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In the phase-field description of moving contact line problems, the two-phase system can
be described by free energies, and the constitutive relations can be derived based on the
assumption of energy dissipation. In this work we propose a novel boundary condition
for contact angle hysteresis by exploring wall energy relaxation, which allows the system
to be in non-equilibrium at the contact line. Our method captures pinning, advancing
and receding automatically without the explicit knowledge of contact line velocity and
contact angle. The microscopic dynamic contact angle is computed as part of the solution
instead of being imposed. Furthermore, the formulation satisfies a dissipative energy
law, where the dissipation terms all have their physical origin. Based on the energy
law, we develop an implicit finite element method that is second order in time. The
numerical scheme is proven to be unconditionally energy stable for matched density and
zero contact angle hysteresis, and is numerically verified to be energy dissipative for a
broader range of parameters. We benchmark our method by computing pinned drops and
moving interfaces in the plane Poiseuille flow. When the contact line moves, its dynamics
agrees with the Cox theory. In the test case of oscillating drops, the contact line transitions
smoothly between pinning, advancing and receding. Our method can be directly applied
to three-dimensional problems as demonstrated by the test case of sliding drops on an
inclined wall.

Key words: drops, contact lines, computational methods

1. Introduction

In reality, most solid surfaces are intrinsically rough or chemically heterogeneous. As a
consequence, the contact line may get pinned at the topological or chemical defects and
results in non-unique values in the static contact angle (also known as the equilibrium
contact angle). The maximum and minimum static contact angles are referred to as the
advancing (θA) and receding (θR) angles; their difference θA − θR is known as the contact
angle hysteresis (CAH) (Dussan V. 1979; Quéré 2008). There has been a sizable body of
literature exploring the underlying physics of CAH (e.g. Extrand 2002; Gao & McCarthy
2006; Whyman, Bormashenko & Stein 2008; Makkonen 2017; Wu & Ma 2017). The
readers are referred to Eral, ’t Mannetje & Oh (2013) and Extrand (2016) for recent reviews
on this topic. It should be noted that CAH is even observed on inherently smooth and
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899 A15-2 P. Yue

homogeneous surfaces (Rahimi & Ward 2005). Thus, CAH is ubiquitous and should be
considered in contact line simulations if possible.
Contact angle hysteresis can be computationally reproduced if topological or chemical

heterogeneities on the solid wall are sufficiently resolved. For example, the phase-field
method has been successfully used to investigate CAH on chemically heterogeneous
(Kusumaatmaja & Yeomans 2007; Wylock et al. 2012) surfaces and topologically rough
(Luo, Wang & Cai 2017) surfaces. There has also been many theoretical works aiming
to predict advancing and receding angles based on chemical and topological patterns
(Iwamatsu 2006; Xu & Wang 2011, 2013).
We do not intend to explore the microscopic origin of contact angle hysteresis. Instead,

we focus on numerical simulations at length scales much greater than the characteristic
scales of the topological or chemical heterogeneities. At this macroscopic level, the solid
surface can be considered smooth and θA and θR can be treated as measurable constants
associated with the given system. The contact line is pinned if the contact angle is within
the hysteresis window [θR, θA] and moves if otherwise. This is much more computationally
affordable than treating the surface as topologically or chemically patterned. The most
popular approach for CAH was developed by Spelt (2005) for a level-set method. In this
approach, an intermediate contact angle is obtained such that the contact line is pinned. If
this angle is within the hysteresis window, the solution is accepted; otherwise, the solution
is abandoned and the contact line is moved with prescribed contact angles. This approach
was widely adopted and later extended to the phase field (Ding & Spelt 2008; Huang,
Huang & Wang 2014), volume-of-fluid (Dupont & Legendre 2010; Maglio & Legendre
2014; Linder et al. 2015) and lattice Boltzmann methods (Ba et al. 2013; Wang, Huang
& Lu 2013; Liu et al. 2015). However, this approach requires ghost cells outside the
boundary to impose the contact angle condition or pin the contact line, which can be
challenging on curved boundaries and unstructured meshes. Furthermore, to capture slip
lengths much smaller than the mesh size, a macroscale model has to be used to find
the dynamic contact angle on the boundary. This requires an accurate evaluation of the
contact line velocity, which can be tricky to compute due to complications from the wedge
flow (Linder et al. 2015; Afkhami et al. 2018). Recently, Shin, Chergui & Juric (2018)
introduced an extended interface approach to model CAH in a front tracking method,
where the generalized Navier boundary condition (GNBC) (Qian, Wang & Sheng 2003)
was adopted for the moving contact line. This method, however, still requires ghost cells
to impose CAH condition and a hydrodynamic model to impose the dynamic contact
angle.
The phase-field method, also known as the diffuse-interface method, has turned into a

favourable numerical tool for moving contact line problems since the pioneering work of
Jacqmin (2000). The built-in Cahn–Hilliard diffusion automatically regularizes the stress
singularity at the moving contact line. Another benefit is its energy formulation, which can
be used to guide the design of energy stable numerical schemes, such as convex splitting
(Eyre 1998), linear stabilization (Shen & Yang 2010; Shen, Yang & Yu 2015; Yu & Yang
2017), invariant energy quadratization (Yang 2016) and scalar auxiliary variable (Shen,
Xu & Yang 2018) methods. In this work we will develop a boundary condition for CAH
based on wall energy relaxation. Our method does not require ghost cells or the evaluation
of contact angle or contact line velocity. More importantly, the energy formulation is
preserved. It should be noted that, in the literature, the first phase-field model for CAH
was proposed by Vedantam & Panchagnula (2007): an Allen–Cahn equation on the solid
surface was used to model liquid spreading. But no fluid flow was considered and the
whole set-up was purely phenomenological. It is thus totally different from the current
work.
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Contact angle hysteresis 899 A15-3

The rest of this paper is organized as follows. We first introduce the governing equations
for contact line problems without CAH in § 2. We then develop the CAH model in § 3,
where we also prove the dissipative energy law. The weak form together with numerical
discretization is provided in § 4. Numerical results including benchmarks are given in
§ 5, where we also come up with a computational strategy for CAH. For the reader’s
convenience, the following technical topics are included in the appendices: the derivation
of wall energy is given in appendix A; constitutive relations, including GNBC, are derived
based on the second law of thermodynamics in appendix B; compressibility caused by
Cahn–Hilliard diffusion is discussed in appendix C.

2. Phase-field method for moving contact lines

We consider an incompressible two-phase system of Newtonian fluids in domain Ω
and in contact with a solid wall ∂Ωw which is a subset of the domain boundary ∂Ω . We
introduce a phase-field variable φ, which changes from +1 in fluid 1 to −1 in fluid 2. The
total free energy, including the kinetic energy, can be written as

F =
∫

Ω

(
fm(φ,∇φ) + 1

2
ρ|u|2

)
dx +

∫
∂Ωw

fw(φ) ds, (2.1)

where

fm(φ,∇φ) = λ

(
1
2
|∇φ|2 + f0(φ)

)
(2.2)

is the mixing energy per unit volume (Cahn & Hilliard 1958),

f0(φ) = (φ2 − 1)2

4ε2
(2.3)

is the double-well potential, and

fw(φ) = −σ cos θS
φ(3 − φ2)

4
(2.4)

is the surface energy per unit area on the wall (Cahn 1977; Jacqmin 2000). Here ρ is the
fluid density, u is the fluid velocity, λ is the mixing energy density, ε is the capillary width,
σ is the surface tension and θS is the static contact angle (also known as the equilibrium
contact angle) defined in fluid 1 (φ = 1). For a one-dimensional diffuse interface in
equilibrium, we have (Yue et al. 2004)

σ = 2
√
2

3
λ

ε
(2.5)

and

φ(x) = tanh
(

x√
2ε

)
, (2.6)

where we have assumed that the diffuse interface is centred at x = 0. The derivation of fw
can be found in appendix A.
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899 A15-4 P. Yue

The free energy (2.1) leads to the following coupled system of Navier–Stokes and
Cahn–Hilliard equations:

ρ

(
∂u
∂t

+ u · ∇u
)

+ J · ∇u = −∇p + ∇ · τ + G∇φ + ρg, (2.7)

∇ · u = 0, (2.8)

∂φ

∂t
+ u · ∇φ = ∇ · (M∇G), (2.9)

G = λ(−Δφ + f ′
0(φ)). (2.10)

Here ρ is the density, u is the volume-averaged velocity, J is a diffusive flux caused
by the discrepancy between u and the mass-averaged velocity (Abels, Garcke & Grün
2012), τ = μ(∇u + (∇u)T) is the viscous stress, μ is the viscosity and G is the chemical
potential. It should be noted that the Cahn–Hilliard equation is split into two second
order equations (2.9) and (2.10). This is a common treatment in finite element methods
(Yue et al. 2006; Khatavkar, Anderson & Meijer 2007b), because the C0 finite elements
cannot handle fourth-order derivatives directly. These equations are complemented by the
following boundary conditions:

u = uw on ∂Ωw, (2.11)

n · ∇G = 0 on ∂Ω, (2.12)

∂φ

∂t
+ u · ∇φ = −Γ L(φ,∇φ) on ∂Ωw, (2.13)

n · ∇φ = 0 on ∂Ω\∂Ωw. (2.14)

Here uw is the wall velocity, Γ is a positive phenomenological parameter that controls the
rate of wall energy relaxation and

L(φ,∇φ) = λn · ∇φ + f ′
w(φ) (2.15)

is the wall potential. Equations (2.11)–(2.13) correspond to the no-slip, zero diffusive
flux and wall energy relaxation conditions, respectively. Equation (2.14) corresponds to
a homogeneous natural boundary condition, which does not require any special attention
in the finite element methods. The interested readers are referred to appendices B and C
for the derivation of these equations. On ∂Ω\∂Ωw, i.e. boundaries other than solid walls,
additional velocity or stress conditions are required depending on the particular problem.
In our phase-field formulation, φ is related to volume fraction and the mixture properties

are computed by

ρ(φ) = 1 + φ

2
ρ1 + 1 − φ

2
ρ2, μ(φ) = 1 + φ

2
μ1 + 1 − φ

2
μ2, (2.16a,b)

where subscripts ‘1’ and ‘2’ denote the properties of the pure fluids 1 and 2, respectively.
Then, according to (B 13) and (C 4), the diffusive mass flux can be written as

J = −ρ1 − ρ2

2
M∇G. (2.17)

The wall energy relaxation (2.13), together with the no-slip condition (2.11), is a special
case of GNBC. It works together with interface mobility to generate the desired slip length
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Contact angle hysteresis 899 A15-5

(Yue & Feng 2011). According to Carlson, Do-Quang & Amberg (2011), the wall energy
relaxation accounts for the dissipation due to the reorganization of molecules at the contact
line.
For a planar interface, θS is recovered exactly if L = 0, i.e. when the system is in

equilibrium at the contact line. Equation (2.13) allows the contact line to deviate from
equilibrium, i.e. L /= 0 when the contact line moves. This causes the actual microscopic
contact angle measured at the wall (see figure 5b), termed the dynamic contact angle θD,
to deviate from θS. This deviation has been confirmed by various molecular-dynamics
studies (Ren & E 2007; Fernández-Toledano et al. 2019). Alternatively, if we assume that
the microscopic angle stays at its equilibrium value θS then θD in the phase-field model
can be viewed as the interface angle at a distance of O(lD) to the contact line, where
lD = √

Mμ is the diffusion length and μ is an effective viscosity (Yue, Zhou & Feng 2010;
Yue & Feng 2011). Numerically, this θD plays a role similar to the intermediate angle in
the macroscale approach of Spelt (2005) and the numerical angle in the mesh-independent
volume-of-fluid method of Afkhami, Zaleski & Bussmann (2009). The major difference
is that our θD is automatically obtained from the phase-field simulations instead of being
manually imposed based on external models such as the hydrodynamic model developed
by Voinov (1976) and Cox (1986).

