEC’s layer
for inference vs. a binary vector for choosing which CNN blocks involving in a reduced ResNet),
(iii) different reward functions, and (iv) with/without network latency in mind. In addition, the
policy network in BlockDrop (which also uses a ResNet architecture) is not light-weight and is

ACM Transactions on Internet of Things, Vol. 3, No. 1, Article 4. Publication date: October 2021.

4:16 M. V. Ngo et al.

Table 1. Comparison among AD Models

Dataset/Model Univariate/Autoencoder Multivariate/LSTM-seq2seq

Layer IoT Edge Cloud IoT Edge Cloud
#Parameters 271,017 949,468 1,085,077 28,518 97,818 1,028,018
FLOP 1.35M 2.93M 5.41M 3.92M 7.84M 31.33M
Accuracy(%) 78.09 93.33 98.09 82.63 94.21 97.37
F1-score 0.465 0.741 0.909 0.852 0.955 0.980
Exec time (ms) 124 7.4 4.5 591.0 417.3 232.3

therefore unsuitable to run on IoT devices in the HEC scenario. To make a fair comparison with
BlockDrop [28] in the anomaly detection task, we have followed their approach by implementing
a policy network using the same extracted feature of sequential input, the same type of output
as our application, and the same two fully connected layers architecture as our approach. With
this setup, we train this mimicking policy network, namely Adapted-BlockDrop, with the reward
function and parameters y = [2,5, 10] as in Reference [28] to penalize incorrect prediction at IoT
Device, Edge, and Cloud layers, respectively.

The idea of splitting large neural networks into smaller portions for each layer of HEC, such
as in BranchyNet [26] and Neurosurgeon [8], is an interesting approach for image classification
task and can save network bandwidth by transmitting compressed intermediate results between
portions. However, these partial models must be portions of the same DNN and be jointly trained
together with a combined objective function, while our approach has the flexibility to use inde-
pendent models at different HEC layers, taking advantage of any available state-of-the-art DNN
architecture that is best suited for each layer. In addition, BranchyNet was designed for CNNs, and
its implementation involved splitting in the forward path and carefully gathering gradient losses in
the backward path during backpropagation training. Transforming its idea of splitting and stack-
ing to RNN (such as LSTM or GRU, as in our case) is not trivial and is worth another new study.
Therefore, we do not directly compare with BranchyNet. However, BranchyNet [26] is similar to
the Successive scheme (which we compare) in the following sense: BranchyNet attempts its deep
CNNs portions in a successive manner, and if an early portion does not satisfy the performance
requirement, then it will move on to the next portion of the deep CNNs.

5 EXPERIMENT RESULTS
5.1 Comparison among Anomaly Detection Models

Table 1 compares the performance and complexity among the three AD models we use. For both
univariate and multivariate data, the complexity of AD models increases from IoT to cloud, as indi-
cated by “# of Parameters” (weights and biases), which reflects the approximate memory footprint
of the models, and total floating-point operations (FLOP), which reflects the required compu-
tation of each model during the inference. Along with this, the F1-score and accuracy increase as
well; for example, these metrics are 95.5% and 19% higher for AE-Cloud than for AE-IoT, and 15%
and 18.9% higher for BILSTM-seq2seq-Cloud than for LSTM-seq2seq-IoT. To illustrate the nature
of the edge model errors, we show an example of reconstruction performance of the AE-Edge
model in Figure 10.

However, the execution time (for running the detection algorithms) decreases from IoT to cloud,
as indicated in the last row of Table 1, which is measured on the actual machines of our HEC
testbed and averaged over five runs. This is due to the different computation capacity (whereas
communication capacity is taken into account by our end-to-end delay shown later). One more

ACM Transactions on Internet of Things, Vol. 3, No. 1, Article 4. Publication date: October 2021.

Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge Computing 4:17

=

< 2000
<
z
S 1500
Q.
€
1000
g — Input
E 500 ~— Output Edge
g —— Error
o —— True label
D_ 0 AN St biratolt Ly . N L2 R LA AT WAt oY
0 250 500 750 1000 1250 1500 1750 2000
Time step
(a) Absolute reconstruction errors.
i M T
|
| I vy
a -200
a
()]
o
—
-400 —— ogPD
—— True label
fffff Threshold
0 250 500 750 1000 1250 1500 1750 2000

Time step
(b) Logarithmic probability densities (logPD) of errors.

