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ABSTRACT

We present IOTaP, a tool that analyzes and profiles block I/O
traces. IOTAP computes the (dis)similarities among a set of
workloads and sets a guideline for selecting a subset of traces
for benchmarking. By doing so, we avoid experimentally
running all workloads or, even worse, arbitrarily selecting a
subset that skews the results. We demonstrate the usefulness
of IOTAP by comparing its results with experiments on real
SSDs, achieving a high correlation of 0.92 for an NVMe SSD.

CCS CONCEPTS

« Mathematics of computing — Dimensionality reduc-
tion; « Computing methodologies — Principal component
analysis; « Information systems — Flash memory.
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1 INTRODUCTION

Selecting I/O traces to benchmark a storage is not an easy
task. Although the Storage Networking Industry Association
(SNIA) hosts a wide variety of workload traces [19], it is
often unclear which workloads to run for evaluation. Table 1
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Table 1: Size and length of recent SNIA workload traces.

Suite #of files #0fI/Os Total time
YCSB+RocksDB [21] 27 352 M 0.4 Days
Virtual desktop [11] 2694 43 B 103.3 days

Slacker [7] 57 2742k 13.9 mins

Nexus [22] 31 4102k  23.3 mins

MS Production [10] 297 1B 120 Days

MS Enterprise [9] 116 26B 120 Days
MSR Cambridge [14] 36 434 M 8 Days

Total 3258 8.7B 441 Days

shows a summary of the most recent set of block I/O traces
available from IOTTA SNIA [19]. I/O traces are replayed
faithfully to their timestamps if performance characteristics
such as I/O latency need to be measured accurately, and
it would take over a year to replay all of them, making it
both intractable and wasteful. On the other hand, arbitrarily
choosing a small set of workloads for testing may result in a
bias and lack the coverage of the full spectrum of I/O.

This arbitrary selection of workloads from a huge set can
lead to a benchmarking crime if it does not provide a justified
reason for the selection [8]. Providing this justification is
often difficult when there are too many files to select from
(in the case of VDI trace [11]), or when they are too old but
there is no a better alternative for that domain (in the case
of MS Production traces [10]). Moreover, although we can
rely on expert knowledge to select proper workload traces
fit for the specific target system, we believe that evaluating a
storage system under a diverse set of workloads will become
increasingly relevant due to storage virtualization, workload
colocation, and workload heterogeneity. Thus, we, the stor-
age research community, need an analytical toolchain that
selects a subset of I/O traces based on a principled approach.

We present IOTAP, a tool that extracts important features
from traces and computes (dis)similarities among them to
provide a guideline for selecting traces when benchmarking
storage systems'. The three main advantages of using our
tool are as follows. First, IOTAP is unbiased, analytically

10ur tool is available at https://github.com/swiftomkar/IOTap
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Figure 1: Workflow of IOTAP. It (1) extracts 253 features from each trace, (2) reduces its dimensionality through PCA (Principal
Component Analysis), (3) computes the (dis)similarity between traces based on their distance in the PC dimension, and (4) sets

forth a guideline for selecting traces.

computing the trace characteristics rather than empirically
measuring how the trace performs, and using this informa-
tion to sample a subset of workloads with the broadest cover-
age. Second, it is fast, only needing a single scan of the trace
file to extract all of its features, and using a fast and efficient
principal component analysis (PCA) [6] to understand the
key differences among traces. Third, it is accurate, achieving
a high correlation of 0.92 when compared to experimental
results on real storage devices.

To validate our tool, we replay and measure 16 trace files
among the 3258 trace files available on SNIA [19]. (We cannot
replay and measure all traces as this would take over a year
to complete.) We hypothesize that two analytically similar
traces would exhibit similar behavior when exercised on a
real storage device. We use I/O latencies as measurable be-
havior, and demonstrate that our hypothesis holds true. Thus,
if IOTAP analyzes two traces to be similar, benchmarking
them would not only be redundant, but also accentuate the
particular characteristics of the traces, skewing the overall
evaluation. We hope that IOTAP can be used for unbiasedly
selecting I/O traces for a fair evaluation of storage systems.

2 RELATED WORKS

Table 2 shows a high-level overview of recent related works
that analyze, classify, or characterize traces. In particular, we
briefly outline the works by Tarasov et al. [20] and Basak et
al. [4], as they have been validated empirically. Tarasov et

Table 2: Summary of Related Works.

