DynaHash: Efficient Data Rebalancing in Apache AsterixDB

Chen Luo

University of California, Irvine
cluo8@uci.edu

ABSTRACT

Parallel shared-nothing data management systems have been widely
used to exploit a cluster of machines for efficient and scalable data
processing. When a cluster needs to be dynamically scaled in or out,
data must be efficiently rebalanced. Ideally, data rebalancing should
have a low data movement cost, incur a small overhead on data
ingestion and query processing, and be performed online without
blocking reads or writes. However, existing parallel data manage-
ment systems often exhibit certain limitations and drawbacks in
terms of efficient data rebalancing.

In this paper, we introduce DynaHash, an efficient data rebal-
ancing approach that combines dynamic bucketing with extendible
hashing for shared-nothing OLAP-style parallel data management
systems. DynaHash dynamically partitions the records into a num-
ber of buckets using extendible hashing to achieve good a load
balance with small rebalancing costs. We further describe an end-
to-end implementation of the proposed approach inside an open-
source Big Data Management System (BDMS), Apache AsterixDB.
Our implementation exploits the out-of-place update design of LSM-
trees to efficiently rebalance data without blocking concurrent reads
and writes. Finally, we have conducted performance experiments
using the TPC-H benchmark and we present the results here.

PVLDB Reference Format:

Chen Luo and Michael J. Carey. DynaHash: Efficient Data Rebalancing in
Apache AsterixDB. PVLDB, 14(1): XXX-XXX, 2020.

doi: XX XX/XXX. XX

1 INTRODUCTION

The coming end of Moore’s law and the information age have led
data management systems to exploit clusters of machines to pro-
cess large amounts of data growing in an unprecedented speed. As
a result, parallel shared-nothing data management systems have
become widely used today due to their high scalability. In a parallel
shared-nothing data management system, records are partitioned
across a cluster of nodes that communicate with each other via
an interconnection network [32]. The shared-nothing parallel ar-
chitecture enables these systems to be horizontally scaled as the
number of nodes increases.

Early parallel data management systems [20, 33] generally as-
sumed that the cluster of nodes is relatively static. However, this
assumption is no longer true. It is desirable to dynamically adjust
the cluster size for a number of reasons. For example, it is econom-
ical to dynamically scale the cluster in and out as the workload

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 1 ISSN 2150-8097.
doi:XX.XX/XXX.XX

Michael]J. Carey
University of California, Irvine
mjcarey@ics.uci.edu

changes, especially in the era of cloud computing. Moreover, as
the stored data accumulates over time, the cluster also needs to be
scaled out to better serve the query workloads. In order to scale
a cluster in or out, the stored records must be rebalanced so that
they can be repartitioned to the new set of nodes. Ideally, rebalance
operations should result in a near-perfect load balance, a low over-
head for regular database operations, and a small data movement
cost. Moreover, rebalancing must be performed online so that reads
and writes are not blocked.

In this paper, we focus on data rebalancing for shared-nothing
parallel data management systems for analytical (OLAP) workloads.
Even though many parallel data management systems today have
implemented various data rebalancing functionalities, the existing
implementations often exhibit certain limitations or drawbacks for
OLAP data management. Data management systems that support
OLTP workloads [2, 4, 25, 44, 73, 81] generally perform fine-grained
range partitioning to enable efficient data rebalancing. However,
this is not suitable for OLAP workloads due to the potential query
load imbalance caused by range skews. Existing parallel OLAP
systems either rely on shared-data architectures for data rebalanc-
ing [26], incur a large data movement cost [49], or block writes
during rebalancing [43].

Our Contributions. In this paper, we present DynaHash, an
efficient data rebalancing approach for OLAP-style parallel data
management system with local secondary indexes. The basic idea
of DynaHash is to dynamically partition the records into a set of
buckets using extendible hashing [39] and to move buckets for effi-
cient rebalancing. By combining extendible hashing with dynamic
bucketing, DynaHash can greatly reduce the data movement cost
with a minimal impact on data ingestion and query processing.

As the second contribution, we describe an efficient rebalancing
implementation that avoids blocking concurrent reads and writes
by exploiting the out-of-place design offered by LSM-trees [68].
The techniques used include bucketed LSM storage, lazy secondary
index cleanup, concurrency control for online rebalancing, and an
effective approach to fault tolerance and recovery. Even though
some similar techniques have been implemented by other systems,
our contribution here is to show how to integrate them together to
enable an efficient and effective rebalancing implementation.

As the last contribution, we have implemented all of the pro-
posed techniques inside Apache AsterixDB [1]. We have carried
out extensive experiments on the TPC-H benchmark [7] to evaluate
the effectiveness of the proposed techniques. The experimental
results show that the proposed rebalancing approach DynaHash
significantly reduces the rebalance cost with a small overhead on
query and ingestion performance. It should be noted that even
though our approach has been implemented for an LSM-based row
store, the design itself can be naturally generalized to column store-
based systems since these systems have generally adopted the same
out-of-place update design for their data [40, 49, 78].

The remainder of this paper is organized as follows. Section 2 dis-
cusses background information and related work. Section 3 presents
an overview of our proposed rebalancing approach. Section 4 de-
scribes how to store buckets efficiently on a single node. Section 5
presents the detailed design and implementation of the rebalance
operation. Section 6 experimentally evaluates the proposed tech-
niques. Finally, Section 7 concludes the paper.

2 BACKGROUND
2.1 Data Rebalancing

To exploit the parallelism provided by a cluster of nodes, the records
of a dataset must be distributed to each node using a partitioning
function. A partitioning function deterministically assigns each
record to a node based on its partitioning key. Example partitioning
functions include range partitioning and hash partitioning!. Range
partitioning divides the key space into a set of ranges, each of which
is assigned to a node. In contrast, hash partitioning operates on the
hashed keys to achieve better a load balance.

