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We develop a level-set method in the finite-element framework. The contact line 
singularity is removed by the slip boundary condition proposed by Ren and E (2007) 
[6], which has two friction coefficients: βN that controls the slip between the bulk 
fluids and the solid wall and βCL that controls the deviation of the microscopic dynamic 
contact angle from the static one. The predicted contact line dynamics from our method 
matches the Cox theory very well. We further find that the same slip length in the Cox 
theory can be reproduced by different combinations of (βN , βCL), based on which we 
come up with a computational strategy for mesh-independent results that can match the 
experiments. There is no need to impose the contact angle condition geometrically, and 
the dynamic contact angle automatically emerges as part of the numerical solution. With 
a little modification, our method can also be used to compute contact angle hysteresis, 
where the tendency of contact line motion is readily available from the level-set function. 
Different test cases, including code validation and mesh-convergence study, are provided 
to demonstrate the efficiency and capability of our method.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

The moving contact line problem has attracted intensive research in the past few decades due to its importance in many 
natural processes and industrial applications. This problem is difficult due to the stress singularity at the contact line caused 
by the discrepancy between the no-slip boundary condition and the moving interface. In continuum numerical simulations, 
different models have been adopted to relax the stress singularity, e.g., Navier slip [1], diffusion (such as those in the Cahn-
Hilliard model [2], conservative level set method [3], and lattice Boltzmann method [4]), and the generalized Navier slip 
[5,6]. The readers are referred to [7] for a comprehensive review on this topic and we will focus on the generalized Navier 
slip in this work.

From molecular dynamics (MD) simulations, Qian et al. found that the slip velocity at the wall was proportional to the 
sum of the tangential viscous stress and the uncompensated Young’s stress (a.k.a. the unbalanced Young’s stress), based 
on which they developed the generalized Navier boundary condition (GNBC) in the phase-field framework [5]. The velocity 
profiles in the vicinity of the contact line from their phase-field simulations agreed very well with the MD results. Ren 
and E later developed a similar slip condition [6], which is no longer restricted to the phase-field method. Their continuum 
modeling based on the immersed boundary method compared favorably with the MD results. Theoretically, these two slip 
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conditions can also be derived from Onsager’s minimum energy dissipation rate principle [8] or simply from the second law 
of thermodynamics [9]. It should be noted that Ren and E’s slip condition is different from the sharp-interface limit of Qian 
et al.’s GNBC [10]. We follow Ren and E’s slip condition in this work.

With the support from MD simulations and thermodynamic principles, the generalized Navier slip condition has gained 
popularity in recent years. In the phase-field community, the GNBC has been frequently adopted for contact line problems, 
e.g., [11–15]. Meanwhile, the GNBC has also been adopted in many other numerical methods for interfacial flows. For 
example, Gerbeau and Lelièvre incorporated the GNBC into a variational arbitrary Lagrangian-Eulerian (ALE) formulation 
which is well suited for energy stability analysis [16]. Li et al. developed an efficient augmented immersed interface method 
to implement Ren and E’s slip condition [17]. Ren and E applied their slip condition to the level-set method and investigated 
contact line dynamics on heterogeneous surfaces [18]. This level-set work was later extended to moving contact lines with 
insoluble surfactants [19]. Recently, Zhang and Ren also investigated the influence of viscoelasticity on contact line dynamics 
using an immersed boundary method combined with the generalized slip condition [20]. The implementation of the GNBC 
in the front-tracking method can be found in [21]. Most recently, the GNBC was also extended to the volume-of-fluid 
method [22,23].

Although the generalized Navier slip has been widely used, it is still challenging to obtain mesh-independent results, 
because the physical slip length is usually at the nanoscale and cannot be resolved by the computational mesh. It has been 
shown that Ren and E’s slip condition cannot remove the weak singularity at the contact line [24,25]. Furthermore, Ren and 
E’s slip condition introduces two friction coefficients (βCL and βN in Section 2.1) rather than a single slip length, and it is 
unclear how to choose them for predictive simulations that can match the experiments. In this work, we aim to address 
these issues based on a level-set method. In the literature, a standard treatment to remove mesh dependency, as proposed 
in [26–29], is to determine a numerical contact angle at the grid scale based on macroscale models such as the Cox-Voinov 
model [30,31]; this numerical angle is then applied at the contact line in place of the static contact angle. A drawback 
of this method is that it requires the input of contact line velocity, which may be difficult to obtain, especially in three 
dimensions. The similar idea was also used in the GNBC, however, in a different flavor [21,32]: the grid-scale contact angle 
from the simulation is used to determine a microscopic dynamic contact angle, which is then fed to the GNBC to compute 
the slip velocity. In this work, we propose a different approach which does not rely on hydrodynamic models and is thus 
much easier to implement. Meanwhile, by properly choosing the friction coefficients, we will show that Ren and E’s slip 
condition itself is sufficient to reproduce the well-established Cox theory [31] with realistic slip lengths.

Another challenging issue is the contact angle hysteresis, since most solid surfaces are intrinsically rough or chemically 
heterogenous. In this case, the contact line stays pinned when the microscopic dynamic contact angle is between a receding 
contact angle θR and an advancing contact angle θA . The most popular approach for contact angle hysteresis was developed 
by Spelt for a level-set method [33]. An intermediate contact angle is obtained such that the contact line is pinned. If this 
angle is within the hysteresis window, the solution is accepted; otherwise, the solution is abandoned and the contact line is 
moved with prescribed contact angles. This idea was later extended to different methods, e.g., the phase-field method [34], 
the volume-of-fluid method [35], the Lattice Boltzmann method [36], and the front-tracking method [37]. However, this 
approach relies on ghost cells outside the boundary to pin the contact line or to impose the contact angle condition, which 
can be challenging on curved boundaries and unstructured meshes. Recently, we developed a thermodynamically consistent 
phase-field model for contact angle hysteresis [38]. Since the dynamic contact angle is part of the solution instead of being 
imposed, this method is easy to implement and automatically captures the pinning, advancing, and receding of the contact 
line. Motivated by [38], we will show that Ren and E’s slip condition can also be easily modified to capture the contact 
angle hysteresis.

The rest of this paper is organized as follows. We first introduce the governing equations and numerical methods in 
Section 2. We then explain how to incorporate contact angle hysteresis in Section 3. The numerical results, including code 
validation and mesh convergence studies, are given in Section 4.

2. Level-set method for moving contact line problems

2.1. Governing equations

Consider an incompressible system of two immiscible Newtonian fluids on an impermeable solid surface, as shown in 
Fig. 1. We use the level-set method [39,40] to track the interface implicitly. The interface is represented by the zero level 
set of a signed distance function φ that is evolved by the level-set equation

∂φ

∂t
+ u · ∇φ = 0. (1)

The regions with φ > 0 and φ < 0 are occupied by fluid 1 and fluid 2, respectively.
Following the level-set literature, the two-phase system can be treated as a single fluid with density and viscosity given 

by

ρ(φ) = Hε(φ)ρ1 + (1 − Hε(φ))ρ2 (2)
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Fig. 1. Schematic of a moving contact line on a solid substrate. The (microscopic) dynamic contact angle θD is defined with respect to fluid 1, which 
occupies the region with φ > 0.

and

μ(φ) = Hε(φ)μ1 + (1− Hε(φ))μ2, (3)

where

Hε(φ) =

⎧⎪⎨
⎪⎩
0, if φ < −ε,

1, if φ > ε,

1
2

(
1+ φ

ε + 1
π sin

(
πφ
ε

))
, otherwise

(4)

is a smooth Heaviside function, 2ε is the interface thickness, and the subscripts 1 and 2 denote fluid 1 and 2, respectively.
For the surface tension term, we adopt the tensor form [41]

τ φ = σδε(φ)|∇φ|T(nφ), (5)

where σ is the surface tension, δε(φ) = H ′
ε(φ) is the smooth Dirac delta function, nφ = ∇φ

|∇φ| is the unit normal to the 
interface, and T (nφ) = I − nφ ⊗ nφ . It should be noted that a term |∇φ| is included in (5) to deal with the case where φ
deviates from a singed distance function.