Fig. 10. AE-Edge performance on test set for univariate data.

observation is that LSTM-seq2seq models, which handle multivariate datasets, take much longer
time to run (up to 591 ms) than AE models, which handle univariate datasets (up to 12.4 ms).

5.2 Comparison among Model Selection Schemes

The F1-score, accuracy, average detection delay, and total reward of the entire univariate and mul-
tivariate datasets under four baseline schemes, three state-of-the-art schemes, and our proposed
scheme are shown in Table 2. We can see that the IoT Device scheme achieves the lowest detection
delay but also the poorest accuracy and F1-score among all the evaluated schemes. On the other
extreme, the Cloud scheme yields the best accuracy and F1-score but incurs the highest detec-
tion delay (end-to-end). The Successive scheme leverages distributed anomaly detectors in HEC
and thus significantly reduces the average detection delay as compared to the Edge and Cloud
schemes. However, its accuracy and F1-score are outperformed by the Edge scheme. In contrast,
our proposed adaptive scheme adaptively selects a suitable model to execute the AD task to jointly
maximize accuracy and minimize detection delay. Thus, not only does it achieve lower detection
delay but also its F1-score and accuracy also consistently outperform those of IoT Device, Edge, and
Successive schemes. For univariate data, even though the F1-score and accuracy of our proposed
scheme are marginally lower than those of the Cloud scheme by 4.3% and 0.35%, respectively; our
scheme reduces the end-to-end detection delay by a substantial 84.9%. For multivariate data, we got
an interesting result (with ¢ = 0.0005) that the proposed scheme outperforms the Cloud scheme
not only in terms of delay (reduction by 10.6%), but also in F1-score and accuracy. We believe that in
this case our proposed scheme of the multivariate data outperforms the Cloud scheme in F1-score
and accuracy, because of (i) quality: the contextual information of input data (i.e., encoded states
from LSTM-encoder) is able to well capture feature representations of the multivariate data that
help policy network deliberately choose the best destination AD model for detecting each input
sequence to achieve the highest accuracy, and (ii) quantity: the multivariate dataset also consists

ACM Transactions on Internet of Things, Vol. 3, No. 1, Article 4. Publication date: October 2021.

4:18 M. V. Ngo et al.

Table 2. Comparison among Model Selection Schemes

Dataset Scheme F1 Accuracy (%) Delay (ms) Reward
IoT Device 0.465 93.68 12.4 48.39
° Edge 0.800 98.63 257.43 45.36
ks Cloud” 0.909 99.46 504.50 41.24
g Successive 0.769 98.35 105.27 N/A
k= KkNN-single 0.588 96.15 31.29 49.27
= kNN-sequence 0.741 98.07 54.92 49.77
Adapted-BlockDrop® 0.842 99.09 301.91 31.44¢
Proposed* 0.870 99.11 76.12 49.82
IoT Device 0.848 93.19 591.0 351.18
o Edge 0.951 97.59 667.30 362.16
8 Cloud® 0.980 99.00 732.30 360.26
£ Successive 0.911 95.79 626.16 N/A
:‘5 kNN-single 0.925 96.39 597.71 366.22
= kNN-sequence 0.929 96.59 598.79 367.07
Adapted-BlockDrop® 0.962 98.13 657.31 420.17¢
Proposed* 0.984 99.01 654.74 371.61

“Average results from at least three trained policy networks (o = 0.0005 for the Proposed scheme).
bCloud’s marginal F1 and accuracy advantage are at the cost of a much higher delay.

©This reward value is calculated according to Reference [28], which results in a different range from the
other values calculated by our reward function. So, these marked reward values are not comparable to
the other reward values.

a larger number of training samples compared to the univariate dataset, which helps to learn a
better policy.

The kNN-single and kNN-sequence [24] schemes can achieve average delays that are lower
than our proposed scheme. However, their average accuracy and Fl-score are not competitive,
as they are even worse than the Edge scheme. Therefore, while their equivalent reward values
(calculated using the reward function (8)) exceed those of the baseline schemes, they are lower
than our proposed scheme—particularly in the multivariate case. We also observe that kNN-single
does not perform as well as kNN-sequence (which consists of three consecutive kKNN-classifiers) in
terms of accuracy, F1-score, and reward.

The Adapted-BlockDrop scheme [28] achieves higher accuracy and F1-score than the IoT De-
vice, Edge, Successive, kNN-single, and kNN-sequence schemes. However, it is outperformed by
our proposed scheme in all the performance metrics (accuracy, F1-score, and delay). In particular,
with the univariate data, its average detection delay (301.91 ms) is 4 times larger than that of our
proposed scheme (76.12 ms).