3. Contact angle hysteresis

3.1. Boundary condition for contact angle hysteresis
On the solid wall, the motion of the contact line is directly related to the variation of φ:
the contact line advances if Dφ/Dt > 0 (i.e. the region previously occupied by φ = −1
is now occupied by φ = 1), recedes if Dφ/Dt < 0 and is pinned if Dφ/Dt = 0. Here
D/Dt = ∂/∂t + u · ∇ denotes the material derivative and, in particular, D/Dt = ∂/∂t on
fixed walls. Meanwhile, θD is embedded in the n · ∇φ term of the wall potential L. We have
L < 0 if θD > θS, L > 0 if θD < θS and L = 0 if θD = θS. Interested readers are referred to
appendix A for more details. Thus, we recover the criterion for contact line motion: contact
line advances (or recedes) if θD > θS (or θD < θS) and is pinned if θD = θS.
When CAH exists, the static contact angle has non-unique values, the maximum of

which is the advancing contact angle θA and the minimum of which is the receding contact
angle θR. The contact line advances if θD > θA, recedes if θD < θR and is pinned if θR ≤
θD ≤ θA, as illustrated in figure 1.
For convenience, we rewrite the wall energy as

fw(φ; θ) = −σ cos θ
φ(3 − φ2)

4
, (3.1)

where the contact angle θ is included as a parameter. For the physically relevant range
φ ∈ [−1, 1],

f ′
w(φ; θ) = −3

4
σ cos θ(1 − φ2) (3.2)

is an increasing function in θ , where ′ denotes the derivative in the first argument. It follows
that L(φ,∇φ; θ) = λn · ∇φ + f ′

w(φ; θ) is also an increasing function in θ . For brevity, we
denote L(φ,∇φ; θA) by LA and L(φ,∇φ; θR) by LR.
For a contact line with dynamic angle θD, the contact line would be in equilibrium if

θD were also the static contact angle; it follows that L(φ,∇φ; θD) = 0, i.e. λn · ∇φ =
−f ′

w(φ; θD). This is exactly (A 7) in appendix A. Then the relations between θD, θA and θR
can be mapped to the relations between the wall potentials associated with these angles:
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899 A15-6 P. Yue

φ = 1 φ = –1

θR

θD φ = 1 φ = –1θD φ = 1 φ = –1θD

θA θR θA θR θA
(a) (b) (c)

FIGURE 1. Different states of a contact line with CAH. We define the advancing and receding
states with respect to the φ = 1 fluid: (a) receding, θD < θR, (b) pinned, θR ≤ θD ≤ θA and
(c) advancing, θD > θA.

(i) advancing contact line (Dφ/Dt > 0) ⇔ θD > θA > θR ⇔ 0 > LA > LR;
(ii) receding contact line (Dφ/Dt < 0) ⇔ θA > θR > θD ⇔ LA > LR > 0;
(iii) pinned contact line (Dφ/Dt = 0) ⇔ θA ≥ θD ≥ θR ⇔ LA ≥ 0 ≥ LR.

Apparently, the state (advancing, receding or pinned) of the contact line can be
determined by comparing the values of LA and LR. This motivates the following equation
in place of (2.13) on ∂Ωw:

∂φ

∂t
+ u · ∇φ = −Γ L̃. (3.3)

Here

L̃ = minmod(LA, LR). (3.4)

We use the minmod function

minmod(a, b) =
{
sign(a)min(|a|, |b|) if ab > 0,
0 otherwise,

which returns the argument with the smaller magnitude if both arguments have the same
sign and zero if otherwise. This equation pins the contact line if θD ∈ [θR, θA]. If the contact
line moves, it automatically picks the correct static contact angle: θA if the contact line
advances and θR if the contact line recedes. It should be noted that, at the leading order,
(3.3) is consistent with equation (6) in Prabhala, Panchagnula & Vedantam (2013) for
quasi-static computations of drop shapes on hysteric surfaces.
This boundary condition is very easy to implement numerically. In each cell face on

the solid wall, we compute the two copies of wall potentials, namely L(φ,∇φ; θA) and
L(φ,∇φ; θR). Then we compare the cell average of these two potentials, and decide which
one (including 0) we need to take into (3.3). There is no need to extract θD or contact line
velocity.

3.2. Energy law for contact angle hysteresis
In thermodynamics hysteresis cannot be described by a path-independent state function.
Therefore, we cannot find a single-valued wall energy to describe the contact line motion
with CAH. However, that does not prevent the system from satisfying a dissipative energy
law.
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Contact angle hysteresis 899 A15-7

THEOREM 3.1. The equation system (2.7)–(2.10), together with the boundary conditions
(2.11), (2.12), (2.14) and (3.3), satisfies the energy law

d
dt

{∫
Ω

(
1
2
ρ|u|2 + fm

)
dx +

∫
∂Ωw

fw(φ; θA) ds
}

= W − D − Dcah, (3.5)

where

W =
∮

∂Ω

n · T · u ds +
∫

Ω

ρg · u dx
is the power of the reversible work done by the boundary and body force,

D =
∫

Ω

τ : ∇u dx +
∫

Ω

M|∇G|2 dx +
∫

∂Ωw

Γ L̃2 ds ≥ 0

is the dissipation rate as seen in the standard contact line problem, and

Dcah =
∫

∂Ωw

[ f ′
w(φ; θR) − f ′

w(φ; θA)]min
(
Dφ

Dt
, 0

)
ds ≥ 0

is the dissipation rate due to CAH. Here T = −pI + τ + τ φ is the total stress and τ φ is
given by (B 7). The term in the curly braces is the ‘free energy’ including the kinetic energy,
the mixing energy and the wall energy based on the advancing contact angle.

Proof. To save space, we will focus on the proof related to CAH and only provide a sketch
for the rest.
From (2.9), (2.16) and (2.17), we recover

Dρ

Dt
= ρ1 − ρ2

2
Dφ

Dt
= ρ1 − ρ2

2
∇ · (M∇G) = −∇ · J . (3.6)

By taking the inner product of (2.7) and u, taking the inner product of (3.6) and |u|2/2,
and summing them up, we obtain

d
dt

∫
Ω

1
2
ρ|u|2 dx =

∮
∂Ω

n · T · u ds +
∫

Ω

ρg · u dx −
∫

Ω

T : ∇u dx. (3.7)

Here we have used the incompressibility condition (2.8) and replaced G∇φ with ∇ · τ φ

based on the identity (B 19). The derivation of this equation is essentially the same as
(C 6). The only difference is that we now include a body force and replace T̃ with T .
By taking the inner product of (2.9) and G, taking the inner product of (2.10) with

−Dφ/Dt, and summing them up, we obtain

d
dt

∫
Ω

fm dx =
∫

∂Ωw

λn · ∇φ
Dφ

Dt
ds +

∫
Ω

τ φ : ∇u dx −
∫

Ω

M|∇φ|2 dx, (3.8)

where we have considered (2.14). The proof of this equation is essentially the reverse of
(B 5).
The L̃ term in (3.3) takes different values depending on the state of the contact line.

If the contact line advances, we have Dφ/Dt = ∂φ/∂t + uw · ∇φ > 0 and L̃ = LA = λn ·
∇φ + f ′

w(φ; θA) on ∂Ωw; if the contact line recedes, we have Dφ/Dt < 0 and L̃ = LR =
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899 A15-8 P. Yue

λn · ∇φ + f ′
w(φ; θR); if the contact line is pinned, we have Dφ/Dt = 0 and L̃ = 0. This

leads to the identity

L̃
Dφ

Dt
= λn · ∇φ

Dφ

Dt
+ f ′

w(φ; θA)max
(
Dφ

Dt
, 0

)
+ f ′

w(φ; θR)min
(
Dφ

Dt
, 0

)

= [
λn · ∇φ + f ′

w(φ; θA)
] Dφ

Dt
+ [ f ′

w(φ; θR) − f ′
w(φ; θA)]min

(
Dφ

Dt
, 0

)
. (3.9)

By taking the inner product of (3.3) and −(1/Γ )(Dφ/Dt) on ∂Ωw, and considering
(3.9), we obtain∫

∂Ωw

− 1
Γ

(
Dφ

Dt

)2

ds

=
∫

∂Ωw

{[
λn · ∇φ + f ′

w(φ; θA)
] Dφ

Dt
+ [ f ′

w(φ; θR) − f ′
w(φ; θA)]min

(
Dφ

Dt
, 0

)}
ds

=
∫

∂Ωw

λn · ∇φ
Dφ

Dt
ds + d

dt

∫
∂Ωw

fw(φ; θA) ds

+
∫

∂Ωw

[ f ′
w(φ; θR) − f ′

w(φ; θA)]min
(
Dφ

Dt
, 0

)
ds. (3.10)

Equation (3.5) can be easily obtained by combining (3.7), (3.8) and (3.10).
The positivity of D is easily seen. Since θA > θR, we have f ′

w(φ; θA) > f ′
w(φ; θR) based

on (3.2). Thus, both f ′
w(φ; θR) − f ′

w(φ; θA) and min(Dφ/Dt, 0) are non-positive, andD ≥ 0
follows. �

Remark 3.1. This theorem neither assumes the fluid domain Ω to be fixed, nor does it
require n · u = 0 on the boundary. It should be noted that (3.5) can also be cast into

d
dt

{∫
Ω

(
1
2
ρ|u|2 + fm

)
dx +

∫
∂Ωw

fw(φ; θR) ds
}

= W − D − D̃cah, (3.11)

with

D̃cah =
∫

∂Ωw

[ f ′
w(φ; θA) − f ′

w(φ; θR)]max
(
Dφ

Dt
, 0

)
ds ≥ 0.

It is obvious that Dcah = 0 if the contact line never recedes and D̃cah = 0 if the contact
line never advances. The dissipation of CAH takes action only when a region on the solid
surface is swept by both an advancing contact line and a receding contact line.
It should be noted that the ‘free energy’ in (3.5) can not be understood in the traditional

sense. Not all this ‘free energy’ can be used to do work and the portion that can do work
is path dependent. For example, if we use θA to define the wall energy then all the ‘free
energy’ can do work if the contact line advances; but if the contact line recedes, only part
of the ‘free energy’ can do work and the missing part is Dcah. Similarly, if we use θR then
only part of the ‘free energy’ can do work when the contact line advances and the missing
part is D̃cah.