The incompressible two-phase flow is governed by the momentum equation

ρ

(
∂u

∂t
+ u · ∇u

)
= ∇ · (−pI + τ + τφ

) + ρg (6)

and the continuity equation

∇ · u = 0, (7)

where u is the fluid velocity, p is the pressure, τ = μ[∇u + (∇u)T ] is the viscous stress, and g is the gravitational acceler-
ation.

On the solid wall, we impose the no-penetration condition

n · (u− uw) = 0 (8)

in the normal direction and the slip condition in the tangential direction, where uw denotes the wall velocity and n is the 
outward pointing unit normal to the wall boundary (see Fig. 1). Motivated by the 2D level-set work in [18], Ren and E’s slip 
condition can be extended to the general form

β(φ)us = −
[
n · τ + σδε(φ)

(
cos θS − ∇φ · n

|∇φ|
)

∇φ

]
· T(n), (9)

where us = u − uw is the slip velocity, θS is the prescribed static contact angle, β(φ) = βN + βCLδε(φ)|∇φ · T(n)|, βN is 
the friction coefficient between the Newtonian fluids and the solid wall, and βCL is the friction coefficient at the contact 
line. For any vector a, a · T (n) gives the tangential component of a in the plane with normal n. Thus the right-hand side 
of (9) is a force (per unit area) tangential to the solid wall. This force includes contributions from the viscous stress and 
the unbalanced Young’s stress. It is obvious that us given by (9) is tangential to the wall since us · n = 0. At the contact 
line, us is simply the contact line velocity relative to the solid wall. It should be noted that (9) has no limitation on spatial 
dimensions and it reduces to the boundary condition in [18] in 2D.

In the limit of vanishing ε , (9) recovers the 3D version of the Navier slip condition

βNus = −(n · τ ) · T(n) (10)

away from the contact line (i.e., φ �= 0) and
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βCLus = −σ (cos θS − cos θD)
∇φ · T(n)

|∇φ · T(n)| (11)

at the contact line (i.e., φ = 0), where θD is the microscopic dynamic contact angle and we have used the geometric relation 
cos θD = nφ · n = ∇φ·n

|∇φ| . The term σ (cos θS − cos θD) is exactly the unbalanced Young’s stress [6]. In a 2D flow as shown in 
Fig. 1, these two equations reduce to the familiar formulations in [6,18]:

βNus = n · τ · t = μ
∂u

∂ y
(12)

away from the contact line and

βCLus = σ (cos θS − cos θD) (13)

at the contact line, where us is the slip velocity in x-direction, t is the unit tangent vector to the wall, and u is the 
x-component of fluid velocity.

The Navier slip condition (12) determines a slip length ls = μ
βN

. Similar to viscosity, the phenomenological parameter βN

may take different values in the two fluids, although we will use a single constant in this paper for simplicity. Equation 
(13) agrees with the molecular-kinetic theory at the leading order [42]. It should be noted that βN and βCL have different 
dimensions.

A numerical advantage of the slip condition (9) is that it does not require us to manually impose the contact angle 
condition on the geometry of the interface. Instead, both the slip velocity us and the dynamic contact angle θD are part 
of the solution. If the contact line is at static equilibrium, both viscous stress τ and us vanish and (9) recovers the static 
contact angle, i.e., θD = θS . If the contact line moves, then the relation (13) at the contact line predicts a θD that differs 
from θS . In particular, θD > θS if the contact line advances and θD < θS is the contact line recedes.

In summary, the governing equations include the level-set equation (1) for the interface and the Navier-Stokes equations 
(6) and (7) for the flow field, with the latter supplemented by the slip condition (9).

2.2. Level-set reinitialization

It is preferable that the level-set function φ is a signed distance function satisfying the Eikonal equation |∇φ| = 1 in sim-
ulations. However, in the process of advection, φ could become too flat or too steep and cause large errors in computations. 
To prevent this, the level-set function needs to be reinitialized to a signed distance function regularly without altering the 
position of the interface. There are a lot of methods to achieve this goal and we use a PDE-based method that is discretized 
by a discontinuous Galerkin (DG) method. In the following, we briefly introduce this method and more details can be found 
in [43].

The PDE-based method, first proposed by Sussman et al. [40], is to evolve the Hamilton-Jacobi (HJ) equation

φτ + H(∇φ) = 0 in � × [0, T ] , φ(x,0) = φ0(x) (14)

to steady state, where τ is the pseudo time, φ0 is the initial level-set function, H(∇φ) = Sη(φ0) (|∇φ| − 1), Sη (φ0) = φ0√
φ2
0+η2

is a smooth sign function, and η is a smoothing parameter usually chosen to be the computational mesh size hmin at the 
interface. Theoretically, φ shares the same zero level set with φ0 and achieves |∇φ| = 1 at the steady state. Instead of 
solving (14) for φ directly, we solve for ∇φ first and then recover φ based on the exact location of the zero level set, as 
described in the following.

Let φh be an approximation of φ in a finite dimensional DG space. In each computational cell K , we have

φh =
m∑
i=0

ci vi,

where ci ’s are unknown coefficients, vi ’s are basis polynomials, and m is the number of degrees of freedom. We choose 
Legendre polynomials such that v0 is a constant. For convenience, we set v0 = 1. Then the solution φ can be constructed 
based on

∇φh =
m∑
i=1

ci∇vi

and an additive constant c0.
Let I p be the set of interface cells with sufficient length of interface inside. We first compute ∇φh in these interface cells 

by a weighted local projection (WLP) method. In each cell K ∈ I p , we obtain ∇φh by minimizing the functional

1

2

∫ (
∇φh − ∇φ0

|∇φ0|
)2

δ̄ξ (φ0)dx + λ

4

∫ (
|∇φh|2 − 1

)2
dx, (15)
K K
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where λ is a positive penalty parameter that enforces |∇φh| = 1. δ̄ξ is a shifted smooth delta function defined as δ̄ξ (φ) =
δξ (φ) + ξ1, where the half bandwidth ξ is usually a fraction of hmin and ξ1 is a small positive parameter to avoid singular 
matrices. The nonlinear system after finite-element discretization is solved by Newton’s method. Projecting ∇φ0 is more 
accurate than projecting φ0, since φ0 varies along the normal direction to the interface while ∇φ0 is nearly constant.

We then compute ∇φh in all other cells by solving the gradient of (14)

∂∇φ

∂τ
+ ∇H(∇φ) = 0, in � × [0, T ] , ∇φ(x,0) = ∇φ0(x), (16)

as a conservation law system using a DG method following [44]. It should be noted the Lax-Friedrichs flux can not efficiently 
dissipate away the jump in the tangential component of ∇φ on cell edges. We therefore constructed a hybrid numerical 
flux that combines the local Lax-Friedrichs flux and the penalty flux in [43].