In summary, and as also indicated in the last column “Reward,” which is a convex combination of
both accuracy and delay, our proposed adaptive scheme strikes the best tradeoff between accuracy
and detection delay for univariate data with handcrafted feature representations of contextual
information and achieves the best performance for these two metrics for multivariate data with
encoded feature representations. This is achieved by leveraging the distributed HEC architecture
and our policy network that automatically selects the best layer to execute the detection task.

Execution time of policy network: We measure the average execution time of the policy
network on the actual IoT devices as follows: 8.4 and 44.9 ms for univariate and multivariate data,
respectively. For univariate data, although the execution time of our policy network (which is

ACM Transactions on Internet of Things, Vol. 3, No. 1, Article 4. Publication date: October 2021.

Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge Computing 4:19

small) is comparable to the detection delay at the IoT layer (12.4 ms), it is only 11% of the overall
average detection delay of the adaptive scheme (76.12 ms). For multivariate data, the execution
time of the policy network is about 6.8% of the average end-to-end detection delay of the adaptive
scheme (654.74 ms). Overall, we can see that the execution time of the policy network as compared
to the whole detection delay is negligible.

Compared to the state-of-the-art schemes, the policy network of the Adapted-BlockDrop
scheme [28] uses the same neural network architecture as our policy network; hence, we do not
compare the execution time with the Adapted-BlockDrop scheme. We measure the average execu-
tion time of the decision-making module of the kNN-single scheme on the IoT devices (Raspberry
Pi3), and the results are 138.2 and 159.4 ms for univariate and multivariate data, respectively. For
the kNN-sequence decision making module with a series of three kNN classifiers, the execution
time measured on the IoT devices are 118.3 and 180.5 ms for univariate and multivarate data, re-
spectively. Interestingly, KNN-single has longer execution delay than kNN-sequence for univariate
data. We examined this observation and found that most of the selected actions of KNN-sequence
are the IoT layer (i.e., exit after executing only the first kNN classifier). In addition, all kNN clas-
sifiers in KNN-sequence are binary classifiers, whereas kNN-single is a multi-class classifier. This
explains the above counter-intuitive result.

The key observation is that, even though we have built kNN classifiers for embedded devices
as lightweight as in Reference [24] for comparison with our proposed method, the execution time
of kNN-single and kNN-sequence schemes (118.3-180.5 ms) is still much longer than that of our
policy network (8.4-44.9 ms), for both univariate and multivariate data.

5.3 Cost Function: A Tradeoff between Accuracy vs. Delay

We train different policy networks with different cost functions of which the tunable parameter
a € [0.00005, 0.004] for univariate data, and a € [0.00005, 0.1] for multivariate data. In Figure 11,
we plot the mean and standard deviation of accuracy (solid line) and delay (dashed line) of the
proposed scheme (over at least three trained policy networks for each «), and the other baseline
schemes (which are independent of «).

For univariate data, we can see in Figure 11(a) that the accuracy, and detection delay of the
proposed scheme gradually decreases when increasing a. With & < 0.0003, the proposed scheme
can achieve accuracy as high as the Cloud scheme, while the average delay of the proposed scheme
significantly reduces by 60-90% compared to that of the Cloud scheme. Based on Figure 11(a), we
choose ¢ = 0.0005 to get the best tradeoff between accuracy and delay, in which the accuracy
only drops by 0.29% compared to the Cloud scheme while the delay is even lower than that of the
Successive scheme.

For multivariate data, we can see that the proposed scheme consistently achieves an accuracy
as high as the Cloud scheme regardless of different a. As explained in Section 5.2, in some cases
(e.g., @ = 0.0005) the accuracy actually exceeds that of the Cloud scheme. The average detection
delay of the proposed scheme fluctuates around that of the Edge scheme.

5.4 Accelerated Training of Policy Network

Comparison between average breakdown delays of training policy networks for each episode
over the traditional training approach (sequential) and the accelerated training approach (paral-
lel) is shown in Table 3. Similarly to the sequential approach, under the new parallel approach
as described in Section 4.3, we train the policy networks (with the same o = 0.0005 and num-
ber of episodes) for univariate and multivariate data to leverage parallel inference in distributed
environments—distributed AD models at multiple HEC layers. We can see in Table 3 that the
average transmission delay on each training episode under the parallel approach is significantly

ACM Transactions on Internet of Things, Vol. 3, No. 1, Article 4. Publication date: October 2021.