In the following we provide a physical explanation to the dissipation terms that occur
on the solid wall. We consider a contact line problem in two dimensions with a stationary
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Contact angle hysteresis 899 A15-9

Advances

T0< t < T1 T2< t < T3

Recedes

x1 x2

x1 x2 x

T0 T1

T3 T2

Receding

Advancing

Pinned

φ = 1 φ = –1

θD

θD ≥ θA θD £ θR

θA

θR

(a) (b)

FIGURE 2. Dissipations due to contact line motion. The contact line advances from x1 to x2 and
then recedes back to x1. (a) Advancing and receding motions of a contact line. (b) Hysteresis loop
in the x–θD plane.

solid wall (such that Dφ/Dt = ∂φ/∂t) for simplicity. Suppose a contact line advances over
a region A = [x1, x2] with length a = x2 − x1 on the solid wall at t ∈ [T0, T3], as illustrated
in figure 2. At t = T0, the contact line starts from x1 with θD = θA. Then the contact line
advances with θD ≥ θA and arrives at x1 at t = T1. During [T1, T2] the contact line is pinned
at x2 and adjusts its microscopic contact angle from θA to θR. Then the contact line recedes
with θD ≤ θR and returns to its original position x1 at t = T3.
In the phase-field context, we have φ = −1 at t = T0, φ = 1 at t ∈ [T1, T2] and φ = −1

again at t = T3 in A. Correspondingly, ∂φ/∂t ≥ 0 at t ∈ [T0, T1], ∂φ/∂t = 0 at t ∈ [T1, T2]
and ∂φ/∂t ≤ 0 at t ∈ [T2, T3]. Then the energy dissipated due to CAH is

∫ T3

T0

Dcah dt =
∫ T3

T0

∫
A
[ f ′

w(φ; θR) − f ′
w(φ; θA)]min

(
∂φ

∂t
, 0

)
ds dt

=
∫
A

∫ T3

T2

[ f ′
w(φ; θR) − f ′

w(φ; θA)]
∂φ

∂t
dt ds

=
∫
A

∫ φ=−1

φ=1
[ f ′

w(φ; θR) − f ′
w(φ; θA)] dφ ds

=
∫
A

[
fw(φ; θR)|φ=−1

φ=1 − fw(φ; θA)|φ=−1
φ=1

]
ds

= σ(cos θR − cos θA)a, (3.12)

which is non-negative because θR ≤ θA. This corresponds to the region enclosed by x =
x1, x = x2, θD = θA and θD = θR, which is shaded in figure 2(b). The same amount of
dissipation can also be obtained using D∗

cah.
Meanwhile, during [T0, T1], the dissipation due to the deviation of θD from θA is

∫ T1

T0

∫
A
Γ L̃2 ds dt =

∫ T1

T0

∫
A
Γ L2

A ds dt =
∫
A

∫ T1

T0

−LA
∂φ

∂t
dt ds

=
∫
A

∫ T1

T0

( f ′
w(φ; θD) − f ′

w(φ; θA))
∂φ

∂t
dt ds
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899 A15-10 P. Yue

=
∫
A

[
fw(φ; θD)|φ=1

φ=−1 − fw(φ; θA)|φ=1
φ=−1

]
ds

= σ(cos θA − cos θD)a, (3.13)

where we have used the relation λn · ∇φ = −f ′
w(φ; θD) (see (A 7)) in the third equality.

This corresponds to the region enclosed by the advancing branch of θD and θD = θA in
figure 2(b). It should be noted a tangential force of σ cos θD has to be exerted at the contact
line in order to move the interface with a contact angle θD while the wettability supplies a
force of σ cos θA. The difference between these two forces, which has been referred to as
the uncompensated (Qian et al. 2003) or unbalanced (Ren & E 2007) Young’s stress in the
literature, is responsible for the additional dissipation in (3.13). Similarly, we can get the
dissipation due to the deviation of θD from θR during [T2, T3], i.e.

∫ T3

T2

∫
A
Γ L̃2 ds dt = σ(cos θD − cos θR)a, (3.14)

which corresponds to the region enclosed by θD = θR and the receding branch of θD. A
complete hysteresis loop is formed if the contact line stays pinned at x1 at t ≥ T3 and θD
changes from θR to θA. This pinned state does not cause any dissipation on the solid wall
(of course, viscous dissipation in the bulk may be incurred to deform the interface away
from the contact line). The argument here can be easily extended to three-dimensional
(3-D) flows, where A is a two-dimensional (2-D) region on the wall boundary and a is the
area of A.

4. Numerical discretization

4.1. Weak form and discrete energy law
The weak form of the governing equations (2.7)–(2.10) and (3.3) can be expressed as

(
ρ
Du
Dt

+ J · ∇u, û
)

= (
n · (−pI + τ ), û

)
∂Ω

− (−pI + τ , ∇û
)

+ (G∇φ + ρg, û), (4.1)

− (∇ · u, p̂
) = 0, (4.2)(

Dφ

Dt
, φ̂

)
=

(
M∇G,∇φ̂

)
, (4.3)

(
G, Ĝ

)
− 1

Γ

(
Dφ

Dt
, Ĝ

)
∂Ωw

= (λ∇φ,∇Ĝ) + (λf ′
0(φ), Ĝ) +

(
A, Ĝ

)
∂Ωw

, (4.4)

where (·, ·) denotes the L2 inner product in the domain Ω , (·, ·)∂Ω and (·, ·)∂Ωw denote the
inner product on ∂Ω and ∂Ωw. We seek solutions u ∈ H1(Ω)d, p ∈ L2(Ω), φ ∈ H1(Ω)
and G ∈ H1(Ω) satisfying the equations above, where d is the dimension of the problem.
The variables with ˆ are the corresponding test functions. The special form of (4.4) is
motivated by the proof of Theorem 3.1. The λn · ∇φ term in L̃ is cancelled out on ∂Ωw
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Contact angle hysteresis 899 A15-11

unless the contact line is pinned. The term A comes from CAH and can be expressed
as

A =

⎧⎪⎪⎨
⎪⎪⎩
f ′
w(φ; θA) = − 3

4σ cos θA(1 − φ2) if 0 ≥ LA ≥ LR (contact line advances),

f ′
w(φ; θR) = − 3

4σ cos θR(1 − φ2) if LA ≥ LR > 0 (contact line recedes),

−λn · ∇φ otherwise.

(4.5)

If ∇ · u = 0 is satisfied in the strong sense then the energy law (3.5) is recovered
if we take û = u, φ̂ = G and Ĝ = Dφ/Dt. To obtain a similar energy law under the
weak incompressibility condition (4.2), special care must be taken on the momentum
equation, e.g. the skew-symmetric form for flows with constant density and the method
of Guermond & Quartapelle (2000) for flows with variable density.
There have been energy stable numerical schemes for moving contact line problems with

variable densities (e.g. Gao &Wang 2014; Yu&Yang 2017; Metzger 2019). But they are all
first order in time and the time step has to be very small for reasonable temporal accuracy.
In this work we adopt a second-order time discretization based on the Crank–Nicolson
method and a skew-symmetric form for the convection term in the momentum equation.
In the semi-discrete form, we seek un+1, pn+1/2, φn+1 and Gn+1/2 satisfying(

ρn+1/2

(
un+1 − un

Δt
+ ūn+1/2 · ∇un+1/2 + 1

2
(∇ · ūn+1/2)un+1/2

)
, û

)

−
(

ρ1 − ρ2

2
M∇Gn+1/2 · ∇un+1/2, û

)

= (
pn+1/2I − μn+1/2E(un+1/2), ∇û

) + (
Gn+1/2∇φn+1/2, û

)
, (4.6)

− (∇ · un, p̂
) = 0, (4.7)(

φn+1 − φn

Δt
+ un+1/2 · ∇φn+1/2, φ̂

)
= (−M∇Gn+1/2, ∇φ̂), (4.8)

(Gn+1/2, Ĝ) −
(
1
Γ

(
φn+1 − φn

Δt
+ uw · ∇φn+1/2

)
, Ĝ

)
∂Ωw

=
(
λ∇φn+1/2, ∇Ĝ

)
+

(
λDf0(φn, φn+1), Ĝ

)
+

∑
e∈T (∂Ωw)

(
An+1/2, Ĝ

)
e
, (4.9)

for all admissible test functions û, p̂, φ̂ and Ĝ. Here, Δt = tn+1 − tn is the time step,
un+1/2 = (un+1 + un)/2 and φn+1/2 = (φn+1 + φn)/2 are second-order approximations at
half-time level tn+1/2, ūn+1/2 = (3un − un−1)/2 (ūn+1/2 = un for n = 0) is an explicit
approximation at tn+1/2 by extrapolation,

ρn+1/2 = 1 + φn+1/2

2
ρ1 + 1 − φn+1/2

2
ρ2, μn+1/2 = 1 + φn+1/2

2
μ1 + 1 − φn+1/2

2
μ2,

T (∂Ωw) denotes the triangulation of the wall boundary ∂Ωw and e denotes an element
face (or edge in two dimensions) on ∂Ωw. We have also introduced the strain rate tensor
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899 A15-12 P. Yue

E(u) = ∇u + (∇u)T for convenience. The term Df0, first introduced by Du & Nicolaides
(1991) and sometimes referred to as the discrete variational derivative (Gomez & van
der Zee 2017), is a second-order approximation to f ′

0(φ
n+1/2) for the purpose of energy

stability:

Df0(φn, φn+1) =

⎧⎪⎨
⎪⎩
f0(φn+1) − f0(φn)

φn+1 − φn
if φn+1 /=φn,

f ′
0(φ

n) if φn+1 = φn.

(4.10)

The term An+1/2 takes care of CAH. For the convenience of numerical implementation,
we determine the status of the contact line by comparing the integral of wall potential. On
each element face e on the wall boundary, we have

An+1/2 =

⎧⎪⎪⎨
⎪⎪⎩
Dfw(φn, φn+1; θA) if 0 ≥ L∗

A ≥ L∗
R,

Dfw(φn, φn+1; θR) if L∗
A ≥ L∗

R > 0,

−λn · ∇φn+1/2 otherwise,

(4.11)

where Dfw is the discrete variational derivative of fw. L∗
A and L∗

R are the integrals of wall
potentials on the element face and they are defined explicitly for numerical convenience:
L∗
A,R = ∫

e[λn · ∇φn + f ′
w(φ

n; θA,R)] ds.
In most problems we impose either a zero traction condition n · T = 0 or a Dirichlet

condition for u on the domain boundary, which causes the surface integral term in (4.1) to
vanish. Thus, for brevity, the surface integral term is dropped in (4.6).
This scheme does not have unconditional energy stability, but it satisfies the following

discrete energy law for matched density.

THEOREM 4.1. If ρ1 = ρ2 = ρ and uw = 0, then the semi-discrete system (4.6)–(4.9) with
the non-penetrating essential boundary condition n · u|∂Ω = 0 satisfies the discrete energy
law

F n+1
A − F n

A

Δt
= −1

2

∥∥∥√
μn+1/2E(un+1/2)

∥∥∥2
−

∥∥∥√
M∇Gn+1/2

∥∥∥2

−
∥∥∥∥ 1√

Γ

φn+1 − φn

Δt

∥∥∥∥
2

∂Ωw

+
∑

e∈T (∂Ωw)

Be, (4.12)

where

F n
A =

∫
Ω

[
1
2
ρ|un|2 + λ

(
1
2
|∇φn|2 + f0(φn)

)]
dx +

∫
∂Ωw

fw(φn; θA) ds (4.13)

and

Be =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if 0 ≥ L∗
A ≥ L∗

R,(
Dfw(φn, φn+1; θA) − Dfw(φn, φn+1; θR),

φn+1 − φn

Δt

)
e

if L∗
A ≥ L∗

R > 0,

(
λn · ∇φn+1/2 + Dfw(φn, φn+1; θA),

φn+1 − φn

Δt

)
e

otherwise.