Statistical Empirical  Guideline for

analysis  validation selecting traces
Chen et al. [5] X X
Tarasov et al. [20] X X
Liet al. [12] X X
Basak et al. [4] X
Zhou et al. [23] X X
This work (IOTap)
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al. [20] bin each I/O into a multi-dimensional feature matrix
based on its operation type and I/O size, and use these feature
matrices to build a flexible replayable model for generating
representative synthetic counterparts. On the other hand,
the work done by Basak et al. [4] measures latencies and
workload parameters in fixed intervals and uses both CART
(classification and regression tree) and hierarchical clustering
to extract the workload signature; these workload signatures
are used to determine if workloads can be colocated.

We faithfully implement the two designs and examine if
they can be effective in identifying (dis)similar traces. How-
ever, we identify the following three deficiencies. First, the
prior approach can be very slow. In particular, we find that
the signature extraction method is too slow, making it in-
feasible to analyze large traces. Second, if the trace does not
include latencies, the signature extraction method does not
work. Lastly, they are not accurate in matching analytical
results with experimental measurements. We show more
details to these results in Section § 5.

3 IOTAP:1/0 TRACE ANALYSIS AND
PROFILING

We consider the following criteria when designing IOTaP.

o The tool should neither require performance measurement
to classify its characteristics nor depend on the system

hardware on which the traces were collected.
e The tool should be fast, only requiring a single pass for

each trace, and its analysis time should scale at most lin-

early with the number of I/O traces analyzed.
o The tool should holistically consider all aspects of the trace

as a continuous spectrum of values, rather than binning
and discretizing them according to arbitrary thresholds.

In meeting these design criteria, our work processes all
traces according to the workflow described in Figure 1. First,
it extracts 253 features that capture the distributions of I/O
type, inter-arrival distance, size, and skew. Second, it uses
PCA (Principal Component Analysis) [6] to reduce the num-
ber of dimensions that characterize the workload, from 253
features to 40 PCs (Principal Components). Third, based on
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Table 3: Trace attributes and features.

Attribute . Number of Number of
Description .
group attributes features
Read-write ratio, I/O
VO type change probabilities > >
1/0 size,
1/O size /O size 6 66
data transfer rate
Inter-arrival ~ Root-mean-square
. . 3 33
distance of distances
Portion of data
Skew transferred in top 9 99
most accessed blocks
Total 23 253

the PC coordinates of each trace, it computes the distance
between two traces, which represents how similar (if close)
or dissimilar (if far) the points are. Lastly, it provides a guide-
line for selecting a subset of traces for benchmarking based
on the location and inter-distance among traces.

Table 3 outlines the 23 attributes and 253 features extracted
from a trace. Each attribute consists of 11 features that de-
scribe its distribution and dynamics. The first feature of an
attribute is the average value across the entire trace. For
example, the I/ OsizeZZ;ire is a feature, representing the av-
erage I/O size across the entire trace. The next 5 features are
the minimum, first quartile, median, third quartile, and the
maximum values when the trace is chunked into 1-minute
intervals. For example, I/Osize:™" is the maximum value of
the average I/O size among the 1-minute intervals in a trace.
The last 5 features are the same 5 distributions but for 1-
second intervals. By including distribution information from
multiple chunk sizes, we describe both the second-scale and
the minute-scale dynamics of the workload. In addition, ex-
tracting these features uses a moving window when scanning
the trace file and does not require latency measurements.

Inspired by the approach in the architecture community
to analyze CPU workloads [15, 16], we use PCA to distill the
most important characteristics among the 253 features. In
essence, PCA reduces the dimensionality of a dataset, trans-
forming the 253 features into 40 PCs where each PC is some
combination of the original features. Each PC maximizes
the variance from the data, and 40 PCs collectively capture
93.79% of the original data’s variance. This process accentu-
ates the differences among the traces, and similar features are
made less important. PCA is relatively fast and efficient, only
taking several seconds to analyze a matrix of 3258 (number
of traces) by 253 (number of features).