Now we only need to find c0 in each cell to fully recover φh . This is done in two steps. We first compute c0 in all 
interface cells based on the interface location. In each interface cell, we find the intersections of φ0 = 0 with the cell edges 
and solve a least squares problem to determine the optimal c0 such that the resulting φh = 0 intersects the cell edges 
at almost the same intersections. This operation preserves the location of the zero level set. We then compute c0 in all 
non-interface cells based on the continuity of φh between neighboring cells. More specifically, c0 in each cell is determined 
based on its upwind neighbor. This requires the c0 to be updated following the characteristics such that the upwind cells 
are always computed before their downwind neighbors.

This reinitialization method preserves interface very well and can achieve high-order accuracy. Another advantage of this 
method is the simple treatment of boundary conditions for contact line problems. When an interface intersects with a solid 
wall, boundary conditions are required for reinitialization on the wall portion where

Sη(φ0)
∇φ

|∇φ| · n < 0.

Since we compute ∇φh directly, we only need to supply a Dirichlet condition for ∇φ based on the contact angle, which 
is much easier than the boundary condition for φ. In 3D, the boundary condition for ∇φ can be obtained by solving an 
extension equation on the solid wall similar to that in [45].

2.3. Weak form of Navier-Stokes equations

In this subsection, we derive the weak form of the Navier-Stokes equations (6) and (7) supplemented with the slip 
condition (9).

Assume that the domain boundary ∂� can be partitioned into three parts based on boundary conditions: ∂�D where 
the Dirichlet condition u = ub is imposed, ∂�N where the traction condition (natural boundary condition) is imposed, 
and the solid wall ∂�w where the no-penetration condition and slip condition are imposed. We seek the weak solution 
(u, p) ∈ U ×P , with solution spaces

U = {u ∈ H1(�)d : u = ub on ∂�D ,u · n = uw · n on ∂�w}, (17)

and

P = L2(�)d, (18)

where d denotes the spatial dimension of the flow. The corresponding test spaces are

U0 = {u ∈ H1(�)d : u = 0 on ∂�D ,u · n = 0 on ∂�w}, (19)

and P , respectively.
Taking the inner product of (6) with the test function v ∈ U0 and the inner product of (7) with q ∈ P in �, we obtain 

the weak form(
ρ

(
∂u

∂t
+ u · ∇u

)
,v

)
= (

n · (−pI+ τ + τφ

)
,v

)
∂�

+ (p,∇ · v) − (τ + τ φ,∇v) + (ρg,v), ∀v ∈ U0 (20)

and

(∇ · u,q) = 0, ∀q ∈ P, (21)

where (·, ·) denotes the inner product in � and (·, ·)∂� denotes the inner product on ∂�.
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The boundary inner product on the right-hand side of (20) can be further written as(
n · (−pI + τ + τφ

)
,v

)
∂�

(22)

= (
n · (−pI + τ + τφ

)
,v

)
∂�w

(23)

= (−np + n · τ + σδε(φ)|∇φ|n · (I− nφ ⊗ nφ),v
)
∂�w

(24)

= (
n · τ − σδε(φ)(n · nφ)∇φ,v

)
∂�w

, (25)

where we have used v = 0 on ∂�D and zero traction n · (−pI + τ + τ φ

) = 0 on ∂�N in the first equality, and n · v = 0 on 
∂�w in the third equality. Here we consider zero traction for simplicity and an additional boundary inner product should 
be considered if the traction on ∂�N is nonzero. Considering the slip condition (9), Eq. (20) can be further written as(

ρ

(
∂u

∂t
+ u · ∇u

)
,v

)
+ β(φ) (u− uw ,v)∂�w

= − (σ δε(φ) cos θS∇φ,v)∂�w

+ (p,∇ · v) − (
τ + τφ,∇v

) + (ρg,v), ∀v ∈ U0. (26)

The weak solution (u, p) can be found by solving (26) and (21).

2.4. Numerical methods

The governing equations are solved by the finite element method on a quadrilateral mesh with hierarchical adaptive 
mesh refinement based on the open-source deal.II library [46,47]. Due to different natures of these equations, we solve the 
level-set equation and the Navier-Stokes equations separately with the former solved by DG and the latter solved by the 
mixed finite element method.

We focus on 2D problems. Consider a triangulation Th , consisting of non-overlapping quadrilaterals, of the computational 
domain �. We define the discontinuous finite-element space

V N
D = {φ : φ ∈ P N(K ),∀K ∈ Th} (27)

and continuous finite-element space

V N
C = {φ ∈ C0(�) : φ ∈ Q N(K ),∀K ∈ Th}, (28)

where N denotes the polynomial degree. In this work, we take N = 3 for φ, N = 2 for u, and N = 1 for p. The finite 
dimensional solution spaces for φh , uh , and ph are Fh = V 3

D , Uh = (
V 2
C

)2 ∩ U , and Ph = V 1
C , respectively, where we have 

used the subscript h to denote finite-dimensional approximations. The test space for uh is simply Uh,0 = (
V 2
C

)2 ∩U0.
Since the flow is incompressible, the level-set equation (1) can be written as a conservation law

∂φ

∂t
+ ∇ · (uφ) = 0. (29)

In each element K , by taking the inner product of (29) with the test function ψ ∈ Fh and performing integration by parts, 
we obtain the weak formulation(

∂φh

∂t
,ψ

)
K

+
(
Ĥ(φ−

h , φ+
h ),ψ

)
∂K

− (uhφh,∇ψ)K = 0, ∀ψ ∈ Fh, (30)

where Ĥ(φ−
h , φ+

h ) denotes the numerical flux that approximates n · uhφh , φ−
h and φ+

h are the inside and outside values of 
φh on the element boundary ∂K , and n is the outward pointing unit normal to ∂K . We use the local Lax-Friedrichs flux

Ĥ(φ−
h , φ+

h ) = n · uh
φ−
h + φ+

h

2
− α

2
(φ+

h − φ−
h ), (31)

where α = max(|n · uh|) and the maximum is taken over the relevant element edge. The semi-discrete weak form (30) is 
integrated by the third-order total variation diminishing (TVD) Runge-Kutta (RK) method [48] to advance φn

h to φn+1. To 
decouple uh from φh , the uh values at intermediate time levels between tn and tn+1, which are required by the TVD RK 
method, are obtained by explicit extrapolations from un−1

h and un
h . Note that we choose the third-order TVD RK for the sake 

of stability rather than accuracy, and the overall scheme is only second-order accurate in time.
The discontinuous solution φh cannot be differentiated. We thus map it to a continuous function φC ∈ V 3

C by least squares 
before feeding it to flow equations:

(φC − φh,ψ) = 0, ∀ψ ∈ V 3. (32)
C
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The flow equations (26) and (21) are discretized by the Crank-Nicolson scheme. In each time step, we seek the weak 

solution (un+1
h , pn+ 1

2
h ) ∈ Uh ×Ph satisfying the discretized weak form(

ρ(φ
n+ 1

2
C )

(
un+1
h −un

h
�t + u∗

h · ∇u
n+ 1

2
h + 1

2 (∇ · u∗
h)u

n+ 1
2

h

)
,v

)