When the cluster needs to be scaled in or out, its datasets must be
repartitioned through a rebalance process. In general, rebalancing
has three important trade-offs, i.e., the load balance, the rebalance
cost, and the normal operation overhead. The load balance measures
how evenly the data is distributed across different nodes. This
directly impacts query performance, as in a shared-nothing system
the query time is bottlenecked by the slowest node. The rebalance
cost measures how much of the data needs to be accessed and
moved during rebalancing. Finally, the normal operation overhead
measures the extra overhead for normal read and write operations
in order to support the needs of the rebalance operation.

Rebalancing changes the partitioning function. Depending on
how the partitioning function changes, existing rebalancing schemes
can be classified as either global or local. A global rebalancing
scheme repartitions (nearly) all records of a dataset when the clus-
ter changes. This generally leads to a near-perfect load balance and
a small normal operation overhead but a very high rebalance cost.
For example, with range partitioning, a global rebalancing scheme
can recompute the key range of each node based on the new cluster
size and then repartition all records based on the new ranges.

In contrast to global rebalancing, a local rebalancing scheme
only changes the partitioning function “locally” so that only a small
portion of the records, generally proportional to the affected nodes,
are moved. This reduces the rebalancing cost, but generally leads
to a worse load balance and a higher normal operation overhead.
Commonly used local rebalancing schemes include static bucketing,
dynamic bucketing, and consistent hashing [45]?. In static bucketing,
the key space is pre-partitioned to a fixed number of buckets, each
of which is assigned to a node through a directory. During rebal-
ancing, only a small number of affected buckets are moved to new
nodes, which significantly reduces the rebalance cost. Dynamic
bucketing further extends the usability of static bucketing by dy-
namically splitting or merging buckets as the dataset size grows or
shrinks. Finally, consistent hashing eliminates the overhead of the
I There could be other partitioning functions in practice, such as round-robin partition-
ing and random partitioning. However, we do not consider them here because those
partitioning functions are not deterministic.

2The range partitioning counterpart of consistent hashing is rarely used in practice
because of the potential for range skews. Thus, that scheme is not considered here.

global directory by organizing the (hashed) key space into a ring
structure and letting each node serve a key range. When a node is
added or removed, its key range is adjusted locally based on its next
neighbor node. In general, consistent hashing is more suitable for
a (large) peer-to-peer architecture since it does not require a global
directory. In contrast, dynamic bucketing works naturally with a
more centralized (master-slave) architecture where the bucket as-
signment information is managed by the master. Moreover, a global
directory also provides more flexibility for bucket assignment.

2.2 Log-Structured Merge Trees

The LSM-tree [68] is a persistent index structure optimized for
write-intensive workloads. The LSM-tree adopts an out-of-place up-
date design by always buffering writes into a memory component
and appending records to a transaction log for durability. Whenever
the memory component is full, writes are flushed to disk to form an
immutable disk component. Multiple disk components are periodi-
cally merged together to form a larger one, according a pre-defined
merge policy.

A query over an LSM-tree has to reconcile the entries with
identical keys from multiple components, as entries from newer
components override those from older components. A range query
searches all components simultaneously using a priority queue to
perform reconciliation. A point lookup query simply searches all
components from newest to oldest until the first match is found. To
speed up point lookups, a common optimization is to build Bloom
filters [19] over the sets of keys stored in disk components.

2.3 Apache AsterixDB

Apache AsterixDB [1, 13, 24] is an open-source Big Data Man-
agement System (BDMS) that aims to manage massive amounts
of semi-structured (e.g., JSON) data efficiently. AsterixDB uses a
shared-nothing parallel architecture with local secondary indexes
for OLAP-style workloads. An AsterixDB cluster contains a Clus-
ter Controller (CC) that serves as the master and multiple Node
Controllers (NCs) that perform data processing tasks. Each NC
has multiple partitions to exploit the parallelism of modern hard-
ware. A query in AsterixDB is compiled and optimized by the CC
into a Hyracks job [22] that is then executed by the NCs. To sup-
port efficient data ingestion, AsterixDB provides data feeds [42],
which are long-running jobs that efficiently ingest external data
into AsterixDB.

The records of a dataset are hash-partitioned based on their pri-
mary keys across multiple NC partitions. Each dataset partition is
managed by an LSM-based storage engine [14], including a primary
index, a primary key index, and multiple local secondary indexes.
The primary index stores records indexed by primary keys, and
the primary key index stores primary keys only. The primary key
index is built to support COUNT(*) style queries and uniqueness
checks efficiently [58] since it is much smaller than the primary
index. Secondary indexes use the composition of the secondary
key and the primary key as their index keys. AsterixDB supports
LSM-based B*-trees, R-trees, and inverted indexes using a generic
LSM-ification framework that can convert an in-place index into an
LSM-based index. Each LSM-tree uses a tiering-like merge policy

to merge its disk components. AsterixDB uses a record-level trans-
action model to ensure that all of the indexes are kept consistent
within each partition.

AsterixDB uses a global rebalancing scheme with hash parti-
tioning. Given a cluster with N partitions, AsterixDB assigns each
record with key K to the hash(K) mod N partition. When the clus-
ter size changes, the partitioning function is recomputed so that
the records of a dataset are redistributed to the new set of nodes.
This approach leads to a near-perfect load balance with a minimum
normal operation overhead, but the rebalance cost is very high
since nearly all records need to be moved during rebalancing. In
this work, we explore alternative data rebalancing schemes to make
better trade-offs among these three costs.

2.4 Related Work

Rebalancing in Parallel Data Management Systems. Nearly
all parallel data management systems today have implemented
some form of rebalancing. Here we discuss rebalancing in some
representative systems based on the taxonomy of Section 2.1.