Figure 2 projects the location of all 3258 traces from Ta-
ble 1 onto the two most important PC dimensions, capturing
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Figure 2: Two-dimensional projection on the PCA of all 3258
traces from Table 1, capturing the top 32.31% of the variance.
Trace suites such as MS Production [10] and MS Enterprise [9]
consists of a more diverse set of workloads compared to those
such as Slacker [7] and YCSB+RocksDB [21].

the top 32.31% of the variance. Projection onto the other 38
dimensions is not shown for brevity. All the YCSB+RocksDB
traces [21] are tightly clustered together as they represent
the same workload chopped into different files. Similarly, the
VDI traces [11], all from the same virtual desktop workload
captured in the span of 28 days, are concentrated on a rela-
tively smaller corner of the map, despite having nearly 2700
traces (82.7% of all trace files). In contrast, the MS Produc-
tion traces [10] cover a wider range of I/O characteristics,
spread across the 2D plot. These analytical results are con-
sistent with our expectation as YCSB+RocksDB traces and
VDI traces are trace segments while MS Production traces
are independent traces.

Table 4 lists the top 5 important features analyzed through
PCA. A single feature may be part of multiple PCs, thus we
show the total contribution across all PCs. The feature that
discerns traces the most is the root-mean-square (RMS) of
distances between two consecutive read I/Os. This feature
reflects upon the sequentiality of a workload; sequential
workloads have small RMS distances while random ones
have large distances. The second important feature is the
first quarter (Q1) for bytes read per second in 1-minute in-
tervals. This captures the burstiness of a workload; even if
two workloads have similar data transfer rates on average,
a bursty workload would have a smaller Q1, while uniform
workloads would have Q1 values similar to the median.

We consider the distance between two points on the 40-PC
dimension to be the degree of dissimilarity. That is, if two
points are close, they are similar, while if far, dissimilar. We
use the Manhattan distance (L1 norm) for this purpose, and
use the variance captured for each PC as the weight. We
show in Section §5 that these distances correlate well with
latency measurements.
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Table 4: Top 5 important features according to PCA

Attribute
RMS of distance

Features Contribution (%)

between consecutive RRMSZZ;" € 5.3
reads (RRMS)

Bytes read 1min

per second (BRPS) BRPSql 47
Probability of write 1sec

after read I/O (WAR) WARq2 335

Portion of data
transferred in top 10H Oqulm"” 2.76
10% hot blocks (10HOT)

Probability of read 1sec

after write I/O (RAW) RAWmax 2.54

4 EXPERIMENTAL METHODOLOGY

To test our hypothesis that two analytically similar traces
would also be similar empirically, we replay the traces and
measure the latencies on real SSDs. We use a primary perfor-
mance metric such as I/O latencies for validation, but other
metrics such as throughput and SSD-internal write amplifi-
cation can also be considered. We leave the investigation of
correlating our analysis with these other metrics as future
work. In addition, we do not run all 3258 traces (which would
take over a year), but arbitrarily choose 16 trace files. By do-
ing so, we, unfortunately, commit a benchmarking crime of
subsetting workloads. However, we cannot use our own tool
to select traces for validation as it creates a cyclic dependency.
We plan to continue experimentally replaying the remainder
of the traces and make the validation results available at our
tool repository (https://github.com/swiftomkar/IOTap).

Figure 3 illustrates the workflow for the experiments. For
replaying traces, we use btreplay [3] which takes in a binary
blktrace file as input. To create this binary file, we develop
blkunparse which converts I/O trace in text format into a
btreplay-compatible input. As the traces are replayed, the
I/O latencies are measured using the blktrace [2] tool.

Figure 3: Replaying and measuring latencies of I/O traces for
empirical validation: (1) blkunparse converts the block I/O
in text format into a replayable binary format, (2) btreplay
replays the trace binary with an acceleration factor on a test
device, (3) and blktrace measures the latencies.
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Table 5: Traces replayed.

Trace file Trace suite Acceleration Label
2016022212-LUN3 VDI 13 VD3
2016022314-LUNO VDI 10 VDO

Cassandra Slacker 51 SLC
Elasticsearch  Slacker 95 SLE
Email Nexus 189 N5E
Exchange 2:39 PM  MS Enterprise 12 ME2
Messaging  Nexus 262 N5M
Mysql  Slacker 116 SLM
Radius 2:43 PM  MS Production 80 MP2
Radius SQL 10:05 AM  MS Production 15 MP10
Sonarqube  Slacker 60 SLS
SSDTrace-00 YCSB+RocksDB 1 YRO
SSDTrace-06 YCSB+RocksDB 1 YR6
SSDTrace-08 YCSB+RocksDB 1 YR8
TPCC 4:01PM  MS Enterprise 0.2 ME4
TPCC 9:43 AM  MS Enterprise 0.2 ME9