(4.14)
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Contact angle hysteresis 899 A15-13

Proof. Taking û = un+1/2, the left-hand side (LHS) of (4.6) becomes

LHS =
(

ρ
un+1 − un

Δt
,
un+1 + un

2

)

+
(
ūn+1/2 · ∇un+1/2 + 1

2
(∇ · ūn+1/2)un+1/2,un+1/2

)

= ρ

2Δt

(‖un+1‖2 − ‖un‖2) + 1
2

(
∇ ·

(
ūn+1/2

∣∣un+1/2
∣∣2) , 1

)
= ρ

2Δt

(‖un+1‖2 − ‖un‖2) , (4.15)

where we have used the boundary condition ūn+1/2 · n|∂Ω = (3un+1 − un)/2 · n|∂Ω = 0 in
the last equality. It should be noted that this equation does not require ∇ · un = 0 to be
exactly satisfied. The right-hand side (RHS) of (4.6) becomes

RHS = (
pn+1/2, ∇ · un+1/2) − (

μn+1/2E(un+1/2), ∇un+1/2) + (
Gn+1/2∇φn+1/2,un+1/2)

= (
pn+1/2, ∇ · un+1/2) − ‖

√
μn+1/2E(un+1/2)‖2 + (

Gn+1/2∇φn+1/2,un+1/2) . (4.16)

Since (4.7) is satisfied at each time level, it follows that −(∇ · ((un+1 + un)/2), p̂) = 0.
By taking p̂ = pn+1/2, we obtain

− (∇ · un+1/2, pn+1/2) = 0. (4.17)

By taking φ̂ = Gn+1/2, (4.8) leads to

(
φn+1 − φn

Δt
,Gn+1/2

)
+ (

un+1/2 · ∇φn+1/2,Gn+1/2) = − (
M∇Gn+1/2, ∇Gn+1/2) . (4.18)

We then take Ĝ = (φn+1 − φn)/Δt in (4.9) and obtain

(
Gn+1/2,

φn+1 − φn

Δt

)
−

(
1
Γ

φn+1 − φn

Δt
,
φn+1 − φn

Δt

)

=
(

λ∇
(

φn+1 + φn

2

)
, ∇

(
φn+1 − φn

Δt

))
+

(
λDf0(φn, φn+1),

φn+1 − φn

Δt

)

+
∑

e∈T (∂Ωw)

(
An+1/2,

φn+1 − φn

Δt

)
e

=
(

λ

2

(|∇φn+1|2 − |∇φn|2) ,
1
Δt

)
+

(
λ

(
f0(φn+1) − f0(φn)

)
,
1
Δt

)

+
(
Dfw(φn, φn+1; θA),

φn+1 − φn

Δt

)
∂Ωw

+
∑

e∈T (∂Ωw)

(
An+1/2 − Dfw(φn, φn+1; θA),

φn+1 − φn

Δt

)
e
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899 A15-14 P. Yue

= 1
Δt

∫
Ω

[(
1
2
λ|∇φn+1|2 + λf0(φn+1)

)
−

(
1
2
λ|∇φn|2 + λf0(φn)

)]
dx

+ 1
Δt

∫
∂Ωw

[
fw(φn+1; θA) − fw(φn; θA)

]
ds −

∑
e∈T (∂Ωw)

Be. (4.19)

Finally, by summing up equations (4.15)–(4.18) and subtracting (4.19), we arrive at
(4.12). �

Remark 4.1. Since the proof is based on weak form and integration by parts, it can be
easily extended to Galerkin methods with finite-dimensional function spaces (Shen et
al. 2015). This energy law thus also applies to the fully discrete Galerkin finite element
methods. The only additional requirement is that φ and G must share the same function
space such that we can take φ̂ = Gn+1/2 and Ĝ = (φn+1 − φn)/Δt.

Remark 4.2. The energy law (4.12) is dissipative except for the Be term due to hystersis.
We cannot prove this term to be non-positive from the weak form. However, we can show
Be ≤ 0 if the strong form (3.3) is satisfied.

(i) If 0 > L∗
A > L∗

R, the contact line advances and we have the trivial relation Be = 0.
(ii) If L∗

A > L∗
R > 0, the contact line recedes according to the strong form (3.3) and,

thus, φn+1 − φn ≤ 0. Similar to the inequality f ′
w(φ, θA) ≥ f ′

w(φ; θR), it can be easily
shown that Dfw(φn, φn+1; θA) ≥ Dfw(φn, φn+1; θR) for φn, φn+1 ∈ [−1, 1]. Thus, we
have Be ≤ 0 when the contact line recedes. This corresponds to the dissipation term
Dcah in Theorem 3.1.

(iii) Otherwise, the contact line is pinned according to (3.3). In this case φn+1 = φn and,
thus, Be = 0.

It should be noted, however, that the weak form cannot exactly guarantee φn+1 > φn

when L∗
A > L∗

R > 0 or φn+1 = φn when L∗
A ≥ 0 ≥ L∗

R. Thus, there might be regions with
Be > 0 on wall boundaries in finite element computations. But, in practice, we do expect
the weak solution to be a reasonable approximation to the strong solution and thus Be ≤ 0
to be ‘approximately’ satisfied.

Remark 4.3. In the absence of CAH, we have θA = θR and, thus, Be = 0. In this case, (4.12)
recovers unconditional energy stability. It should be noted, however, that our numerical
scheme is nonlinear and requires iterations. Thus, the time step still cannot be too large in
practical computations.

Although we can not establish the energy stability for variable density problems, it does
not raise severe stability concerns in practical computations as demonstrated later in § 5.3.

4.2. Numerical methods
The equation system (4.6)–(4.9) are solved by the finite element method using the deal.ii
library (Bangerth, Hartmann & Kanschat 2007; Alzetta et al. 2018). Hierarchical adaptive
meshes, quadrilateral in two dimensions and hexagonal in three dimensions, are used to
discretize the computational domain. We use Q2 elements for u, Q1 elements for p and
Q3 elements for φ and G. For easy implementation, we solve the flow equations (4.6) and
(4.7) separately from the Cahn–Hilliard equations (4.8) and (4.9), and then couple them
together using a Picard iteration.
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The nonlinear system of (4.8) and (4.9) are solved by Newton’s method. On each
element face e on ∂Ωw, we compute two copies of chemical potential LA and LR, and
their integrals L∗

A and L∗
R on e. The value of An+1/2 is then determined from (4.11). The

linear system in each Newton step is solved by the generalized minimal residual method
(GMRES) with the incomplete LU factorization (ILU) preconditioner.
The momentum equation (4.6) and the continuity equation (4.7) are solved by the mixed

finite element method. Thanks to the explicit ūn+1/2, we have the linear saddle point system

[
A BT

B 0

] [
U
P

]
=

[
F
0

]
, (4.20)

where U and P are solutions vectors for un+1 and pn+1/2, respectively. The asymmetric
block A comes from the momentum equation except for the pressure term and the block
B comes from the continuity equation. For 2-D problems, where the number of degrees
of freedom is typically below one million, we solve this system by the direct sparse linear
solver UMFPACK (Davis 2004). For 3-D problems, we adopt the grad-div stabilization
and solve the saddle point system by GMRES with a block-triangular Schur complement
preconditioner developed by Heister & Rapin (2013). Detailed implementation of this
preconditioner can be found in tutorial step-57 of deal.ii.
The solution procedure can be summarized as follows.

(i) Create an initial mesh which is refined at the interface and set the initial data u0 and
φ0.

(ii) For each time step n ≥ 0, choose a proper Δt and perform the following steps until
the stopping time is reached.
(a) Based on φn , locally refine or coarsen the mesh such that the mesh is the finest

at the interface with hmin ∈ [0.5ε, ε] and gets coarsened away from the interface.
Transfer data from the old mesh to the new mesh if the mesh is modified.

(b) Let k denote the iteration step. Set k = 0 and un+1/2,0 = ūn+1/2, and iterate over
the following steps until convergence.
(1) Solve the Cahn–Hilliard equations (4.8) and (4.9) for φn+1,k+1 and Gn+1/2,k+1

based on φn and un+1/2,k.
(2) Solve the flow equations (4.6) and (4.7) for un+1,k+1 and pn+1/2,k+1 based on

un , ūn+1/2, φn+1/2,k+1 and Gn+1/2,k+1.
(3) Set k = k + 1.

(c) Update solution at tn+1: un+1 = un+1,k, pn+1/2 = pn+1/2,k, φn+1 = φn+1,k and
Gn+1/2 = Gnh,k.

In practice we only need a few iterations in (iib). For the computationally expensive 3-D
problems, we only compute two iterations, i.e. up to k = 2.

5. Results and discussions

5.1. Drop deformation in plane Poiseuille flow
We first validate our method by computing the drop deformation with pinned contact lines
in plane Poiseuille flow (Schleizer & Bonnecaze 1999). This 2-D test case has been widely
used for validation purpose (e.g. Spelt 2005; Dupont & Legendre 2010; Huang et al. 2014;
Liu et al. 2015). The computational domain is a 8H × 2H rectangle with a drop adhered
to the lower wall, as shown in figure 3(a). At the inlet, we impose a fully developed flow
velocity u = [1 − (y/H)2]Vmax , where Vmax is the maximum velocity along the centreline
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Vmax

φ = –1

φ = 1
θ0

y

x

h

2H

FIGURE 3. Schematic of a drop under shear in plane Poiseuille flow.

of the channel. At the outlet, we impose the zero traction condition. The lower and upper
boundaries are stationary walls, where the velocity is set to zero. A drop is placed on
the lower wall. Initially, the drop is a circular segment with contact angle θ0 = 60◦. The
drop has radius R0 = 0.9023H and height h = 0.4511H, such that its area is 0.5H2. Inertia
is neglected and the viscosity ratio is unity, i.e. μ1 = μ2 = μ. Following Schleizer &
Bonnecaze (1999), we define the characteristic shear rate E = ∂u/∂y|y=−H = 2Vmax/H
and the capillary number Ca = μEh/σ = (μVmax/σ)(2h/H). To pin the contact line, we
set θA = 170◦ and θR = 10◦.
For the Cahn–Hilliard equation, we introduce the following dimensionless parameters

(Yue et al. 2010; Yue & Feng 2011): the Cahn number

Cn = ε

H
(5.1)

that characterizes the thickness of the interface,

S = lD
H

=
√
Mμ

H
(5.2)

that characterizes the slip due to Cahn–Hilliard diffusion, and

Π = 1
μΓH

(5.3)

that characterizes the wall energy relaxation rate. Here lD = √
Mμ is the diffusion length

in the phase-field method, which is the counterpart of slip length in the slip models. For
this test case, we choose Cn = 0.01, S = 0.01 and Π = 0.1. The computational mesh is
adaptively refined at the interface and the mesh sizes are hmin = H/128 at the interface
and hmax = H/8 in the bulk phases, as shown in figure 4(a). There are typically five layers
of mesh cells in the diffuse interface (between φ = ±0.9 contours), which guarantees the
sufficient resolution of the interface (Yue et al. 2004, 2006). Thanks to the adaptive mesh
refinement, there are only 3022 elements in the whole computational mesh corresponding
to figure 4(a).
We take Δt = 0.04(μH/σ) and run the simulation for 1000 steps, which is sufficient

for the flow to reach steady state. The numerical results are given in figure 4. For different
capillary numbers, the φ = 0 level sets match the boundary integral curves very well. In
theory, the contact lines should be pinned at x/H = ±0.7814. The contact line at the right
is pinned very accurately for all Ca. In comparison, there is an observable error at the
left contact line for Ca = 0.15: the intersection of φ = 0 and the wall is shifted slightly
downstream. This is because the contact angle is very small and the diffuse interface has a
much larger intersection with the wall. This, in return, introduces more uncertainty to the
exact location of the sharp interface.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 7
1.