4:20 M. V. Ngo et al.
[pppp— ' Sy e — R Cppp— P p— o pp— i N pp—p— &
===4 + M 500
ho ? ¢ ? b ? * b = * ¢ 1400
S 98 -
> —— loT Device %)
~ —+— Edge 300E
% —— e e s A GO A — A — e — g —— A >
5 96 —#— Successive =
S ~o //_,&__\ —4— Proposal 200 8
<< T
- —— .- ——— ;_.\ :__;_ _____ *—— e p—— -+ —— —‘——— P S—— Y 100
%y i l \}} """"""" D S
5e-05 9e-05 0.00010.00030.00050.00070.00090.00120.0015 0.002 0.003 0.004
@
(a) Univariate data
—— — -+ ——— — - - —— -+— 4 —
¥ +
1 | — 1
~98 700
S m
e
g>f }3,_, “':'i’*-: 0 TR GO I S I, —- 7:3:->.<§:_,.¢»£ =
96 \; R — 6508
o I ¥ —4+— loT Device 8
(9]
< *-—— -— - *-—— »— --—— —ctf €.
—+— Cloud
94 —»— Successive
+ + + + + + + + + == Pyoposal, 600

5e-05 0.00010.00030.00050.0007 0.001 0.002 0.003 0.007 0.01

a
(b) Multivariate data

0.05 0.1

Fig. 11. Accuracy (solid line) and delay (dashed line) of all evaluated schemes vs. different values of «.

Table 3. Comparison of Sequential and Parallel Approaches in Terms of Average Delay
(Broken Down into Three Components)

Dataset Approach Transmission delay(s) Computing delay(s) Training time(s)

Uni- Sequential 48.834 + 5.696 0.661 = 0.188 0.013 + 0.006

variate? Parallel 9.605 + 2.290 0.958 + 0.697 0.015 + 0.004
Multi- Sequential 420.78 + 53.69 351.30 + 43.67 0.141 + 0.01
variate’ Parallel 72.17 + 9.66 78.06 + 13.14 0.15 + 0.12

“Training 300 episodes with 1 batch in each episode.
bTraining 100 episodes with 10 mini-batches in each episode.

reduced by 80.3% and 82.9% compared to that under the sequential approach for univariate and
multivariate data, respectively. For computing delay, we observe a slightly increasing computing
delay under the parallel approach for univariate data, but a significantly decreasing computing de-
lay with the parallel approach for multivariate data. The delay reduction of the parallel approach
in the multivariate data is because for edge and cloud models we use CUDNNLSTM units that leverage
accelerated GPU hardware for parallel inference; while for the univariate data, the autoencoder
AD models running inference on CPU device take longer time to compute a batch of multiple
samples. For training time, there is no difference between these two approaches. Note that the
training time of multivariate data is 10 times that of the univariate data, because we split the large

ACM Transactions on Internet of Things, Vol. 3, No. 1, Article 4. Publication date: October 2021.

Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge Computing 4:21

=
o
o

—+— Cloud Scheme
1 —# Handcrafted features N
- ¢

O
(o]

—J}- Encoded features | pe——

Delay (ms) Accuracy (%)
Ul
o
o
4
r
r
r
r
r
r
r
r
-
-
L

5e-05 9e-05 0.00010.00030.00050.00070.00090.00120.0015 0.002 0.003 0.004
---------- ook o ———— %
.............. _’__—— —_‘

—+— Cloud Scheme
—é— Handcrafted Features
201 —}— Encoded Features

Reward

5e.05 9e-05 0.00010.00030.00050.00070.00090.00120.0015 0.002 0.003 0.004
(07

Fig. 12. Comparison between handcrafted features and encoded features for univariate data in terms of
accuracy, delay, and reward under different a.

multivariate dataset into 10 mini-batches while the small univariate dataset is trained with one
batch in each episode. A combination of reduction delays of transmission and computing is sig-
nified when we account for the whole training process, which consists of hundred episodes. For
example, for univariate data, the training policy network with 300 episodes took 7.6 hours under
the sequential approach but only 1.7 hours under the parallel approach.