+ β(φ
n+ 1

2
C )

(
u
n+ 1

2
h − uw ,v

)
∂�w

= −
(
σδε(φ

n+ 1
2

C ) cos θS∇φ
n+ 1

2
C ,v

)
∂�w

+
(
p
n+ 1

2
h ,∇ · v

)
−

(
μ(φ

n+ 1
2

C )(∇u
n+ 1

2
h + (∇u

n+ 1
2

h )T ),∇v
)

−
(
σδε(φ

n+ 1
2

C )

∣∣∣∣∇φ
n+ 1

2
C

∣∣∣∣ (I− n
n+ 1

2
φ ⊗ n

n+ 1
2

φ ),∇v
)

+ (ρ(φ
n+ 1

2
C )g,v), ∀v ∈ Uh,0 (33)

and

−(∇ · un+1
h ,q) = 0, ∀q ∈ Ph, (34)

where un+ 1
2

h = un
h+un+1

h
2 , φn+ 1

2
C = φn

C+φn+1
C

2 , nn+ 1
2

φ = ∇φ
n+ 1

2
C∣∣∣∣∣∇φ
n+ 1

2
C

∣∣∣∣∣
, and u∗

h is an explicit approximation of un+ 1
2 by a linear extrap-

olation from un
h and un−1

h . Here we have adopted the skew-symmetric form for the convection term and the scheme is 
unconditionally stable if the density is a constant.

Thanks to the explicit approximation u∗
h , Eqs. (33) and (34) lead to a linear saddle point problem:[

A BT

B 0

][
U
P

]
=

[
F
0

]
, (35)

where U and P are solution vectors for un+1
h and pn+ 1

2
h , respectively. The asymmetric square block A comes from (33)

excluding the pressure term while the non-square block B comes from (34). In this paper, we only consider two dimensional 
problems. The size of the resulting matrix is relatively small, and we solve (35) by the direct sparse linear solver UMFPACK 
[49].

In each time step, the solution procedure can be summarized as follows:

(i) Check the mesh and the interface. If necessary, perform local refinement and coarsening such that the interface region 
is covered by the finest mesh and bulk region is covered by the coarsest mesh. Transfer data from the old mesh to the 
new mesh if the mesh is altered.

(ii) Based on un
h , u

n−1
h , and φn

h , solve (30) to obtain φn+1
h .

(iii) Reinitialize φn+1
h to a signed distance function if necessary.

(iv) Map φn+1
h to φn+1

C in the continuous finite space by solving (32).

(v) Based on un
h , u

n−1
h , φn

C , and φn+1
C , solve the linear system of (33) and (34) to obtain un+1

h and pn+ 1
2

h .

3. Contact angle hysteresis

With the contact angle hysteresis, the contact line remains pinned for a range of contact angles, the minimum of which 
is referred to as the receding contact angle θR and the maximum is referred to as the advancing contact angle θA . The 
contact line advances if θD > θA , recedes if θD < θR , and is pinned if θR ≤ θD ≤ θA .

When the contact line moves, we can still use the method in the previous section with θS replaced by θA for the 
advancing contact line and by θR for the receding contact line. Special treatment is needed when the contact line is pinned. 
In this case, the no-slip condition us = 0 is required at the contact line. To make this condition consistent with (9), we 
adopt the formula

β(φ)us = −(n · τ ) · T(n), (36)

which recovers the no-slip condition at φ = 0 while still maintaining the Navier slip condition away from the contact line. 
Thus it provides a smooth transition between the pinned and moving contact lines. With (36) in place of (9), the weak form 
of the momentum equation (26) is updated to(

ρ

(
∂u

∂t
+ u · ∇u

)
,v

)
+ β(φ) (u− uw ,v)∂�w

= −
(
σδε(φ)

∇φ · n
|∇φ| ∇φ,v

)
∂�w

+ (p,∇ · v) − (
τ + τφ,∇v

) + (ρg,v), ∀v ∈ U0, (37)
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when the contact line is pinned. It should be noted that the only difference between this equation and (26) is the first term 
on the right-hand side: cos θS in the inner product on ∂�w is now replaced by cos θD = ∇φ·n

|∇φ| .
The relation between θD and (θR , θA) can be inferred from φ. Motivated by the phase-field method for hysteresis in [38], 

we define

F (θ) =
∫
e

δε(φ)

(
cos θ − ∇φ · n

|∇φ|
)
dS, (38)

where e is an element edge (element face in 3D) in the neighborhood of the contact line on ∂�. Obviously, θD > θ if 
F (θ) > 0 and θD < θ if F (θ) < 0. Then the status (advancing, receding, or pinned) of the contact line can be determined 
from the signs of F (θA) and F (θR).

In the first term on the right-hand side of the discretized weak form (33), we need to perform integration on the 
boundary edges on ∂�w . The contact angle hysteresis can be incorporated with a little modification to this boundary 

integral. For each element edge e on ∂�w , we first evaluate F (θA) and F (θD) with φ = φ
n+ 1

2
C in (38), and then proceed as 

follows with boundary inner product in (33):

• If F (θA) > 0, then θD > θA and the contact line advances. Set θS = θA .
• If F (θR) < 0, then θD < θR and the contact line recedes. Set θS = θR .

• Otherwise, θA ≥ θD ≥ θR and the contact line is pinned. Set cos θS = ∇φ
n+ 1

2
C ·n∣∣∣∣∣∇φ
n+ 1

2
C

∣∣∣∣∣
, i.e., θS = θD .

Since θA > θD , we have cos θA < cos θD and the third case corresponds to F (θR) ≥ 0 ≥ F (θA). These operations are performed 
on all boundary edges on ∂�w ; but only the boundary integral on the edges in the contact line region, i.e., where δε (φ) is 
non-zero, is affected. All the other operations remain the same as those in Section 2.4. Thus, the contact angle hysteresis 
can be easily included in the formulation for moving contact line problems.

In our method, whether the contact line is pinned or not, the dynamic angle θD is computed from the momentum 
equation and thus the momentum balance is automatically satisfied. There is no need to use any special technique as in 
[35] to determine θD that satisfies local momentum balance when the contact line is pinned.

It should be noted that βCL for the pinned contact line essentially plays a role of penalty parameter to enforce the no-slip 
condition. Thus, in order to achieve a good pinning performance, we may need to choose a large enough βCL for the pinned 
contact line. In other words, we need a large contact line friction to resist contact line motion and thus pin the contact line.

4. Numerical results and discussions

We consider six test cases. We first validate the interfacial flow part of our code by computing a bubble rising problem. 
In the test case of an advancing interface in plane Poiseuille flow, we systematically investigate the use of Ren and E’s 
slip condition in moving contact line problems including mesh convergence and parameter justification. In the test case of 
drop spreading, we come up with a computational strategy for predictive simulations. In the test case of a pinned drop in 
plane Poiseuille flow, we validate the capability of our method in pinning the contact lines. In the test case of advancing 
and receding interfaces in plane Poiseuille flow, we demonstrate that our method correctly captures the transition between 
pinning and moving. Finally, in the test case of sliding drop on an inclined wall, we further demonstrate the capability of 
our method in capturing hysteresis. All the parameters are dimensionless except for the bubble rising problem.