63
.9

1.
15

7,
 o

n 
20

 Ju
l 2

02
0 

at
 2

0:
29

:2
8,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

0.
46

5

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2020.465


Contact angle hysteresis 899 A15-17

–1.0 –0.6 –0.2 0 0.2 0.6 1.0
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x x

–0.4

–1.0 –0.6 –0.2 0 0.2 0.6 1.0
–1.0

–0.8

–0.6

–0.4

–1.0 –0.6 –0.2 0 0.2 0.6 1.0
–1.0

–0.8

–0.6

–0.4
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–0.6

–0.4

(b)(a)

(d)(c)

FIGURE 4. An example of the computational mesh near the drop (a) and steady-state drop
shapes (b–d). The (red) dashed curve denotes the interface obtained by Schleizer & Bonnecaze
(1999) using a boundary integral method. The (black) solid curves denote the φ = −0.9, 0, 0.9
contours by the phase-field method. Computational mesh for (a) Ca = 0.05, (b) Ca = 0.05,
(c) Ca = 0.10, (d) Ca = 0.15.

x

y

2H
AdvancingReceding

Interface
φ = 1 φ = –1φ = –1

θD

θapp

(a) (b)

FIGURE 5. Schematic of advancing and receding interfaces under plane Poiseuille flow (a) and
a zoomed-in view of the contact line (b). The dashed line in (b) represents a circular fit to the
deformed interface.

5.2. Advancing and receding interfaces in plane Poiseuille flow
The contact lines in the previous section are pinned. In this subsection we investigate the
dynamics of moving contact lines. We consider the advancing and receding interfaces
between two parallel plates, as shown in figure 5(a). The velocity and stress boundary
conditions are the same as those in the previous subsection. The domain size is 10H × 2H.
The interfaces are initially vertical lines located at x = 3H and 6H. For convenience, we
refer to the contact line on the left as the receding contact line and the one on the right as
the advancing contact line, although they may both get pinned.
We still neglect inertia and only consider matched viscosities. At steady state, the

interfaces together with the contact lines move at the average velocity V̄ = 2
3Vmax of the

Poiseuille flow. We thus define the capillary number as Ca = μV̄/σ . In the following
computations, we take S = 0.01, θA = 135◦ and θR = 75◦. Other parameters will be given
in the detailed discussions.
The apparent contact angle is usually introduced to describe the macroscopic behaviour

of the interface and there is never a unified definition that works for all flow conditions.
In this work, following Hoffman (1975), we compute a circular fit to the φ = 0 level set,
and then determine θapp based on the intersection between the circular fit and the wall, as
shown in figure 5(b). At small capillary numbers, the interface away from the contact line

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 7
1.

63
.9

1.
15

7,
 o

n 
20

 Ju
l 2

02
0 

at
 2

0:
29

:2
8,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

0.
46

5

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2020.465


899 A15-18 P. Yue

2 3 4 5 6 7 8
–1

0y

x

1

t* = 0

0.0877

0.2877

t* = 0

0.0877

0.2877

0.5077

1.0077

0.5077

1.0077

FIGURE 6. Snapshots of advancing and receding interfaces; Π = 0.1, Ca = 0.01. The
dimensionless time step is set to Δt∗ = 10−4 initially and then gradually increases to 10−3.
Theoretically, the receding and advancing contact lines are depinned at t∗ = 0.0881 and 0.2854,
respectively, if the interfaces remain circular.

is very close to a circular arc, and θapp defined above faithfully represents the interface
behaviour at the macroscopic length scale.

5.2.1. Transient behaviour of the contact line
We consider a small capillary number Ca = 0.01, under which the interfaces remain

almost circular. For convenience, we define a dimensionless time t∗ = t(V̄/H) and length
x∗ = x/H.
A typical interface evolution is given in figure 6. At t∗ = 0, the vertical interfaces

correspond to θD = 90◦ ∈ [θR, θA], and both contact lines are pinned. Under slow flow,
each interface remains circular and θD = θapp when the contact line is pinned. We can thus
easily find out the time instant to achieve a given θD by mass conservation and geometric
relations, i.e.

t = 1
2
H
V̄

(
δ

sin2 δ
− cot δ

)
, (5.4)

where δ = |π

2 − θD| is half of the central angle of the circular interface. Thus, theoretically,
θD at the receding contact line achieves θR at t∗ = 0.0881 and θD at the advancing
contact line achieves θA at t∗ = 0.2854. These values agree very well with the numerical
ones, which are approximately t∗ = 0.0877 and t∗ = 0.2877. After these time instants the
contact lines start to move, which is also manifested by figure 7.
The value of Π affects the effective slip and thus the contact line dynamics once the

contact line moves. The transient behaviours for Π = 0.01, 0.1 and 1 are given in figures
7 and 8. It should be noted that, for each contact line, the curves for different Π values
collapse in the beginning. After the contact line is depinned, the effect of Π kicks in and
the curves start to deviate from each other.
In figure 7 each contact line starts to accelerate after it is depinned and eventually

achieves the steady-state contact line velocity, which equals V̄ due to mass conservation.
After normalization, this velocity corresponds to a slope of 1 in figure 7. The only
exception is the advancing contact line with Π = 1, where a steady state is never achieved
and wetting failure occurs. Before reaching the steady state, the contact line velocity
decreases as Π increases. This is easy to understand since the effective slip length
decreases as Π increases (Yue & Feng 2011). In the context of the phase-field method,
this trend can also be explained from energy dissipation: the dissipation rate associated
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t*t*
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Π = 1
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(b)(a)
�

x C
L*

FIGURE 7. Displacements of contact lines; Ca = 0.01. Here Δx∗
CL is the normalized

x-coordinate of the contact line relative to its initial position: (a) receding contact line and
(b) advancing contact line.

θ 
(d

eg
.)

0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1.0
80

100

120

140

160

180

θD, Π = 0.01
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FIGURE 8. Transients of apparent and dynamic contact angles; Ca = 0.01: (a) receding
contact line and (b) advancing contact line.

with the wall energy relaxation,
∫

∂Ωw
Γ L̃2 ds = ∫

∂Ωw
(1/Γ )(Dφ/Dt)2 ds, is proportional

to Π ∝ 1/Γ for the same amount of Dφ/Dt; this additional dissipation slows down the
contact line motion.
The transient behaviours of contact angles are given in figure 8. The dynamic contact

angle θD is measured based on the φ = 0 level curve in the first two layers of cells adjacent
to the wall. Compared to θapp from circular fitting, θD is more prone to numerical errors,
as manifested by the oscillations in the θD curves with Π = 0.01 in both figures 8(a)
and 8(b). As Π increases, both θD and θapp deviate more from the static contact angle,
consistent with the analysis in Yue & Feng (2011). For the advancing contact line with
Π = 1, we terminate the θapp curve around t∗ = 0.6 because the radius of the circular fit
to the interface drops below H. In this case, θapp exceeds 180◦ and is no longer physical,
which usually signifies the onset of wetting failure.
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FIGURE 9. Steady-state dynamics of moving contact lines: θR = 75◦, θA = 135◦, λμ = 1, S =
0.01, Cn = 0.01. The contact line advances if Ca > 0 and recedes if Ca < 0. The k values are
the slopes of linear fits.

5.2.2. Steady-state contact line dynamics
From matched asymptotic analysis, Cox (1986) showed that, to the leading order, the

apparent contact angle θapp follows

g(θapp) = g(θS) + Ca ln
(
W
ls

)
, (5.5)

where W is a characteristic macroscopic length, ls is a slip length and Ca is the capillary
number defined based on the advancing fluid. The function g is given by

g(θ) =
∫ θ

0

ds
f (s)

,

where

f (θ) = 2 sin θ{λ2
μ(θ 2 − sin2 θ) + 2λμ[θ(π − θ) + sin2 θ ] + [(π − θ)2 − sin2 θ ]}

λμ(θ 2 − sin2 θ)[(π − θ) + sin θ cos θ ] + [(π − θ)2 − sin2 θ ](θ − sin θ cos θ)

and λμ is the viscosity ratio between the receding and advancing fluids. The steady state
apparent contact angle θapp and the corresponding g(θapp) from phase-field simulations are
given in figure 9, where the linear relation between g(θapp) and Ca is faithfully captured
for both the advancing and receding contact lines at different Π values.
According to Yue et al. (2010), the slip length of the phase-field model due to

interfacial mobility is approximately 2.5lD for fluids with equal density. Furthermore,
good agreements between Cox’s formula and the phase-field method are achieved when
W is taken to be the radius of the pipe for Poiseuille flows. For the plane Poiseuille flow
considered here, it is then reasonable to take W to be the half-channel height H. When
wall energy relaxation exists, the actual slip ls differs from the 2.5lD. According to Yue &
Feng (2011), we have

2
√
2

3
Π

Cn
= 5.63 ln

(
2.5lD
l̃s

)
(5.6)
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FIGURE 10. Pinning failure at a small Π ; θR = 75◦, θA = 135◦, Ca = 0.01, S = 0.01,
Cn = 0.01.

for θD close to 90◦. Thus, the slope of the g(θapp) ∼ Ca curve should be

k = ln
(
W
ls

)
= ln

(
H

2.5lD

)
+ ln

(
2.5lD
l̃s

)
= ln

(
1

2.5S

)
+ 2

√
2

3
Π

5.63Cn
.

This gives the theoretical slopes of k = 3.86, 5.36 and 20.44 for Π = 0.01, 0.1 and 1,
respectively. These values agree reasonably well with the numerical values for the receding
contact lines in figure 9(b). Much greater discrepancies are however observed on the
advancing branch. This is probably because θD is too close to 180◦. In this case, (5.6)
is less accurate and we also expect larger errors in computing θapp.
In summary, our current method captures the correct contact line dynamics, similar to

the standard phase-field method without CAH (Yue et al. 2010; Yue & Feng 2011). The
only complication is that θS may take different values, i.e. θR or θA, depending on whether
the contact line recedes or advances.

5.2.3. Pinning of the contact line and choice of Γ
As we have mentioned before, the discretized weak form can not guarantee the exact

satisfaction of (3.3). That is, in real calculations, the contact line may still move even when
it is supposed to be pinned. This actually happens when Π (or 1/Γ ) is not sufficiently
large, as shown in figures 10 and 11(b). The advancing contact line with Π = 0.001
recedes slightly when it is supposed to be pinned at t∗ < 0.2854. At t∗ = 0.2577, the
contact line with Π = 0.1 is nicely pinned at x∗ = 6 while that with Π = 0.001 shifts
upstream by about two grid cells. A close inspection of figure 11(b) shows that the diffuse
interface is slightly dilated near the wall. This type of pinning failure does not happen
to the receding contact line, where the dynamic contact angle is very close to 90◦ before
the contact line moves. Numerical tests with various contact angles and Π reveal that the
pinning failure is more likely to occur for a smaller Π and when θD is further away from
90◦.
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FIGURE 11. Plots of the φ contours at the vicinity of the advancing contact line at t∗ = 0.2577;
θR = 75◦, θA = 135◦, Ca = 0.01, S = 0.01, Cn = 0.01. (a) Π = 0.1, (b) Π = 0.001. The thick
lines denote the interface (φ = 0) and the thin lines are grid lines. The contact line is supposed
to be pinned at x∗ = 6.