5.5 Contextual Information: Handcrafted vs. Encoded Features

In Section 5.2, we have seen that the encoded states from LSTM-encoder for multivariate data,
which capture good representations of contextual information, help the policy network consis-
tently outperform the Cloud scheme in terms of accuracy. In this section, we verify this claim for
univariate data. Instead of using handcrafted engineering features as the contextual information
for univariate case, we use an encoded vector (201 dimensions) from the encoder model as the con-
textual state for training the policy network. We still use a single hidden layer neural network with
500 hidden units as a policy network, then train multiple policy networks with different & under
this new setup. Figure 12 shows a comparison between the handcrafted engineering features and
the encoded representations of input in terms of accuracy, delay, and reward. We can see that the
encoded representations boost the performance of the policy network, which allow it to achieve
accuracy nearly as high as the Cloud scheme while detection delay is significantly lower than that
of the Cloud scheme. This result is consistent with what we found for multivariate data.

However, we note that the detection delay under the new setup is higher than it is for hand-
crafted features. Therefore, if one needs to balance between accuracy and detection delay, then
good handcrafted engineering features are a good option. But it requires a domain-specific knowl-
edge and lots of effort to find good feature representations.

6 CONCLUSIONS

We identify three issues in existing IoT anomaly detection approaches, namely using one univer-
sal model to fit all data, lopsided focus on accuracy, and lack of local analysis. We then propose

ACM Transactions on Internet of Things, Vol. 3, No. 1, Article 4. Publication date: October 2021.

4:22 M. V. Ngo et al.

an adaptive approach to anomaly detection for both univariate and multivariate IoT data in dis-
tributed HEC. It constructs multiple distributed AD models based on an autoencoder and LSTM
with increasing complexity, and associates each of them with an HEC layer from bottom to top, i.e.,
IoT devices, edge servers, and cloud. Then, it uses a reinforcement learning-based adaptive scheme
to select the best-suited model on the fly based on the contextual information of input data. The
scheme consists of a policy network as the solution to a contextual-bandit problem, characterized
by a single-step MDP. We also presented the accelerated method for training the policy network
to take advantage of the distributed AD models of the HEC system. We implemented the proposed
scheme and conducted experiments using two real-world IoT datasets on the HEC testbed that we
built. By comparing with other baseline and some state-of-the-art schemes, we show that our pro-
posed scheme strikes the best accuracy-delay tradeoff with the univariate dataset, and achieves the
best accuracy and F1-score while the delay is negligibly larger than the best scheme with the mul-
tivariate dataset. For example, in the univariate case, the proposed scheme reduces detection delay
by 84.9% while retaining comparable accuracy and F1-score, as compared to the cloud offloading
approach.

REFERENCES

[1] Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. 2015. Scheduled sampling for sequence prediction
with recurrent neural networks. In Proc. NIPS. MIT Press, Cambridge, MA, 1171-1179.

[2] Raghavendra Chalapathy and Sanjay Chawla. 2019. Deep learning for anomaly detection: A survey.
arXiv:1901.03407 [cs.LG]. Retrieved from https://arxiv.org/abs/1901.03407.

[3] Zhuo Chen etal. 2017. An empirical study of latency in an emerging class of edge computing applications for wearable
cognitive assistance. In Proc. ACM/IEEE SEC. Article 14, 14 pages.

[4] Lasse Espeholt, Raphael Marinier, Piotr Stanczyk, Ke Wang, and Marcin Michalski. 2020. SEED RL: Scalable and effi-

cient deep-RL with accelerated central inference. arXiv:1910.06591 [cs.LG]. Retrieved from https://arxiv.org/abs/1910.

06591.

Manish Gupta, Jing Gao, Charu C. Aggarwal, and Jiawei Han. 2013. Outlier detection for temporal data: A survey.

IEEE Trans. Knowl. Data Eng. 26, 9 (2013), 2250-2267.

[6] SongHan, Huizi Mao, and William J. Dally. 2016. Deep compression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. In Proc. ICLR.

[7] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in a neural network. In Proce NIPS 2014
Deep Learning Workshop.

[8] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Jason Mars, and Lingjia Tang. 2017. Neu-
rosurgeon: Collaborative intelligence between the cloud and mobile edge. SSGARCH Comput. Archit. News 45, 1 (Apr.
2017), 615-629.

[9] E. Keogh, J. Lin, and A. Fu. 2005. HOT SAX: Efficiently finding the most unusual time series subsequence. In Proc.
IEEE ICDM.

[10] Quang Duy La, Mao V. Ngo, Thinh Quang Dinh, Tony Q. S. Quek, and Hyundong Shin. 2019. Enabling intelligence in
fog computing to achieve energy and latency reduction. Dig. Commun. Netw. 5, 1 (2019), 3-9.