However, there is a fundamental issue of hardware dif-
ference between the one where the trace was collected and
where the trace is replayed. For example, replaying a data-
intensive workload from a storage array onto a hard disk
drive would overwhelm the single drive. The other case of
replaying a trace from a mobile environment is also prob-
lematic. Although there have been studies for downscaling
traces [17], there is no general-purpose solution for match-
ing hardware differences. For our work, we extrapolated the
target IOPS based on the read-write ratio and average I/O
size of the trace, and the performance specification of the
storage drives used. Thus, we use different trace acceleration
factors depending on the replayed trace and the SSD used, as
shown in Table 5. The labels abbreviate the long trace names
for Figure 4a.

5 EVALUATION RESULTS

In this section, we present the accuracy of our analytical
method by comparing it against the measured performance
of traces in Table 5. We measure the latency with blktrace
and use the Kolmogorov-Smirnov test to quantify the sim-
ilarity between two one-dimensional cumulative distribu-
tions on latencies. The empirically measured similarity is
compared with the analytical similarity computed using the
Manhattan distance of two traces on the PCA dimensions. We
use Manhattan distance from among several distance func-
tions as it is effective at computing (dis)similarities between
high dimensional data points [1]. Prior to each experiment,
SSDs are pre-conditioned [18] through 2 full-drive sequential
writes followed by 2 full-drive random writes.

Figure 4 illustrates the similarity matrix (Figure 4a) and
correlation (Figure 4b) between the analytical and empirical
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(a) Similarity matrix. cal and empirical results.
Figure 4: Figure 4a shows the similarity matrices between
analytical (upper-right triangle in gray) and empirical (lower-
left triangle in blue). Lighter shades indicate higher similar-
ity, while the darker the more dissimilar. A greater degree
of diagonal mirroring means a higher correlation between
the analytical and empirical results. Figure 4b plots the cor-
relation between analytical and empirical similarity. Each
point represents a pairwise comparison between two distinct
traces in Table 5. The correlation coeflicient is 0.92.

results. In Figure 4a, the degree of similarity is represented
by the shade of the blues and grays. The lighter the shade, the
more similar the two corresponding traces are. The analytical
similarity computed using the Manhattan distance of two
points from PCA is on the upper-right, while the empirical
similarity quantified by the Kolmogorov-Smirnov test of the
latency distributions of the two traces is on the lower-left.
The similarity matrix shows a high degree of mirroring along
the diagonal, indicating that our analytical approach matches
with the measured results, confirming our hypothesis.

For Figure 4b, each point on the graph is a pair of two
distinct traces, and its x-coordinate is the empirical similar-
ity between their latency distributions, and the y-coordinate
is its analytical similarity computed by the distance in the
PCA. We observe a high correlation coefficient of 0.92. The
outliers are comparisons between MS Enterprise (collected
on a storage server) and Nexus (collected on a mobile phone).
The locations of these outliers relative to the regression line
indicate that the analytical method perceives the difference
between the two trace suites to be greater than the mea-
sured latency distributions. We interpret this to be caused by
the performance ceiling of the drive, limiting the measured
difference between the two trace suites.

Compared with prior methods in analyzing I/O traces,
IOTaAP is both faster and more accurate, as shown in Fig-
ure 5. Figure 5a plots the runtime of the signature extraction
method based on CART [4] that shows the infeasibility of
using this method on long traces. However, our approach
only takes 1.4 hours to analyze all the traces together, even

(b) Correlation between analyti-
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Figure 5: Performance and accuracy of prior methods. Fig-
ure 5a plots the trace processing time for the signature ex-
traction method [4]. The measured processing time (in bold
X) for the Slacker, Nexus, and YCSB+RocksDB traces are 0.6,
1, and 24 hours, respectively. On the other hand, IOTAP only
takes 1.4 hours to extract features from all 3258 traces to-
gether. Figure 5b shows the correlation between the empiri-
cally measured similarity and the analytical similarity using
the feature matrix method [20]. The two do not correlate
well, with a correlation coefficient of -0.19.

faster than the 24 hours for the signature extraction method
to analyze only the YCSB+RocksDB traces. We are unable
to compare the accuracy of this approach due to it requiring
measured latencies for analysis. On the other hand, Figure 5b
shows the accuracy of the feature matrix method [20]?. In this
approach, we (1) extract feature matrices for every 10-second
interval in the traces, (2) cluster all the feature matrices to
group similar ones into a single signature, and (3) compute
the Jaccard similarity between two traces that are expressed
as a set of signatures. The analyzed similarity using this
feature matrix approach does not correlate well with the
empirical measurements.