4.1. Bubble rising

Hnat and Buckmaster conducted experiments with spherical-cap air bubbles rising in incompressible liquids to study the 
steady-state shapes and terminal velocities [50], wherein the results were reproduced numerically by many others [51–55]
for code validation. In this numerical test, we will use the experiment of Fig. 1a in [50] with the following parameters: 
liquid density ρl = 0.8755 g cm−3, gas density ρg = 0.001 g cm−3, liquid viscosity μl = 1.18 P, gas viscosity μg = 0.01
P, surface tension σ = 32.2 dyn cm−1, gravitation acceleration g = 980 cms−2, and bubble radius R0 = 0.61 cm. Due to 
axisymmetry, we only compute the right half of the meridian plane. In the r-z plane, the computational domain is a 
rectangle of (0, 8R0) × (0, 30R0) and the initially spherical bubble is released from (0, 5R0). We use an adaptive mesh with 
minimum mesh size hmin = R0

64 at the interface and maximum mesh size hmax = R0 far away from the bubble, as shown in 
Fig. 2. The half-width of the interface is taken to be ε = 1.5hmin.

Our numerical results are displayed in Fig. 3. The bubble shape and the wake structure at the steady state are in good 
agreement with the experiment, as shown in Fig. (3a). We also keep track of the instantaneous velocities at the top and the 
bottom of the bubble, which are shown in Fig. (3b). The steady-state velocity in our numerical test, which is 21.89 cm s−1, 
is slightly larger than 21.5 cms−1 reported by the experiments. We note that a similar terminal speed, 21.90 cms−1, was 
obtained in [52].
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Fig. 2. Illustration of the adaptive mesh refinement. The left panel shows the mesh around the bubble while the right panel shows a close-up view at the 
rim of the bubble. The thick solid (red) line in the right panel denotes the interface, i.e., the φ = 0 level set. (For interpretation of the colors in the figure(s), 
the reader is referred to the web version of this article.)

Fig. 3. The steady-state bubble shape (a) and the instantaneous velocities at the top and the bottom of the bubble (b). The left half of (a) is the experimental 
image adapted from [50].

Fig. 4. Schematic of an advancing interface in plane Poiseuille flow.

4.2. Advancing interface in plane Poiseuille flow

We consider the steady plane Poiseuille flow of two immiscible fluids with identical viscosity μ. Inertia is neglected. 
The frame is fixed to the interface, i.e., the walls are moving horizontally with constant speed U while the interface is 
stationary. In the following, all numbers are made dimensionless by channel half width W , surface tension σ , and fluid 
viscosity μ, unless otherwise specified. Under this normalization, we have W = σ = μ = 1. Since the flow is symmetric, we 
only compute the lower half of the channel. The computational domain is a rectangle of (0, 8) × (0, 1) in the x-y plane, 
with y = 0 being the moving wall and y = 1 being the axis of symmetry, as shown in Fig. 4. We run the simulation with 
an initially flat interface at x = 4 until a steady state is achieved. The capillary number is defined as Ca = μU/σ . We first 
investigate mesh convergence of our method and then analyze the variables that affect contact line dynamics.

4.2.1. Mesh convergence
Mesh convergence is crucial to all predictive numerical simulations. This task gets more challenging with a moving 

contact line: the slip length has to be well resolved to produce mesh-independent results [56,33,26]. It should be noted that 
all mesh-based numerical results cannot be exactly mesh-independent. We borrow this term “mesh-indepenet” from [26]
to denote that the results are insensitive to the mesh size. There are three microscopic length scales: mesh size hmin, (half) 
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Fig. 5. Mesh convergence for a fixed interface thickness. The inset is a close-up view at the contact line. ε = 1.5
128 , βN = 100 (such that ls = 0.01), βCL = 1, 

Ca = 0.03, θS = 90◦ .

Fig. 6. Mesh convergence at fixed ls and hmin
ε . The insets are close-up views at the contact line. ε = 1.5hmin, Ca = 0.03, θS = 90◦ .

thickness of the interface ε , and slip length ls . Here, only ls is physically relevant and the other two are numerical. Our goal 
is to find a way to generate results that are independent of hmin and ε .

These lengths define two independent dimensionless groups, e.g., hmin
ε and ε

ls
. We first investigate hmin

ε , i.e., how to 
choose mesh size to achieve mesh convergence for a given interfacial thickness. We fix the interfacial thickness at ε = 1.5

128 , 
and conduct simulations with hmin = 1

32 , 164 , · · · , 1
512 , which corresponds to ε

hmin
= 0.375, 0.75, · · · , 6. The slip length is 

taken to be ls = 0.01, which is well resolved by ε as explained later. We can easily see the convergence in the steady-state 
interface profile, as shown in Fig. 5, as hmin reduces. The curves of hmin = 1

256 and 1
512 overlap; the errors are negligible 

even for hmin = 1/128 and hmin = 1/64. The result gets unsatisfactory when the mesh is coarsened to hmin = 1
32 . We thus 

come to the first criterion for sufficient accuracy:

hmin

ε
≤ 4

3
. (39)

We next investigate ε
ls
, i.e., the sharp-interface limit with respect to ε when ls is fixed. We keep hmin

ε = 1
1.5 fixed while 

refining mesh, such that ε is always well resolved. We test βN = 100 and 200, which correspond to ls = 0.01 and 0.005, 
respectively, as illustrated in Fig. 6. The detailed errors for βN = 100 are given in Table 1. Curves with different βCL show 
that this parameter does not affect mesh convergence. Convergence is achieved if hmin ≤ 1

128 for ls = 0.01 and hmin ≤ 1
256 for 

ls = 0.005. It is tempting to conclude a convergence criterion based on hmin
ls

. However, the curve of hmin = 1
64 and ε = 1.5

128

in Fig. 5 shows much better convergence than that of hmin = 1
64 and ε = 1.5

64 in Fig. 6(a), which suggests ε
ls

to be a better 
choice. We thus have the second criterion for sufficient accuracy:

ε

ls
≤ 150

128
. (40)

In summary, we should choose the mesh size and the interface thickness according to hmin � ε � ls to obtain numerical 
results that are independent of hmin and ε . This looks very similar to the criterion for the sharp-interface limit in the 
phase-field method [57]. The advantage of the level-set method is that it does not require a lot of mesh cells across the 
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Table 1
Relative errors in the height of the circular arc shaped interface. ε = 1.5hmin, Ca = 0.03, θS =
90◦ , βN = 100. The height H is the distance in the x direction measured from the contact line 
to the apex of the interface. Er is the relative error in H , where we have used the solution at 
hmin = 1

512 as the reference.
hmin βCL = 1 βCL = 4 βCL = 8

H Er H Er H Er

1/64 0.2373 6.76% 0.2893 4.26% 0.3444 2.96%
1/128 0.2249 1.17% 0.2806 1.13% 0.3364 0.56%
1/256 0.2235 0.54% 0.2778 0.11% 0.3356 0.34%
1/512 0.2223 0 0.2775 0 0.3345 0

Fig. 7. Dependence of g(θapp) and g(θD ) on Ca for different (βN , βCL). θS = 90◦ . The k values are the slopes of the linear fits.

narrow-band interface. In the rest of this paper, we conservatively choose ε = 1.5hmin as suggested in [40] and make sure 
ls ≥ 1.28hmin.

4.2.2. Contact line dynamics
The contact line dynamics in Ren and E’s slip model is controlled by βN , βCL , and θS . The effect of θS is well understood, 

but it is still unclear how βN and βCL quantitatively affect contact line dynamics. Here we try to answer this question by 
comparing with the well-established Cox theory [31].