For OLTP-style systems, Bigtable [25] and its open-source cousin
HBase [2] use dynamic bucketing with a shared-data architecture.
Since their underlying distributed storage systems, GFS [41] for
Bigtable and HDFS [3] for HBase, already support rebalancing im-
mutable data blocks, Bigtable and HBase only need to manage their
in-memory data during rebalancing. Dynamo [31] and its open-
source cousin Cassandra [48] are shared-nothing systems that use
consistent hashing. Cassandra further introduces the concept of
virtual nodes to achieve a better load balance; the basic idea is to
let each node use multiple virtual nodes to manage multiple key
ranges. Couchbase [21] and Oracle NoSQL Database [5] are shared-
nothing systems that use static bucketing with hash partitioning.
Both systems set the number of buckets to a relatively high number.
Couchbase sets this number to 1024 by default, while Oracle NoSQL
Database recommends that each node (in the expected largest clus-
ter) should have 10 to 20 buckets. Minhas et al. [67] applied a similar
static bucketing approach to enable efficient scaling for VoltDB [8].
MongoDB [4], TiDB [44], WattDB [73], and CockroachDB [81] each
use range-partitioned dynamic bucketing with a very small bucket
size, e.g., 64MB. Having a large number of small buckets is suitable
for OLTP workloads since each transaction only accesses a small
number of (usually one) buckets. However, this may not be suitable
for OLAP systems since each query will often access all buckets.
Moreover, OLTP systems typically use global secondary indexes
due to the high selectivity of OLTP queries.

For OLAP-style systems, Snowflake [26] is based on a shared-
data architecture and completely relies on the underlying shared
storage system for rebalancing. Vertica [49] is a shared-nothing sys-
tem that uses global rebalancing with hash partitioning to achieve
a better load balance. By performing range partitioning on hashed
keys and carefully placing the new nodes into the cluster, Ver-
tica can reduce the rebalance cost by a constant factor [49]. Red-
shift [43] is shared-nothing and supports both global rebalancing
and static bucketing with hash partitioning. However, Redshift
does not support concurrent writes during rebalancing. Moreover,
it directly uses buckets (called “node slices” in Redshift) as its par-
allelism unit. This leads to an undesirable side-affect that the node

parallelism changes after rebalancing®. NashDB [65] adopts an
economics framework to automatically distribute data based on
user-provided query priorities. However, NashDB targets static
read-only workloads and does not consider the rebalancing cost.

Elastic OLTP Databases. Due to the importance and wide adop-
tion of parallel OLTP database systems, a lot of effort has been de-
voted to making them elastic. Live migration techniques [17, 27, 37,
38, 52, 74] enable OLTP databases to be migrated without blocking
ongoing transactions. E-Store [80] uses fine-grained partitioning to
elastically scale parallel databases. Morphosys [9], Accordion [76],
and Clay [77] perform online database partitioning to reduce the
cost of distributed transactions. These research efforts all share
some similarity with our work by considering online database re-
balancing without blocking concurrent transactions. However, one
key difference is that these research efforts mainly focus on ACID
transactions, while our work focuses on how to rebalance datasets
efficiently in OLAP-style (i.e., query-oriented) systems.

Distributed Access Methods. To efficiently query data stored
in a cluster of nodes, a number of distributed access methods have
been proposed as well. The basic idea is to distribute an access
method efficiently over a cluster of nodes, potentially in a peer-to-
peer setting, to support efficient read and write operations. Exam-
ples include distributed versions of extendible hashing [36], linear
hashing [53, 55], range search trees [47, 54], B*-trees [10], and R-
trees [34, 35]. A key difference between these access methods and
our work is that we focus on rebalancing for OLAP systems rather
than on a single access method with simple key-value interfaces.
Moreover, these access method proposals have rarely been used by
today’s parallel data management systems due to their increased
complexity. Instead, modern systems generally employ a simple
partitioning approach that partitions datasets into multiple nodes.

LSM-trees. For data storage in modern systems, a large number
of improvements have been proposed to optimize the LSM-tree [68].
These improvements include optimizing write performance [18, 50,
56, 64, 66, 70, 79], supporting auto-tuning of LSM-trees [28-30, 51,
72], optimizing query performance of LSM-trees [12, 58, 63, 69],
minimizing write stalls [15, 59, 75], exploiting large memory [16, 23,
57, 60], and extending the applicability of LSM-trees [62, 71]. We
refer readers to a recent survey [61] for a more detailed description
of these LSM-tree improvements. These LSM-tree improvements
have all focused on a single node setting. In contrast, in this work,
we focus on their role in a parallel shared-nothing architecture and
exploit the LSM-tree’s out-of-place design to support efficient data
rebalancing with concurrent reads and writes.

3 APPROACH OVERVIEW

As mentioned in Section 2.1, rebalancing involves three important
trade-offs, i.e., the load balance, the rebalance cost, and the normal
operation overhead. Our goal is to achieve good load balance with
a small rebalance cost and a low normal operation overhead. In this
section, we provide a high-level overview of DynaHash based on
the following design choices.

3 For example, consider a cluster with 4 nodes. Each node further has 4 node slices to
exploit the node parallelism. However, if the cluster is resized to 16 nodes, each node
will only have one node slice, which may negatively impact the parallelism of query
processing.

Range Partitioning vs. Hash Partitioning. In general, range
partitioning is more suitable for OLTP systems since each trans-
action only accesses a few partitions. It also provides fine-grained
partitioning capabilities for the system to eliminate hot ranges. In
contrast, most OLAP systems prefer hash partitioning to achieve
a better load balance since many queries will access all partitions.
Thus, we choose to use hash partitioning here as well.