6 TRACE SAMPLING

Based on the analysis of all the traces, IOTAP provides a
guideline for selecting I/O traces for evaluation. Once the
traces are placed in the principal component dimensions
through PCA, we can sample a subset of traces from all
available traces. For this, we use k-means clustering [13] on
the traces from the PCA, where k is the number of traces to
sample, and select a trace that is centrally located within each
cluster. k-means is chosen after exploring several clustering
techniques as it allows us to specify k and sample traces
without ignoring the outliers while also scaling to large data
sets in PC dimensions [13].

2The feature matrix is an intermediary byproduct for Tarasov et al. [20]
that generates synthetic traces based on analysis. Similarity analysis is not
the main purpose of that work, but we use their approach for evaluation.



HotStorage ’22, June 27-28, 2022, Virtual Event, USA

Table 6: Example of sampling traces using k-means
clustering with k=5.

Trace file Read Ratio Bandwidth Avg. I/O size
201 603;/4?;_LUN3 0.86 27.4MB/s 32.9KB
2016 03;/4?;_LUN2 0.59 5.5MB/s 18.6KB
Di:ﬁiffiugﬁ‘;zhﬁ 0.53 835KB/s 75.4KB
Disﬁiffiu;fézrkM 0.92 600KB/s 30.5KB
TI\I/)I(S: gri;eggrji;[ 0.62 1.3GB/s 8.7KB
Coverage (1-KS) 0.85 0.80 0.80

Table 7: Example of sampling traces using k-means
clustering with k=12.

Trace file Read Ratio Bandwidth Avg. I/O size
201602;]5]3;—LUN6 0.82 9.6MB/s 17.1KB
201603(\)[8211-LUN4 0.99 361.6KB/s 5.6KB
201603;]5?2-LUN1 0.52 3.6MB/s 17.8KB
201603:761211—LUN2 0.66 21.2MB/s 25.6KB
201603:,8]317—LUN3 0.90 23MB/s 31.2KB

Builﬁﬂziﬁﬁf 10?? Am 006 18MB/s 32.7KB
Buill\ﬁsszrr\(::ru i:tzi;(;nAM 0.60 21MB/s 52.6KB
Slacker 0.95 L IMB)s L5.oKE
Crate

Disﬁ/llfypzrx?iiulcztzig PM 0.66 1.5MB/s 92.5KB
Exl\f}?aizzefzrsiS;M 0.77 10.6MB/s 15.7KB
MusiIc\IlizllesBook 0.87 224.3KB/s 12.9KB
%Sc]?:n;es? T& 0.62 13GB/s 8.7KB

Coverage (1-KS) 0.89 0.89 0.88
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Table 6 and Table 7 show two examples of sampling, using
k = 5 and k = 12 respectively. To understand how repre-
sentative our sampling is, we compute the coverage of the
sampled subset in relation to the entire set with respect to
the read ratio, bandwidth, and average I/O size. More specifi-
cally, we use the Kolmogorov-Smirnov (K-S) test to compare
how similar the two distributions (sampled subset and total
set) are. Even only with 5, the sample covers at least 80%
of the total traces across the three attributes. The samples
in Table 6 and Table 7 only serve as illustrative examples,
and the coverage for other workload characteristics such as
skewness that may be of interest for understanding cache
hit rates may be different.

7 CONCLUSION

We propose a principled approach to benchmarking with
block I/O traces through IOTap, a tool that computes the
(dis)similarities among traces and provides an unbiased
guideline for selecting a subset. Our analytical approach
correlates well with latency measurements on real SSDs, vali-
dating the usefulness of our approach. We leave the following
two directions for future work. First, we plan to further inves-
tigate trace replay methods that address hardware disparity
between trace collection and trace replay. Second, we plan
to correlate our analytical results with other empirical mea-
surements such as throughput and SSD write amplification
to validate that our methods extend beyond I/O latencies.
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