According to the matched asymptotic analysis by Cox, to the leading order, the apparent contact angle θapp and the static 
contact angle θS are connected by

g(θapp) = g(θS) + Ca ln(L/Ls) (41)

due to viscous bending of the interface. Here Ls is the slip length that characterizes the inner region of the contact line and 
L is characteristic length of the macroscopic flow. Note that this Ls is a “physical” scale associated with the contact line and 
may be different from the ls . To distinguish these two length scales, we refer to Ls as the effective slip length and ls as the 
numerical slip length hereafter. For the plane Poiseuille flow, we can simply take L = W . The function g is given by

g(θ) =
θ∫

0

dθ

f (θ)
(42)

where

f (θ, rμ) = 2 sin θ
{
r2μ(θ2−sin2 θ)+2rμ

[
θ(π−θ)+sin2 θ

]
+

[
(π−θ)2−sin2 θ

]}
rμ(θ2−sin2 θ)[(π−θ)+sin θ cos θ ]+

[
(π−θ)2−sin2 θ

]
(θ−sin θ cos θ)

(43)

and rμ is the viscosity ratio between the receding and advancing fluids.
We first study the influence of Ca on θapp and θD . Here θapp is determined by fitting a circle to the deformed interface 

[58,57] and θD is directly measured from the φ = 0 level curve at the contact line. The results for various combinations of 
(βN , βCL) with fixed θS = 90◦ are shown in Fig. 7. Fig. 7(a) confirms that g(θapp) is linear in Ca, in accordance with the 
Cox theory (41). Not surprisingly, g(θD) is also a linear function of Ca, consistent with the numerical observation in [6] as 
well as the molecular-kinetic theory [59]. It should be noted that g(θS ) = 0.1921, which is exactly the y-intercept of both 
g(θapp) and g(θD).
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Fig. 8. Dependence of g(θapp) and g(θD ) on Ca for different θS . βN = 100, βCL = 1.

Fig. 9. g(θapp) − g(θD ) as a function of Ca. θS = 90◦ .

This linear behavior is also observed for different θS , as shown in Fig. 8. According to (41), the slope of the g(θapp)–Ca
curve is only dependent on Ls and is independent of θS . This is confirmed by Fig. 8(a) with acceptable errors: the slopes 
have an average of 3.4 and a standard deviation of 0.3. The largest deviation from the average is observed for θS = 120◦ , 
possibly because θapp is too close to 180◦ and the circle fitting is more prone to numerical errors due to a larger interface 
deformation. Similar linear behavior is also observed for g(θD ), as shown in Fig. 8(b), with an average slope of 1.31 and a 
standard deviation of 0.09.

The results in Figs. 7 and 8 suggest that both θapp and θD can fit in the relation

g(θ) = g(θS) + Cak, (44)

where k is dependent on both βN and βCL but independent of θS . Comparing with (41), we can see that βN and βCL work 
together to determine the effective slip length Ls that controls the dynamics of θapp . For example, in Fig. 7(a), the slope 
k = 2.91 for (βN , βCL) = (50, 1) corresponds to Ls

W = 0.055, and the slope k = 5.21 for (βN , βCL) = (100, 8) corresponds to 
Ls
W = 0.0055.

Since both θapp and θD satisfy (44), it follows that

g(θapp) = g(θD) + Ca k̃, (45)

for some constant k̃, which is easily confirmed by numerical results. It is, however, surprising to note that this k̃ is indepen-
dent of βCL , as shown in Fig. 9. That is, βCL has nothing to do with viscous bending. The data points for βCL = 1 indicate 
that k̃ ≈ 0.52 ln

(
W
ls

)
, where ls = μ

βN
. We do not have any good explanation on the prefactor for now and will leave further 

investigation for future work.
In summary, βN and βCL both affect the deviation of θD from θS , while only βN controls the viscous effect that bends 

the interface from θD at the wall to θapp at the macroscopic scale. It is the cooperation of βN and βCL that determines the 
effective slip length Ls .
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Fig. 10. Computational setup for drop spreading simulations. The computation domain is a square of 4R0 × 4R0 with the wall located at z = 0.

Fig. 11. Mesh convergence for the drop spreading problem. θS = 60◦ , rμ = 0.01, βN = 100, βCL = 1, ε = 1.5hmin.

4.3. Drop spreading and computational strategy

In this subsection, we simulate two cases of drop spreading with different initial contact angles. Inertia is again neglected. 
The computational setup is illustrated in Fig. 10. The flow is axisymmetric and we only compute the right half of the median 
plane.

4.3.1. Comparison with the Cox theory
In the first test case, we consider the spreading of an initially hemispherical drop with radius R0 = 0.5. We take θS = 60◦ . 

The spreading radius will be directly compared with the theoretical results in [60].
If we assume the drop to be a spherical cap, which is a reasonable approximation for Ca � 1, the spreading radius a can 

be written as a function of θapp based on volume conservation:

a =
(
3Vd

π

)1/3 sin θapp

(2 − 3cos θapp + cos3 θapp)1/3
, (46)

where Vd is the volume of the drop. The final spreading radius a f can be predicted based on the static contact angle θS
and the initial contact angle θ0 [60]:

a f

a0
=

[(
2− 3cos θ0 + cos3 θ0

)
sin3 θS

(2− 3cos θS + cos3 θS) sin3 θ0

]1/3

, (47)

where a0 is the initial spreading radius. For the hemispherical drop considered here, we have a0 = R0 and θ0 = 90◦ and the 
equation above gives a f

R0
= 1.276186 for θS = 60◦ , which is confirmed by our numerical results in Figs. 12.

The mesh convergence results for this transient problem are shown in Fig. 11. The different spreading curves converge as 
the mesh refines. The final spreading radii are given in Table 2, which indicates a first order convergence. This is expected 
due to the smooth Dirac delta function δε(φ) in the formulation.

It was reported in [60] that the influence of gas viscosity is negligible for rμ ≤ 0.01. We verify this by computing 
spreading with rμ = 1, 0.1, · · · , 0.0001, and the numerical results are given in Fig. 12(a). It is obvious that the spreading 
curves with rμ ≤ 0.01 are indistinguishable. In the following simulations we will simply use rμ = 0.01 for gas-liquid systems.
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Table 2
Maximal spreading radius at different levels of mesh re-
finement. Er is the relative error in a f compared against 
the theoretical value. θS = 60◦ , rμ = 0.01, βN = 100, 
βCL = 1, ε = 1.5hmin.

hmin a f /R0 Er Order

1/64 1.275312 6.85E-04 -
1/128 1.275458 5.70E-04 0.26
1/256 1.275830 2.79E-04 1.03
1/512 1.276010 1.38E-04 1.02

Fig. 12. Spreading of a hemispherical drop with θS = 60◦ . In (a), we vary the viscosity ratio rμ while keeping βN = 100 and βCL = 1 fixed. In (b), we vary 
βN and βCL while keeping rμ = 0.01 fixed. The solid lines in (b) are theoretical curves based on the Cox theory with Ls labeled in the plot and L = a0. The 
finest mesh size is set to hmin = 1

128 and 1
256 for βN = 100 and 200, respectively.