To capture contact line pinning with good accuracy, we need a guideline for the choice
of Π , i.e. Γ . By inspecting (4.12), we note that the energy dissipation rate on the solid
wall ∂Ωw for a pinned contact line can be written as

Dw =
(
1
Γ

φn+1 − φn

Δt
,
φn+1 − φn

Δt

)
∂Ωw

−
(

λn · ∇φn+1/2 + Dfw(φn, φn+1; θA),
φn+1 − φn

Δt

)
∂Ωw

(5.7)

and is supposed to be zero since φn+1 = φn . However, in practice, φn+1 = φn is not
guaranteed by the weak form and we have no control over the sign of the second term
of Dw. A negative dissipation Dw < 0 may thus occur and lead to numerical instability. A
positive dissipation can be achieved if the first term overpowers the second term, which can
be roughly satisfied by |(1/Γ )(∂φ/∂t)| � |λn · ∇φ|. For a contact line moving with speed
V and angle θD, we have |∂φ/∂t| ∼ V|∇φ|| sin θD| and |λn · ∇φ| ∼ σε|∇φ|| cos θD|. This
leads to the approximate criterion

Π � Cn
Ca

cot θD (5.8)

for numerical stability.
We have tested different combinations ofΠ , Ca, Cn and S, with θR = 75◦ and θA = 135◦

being fixed. For the advancing contact line to falsely recede for the same displacement,
Π has to be chosen such that it is proportional to Cn, inversely proportional to Ca and
independent of S, i.e. Π ∝ Cn/Ca.
To investigate the influence of θD, we take θA = 170◦ so that pinning failure eventually

occurs when θD is sufficiently close to 180◦. We compute the advancing contact line
with Π = 0.001, 0.01, 0.1, 0.2 and 0.5, until the contact line starts to move upstream for
about one grid spacing hmin . Other parameters are kept constant: Ca = 0.01, S = 0.01 and
Cn = 0.01. The instantaneous θD is then recorded as the critical value that causes pinning
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FIGURE 12. Numerical values of Cθ . θ = min(θD, π − θD).

failure. We have also tested Π = 1, but pinning failure never occurs. The numerical
results, however, do not suggest a linear relation between the Π and cot θD. If we relax
(5.8) to

Π � Cn
Ca

Cθ (5.9)

then parameter Cθ can be numerically determined as shown in figure 12.
To achieve desired pinning performance in practical computations, we suggest using

(5.9) together with figure 12 as a guideline for choosing Π . It should be noted that the
derivations and numerical tests here are by no means rigorous.

5.2.4. A computational strategy for hysteresis
In the absence of CAH, a computational strategy has been proposed in Yue & Feng

(2011) as follows. First, we choose a capillary width ε (or the dimensionless group Cn)
based on the computational mesh that we can afford. Usually, we take ε ∈ [hmin, 2hmin],
where hmin is the mesh size at the interface. This guarantees that the diffuse interface is
sufficiently resolved. To reduce the influence of interfacial thickness on numerical results,
Cn should be as small as possible, e.g. Cn ≤ 0.01, which makes adaptive mesh refinement
almost necessary. Second, we choose the mobility parameter M such that the diffusion
length is well resolved: lD = √

Mμ > ε/4 (or S ≥ Cn/4 in the dimensionless form). This
guarantees that the numerical results are independent of ε and hmin . Finally, we tune Γ (or
the dimensionless group Π ) to achieve the desired effective slip length.
This last step may however lead to a Π that is too small to numerically pin the contact

line. Actually, the wall energy relaxation parameter Γ has no physical meaning when
the contact line is pinned and we just need a non-zero number. Furthermore, there is no
physical requirement that Γ must be a single-valued constant. We thus allow Γ to take
different values depending on the status of the contact line and amend the third step above
as follows. We estimate a Γ for pinning, denoted by ΓP, based on (5.9) or numerical
experiments. If Γ required for slip is greater than ΓP then we impose ΓP where the contact
line is pinned and Γ elsewhere.
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y

FIGURE 13. Schematic of an oscillating drop. The drop is initially elliptic with semi-axes
a = 2R0 and b = 0.5R0, where R0 is the effective drop radius.

5.3. Oscillating drop
In this subsection we consider an oscillating drop on a solid wall, where the contact line
transitions between receding, pinning and advancing. A schematic of the computational
set-up is given in figure 13. The initially elliptic drop will undergo oscillations due to
inertia-capillary effects. The computational domain is a square of 4R0 × 4R0. Symmetry
conditions are applied at the two vertical boundaries. Zero traction is applied on the upper
boundary. The lower boundary is a solid wall with no-slip velocity and prescribed contact
line conditions.
For convenience, we use effective drop radius R0, drop density ρ1 and surface tension σ

to non-dimensionalize all the parameters, and denote the dimensionless parameters with a
superscript ∗. For example, t∗ = t/tc, where tc =

√
ρR3

0/σ is the capillary time, viscosity
μ∗ = μ/

√
ρ1σR0 and energy E∗ = E/σR0.

The fluid parameters are ρ∗
1 = 1, ρ∗

2 = 0.01, μ∗
1 = 0.01, μ∗

2 = 0.001 and σ ∗ = 1. This
choice corresponds to a small Ohnesorge number

Oh = μ1√
ρ1σR0

= 0.01, (5.10)

such that the oscillation is not overdamped. For the diffuse interface, we choose ε∗ = 0.01,
M∗ = 10−3 and Γ ∗ = 103. Some relevant dimensionless groups are S = √

Mμ1/R0 =
3.16 × 10−3 and Π = 1/μ1Γ R0 = 0.1. For the computational mesh, we choose h∗

min = 1
128

at the interface and h∗
max = 1

4 in the bulk.
We run three simulations with different contact angles: (θR, θA) = (90◦, 90◦),

(90◦, 105◦), (75◦, 105◦). The evolution of the drop interface for (90◦, 105◦) and (90◦, 90◦)
are shown in figures 14 and 15, respectively. In the initial stage, the contact line moves
to the left (i.e. recedes), and its dynamics is controlled by θR solely. Therefore, these
two cases are identical before the contact line stops at the leftmost position at t∗ ≈
1.723. This is also manifested by the overlapping curves at t∗ � 1.723 in figures 16
and 17. For (θR, θA) = (90◦, 105◦), the contact line is pinned for a short period (around
t ∈ [1.723, 1.960]) while the interface continues to protrude to the right. Once θD reaches
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FIGURE 14. Snapshots of an oscillating drop with CAH; θR = 90◦, θA = 105◦. The contact
line is pinned at t∗ ∈ [1.723, 1.960], [3.073, 3.534] and [4.033, ∞).
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FIGURE 15. Snapshots of an oscillating drop without CAH; θR = θA = 90◦.

105◦ (t ≈ 1.960), the contact line starts to move rightward. The contact line is pinned
again around t ∈ [3.073, 3.0534], and then retracts. Finally, the contact line stays pinned
after t∗ = 4.033 while the other part of the interface keeps oscillating. In contrast, there is
no obvious contact line pinning for (θR, θA) = (90◦, 90◦), i.e. when there is no CAH.
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FIGURE 16. Contact line positions of oscillating drops. The plateaus denote the pinning of
contact lines.
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FIGURE 17. Time history of dimensionless free energies of oscillating drops: (a) kinetic
energy, (b) mixing energy, (c) total energy excluding wall energy and (d) total energy.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 7
1.

63
.9

1.
15

7,
 o

n 
20

 Ju
l 2

02
0 

at
 2

0:
29

:2
8,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

0.
46

5

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2020.465


Contact angle hysteresis 899 A15-27

At t∗ → ∞, the drop will eventually settle to a static circular shape. The contact line
position, i.e. the spreading radius, is related to the θapp (which is also the same as θD) by

x∗
CL =

√
π

2[θapp − 1
2 sin(2θapp)]

sin θapp.

This gives x∗
CL = 1.176, 1 and 0.839 for θapp = 75◦, 90◦ and 105◦, respectively. The

trajectories of the contact line are given in figure 16. It is obvious that the contact line keeps
oscillating around x∗

CL = 1 when there is no CAH. When there exists CAH, the contact
line is finally pinned at x∗

CL = 0.919 and 0.973 for (θR, θA) = (90◦, 105◦) and (75◦, 105◦),
both in the range determined by θR and θA. But the exact location of the final x∗

CL is also
dependent on the transient process, i.e. the history of the contact line.
The evolution of free energies are given in figure 17. Here, the dimensionless free

energies are computed as follows: kinetic energy E∗
k = ∫

Ω

1
2ρ|u|2 dx/(σR0), mixing

energy E∗
m = ∫

Ω
fm dx/(σR0) and wall energy E∗

w = ∫
∂Ωw

fw(φ; θA) ds/(σR0). At t∗ = 0,
the whole system is static, which corresponds to a zero kinetic energy E∗

k and a maximum
mixing energy E∗

m. As the drop retracts, part of the mixing energy is converted into kinetic
energy. The repeated conversions between mixing and kinetic energies are manifested by
the oscillatory curves in figures 17(a) and 17(b). As time approaches t∗ = 10, E∗

k drops to
zero while E∗

m stabilizes around 1.57. The latter is consistent with the surface energy of a
drop with θapp = 90◦: (π/2)σR2

0 = 1.571σR2
0. The two curves with CAH stabilize much

faster than the one without due to additional dissipation from CAH.
In the initial retraction stage (t∗ � 1.723), the E∗

k curve for θR = 75◦ deviates from the
other two because contact line dynamics is determined by θR. Similarly, the sum E∗

k + E∗
m

decreases faster for θR = 75◦ in the initial retraction stage, as shown in figure 17(c). The
evolution of the total free energy is provided in figure 17(d) to demonstrate the energy
dissipative nature of our model. Although we can only prove the discrete energy law (4.12)
for matched density and zero CAH, the numerical solutions satisfy a dissipative discrete
energy law for a broader choice of parameters.
We also investigate the influence of the diffusive flux J on the phase-field simulations

of interfacial flows with non-matched densities. We set J = 0, i.e. neglecting the diffusive
flux as in many previous phase-field simulations (e.g. Jacqmin 1999; Villanueva &
Amberg 2006; Yue et al. 2006; Khatavkar et al. 2007a), and show the result for θR =
θA = 90◦ in figure 17(d). The curve with J = 0 is almost identical to the one considering
diffusive flux. This is not surprising because the diffusive flux only occurs in the
diffuse-interface region and its effect diminishes as Cn decreases. Thus, in interfacial
flows with non-matched densities we expect the diffusive flux J to be negligible, at least
in the case of Cn � 1.

5.4. Three-dimensional drop on an inclined wall
Our code can be easily switched to three dimensions, thanks to the dimension-independent
programming advocated in deal.ii (Bangerth 2000). However, the discrete system resulting
from the mixed finite element method is very costly to solve and thus we can only
perform some preliminary 3-D simulations. A more efficient projection-based flow solver
is currently under development. The purpose of this subsection is only to demonstrate the
capability of our hysteresis model in 3-D flows.
We consider a drop on an inclined wall, as shown in figures 18 and 19. Similar to § 5.3,

we use drop density ρ1, surface tension σ and drop radius R0 to non-dimensionalize
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FIGURE 18. Three-dimensional drop sticking to an inclined wall; Bo = 0.99: (a) t∗ = 0,
(b) t∗ = 4.52 and (c) t∗ = 24.52.
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FIGURE 19. Three-dimensional drop sliding on an inclined wall; Bo = 1.98: (a) t∗ = 0,
(b) t∗ = 4.52, (c) t∗ = 14.52, (d) t∗ = 24.52, (e) t∗ = 34.52 and ( f ) t∗ = 44.52.

all parameters. Owing to symmetry in the z-direction, we only compute half of the
drop. The computational domain is a rectangular box defined by [0, 8] × [0, 3] × [0, 3]
with a hemispherical drop initially centred at (5, 0, 0). The following dimensionless
parameters are adopted: ρ∗

1 = 1, ρ∗
2 = 0.01, μ∗

1 = 1, μ∗
2 = 0.01, σ ∗ = 1, R∗

0 = 1, ε∗ =
0.02, M∗ = 10−4, θR = 60◦, θA = 120◦, Γ ∗ = 100 and slope inclination angle α = 60◦.
These parameters correspond to the following dimensionless groups: Cn = ε/R0 =
ε∗ = 0.02, S = √