Global Rebalancing vs. Local Rebalancing. Although global
rebalancing schemes achieve a near-perfect load balance, they incur
avery large rebalance cost since most records have to be moved dur-
ing rebalancing. Since our goal is to reduce the rebalance cost, we
prefer to use the local rebalancing scheme. Among the three local
rebalancing schemes mentioned in Section 2.1, dynamic bucketing
dominates static bucketing by elastically adjusting the number of
buckets as data accumulates. Dynamic bucketing is also prefer-
able to consistent hashing since most parallel OLAP systems (ours
included) adopt a master-slave architecture. Based on these consid-
erations, it is a natural choice to use dynamic bucketing here.

Combining Hash Partitioning with Dynamic Bucketing.
The last choice we face is how to combine hash partitioning with
dynamic bucketing. One natural design would be to range partition
the hashed key space into multiple buckets. Though this solution
works, hashing actually provides opportunities for a more efficient
design. Since hashed keys are uniformly distributed, one can use
an extendible hashing approach [39] to partition the key space
into multiple buckets. Figure 1 shows the resulting architecture
based on this idea with one Cluster Controller (CC) and two Node
Controllers (NCs). Each NC further has two storage partitions. In
order to distribute the records of a dataset to these four partitions,
the hash key space is divided into multiple buckets. A bucket is
defined by taking the d low-order bits of the hash function, where
d is the depth of this bucket. When a bucket becomes too large,
it is split into two smaller buckets by taking one more hash bit,
which thus increments the depth [39]. A rebalance operation can
now only move some affected buckets to new partitions, which can
greatly reduce the rebalance cost.

As shown in Figure 1, we use a global directory stored at the
CC to map buckets to partitions. Each directory has a depth D,
which is the maximum number of bits used in all buckets. Thus, the
size of this directory is always 2P. Note that in Figure 1 the two
hash values 011 and 111 currently correspond to the same bucket
11. To locate where a given key K is stored, one simply needs to
look in the global directory using the D low-order bits of K’s hash
value, where D is the depth of the global directory. During query
compilation, each query creates an immutable copy of the global
directory that is used throughout query processing. Similarly, a
data feed, i.e., a data ingestion job, also employs an immutable copy
of the global directory in order to distribute the incoming records
of a dataset to the correct NC partitions.

We further use a local directory at each partition to keep track of
the assigned buckets. To simplify bucket splits, the global directory
can be updated lazily before rebalancing is performed. For example,
in Figure 1, the bucket 00 has already been split into two buckets 000
and 100 at partition 0, but the global directory has not been updated
yet. This does not impact the correctness of the global directory
since it can still correctly route all keys to the right partitions.

Node Controller 1

S DNOECEINET] >
Local Directory
@ hash |depth| [hash [depth
depth: 3 000 | 3 1| 2
hash |depth|partition 100 | 3
000 2 0 o
001 > Partition 0 Partition 1
010 3 2
100 2 0 Local Directory
101 3 3
ol 3 3 hash |depth| |[hash [depth
111 [2 1 001 3 101 | 3
~— Global Directory o B LU
Partition 2 Partition 3

v

Figure 1: Example Architecture for DynaHash

Even though the basic design in our rebalancing approach is
relatively straightforward, two key challenges must be addressed.
First, how can we store (i.e., physical organize) multiple buckets
within each partition to enable efficient rebalancing with low nor-
mal operation overheads for reads and writes? Second, how can
we efficiently rebalance buckets while supporting both concurrent
reads and writes? In the next two sections, we will detail our solu-
tions to these two challenges.

4 LSM STORAGE FOR BUCKETS

In this section, we discuss how to efficiently store multiple buckets
in each partition. For efficient rebalancing, when a bucket needs
to be moved out of a partition, it is desirable to only access the
records for this bucket. If range partitioning were used and no
secondary indexes were built, storing records in their primary key
order naturally satisfies this property since records in each bucket
would be grouped together. However, with hash partitioning, the
primary key order is no longer the same as the bucket order since
records are bucketed using hashed keys. Moreover, secondary in-
dexes also complicate this problem because their entries are ordered
by secondary keys, not primary keys.

Storage Options. In general, when hash partitioning is used,
there are three options to store buckets in each partition:

e Option 1: Store entries in their original key order in one
LSM-tree index.

e Option 2: Store entries in their bucket order in one LSM-
tree index. Within each bucket, store their entries in their
original key order.

o Option 3: Store entries in each bucket in a separate LSM-tree
index structure. Within each LSM-tree, store the entries in
the original key order.

Let us first consider the trade-offs for the primary index. Option
1 incurs no overhead on reads and writes, but it incurs a large over-
head on rebalancing since moving a bucket must scan all entries,
including those from other buckets. Options 2 and 3 both reduce the
rebalancing overhead since records within each bucket are stored
together. Moreover, Option 3 provides more flexibility for splitting

memory disk

hash|depth| thash:001,depth:3 A~ !
1

) 001] 3 ! (k1,v1) |

Primary [0 3 e ey T T !

Index 011l 2 :hash: 11, depth: 2 i
1

111] 2 L A@ ‘@i !