Based on the Cox theory, Wörner et al. [60] derived analytical equations to predict the a ∼ t curves of spherical-cap 
shaped drops. The effective slip Ls of the moving contact line can thus be determined by matching the theoretical and the 
actual spreading curves. The spreading curves with different (βN , βCL) values are given in Fig. 12(b). First of all, the theoret-
ical curves match the numerical ones very well if a proper Ls is chosen. Thus our level-set method with slip condition (9)
agrees with the Cox theory. Meanwhile, the same Ls can be reproduced by multiple choices of (βN , βCL). This indicates that 
βCL can be used to compensate βN in controlling the effective slip Ls , and further motivates the following computational 
strategy. The overlap of transient curves with different (βN , βCL) also suggests that different choices of (βN , βCL) are able to 
produce the same amount of contact line dissipation.

4.3.2. Computational strategy
We propose the following computational strategy for mesh-independent and predictive numerical simulations of moving 

contact line problems. First, choose an affordable mesh size hmin. Then, determine interface thickness ε � hmin and numer-
ical slip ls � ε such that the results are mesh-independent. The friction coefficient βN can be computed from ls . Finally, 
adjust βCL to produce the desired Ls . A larger βCL is required to produce a smaller Ls .

This strategy is similar to that proposed by Yue and Feng for the phase-field method [61]. Unfortunately, we could 
not obtain a qualitative formula similar to that in the phase-field method to guide the choice of βCL yet. This will be an 
important part of our future work. For now, we leave βCL as a fitting parameter that needs to be calibrated based on 
experiments or other results, similar to that in [23]. Once calibrated, our method will be able to predict the correct contact 
line dynamics for a wide spectrum of contact line velocities and flow geometries, as long as the two fluids and the solid 
surface remain the same.

4.3.3. Comparison with experiment
In this test case, we compare our results with the experimental data on drop spreading by Zosel [62]. This also serves as 

an example on the usage of our computational strategy.
In the experiments, solutions of polyisobutylene in decaline with a range of concentrations were tested. It was observed 

that all experimental data fall onto a master curve if the dimensionless spreading radius a
R0

is plotted against the dimen-

sionless spreading time tσ
μ1R0

. We choose the data points for pure polyisobutylene, which have the widest coverage on the 
whole master curve. Although θS was reported to be about 58 to 60◦ in the experiments, the final spreading radius, which 
is about a f = 1.69, suggests a smaller angle θS = 54◦ based on (46). We thus take θS = 54◦ in our simulations. The drop is 
R0
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Fig. 13. Comparison of drop spreading with experiment. The symbols are the experimental data for the spreading of polyisobutylene on polytetrafluoroethy-
lene [62]. βN = 100, hmin = 1/128, ε = 1.5hmin, θS = 54◦ .

Fig. 14. Schematic of a drop under shear in plane Poiseuille flow.

initially spherical with a radius R0 = 0.5 and a center at (0, 0.48), such that the inner rim of the narrow-band interface just 
touches the wall. We set the viscosities to μ1 = 1 and μ2 = 0.01.

Following the proposed computational strategy, we first set hmin = 1
128 and ε = 1.5hmin. Then we pick βN = 100 such 

that ls = μ1
β

= 0.01 can be resolved by hmin and ε . Finally, we tune βCL to match experimental data. The spreading curves 
with different βCL are given in Fig. 13. The curves with βCL = 0.5 and βCL = 1 match the experimental curve the best. For 
the typical drop size R0 ∼ 1 mm in the experiment [62], these (βN , βCL) pairs roughly correspond to an effective slip of 
Ls ∼10 μm. Once we identify the (βN , βCL) pair for the liquid-gas-solid system, it can be used to predict the contact line 
dynamics under other flow conditions.

It should be noted that our numerical curves can not match the experimental data exactly: the experimental data demon-
strate a lower slope in the semi-log plot. The same trend was also observed in other numerical simulations [63–65]. This 
consistent discrepancy is probably because of the constant-coefficient assumptions in the contact line models. Maybe the 
friction coefficients βN and βCL (or the slip length) should be functions of the contact line velocity. Further investigation is 
beyond the scope of this paper.

4.4. Pinned drop in Poiseuille flow

We test the capability of our method in pinning contact lines by comparing with the boundary integral method [66]. 
A cylindrical-cap droplet, with an area of 0.5, is initially placed on a solid surface with contact angle θ = π/3, as shown in 
Fig. 14. The droplet is sheared by a pressure-driven flow with contact lines pinned. The capillary number is subcritical such 
that the drop eventually achieves a steady deformation. The flow is inertialess with μ1 = μ2 = 1 and σ = 1. We impose 
a large hysteresis window (1◦, 179◦) such that the contact lines are pinned on the wall. The computational domain is a 
rectangle of dimensions (0, 8) × (0, 2). On the left boundary x = 0, we impose the inflow condition u = [u, 0]T with

u = 3

2
V̄

(
1− (1− y)2

)
, (48)

where V̄ is the average velocity in the channel. Following [66], we define the capillary number as Ca = μ1Eh
σ , where E = 3V̄

is the shear rate at the wall (noting that the channel half height is 1) and h = 0.4511 is the initial height of the drop. We 
take βN = 100, βCL = 100, hmin = 1

64 , and ε = 1.5hmin in our simulations. Theoretically, since the contact lines do not move, 
the exact value of βCL should not change the flow. However, to achieve desirable pinning performance numerically, a large 
enough βCL needs to be used when the contact line is pinned.

The steady-state drop shapes are given in Fig. 15. Our results match those of the boundary integral method almost 
perfectly. Since we pin the contact line through the fluid velocity, it is very difficult to achieving exact pinning due to 
numerical errors in computing the flow field and advecting the level-set function. Thus the contact line may shift away from 
its original position. At the leading (left) edge of the drop, as shown in Fig. 16(a), the contact line is blown downstream as 



16 J. Zhang, P. Yue / Journal of Computational Physics 418 (2020) 109636
Fig. 15. Comparison with the boundary-integral results of Schleizer and Bonnecaze [66]. From top to bottom, Ca = 0.05, 0.10, and 0.15. The solid lines 
represent the boundary-integral results, while the dashed lines indicate our level-set results.

Fig. 16. Zoomed views of the steady-state interface in the vicinity of the contact lines. Ca = 0 denotes the undeformed interface.

Fig. 17. Schematic of advancing and receding contact lines in a channel.

Ca increases. This trend is probably related to the finite thickness of the numerical interface, which may cause a large error 
when the interface is almost parallel to the wall, i.e., when the dynamic contact angle is close to 0◦ or 180◦ . This error is 
however acceptable compared to the computational mesh: the maximum displacement of the contact line is around hmin

4 at 
Ca = 0.15. At the trailing (right) edge of the drop, the contact line is nicely pinned because the dynamic contact angle is 
close to 90◦

4.5. Advancing and receding contact lines in a channel

In this test case, we consider two immiscible fluids separated by two interfaces in a plane Poiseuille flow. Due to sym-
metry, we only compute the lower half of the channel, which is a rectangular domain (0, 8) × (0, 1), as shown in Fig. 17. 
The channel is long enough such that the inflow and outflow conditions are not affected by interface deformation. The two 
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Fig. 18. Shapes of advancing and receding interfaces in a channel. The red dotted lines correspond to the receding angle θR = 75◦ and the advancing angle 
θA = 135◦ , respectively.