[11] H.Li, K. Ota, and M. Dong. 2018. Learning IoT in edge: Deep learning for the internet of things with edge computing.
IEEE Netw. 32, 1 (2018), 96-101.

[12] Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. 2017. Runtime neural pruning. In Advances in Neural Information
Processing Systems, Vol. 30.

[13] T.Luo and S. G. Nagarajan. 2018. Distributed anomaly detection using autoencoder neural networks in WSN for IoT.
In Proc. IEEE ICC.

[14] Pankaj Malhotra, Anusha Ramakrishnan, Gaurangi Anand, Lovekesh Vig, Puneet Agarwal, and Gautam Shroff. 2016.
LSTM-based encoder-decoder for multi-sensor anomaly detection. In Proc. ICML Workshop.

[15] Pankaj Malhotra, Lovekesh Vig, Gautam Shroff, and Puneet Agarwal. 2015. Long short term memory networks for
anomaly detection in time series. In Proc. ESANN. 89.

[16] M. Mohammadi, A. Al-Fugaha, S. Sorour, and M. Guizani. 2018. Deep learning for IoT big data and streaming analytics:
A survey. IEEE Commun. Surv. Tutor. 20, 4 (4Q. 2018), 2923-2960.

[17] Mao V. Ngo, Hakima Chaouchi, Tie Luo, and Tony Q. S. Quek. 2020. Adaptive anomaly detection for IoT data in
hierarchical edge computing. In AAAI’20 workshops. Retrieved from https://arxiv.org/abs/2001.03314.

5

—_

ACM Transactions on Internet of Things, Vol. 3, No. 1, Article 4. Publication date: October 2021.

http://arxiv.org/abs/1901.03407
https://arxiv.org/abs/1901.03407
http://arxiv.org/abs/1910.06591
https://arxiv.org/abs/1910.06591
https://arxiv.org/abs/2001.03314

Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge Computing 4:23

(18]
(19]

[20
[21]

-

(22]
(23]
[24]
(25]
26]
(27]

(28]

Mao V. Ngo, Tie Luo, Hakima Chaouchi, and Tony Q. S. Quek. 2020. Contextual-bandit anomaly detection for IoT data
in distributed hierarchical edge computing. In Proc. IEEE ICDCS Demo Track.

M. V. Ngo, T. Luo, H. T. Hoang, and T. Q. S. Quek. 2020. Coordinated container migration and base station handover
in mobile edge computing. In GLOBECOM. 1-6.

Akash Singh. 2017. Anomaly Detection for Temporal Data Using Long Short-term Memory (LSTM). Master’s thesis.

Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei. 2019. Robust anomaly detection for multivariate
time series through stochastic recurrent neural network. In Proc. ACM SIGKDD. 2828-2837.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to sequence learning with neural networks. In Proc.
NIPS.

Richard S. Sutton, David A. McAllester, Satinder P. Singh, and Yishay Mansour. 2000. Policy gradient methods for
reinforcement learning with function approximation. In Proc. NIPS. 1057-1063.

Ben Taylor, Vicent Sanz Marco, Willy Wolff, Yehia Elkhatib, and Zheng Wang. 2018. Adaptive deep learning model
selection on embedded systems. In ACM SIGPLAN Notices, Vol. 53. ACM, 31-43.

S. Teerapittayanon, B. McDanel, and H. T. Kung. 2016. BranchyNet: Fast inference via early exiting from deep neural
networks. In Proc. ICPR. 2464-2469.

Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. 2017. Distributed deep neural networks over the
cloud, the edge and end devices. In Proc. IEEE ICDCS. 328-339.

Ronald J. Williams. 1992. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Mach. Learn. 8, 3—4 (1992), 229-256.

Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar, Steven Rennie, Larry S. Davis, Kristen Grauman, and Rogerio Feris.
2018. Blockdrop: Dynamic inference paths in residual networks. In Proc. CVPR. 8817-8826.

[29] J. Zhou, Y. Wang, K. Ota, and M. Dong. 2019. AAIoT: Accelerating artificial intelligence in IoT systems. IEEE Wireless

Commun. Lett. 8, 3 (2019), 825-828.

Received June 2020; revised April 2021; accepted August 2021

ACM Transactions on Internet of Things, Vol. 3, No. 1, Article 4. Publication date: October 2021.