Local ihash: 0 1_0_, c_le;p_tﬁ:_3 ____________ :
N 1

Directory ! (k4, v4) i

| By P T

Secondary /\ 2,k2
Index v3,k3 (vL.k1) (v4.k4)

Figure 2: Example Partition with a Bucketed Primary Index
and a Secondary Index

buckets and deleting buckets after rebalancing. However, Options
2 and 3 both incur some overhead on short primary index scans
since each query must search all buckets. Since short primary key-
order scans are not common in OLAP-style systems, we choose to
optimize the rebalancing performance by choosing Option 3 for the
primary index of a dataset. For secondary indexes, an important
difference is that they do not have to be accessed during rebalanc-
ing but can be rebuilt on-the-fly at their destination. In order not
to incur too much normal runtime overhead on secondary index
queries, we choose to use Option 1 for secondary indexes. Figure 2
shows an example of a dataset partition with a primary index and
a secondary index. Here we denote each record as a key-value pair,
and the secondary index is built on the value field. The primary
index uses the bucketed LSM-tree design, which is further described
below, to store buckets separately. In contrast, the secondary index
uses a traditional LSM-tree design to store all buckets together.
Bucketed LSM-tree Design. Based on these basic design de-
cisions, we introduce a bucketed LSM-tree design for efficiently
storing multiple buckets in the primary index. As shown in Figure 2,
each bucket can be viewed as a separate LSM-tree with a memory
component and multiple disk components. We use reference count-
ing for concurrency handling. That is, whenever a bucket, a memory
component, or a disk component is accessed, the reader or writer
increments a reference count so that the accessed entity cannot be
destroyed until the access completes. All flushes and merges are
performed within each bucket. All buckets are coordinated using
a local directory, as mentioned in Section 3. Note that in Figure 2,
hashes 011 and 111 correspond to the same bucket 11 with depth 2.
Data Ingestion and Query Processing. A bucketed LSM-tree
provides the same set of interfaces as a traditional LSM-tree. A write
operation, including inserts, deletes, and updates, first checks the lo-
cal directory using the hash value of the key to locate which bucket
the entry belongs to and then adds the entry to that bucket. Simi-
larly, a point lookup query only searches its target bucket, located
via the local directory, to get the entry. A primary key range scan
query, however, must search all buckets. There are two approaches
to process such a range scan query. The first approach is to scan
each bucket separately. This will incur no additional overhead com-
pared to the traditional LSM-tree design, but the returned entries

| memory disk | hash: 11
1
' i depth: 2
hash: 011 1 o i hash: 111
depth: 3 depth: 3
! memory . : :— i . i
| AR AN . ! I AN Nl ‘_:

Figure 3: Bucket Split Example

will no longer be sorted on the primary key. The second approach
is to use a priority queue to merge-sort the returned entries from
all buckets together. This approach provides the same interface as
the traditional LSM-tree design by returning sorted results, but it
will incur a larger search overhead due to the additional merge-sort
step. To decide which approach should be used, we have introduced
an optimization rule in AsterixDB as follows. By default, the first
approach is used to avoid the merge-sort overhead. However, if the
primary key order is required by subsequent query operators, e.g.,
a user-specified order by clause or a groupby operator on a prefix of
the primary key, the second approach will be used to avoid the sub-
sequent sort overhead. Finally, it should be noted that the bucketed
LSM-tree design does not change the processing of a secondary
index query, which simply searches the secondary index to fetch a
list of primary keys and then uses them to fetch records from the
(bucketed) primary index.

Efficient Bucket Splits. When a bucket becomes too large, it
is split into two smaller buckets by using one more hash bit. A
straightforward implementation would be to build two smaller
LSM-trees based the original bucket. However, this approach not
only causes additional write amplification, but also may need to
block reads and writes for a long time. Here we describe a more
efficient bucket splitting approach to address these issues.

The pseudocode for splitting a bucket B is depicted in Algo-
rithm 1. The SpL1T function first stops creating new component
merges for B and waits for all existing merges to finish. B’s mem-
ory component is then asynchronously flushed to disk without
blocking writes (line 5). After the flush completes, the bucket B
is locked to temporarily block new readers and writers so that B
can be safely split (lines 6 to 10). Since some writes may have en-
tered the memory component after the last asynchronous flush, B’s
memory component is now flushed synchronously to persist these
writes. It should be noted that AsterixDB uses a no-steal buffer
management policy, meaning that a memory component is only
flushed after all active writers have completed. Two new buckets
B and By, whose disk components refer to the disk components of
B, are then created. An example is shown in Figure 3. For each disk
component of the splitting bucket 11, we create two new reference
disk components in buckets 011 and 111 respectively. A reference
disk component does not store any data; instead, it only points to
a real disk component. All queries accessing data through a ref-
erence disk component must perform an additional filtering step
based on the bucket’s hash value to make sure that only the entries
belonging to this bucket are accessed. Thus, the actual creation of
the new disk components of By and B; are effectively postponed
until the next round of merges. Finally, a directory metadata file
that stores valid buckets is forced to disk, indicating that the split

operation is now complete (line 9), and the old bucket B is destroyed
automatically when its reference count becomes 0. Upon recovery,
the directory metadata file is used to determine valid buckets. All
invalid (partially split) buckets will be cleaned up automatically.

Algorithm 1 Pseudo Code for Bucket Split

1: B « the bucket to be split

2: function SpLrT(B)

3: Pause scheduling merges for B

Wait for B’s merges to finish

Asynchronously flush B’s memory component

Lock B
Synchronously flush B’s memory component
Create two buckets B; and By that refer to B
Force a directory metadata file to disk

10: Unlock B

11: Resume scheduling merges for B

R B A

To simplify the synchronization with the CC, bucket splits are
performed at each partition locally without notifying the CC. In-
stead, the global directory at the CC is only refreshed when a
rebalance operation starts, as we will discuss below. This design
greatly simplifies the role of the CC since it does not have to know
about the existence of bucket splits.