Mμ1/R0 = √
M∗ = 10−2, Π = 1/μ1Γ R0 = 1/Γ ∗ = 0.01 and Oh =

μ1/
√

ρ1σR0 = 1. We test g∗ = 1 and g∗ = 2, which correspond to the Bond numbers
Bo = (ρ1 − ρ2)gR2

0/σ = (1 − ρ∗
2 )g

∗ = 0.99 and 1.98, respectively. For the computational
mesh, we choose h∗

min = 1
64 at the interface and h∗

max = 1
8 in the bulk. The time step is set

to Δt∗ = 0.01 initially and is gradually increased to Δt∗ = 0.05.
To achieve a good pinning performance, we take a smaller wall energy relaxation

parameter Γ ∗
P = 10 (such that ΠP = 0.1) when the contact line is pinned. It should be

noted that this problem does not have a well-defined capillary number when the drop is
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FIGURE 20. Side views of 3-D drops on an inclined wall: (a) Bo = 0.99 and (b) Bo = 1.98.

pinned as shown in figure 18. In this case, we can do a rough estimation. Suppose we want
the pinned contact line to move less than the grid spacing h∗

min during the whole simulation
that lasts for t∗ ∼ 20. This gives Ca ∼ 10−3 and then (5.9) predicts Π � 0.02 if we take
Cθ = 0.001 based on figure 12. Thus, ΠP = 0.1 should be a safe choice.
It is well known that, due to CAH, relatively small drops have a tendency to stick to

solid surfaces even when the latter is tilted. The critical parameters for the onset of drop
sliding satisfy

(ρ1 − ρ2)Vdg sinα = wσ(cos θR − cos θA), (5.11)

where Vd is the volume of the drop and w is the width of the drop. This relation was first
given by Furmidge (1962) based on experimental observations, and was later proved to
be exact by Dussan V. & Chow (1983) as long as the footprint of the drop is convex. In
practice, w is dependent on drop deformation and is unknown a priori. However, for an
initially hemispherical drop, we can take the approximation w ≈ 2R0. This leads to the
critical Bond number

Boc = cos θR − cos θA
π

3 sinα
, (5.12)

which is 1.1027 for our chosen angles. It should be noted that Boc in the real situation may
be more complicated and a problem-dependent prefactor needs to be included (Janardan
& Panchagnula 2014).
Theoretically, the drop with Bo = 0.99 should stick to the slope while the drop with

Bo = 1.98 should slide. This is confirmed by our numerical results in figures 18 and 19.
The side views of the drops are given in figure 20, where the initial pinning of the contact
line is observed for both Bond numbers. It should be noted that the contact line in (a)
moves slightly because of the initial transient and the fact that Bo = 0.99 is very close to
the critical value. The top views of the drops, i.e. the contact lines, are given in figure 21.
Theoretically, we expect a steadily sliding drop to have two straight sides parallel to the
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FIGURE 21. Evolution of contact lines: (a) Bo = 0.99 and (b) Bo = 1.98.
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FIGURE 22. Dynamic contact angle: (a) Bo = 0.99, t∗ = 24.52 and (b) Bo = 1.98,
t∗ = 44.52.

moving direction (Furmidge 1962; Eral et al. 2013). This trend can be found from the
contact line shape at t∗ = 44.52. It should be noted that we have to terminate the simulation
before a steady state was achieved because of the small computational domain. We will
leave computations with realistic fluid properties and a larger computational domain for
future work when a much more efficient flow solver is ready.
In the end we investigate the dynamic contact angle θD. It is difficult to directly measure

θD based on the level surface of φ = 0 in three dimensions. We thus compute θD based on
the relation cos θD = (n · ∇φ)/|∇φ| and the results are shown in figure 22. For the static
drop in (a), θD ∈ [60◦, 120◦] along the whole contact line, consistent with the pinning
condition. For the sliding drop in (b), θD > 120◦ at the leading edge, θD < 160◦ at the
trailing edge and θD ∈ [60◦, 120◦] along majority of the two sides. Correspondingly, the

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 7
1.

63
.9

1.
15

7,
 o

n 
20

 Ju
l 2

02
0 

at
 2

0:
29

:2
8,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

0.
46

5

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2020.465


Contact angle hysteresis 899 A15-31

contact line advances at the leading edge, recedes at the trailing edge and is pinned at the
two sides as expected.

6. Concluding remarks

We have developed an energy-based boundary condition for CAH. The wall energy
relaxation allows the two-phase system to deviate from equilibrium at the contact line. As
a result, the microscopic dynamic contact angle θD, which is computed by the phase-field
method, may differ from the prescribed static angle θS. The tendency of contact line motion
can then be deduced from the difference between these two angles. When CAH exists, the
single valued θS is extended to a range of angles, namely, the hysteresis window [θR, θA].
Similarly, the tendency of contact line motion can be readily obtained from the computed
θD and the prescribed θR and θA: the contact line advances if θD > θA, recedes if θD < θR
and is pinned otherwise. The major conclusions are summarized as follows.

(i) In the phase-field method the relations between θD, θR and θA can be directly obtained
from the values of the wall potentials defined based on θR and θA. As a result, our
method captures CAH automatically, without the need to compute the contact line
velocity or the dynamic contact angle.

(ii) When the contact line moves, our method automatically picks θR or θA depending on
whether the contact line recedes or advances. The resulting contact line dynamics is
exactly the same as the one without hysteresis. Furthermore, it agrees quantitatively
with the well-established Cox theory.

(iii) The whole equation system satisfies a dissipative energy law and is thermodynamically
consistent. In particular, the dissipation due to CAH is faithfully accounted for. Our
Galerkin-type numerical discretization inherits this energy-dissipative property and
is unconditionally energy stable for matched density and zero hysteresis. Numerical
tests show that the numerical scheme remains energy dissipative for a broader range
of parameters.

(iv) The wall energy relaxation parameter Γ is the only free parameter that can be tuned.
We have provided a guideline for Γ to achieve good pinning performance when the
contact line is pinned and to produce desired effective slip when the contact line is
in motion.

(v) Our method has no limitation on dimensionality and it can be directly applied to
three-dimensional flows.

The proposed method is easy to implement. If one has a phase-field code that allows
wall energy relaxation then hysteresis can be easily added with one additional copy of
wall potential. Since wall potentials are only evaluated on the wall boundary, the additional
computational cost is almost negligible.
A key component of our method is the dynamic contact angle θD that is computed and

may deviate from θS. The same idea can be extended to Ren and E’s version of GNBC
(Ren & E 2007, 2011a), which also works for sharp-interface methods. We have developed
a level-set method for CAH based on Ren and E’s slip condition, and more details can be
found in Zhang & Yue (2020).
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Appendix A. Wall energy and contact angle

In this section we provide a brief derivation of the wall energy formulation that is
consistent with the φ profile across the diffuse interface. We consider a planar interface
that intersects the wall with angle θS and assume the whole system to be in static
equilibrium, as shown in figure 23.
The equilibrium of the diffuse interface with mixing energy (2.2) requires

G = λ

(
−d2φ
dξ 2

+ f ′
0(φ)

)
= 0, (A 1)

where we have considered the fact that φ is only dependent on ξ for the planar interface
(Yue et al. 2004). Multiplying this equation by dφ/dξ gives

1
2
d
dξ

(
dφ
dξ

)2

= df0
dξ

. (A 2)

Since f0 = 0 and dφ/dξ = 0 at ξ = ±∞, this equation can be integrated to give

dφ
dξ

=
√
2f0 = 1 − φ2

√
2ε

. (A 3)

It should be noted that the hyperbolic tangent profile φ(ξ) = tanh(ξ/
√
2ε) can be obtained

by further integrating (A 3) and taking φ(±∞) = ±1.
When the planar interface intersects the wall with angle θS, we get

λn · ∇φ = λ(n · eξ )
dφ
dξ

= λ cos θS
1 − φ2

√
2ε

= 3
4
σ cos θS(1 − φ2), (A 4)

where eξ = ∇φ/|∇φ| is the unit vector in the direction of ξ and we have used σ =
(2

√
2/3)(λ/ε). Meanwhile, the equilibrium at the contact line requires

L(φ,∇φ; θS) = λn · ∇φ + f ′
w(φ) = 0, (A 5)

from which we can obtain the wall energy

fw(φ) = −
∫

3
4
σ cos θS(1 − φ2) dφ = −σ

φ(3 − φ2)

4
cos θS + c, (A 6)

where c is an integration constant. Theoretically, c is determined by the interfacial tensions
between the fluids and the solid wall. However, the exact value of c does not matter in
practice, since we only care about the variation in free energy rather than its absolute
value. We simply take c = 0 in our simulations.
When a planar interface intersects the wall with a dynamic angle θD, similar to (A 4),
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φ = 1

φ = 0

φ = –1

φ = –0.9

φ = 0.9

n

θS

ξ

FIGURE 23. Schematic of a contact line formed by a planar interface at static equilibrium. Here
ξ is the local coordinate in the direction of ∇φ with ξ = 0 at the centre of the diffuse interface
and n is the unit normal to the solid wall. The contours of φ are parallel lines intersecting the
solid wall with θS.

we obtain

λn · ∇φ = λ cos θD
1 − φ2

√
2ε

= −f ′
w(φ; θD), (A 7)

which is used in § 3 to determine the relation between θD and the static contact angles θA
and θR. Here the definition of fw(φ; θ) is given in (3.1). It should be noted that other forms
of wall energy that do not satisfy (A 6), e.g. those in Qian, Wang & Sheng (2006b), Gao
& Wang (2014) and Luo et al. (2017), may lead to distortions of φ contours at the contact
line and cannot guarantee (A 7).

Appendix B. Constitutive relations in the phase-field model

In this section, motivated by the work of Ren & E (2011b) and the review article of
Gomez & van der Zee (2017), we derive the constitutive relations in moving contact line
problems based on thermodynamic principles. The same technique was also used in de
Gennes & Prost (1993) to pose constitutive laws for nematic liquid crystals. Different
from the work in Ren & E (2011b), we consider a general fluid domain without requiring
n · u = 0 on the boundary.
For an incompressible two-phase system in contact with a solid wall, the total free

energy can be written as

F =
∫

Ω

(
fm(φ,∇φ) + 1

2
ρ|u|2

)
dx +

∫
∂Ωw

fw(φ) ds, (B 1)

where fm is the mixing energy per unit volume, fw is the surface energy per unit area on
the wall, Ω is the domain occupied by the two-phase system and ∂Ωw ⊂ ∂Ω denotes the
solid wall surface which can only perform rigid-body motion. Here we have neglected
external forces such as gravity, which can be easily accounted for. The fluid domain Ω
is advected by fluid velocity u and ∂Ωw by wall velocity uw. For an impermeable wall,
n · (u − uw) = 0 is satisfied, where n is the outward pointing unit normal to the boundary.
We define slip velocity us = u − uw, and then impermeability yields us · n = 0.
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Different conventions have been used for tensor operations. In this work we follow
Soutas-Little (1999) and define the tensor operations as follows: (A · B)ik = AijBjk, A : B =
AijBij, (a · A)j = aiAij, (A · a)i = Aijaj, (a ⊗ b)ij = aibj, (∇a)ij = (∂/∂xi)aj, and (∇ · A)j =
(∂/∂xi)Aij. Here A and B are second-order tensors, a and b are vectors, and we have used
the Einstein summation convention over repeated indices.
The flow needs to satisfy mass conservation