interfaces are initially vertical and located at x = 3 and 5, respectively. Under flow, the contact line to the left eventually 
recedes with respect to fluid 1 while the other contact line advances; we henceforth refer to these two contact lines as 
receding and advancing contact lines, respectively, even when they are pinned. The system is inertialess and the two com-
ponents have the same viscosity μ = 1. The surface tension is set to σ = 1. The prescribed advancing and receding contact 
angles are θR = 75◦ and θA = 135◦ , respectively. We take the following friction coefficients: βN = 100, βCL = 1 for moving 
contact lines, and βCL = 100 for pinned contact lines. On the left boundary x = 0, we impose the same parabolic velocity 
profile as (48). We take V̄ = 0.01 such that Ca = μV̄

σ = 0.01 is small enough and the deformed interfaces remain almost 
circular. For convenience we define a normalized time t∗ = t V̄

H , where H = 1 is the half height of the channel.
Typical interface shapes are given in Fig. 18 and the zooms at the contact line are shown in Fig. 19. The receding contact 

line remains pinned until about t∗ = 0.0876 and the advancing one remains pinned until about t∗ = 0.2906. For a circular 
interface with a pinned contact line, we can find the following relation between dynamic angle θD and normalized time 
t∗ based on mass conservation [38]: t∗ = 1

2
H
V̄

(
δ

sin2 δ
− cot δ

)
, where δ = |π2 − θD |. This gives t∗ = 0.0881 for the receding 

contact line to achieve θD = 75◦ and t∗ = 0.2854 for the advancing contact line to achieve θD = 135◦ . Our numerical 
depinning times agree with these theoretical predictions very well.

4.6. Sliding drop

This test case is adapted from [35]. We consider the deformation of a drop on a wall which is slowly inclined, as shown 
in Fig. 20. The drop is initially semicircular with radius R0 = 0.5, and the computational domain is a rectangle of 5 × 1. 
The finest mesh is set to hmin = 1

128 . We choose the following fluid properties: ρ1 = 1, ρ2 = 0.01, μ1 = 1, μ2 = 0.1, and 
σ = 1. Since ρ2 � ρ1, we define the Bond number as Bo = ρ1gR2

0/σ , according to which the magnitude of gravitational 
acceleration g is adjusted to achieve different Bo. The wall is initially horizontal and slowly inclined until the drop starts 
to slide. Each inclination angle α is maintained for a period of the greater of the inertia-capillary time 

√
ρ1R3

0/σ and the 
visco-capillary time μ1R0/σ , which is 0.5 for our chosen parameters, to allow enough time for the drop to deform. The 
increment of slop angle varies depending on whether the inclination angle is near critical. In the simulations, instead of 
rotating the computational domain, we rotate the gravitational acceleration g = −g(sinα, cosα). For the contact line, we 
take βN = 100, βCL = 1 at the moving contact line, and βCL = 100 at the pinned contact line.

Theoretically, based on a force balance along the wall, one can derive the critical inclination angle αc when the drop 
starts to slide [67,68]:

1

2
π R2ρ1g sinαc = σ(cos θR − cos θA), (49)

which can be rewritten as
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Fig. 19. Evolution of the interfaces in the vicinity of the contact lines.

Fig. 20. Schematic of a drop on an inclined wall.

sinαc = 2

πBo
(cos θR − cos θA) . (50)

By choosing different hysteresis angles and Bond numbers, we can compute the corresponding critical inclination angles 
αc and compare against the theoretical relation (50). Here, we test Bo = 0.5, 1.0 and 2.0 with different hysteresis angles 
(θR , θA) = (80◦, 100◦), (60◦, 120◦), and (40◦, 140◦), which are the same as in [35]. The critical inclination angles are sum-
marized in Fig. 21, which indicates a very good agreement with the theoretical relation (50). Quantitatively, the agreement 
is better than that obtained by the volume-of-fluid method in [35]. In terms of computational mesh, our finest mesh size is 
slightly smaller, but the total number of cells, typically around 2000, is much less than the 500 ×100 uniform mesh in [35].

The critical drop shapes are displayed in Fig. 22. For small Bond numbers, when the hysteresis is sufficiently large, the 
drop is pinned on the wall even when the inclination angle achieves 90◦ . For example, at Bo = 0.5, the drops are pinned 
on the wall with identical shapes for (θR , θA) = (60◦, 120◦) and (40◦, 140◦). In these two cases, αc does not exist.

Drop shape evolutions for selected parameters are given in Fig. 23. Each curve denotes the interface obtained with the 
inclination angle α being fixed for a time span of 0.5. It can be viewed approximately as the steady drop shape for the 
given α. In (a), gravity is dominant and θA is close to the initial contact angle of 90◦ . At α = 0◦ , the drop spreads due to 
gravity. As α increases, the dynamic contact angle at the advancing contact line (left) increases and the one at the receding 
contact line (right) decreases. The advancing contact line moves first with the receding one pinned at α = 3◦ . At α = 6.9◦ , 
the receding contact line starts to move at a very low speed and this angle is recorded as the critical inclination angle. In 
(b), the hysteresis window is increased to (60◦, 120◦). θA is big enough to inhibit the initial drop spreading at α = 0◦: the 
drop flattens under gravity, but the contact lines remain pinned. The later dynamics is similar to that in (a). At a sufficiently 
small Bo, gravity is insufficient to overcome the contact angle hysteresis, as shown in (c). As a result, the drop deforms with 
contact lines pinned.
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Fig. 21. Critical inclination angle αc versus (cos θR − cos θA)/Bo.

Fig. 22. Drop shapes at critical inclination angles. Bo is fixed in each row and (θR , θA) is fixed in each column. The theoretical values of αc are given in the 
parentheses.

5. Concluding remarks

We have developed a level-set method, where the level-set function is reinitialized by an interface-preserving method 
that we previously developed. The flow equations are solved by a continuous finite element method while the level-set 
equation is solved by a discontinuous Galerkin method on an adaptive quadrilateral mesh. After a careful validation against 
the Cox theory, we come up with a computational strategy for practical contact line simulations. Furthermore, our method 
can be easily modified to accommodate contact angle hysteresis. The main results can be summarized as follows.
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Fig. 23. Evolutions of drop shapes.

(i) Reasonable accuracy can be achieved as long as the mesh size hmin is able to resolve the interfacial thickness ε and 
the numerical slip ls = μ

βN
: hmin � ε � ls . For a sharp-interface method that does not use the continuum surface force 

method to apply surface tension, we expect this criterion to reduce to hmin � ls .
(ii) In addition to βN , the contact line friction βCL also affects the effective slip length. In particular, a single slip length 

in the Cox theory can be reproduced by different combinations of (βN , βCL). In practical computations, we suggest to 
prescribe βN based on the mesh convergence requirement and then use βCL as the only fitting parameter to achieve 
desired slip. By using this strategy, we have obtained a reasonable agreement with the drop spreading experiment. 
Since our method does not rely on external models to impose the contact angle condition, it is easy to implement 
numerically.

(iii) In our method, the dynamic contact angle can be readily obtained from the level-set function, based on which we can 
determine whether the contact line is pinned, advancing, or receding. Meanwhile, the weak form for the pinned contact 
line only differs a little from that for the moving contact line. All these properties make it easy to incorporate contact 
angle hysteresis. More importantly, our method demonstrates very good accuracy in capturing hysteresis.

Although this work focuses on the level-set method, we expect the computational strategy and hysteresis model to be 
applicable to a wide range of numerical methods with the generalized Navier slip condition. All the simulations are in 2D, 
but the formulations are ready for 3D and the development of an efficient 3D flow solver is currently ongoing.
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