5 EFFICIENT DATA REBALANCING

After considering how to store multiple buckets efficiently, we now
discuss how to efficiently rebalance data while supporting concur-
rent reads and writes. In AsterixDB, data rebalancing is triggered
by the user manually after some nodes have been added or before
some nodes are removed. In general, a rebalance operation contains
three phases, namely initialization, data movement, and finalization.
During the initialization phase, all nodes perform some preparation
tasks for subsequent data movement. The data movement phase
transfers some of the records of a dataset, including concurrent
writes, to their new partitions. Finally, during the finalization phase,
all nodes unanimously commit or abort the rebalance operation
depending on its outcome and some cleanup work is performed
as well. It should be noted that a rebalance operation may fail for
various reasons. When a rebalance operation fails, the produced
intermediate results must be cleaned up correctly. In the remainder
of this section, we discuss the three phases in detail as well as how
to handle various rebalance failures.

5.1 Initialization Phase

When a rebalance operation starts, the CC first forces a BEGIN log
record indicating that a rebalance operation has started. This is
required for correctly handling rebalance failures, as we will see in
Section 5.4. The CC further decides which buckets should be moved
to which partitions by computing a new global directory based
on the new set of nodes. In addition, all NCs must also perform
some preparation tasks in order to support concurrent updates.
The key challenge here is that AsterixDB only supports a very sim-
ple record-level transaction model. If full ACID transactions were
supported by AsterixDB, then the rebalance operation could be sim-
ply implemented using a transaction, which would automatically

provide concurrency control for reads and writes. Without ACID
transactional support, we must design a customized concurrency
control protocol.

Computing the Global Directory. Recall from Section 4 that
buckets splits are performed at each node locally without notifying
the CC. In order to compute the new global directory, the CC con-
tacts all NCs to get their latest local directories. Moreover, bucket
splits for this dataset at each NC are disabled until the rebalance
completes. Since buckets may have different sizes, it is straightfor-
ward to show that an optimal algorithm that maximizes the load
balance is NP-hard by considering the partition problem*.

Algorithm 2 Pseudo Code for Computing New Global Directory

1: function BALANCE

2: for each unassigned bucket B do

3: Assign B to the least loaded partition

4 while true do

5 Pax < the most loaded partition

6: B « the smallest bucket in Py,

7 Pmin < the least loaded partition

8: if abs((|Pmax|=|B1)=(|1Pmin|+1B)) < |Pmax|=|Pmin|
then

9: Assign B to Pyin
10: else
11: break

To compute the new global directory efficiently, we use a greedy
algorithm as shown in Algorithm 2. To describe this algorithm,
we first introduce some useful concepts. Given a directory with
depth D and a bucket B with depth d, we define the normalized size
of the bucket B (denoted as |B|) as 2°~?. Given a partition P or a
node N, we denote |P| or [N| as the sum of the normalized size
of P’s buckets and N’s buckets, respectively. Given two partitions,
P; on node Nj and P, on node N», P; is said to be more loaded
than if |P;]| is larger than |Py|, or |Nj| is larger than |N| if |P;|
equals |Pz|. The BALANCE function first assigns the unassigned
buckets (buckets being displaced due to node removals) to the least
loaded partitions (lines 2-4). After all such buckets are assigned,
the algorithm balances the bucket assignment using a series of
iterations (lines 4-11). In each iteration, it tries to assign the smallest
bucket B from the most loaded partition Py, 4y to the least loaded
partition Py, (lines 8-11). If this assignment reduces the difference
between the normalized sizes of Py, 45 and Ppin, the assignment is
then performed; otherwise, the algorithm terminates. It is possible
to incorporate other heuristics to define the load order among
partitions. For example, one could further consider the total storage
size of a partition, including all datasets. We leave the exploration
of this direction as future work.

Preparing for Concurrent Writes. During the rebalance oper-
ation, which may take a relatively long time to finish, some records
may be updated by concurrent writers. For each bucket that needs
to be moved, these concurrent writes must still be applied to its old

4The goal of the partition problem is to partition a multiset S of positive integers into
two subsets S; and S, such that the difference between the sum of elements in S; and
the sum of elements in S; is minimized [6].

scan immutable snapshot

replicate log records

\4

rebalance starts timeline

Figure 4: Concurrency Control for Writes

partition since the rebalance operation may fail. Moreover, the con-
current writes must also be applied to the new partition to ensure
that there are no lost writes if the rebalance operation succeeds.

To ensure correctness with concurrent writes, we use a concur-
rency control protocol that splits all the writes of a bucket based
on the rebalance start time, as depicted in Figure 4. For all writes
that happened before the rebalance operation starts, an immutable
snapshot is created so that it can be safely scanned. For all writes
that happen after the rebalance operation starts, their log records
are replicated to the new partition so that the new partition will not
miss any writes. It should be noted that AsterixDB only supports
a very simple record-level transaction model without supporting
snapshot scans. To implement the required snapshot scan, we ex-
ploit the immutability of LSM disk components. Specifically, the
memory component of the moving bucket is flushed synchronously
during the initialization phase. Thus, the flush time is treated as the
rebalance start time, and the resulting disk components become the
immutable copy of all writes that happened before the rebalance
operation starts. To reduce the blocking of concurrent writes due to
the synchronous flush, the two-flush approach described in Algo-
rithm 1 (lines 5-7) can be used. Specifically, one can first flush the
memory component asynchronously and then use a synchronous
flush to persist the leftover writes. In this case, the rebalance start
time becomes the time of the second (synchronous) flush.

5.2 Data Movement Phase

After the initialization phase, the rebalance operation starts to move
the affected buckets to their new partitions. This involves adding
scanned records and replicated log records to both the primary in-
dex and secondary indexes at their destination partitions. Moreover,
queries must be handled properly so that they are not affected by
the rebalance operation.

Data Movement. By comparing the current global directory
and the new global directory, it is straightforward to determine the
new partition of each affected bucket. For ease of discussion, here
we first describe how to move one bucket B from its old partition
P,14 to its new partition Ppeqy, which is then extended to moving
multiple buckets together.