∂ρ

∂t
+ ∇ · (ρu) = 0, (B 2)

and the momentum equation

ρ
Du
Dt

= ∇ · T , (B 3)

where T is the stress term to be determined later and D/Dt = ∂/∂t + u · ∇ denotes the
material derivative. To conserve mass of each phase, we adopt the following equation for
φ:

Dφ

Dt
= −∇ · j. (B 4)

Here j is a diffusive flux to be determined. For simplicity, we assume zero diffusive flux
on the whole boundary ∂Ω: n · j = 0.
For the mixing energy, following the Reynolds transport theorem, we obtain

d
dt

∫
Ω

fm dx =
∫

Ω

(
∂fm
∂t

+ ∇ · (ufm)

)
dx

=
∫

Ω

[
∂fm
∂φ

∂φ

∂t
+ ∂fm

∂∇φ
· ∂∇φ

∂t
+ u ·

(
∂fm
∂φ

∇φ + ∂fm
∂∇φ

· (∇∇φ)

)
+ fm∇ · u

]
dx

=
∫

Ω

[(
∂fm
∂φ

− ∇ · ∂fm
∂∇φ

)(
∂φ

∂t
+ u · ∇φ

)
+

(
fmI − ∂fm

∂∇φ
⊗ ∇φ

)
: ∇u

]
dx

+
∮

∂Ω

n · ∂fm
∂∇φ

(
∂φ

∂t
+ u · ∇φ

)
ds. (B 5)

Here we have recovered the chemical potential

G = ∂fm
∂φ

− ∇ · ∂fm
∂∇φ

(B 6)

and the stress term due to surface tension

τ φ = fmI − ∂fm
∂∇φ

⊗ ∇φ. (B 7)

The surface tension term (B 7) can also be obtained by the virtual work principle without
imposing the incompressibility condition. Considering the conserved phase dynamics
(B 4), (B 5) can be further written as

d
dt

∫
Ω

fm dx =
∫

Ω

(∇G · j + τ φ : ∇u
)
dx +

∮
∂Ω

(
n · ∂fm

∂∇φ

)
Dφ

Dt
ds, (B 8)

where we have used the condition n · j = 0 on ∂Ω .
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For the kinetic energy, we get

d
dt

∫
Ω

1
2
ρ|u|2 dx =

∫
Ω

[
∂

∂t

(
ρ

|u|2
2

)
+ ∇ ·

(
uρ

|u|2
2

)]
dx

=
∫

Ω

[
ρ

∂u
∂t

· u + ρu · (∇u) · u + |u|2
2

(
∂ρ

∂t
+ ∇ · (ρu)

)]
dx

=
∫

Ω

ρ
Du
Dt

· u dx =
∫

Ω

(∇ · T ) · u dx

=
∮

∂Ω

n · T · u ds −
∫

Ω

T : ∇u dx, (B 9)

where we have used (B 2) in the third equality and (B 3) in the fourth equality.
Different from the mixing and kinetic energies, the wall energy is associated with the

solid wall and is thus advected by uw instead of u. Since the wall surface is rigid (thus, the
surface divergence of uw vanishes), we have

d
dt

∫
∂Ωw

fw ds =
∫

∂Ωw

(
∂fw
∂t

+ uw · ∇fw

)
ds

=
∫

∂Ωw

[
f ′
w(φ)

Dφ

Dt
− f ′

w(φ)us · ∇φ

]
ds, (B 10)

where we have used the relation us = u − uw.
Summing up (B 8), (B 9) and (B 10), we arrive at the energy equation

d
dt
F =

∫
Ω

[∇G · j − (T − τ φ) : ∇u
]
dx

+
∫

∂Ωw

[(
n · ∂fm

∂∇φ
+ f ′

w(φ)

)
Dφ

Dt
+ (n · T − f ′

w(φ)∇φ) · us

]
ds

+
∫

∂Ωw

n · T · uw ds +
∫

∂Ω\∂Ωw

n · T · u ds +
∫

∂Ω\∂Ωw

n · ∂fm
∂∇φ

Dφ

Dt
ds. (B 11)

Here we have recovered the surface potential on the wall boundary ∂Ωw:

L(φ,∇φ) = n · ∂fm
∂∇φ

+ f ′
w(φ). (B 12)

The first two terms on the right-hand side of (B 11) denote the dissipation rate in the
system, which corresponds to entropy production due to irreversible processes. The third
and fourth terms account for the work done by the moving wall and other boundaries.
The last term vanishes if we impose n · (∂fm/∂∇φ) = 0 on ∂Ω\∂Ωw, i.e. the interface is
perpendicular to the boundary. This corresponds to a neutral wetting condition, which
is automatically satisfied if we use homogeneous natural boundary conditions for the
Cahn–Hilliard equation on boundaries other than the wall.
The dissipation terms in (B 11) have been written in the form of products of the

‘generalized flux’ and the corresponding ‘generalized force’. According to the second
law of thermodynamics, the irreversible processes must be entropy-productive, i.e. the
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associated energy dissipation rate must be non-negative. If we assume linear response
then energy dissipation is satisfied if we take

j = −M∇G in Ω, (B 13)

T = −μ(∇u + (∇u)T) + τ φ in Ω, (B 14)

Dφ

Dt
= −Γ L on ∂Ωw, (B 15)

−βus = (n · T − f ′
w(φ)∇φ) · (I − n ⊗ n) on ∂Ωw, (B 16)

with some positive parameters M, μ, Γ and β. It should be noted that there might be
other energy-dissipative constitutive relations than (B 13)–(B 16) and additional conditions
are required to determine the physically correct constitutive relations. In (B 14) we have
assumed that T − τ φ is a symmetric tensor, which is usually the case for physically
relevant systems. In (B 16) we have used us = (I − n ⊗ n) · us which is a direct result
of the impermeability condition n · us = 0.
Plugging (B 13) into (B 4), we arrive at the Cahn–Hilliard equation

Dφ

Dt
= ∇ · (M∇G), (B 17)

where M is called the mobility parameter.
For incompressible flows, I : ∇u = ∇ · u = 0; thus, an isotropic term −pI can be added

to T without affecting dissipation. This parameter p, interpreted as pressure, serves as
a Lagrange multiplier to enforce incompressibility. The momentum equation (B 3) thus
reads as

ρ
Du
Dt

= ∇ · [−pI + μ
(∇u + (∇u)T

) + τ φ

]
. (B 18)

It should be noted that different forms of τ φ have been used in the literature. For example,
the isotropic term fmI can be absorbed into pI such that one can effectively use τ̃ φ =
−∂fm/∂∇φ ⊗ ∇φ to replace τ φ (Yue et al. 2004). The forcing term due to τ φ can also be
written as

∇ · τ φ = ∇fm − ∇ ·
(

∂fm
∂∇φ

⊗ ∇φ

)

=
(

∂fm
∂φ

∇φ + ∂fm
∂∇φ

· ∇∇φ

)
−

[(
∇ · ∂fm

∂∇φ

)
∇φ + ∂fm

∂∇φ
· ∇∇φ

]
= G∇φ, (B 19)

which is adopted in this work. Alternatively, a body force of the form −φ∇G = G∇φ −
∇(Gφ) was also found in the literature (Jacqmin 2000).
On the solid wall, the wall energy relaxation is governed by (B 15). Equation (B 16) is

exactly the generalized Navier boundary condition (Qian, Wang & Sheng 2006a; Qian
et al. 2006b), which was originally derived based on Onsager’s principle of minimum
energy dissipation. It should be noted that the no-slip condition us = 0, adopted by us
and many others (Jacqmin 2000; Khatavkar et al. 2007b; Carlson, Do-Quang & Amberg
2009), provides a simpler formulation which also satisfies energy dissipation.
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Appendix C. Compressibility and Mass diffusion

For incompressible flows, we usually impose ∇ · u = 0. The mixture density ρ is
governed by mass conservation (B 2). Meanwhile, given the densities of the pure phases,
the mixture density can also be expressed as a function of the phase-field variable φ,
and is therefore governed by the phase-field equation (B 17) unless ρ ′(φ) = 0. Thus, the
system in appendix B. may be over-determined if the two phases have different densities.
To remedy this, the governing equations need to be modified and there are primarily two
ways to derive physically consistent models.
The first method, proposed by Lowengrub & Truskinovsky (1998), is to consider the

system as quasi-incompressible. In this treatment, φ is associated with mass fraction and
the mixture velocity u is interpreted as the mass-averaged velocity. Then, from mass
conservation (B 2), we can obtain

∇ · u = − 1
ρ

Dρ

Dt
= −ρ ′(φ)

ρ

Dφ

Dt
, (C 1)

where Dφ/Dt is determined by the Cahn–Hilliard equation. This equation replaces the
original ∇ · u = 0. Moreover, due to compressibility, the mixing energy fm has to be
interpreted as a free energy per unit mass (and, thus, the total mixing energy is

∫
Ω

ρfm dx),
which will cause substantial changes to the governing equations. Applications of this
method can be found in Guo, Lin & Lowengrub (2014) and Guo & Lin (2015).
The other method, first proposed by Ding, Spelt & Shu (2007) and later improved

by Abels et al. (2012), associates φ with volume fraction and interprets u as the
volume-averaged velocity. It can be easily shown that ∇ · u = 0 is still satisfied. However,
this volume-averaged velocity modifies the mass conservation equation (B 2) to

∂ρ

∂t
+ ∇ · (ρu) + ∇ · J = 0, (C 2)

where J is the diffusive mass flux. It is obvious that

∇ · J = −Dρ

Dt
= −ρ ′(φ)

Dφ

Dt
. (C 3)

Comparing this equation with (B 4) and considering the fact that ρ ′(φ) is usually a constant
(see (2.16) for an example), we arrive at the identity

J = ρ ′(φ)j. (C 4)

Considering (C 2) and the Galilean invariance requirement, the momentum equation
(B 3) is updated to

ρ
Du
dt

+ J · ∇u = ∇ · T̃ , (C 5)

where T̃ = T + J ⊗ u is an objective tensor that replaces the original T in (B 3). The
interested reader may refer to Abels et al. (2012) for detailed derivations and Dong (2014,
2015) for extensions to N-phase systems with N ≥ 2. It should be noted that the original
formulation in Ding et al. (2007) is not Galilean invariant.
The method by Abels et al. allows us to use the existing numerical algorithms for

incompressible flows with very little modification, and is thus more frequently seen in
the recent literature (e.g. Shen & Yang 2015; Yu & Yang 2017). In the following we only
focus on this method.
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With the modified mass conservation (C 2) and momentum equation (C 5), the time
derivative of kinetic energy is updated to

d
dt

∫
Ω

1
2
ρ|u|2 dx =

∫
Ω

[ |u|2
2

(
∂ρ

∂t
+ ∇ · (ρu)

)
+ ρ

Du
Dt

· u
]
dx

=
∫

Ω

[
−|u|2

2
∇ · J + (∇ · T̃ − J · ∇u) · u

]
dx

=
∮

∂Ω

(
−n · J |u|2

2
+ n · T̃ · u

)
ds −

∫
Ω

T̃ : ∇u dx

=
∮

∂Ω

n · T̃ · u ds −
∫

Ω

T̃ : ∇u dx, (C 6)

where we have used the zero-diffusive-flux condition n · J = ρ ′(φ)n · j = 0 on the
boundary. This equation is identical to (B 9) except for a different interpretation of the
stress tensor. Consequently, all the equations remain the same as those in appendix B,
except for the modified mass conservation and momentum equations.
In our computations on oscillating drops (see figure 17d), however, we did not find any

noticeable difference between the results from (B 3) and (C 5). Thus, in practice, the effect
of compressibility is only limited to the diffuse interface and has negligible effect on the
macroscopic flow.
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