Figure 5 shows the basic data movement process for a single
bucket with a primary index and one secondary index. At the old
partition, the primary index disk components of this bucket are
scanned and the log records of any concurrent writes will be repli-
cated. The scanned log records are then used to load disk compo-
nents at the new partition, and the data represented by the repli-
cated log records are inserted into the memory components. In
order to simplify concurrency control and recovery, the moved
records are always stored separately from local user writes at the
new partition. For a primary index that uses the bucketed LSM-tree
design, the received records are simply stored in a new bucket. For

New Partition

. Voruser Wruser i
i || writes 11 writes i
1 1 1 1] 1
1 [}/\ " }/\ |
Old Partition | o i i
yio memory 11 memory!
fmmmm——————— 1
) user ‘ i . i i
1 writes eplicated ' b i !
\ log records 1 diskt 1 disk!t disk!
H |/\ [" 1
| ! [" 1
| [1" 1
P N [T [S, |
1
! A _________ user Primary Index
' disk writes
1
:A X\
Lo memory memory

Primary Index

scanned Secondary Index

datarecords

disk disk

Figure 5: Data Movement Process (One Bucket): Scanned data
records are loaded into disk components and replicated log records are
inserted into memory components. These rebalance writes are stored
separately from user writes.

a secondary index that stores all buckets together, the received
records are stored into a new list of components that are kept invis-
ible to queries. This design greatly simplifies concurrency control
and recovery. These new components that store moved records will
be made invisible to queries until the rebalance completes. More-
over, in case the rebalance operation fails, these new components
can then be simply deleted to cleanup the intermediate results.
Finally, to ensure correctness, the scanned data records must be
treated as being strictly older than the replicated log records. This
is achieved by placing the loaded disk component after the disk
components storing replicated log records.

It is straightforward to extend the basic data movement process
to move multiple buckets at the same time. One can simply scan
multiple buckets at the same time and repartition them using the
new global directory so that the scanned records can be sent to
their new partitions. As an optimization, when adding multiple
buckets to a secondary index partition, the records can be added to
a single list of components instead of creating one list per bucket.
This will help to reduce the number of disk components present
after the rebalance operation completes.

Handling Concurrent Queries. As mentioned before, the data
movement process shown in Figure 5 greatly simplifies the required
concurrency control for queries. Since the moved records are stored
separately from user writes, the partially loaded buckets are invisi-
ble to queries until rebalancing completes. If a query starts before
a rebalance operation completes, the query accesses all buckets
using the old global directory. Otherwise, the query uses the new
global directory, updated by the rebalance operation, to access all
buckets. Moreover, since accessed buckets and LSM components
are reference counted, they can be accessed safely by the query
even if a rebalance operation completes in the middle of the query.

5.3 Finalization Phase

After all data records of moving buckets have been transferred
to their new partitions, the system is ready to commit or abort
the rebalance operation depending on its outcome. It should be
noted that there could still be active log replication activities, due
to concurrent writes, at this stage. Thus, to ensure that all nodes
always reach a unanimous decision, we use a two-phase commit
protocol with a prepare phase and a commit phase.

Prepare Phase. After all data records have been moved to their
new partitions, the CC initializes the prepare phase, which will
block incoming queries and writes on the rebalancing dataset. The
CC further waits for all NCs to complete their log replication and
to flush the memory components that store rebalancing writes
to disk. If all NCs succeed in doing so, i.e., they all vote yes, the
CC enters the commit phase as discussed below. Otherwise, the
rebalance operation must be aborted and the rebalancing dataset
will be left unchanged. It should be noted that all incoming reads
and writes will be blocked during the finalization phase. However,
this blocking is expected to be very short since the CC only waits
for existing writers to complete and the number of log records
pending for replication are bounded?.

Commit Phase. Once the CC enters the commit phase, it forces
a COMMIT log record to disk indicating that the rebalance oper-
ation is committed. The CC then updates the global directory of
the rebalancing dataset and notifies all NCs to install their received
buckets and cleanup the moved buckets. To install a received bucket
at a partition, one simply needs to add (i.e., register) the loaded
disk components to the component lists of the primary index and
secondary indexes. To cleanup a moved bucket from the primary
index of a partition, the bucket can be simply removed from the
bucketed LSM-tree’s local directory so that it cannot be accessed
by all new queries. It should be noted that because of reference
counting, the actual components of this bucket will not be deleted
until the last reader exits. To cleanup a secondary index, we use
a lazy delete approach that adds the hash value and the depth of
this bucket to the metadata of each LSM component. A query then
performs an additional validation check to ignore all invalid entries
that belong to this moved bucket. Thus, the cleanup of secondary
index components is effectively postponed to the next round of
merges. All these operations, e.g., adding and removing buckets, are
made persistent by forcing metadata files to disk. After all NCs have
completed these tasks, the CC can resume query processing and
data ingestion on the rebalancing dataset. Finally, the CC produces
a DONE log record to indicate that no additional work is needed
for this rebalance operation.

Based on the two-phase commit protocol, the final outcome of
the rebalance operation is determined by whether the COMMIT
log record has been forced to disk successfully by the CC. In other
words, the rebalance operation is committed if the COMMIT log
record has been successfully forced to disk. Otherwise, the CC
simply aborts the rebalance operation and leaves the original dataset
as is. We will further discuss how to handle various rebalance
failures below.

SIn AsterixDB, each sender node uses multiple log buffers to store the log records to
be replicated. Whenever a log buffer is full, it is replicated to the destination node
synchronously. Thus, the total number of pending log records is bounded by the total
log buffer size, which is usually a few MBs.

CC NCs

force BEGIN

log record request data movement

move data to
new partitions

data movement completed

force COMMIT prepared

log record

request to commit

complete log
replication

commit the rebalance
operation

produce DONE committed
log record v v

Figure 6: Rebalance Operation Timeline

5.4 Handling Rebalance Failures

During the rebalance operation, some node(s) may potentially fail
at any time. Since node failures are expected to be rare, we sim-
ply abort the rebalance operation if some node(s) fails before the
rebalance operation commits. However, the intermediate results
produced by the rebalance operation must be cleaned up carefully
to ensure that the dataset remains in a consistent state. Here we
assume that the failed node(s) eventually recovers, i.e., no perma-
nent node failures. We plan to extend DynaHash to incorporate
replication [11] to handle permanent node failures as future work.

Before discussing how to handle various rebalance failures, we
first summarize the basic timeline of a rebalance operation, which is
shown in Figure 6. The CC first forces a BEGIN log record indicating
that the rebalance operation has started. It then requests all NCs
to move their affected buckets to new partitions. After all data
movement is done, the CC enters the prepare phase by waiting for
all NCs to complete log replication. After all NCs have successfully
prepared, the CC enters the commit phase by forcing a COMMIT
log record and notifying all NCs to commit this rebalance operation.
Finally, after all NCs have committed, the CC produces a DONE
log record indicating that the rebalance operation can be safely
forgotten. Based on this timeline, we present a case analysis to
discuss how to handle various possible rebalance failures.

Case 1: NC fails before voting “prepared”. In this case, the
CC simply aborts the rebalance operation and asks all NCs (in-
cluding the failed NC after its recovery) to cleanup their received
buckets. Recall from Figure 5 that the received records are always
added to a separate list of components. Thus, to cleanup the received
buckets, a partition can simply delete those lists of components for
both the primary index and secondary indexes of the dataset. It
should be noted that cleaning up a received bucket is idempotent
since cleaning up a non-existent bucket can be simply treated as a
no-op. It is thus safe to cleanup a received bucket from a partition

multiple times. After all NCs complete the cleanup task, the CC
writes a DONE log record so that this rebalance operation can be
safely forgotten.

Case 2: NC fails after voting “prepared”. After the failed
NC recovers, it contacts the CC to report its presence. The NC
will further receive instructions about how to handle the pending
rebalance operation. If the rebalance operation is aborted, the NC
simply cleans up the intermediate results as in Case 1. Otherwise,
the NC performs the commit tasks as in Case 4.

Case 3: CC fails before forcing the COMMIT log record. Af-
ter the CC recovers and sees the BEGIN log record for the rebalance
operation, it aborts the rebalance operation as in Case 1.

Case 4: NC fails before responding “committed”. The rebal-
ance operation is committed but the CC does not know whether
the NC has committed the rebalance operation or not. When the
NC recovers, the CC requests this NC to commit the rebalance op-
eration by adding the received buckets and cleaning up the moved
buckets. Similar to case 3, both adding the received buckets and
cleaning up the moved buckets are idempotent operations, which
means it is safe to apply these operations multiple times.

Case 5: CC fails after forcing the COMMIT log record but
not the DONE log record. In this case, the rebalance operation
is effectively committed but it is possible that some NCs have not
completed the commit tasks yet. Thus, after the CC recovers, it
notifies all NCs to add received buckets and cleanup moved buckets
as in Case 4. Finally, the CC writes a DONE log record as well.

Case 6: CC fails after the DONE log record is persisted. No
additional task needs to be performed in this case since the DONE
log record indicates that this rebalance operation has completed.

The two-phase commit protocol used in our rebalance operation
has some subtle differences from the traditional two-phase commit
protocol used in distributed transactions. For example, the CC forces
a BEGIN log record when a rebalance operation starts and NCs
always contact the CC during recovery. This is because in AsterixDB
the rebalance operation is implemented as a metadata transaction,
and only the CC can produce metadata log records. In contrast, in
traditional distributed transactions each participant can produce
log records. Because of this difference, without forcing the BEGIN
log record, the CC may not know the existence of a rebalance
operation if the entire cluster shuts down before the rebalance
operation completes. Similarly, the NC must always contact the CC
upon recovery since the NC cannot certainly know the status of
ongoing rebalance operations. (Contacting the CC upon recovery
does not involve additional overhead since the NC must register
itself with the CC for cluster management anyway.)

6 EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate the proposed rebalanc-
ing techniques in the context of Apache AsterixDB [1]. Throughout
the evaluation, we mainly focus on the three aspects of different
rebalancing approaches, namely their rebalancing performance,
ingestion performance, and query performance. In the remainder
of this section we describe the general experimental setup followed
by the detailed evaluation results.

6.1 Experimental Setup

Hardware. All experiments were performed on a cluster of nodes
with a single CC and multiple NCs on AWS. The number of NCs
ranged from 2 to 16. The CC ran on a m5.xlarge node with 4 vCPUs,
16GB of memory, and a 500GB elastic block store (EBS). Each NC ran
on an i3.xlarge node with 4 vCPUs, 30.5GB of memory, a 950GB SSD,
and a 500GB EBS. We configured 4 partitions on each NC to exploit
the parallelism provided by multiple cores. The native SSD was used
for LSM storage and the EBS was used for transactional logging.
Each NC used a thread pool with 4 threads to execute LSM flush and
merge operations. Each LSM-tree used a size-tiered merge policy
with a size ratio of 1.2 throughout the experiments, which is similar
to the one used in other systems. This policy merges a sequence of
components when the total size of the younger components is 1.2
times larger than that of the oldest component in the sequence. We
allocated 26GB of memory for the AsterixDB instance. The buffer
cache size was set at 8GB and the memory component budget was
set at 2GB. Each memory-intensive query operator [46], such as sort,
hash join, and hash group by, received a 128MB memory budget.
Both the disk page size and memory page size were set at 16KB.

Workload. To understand the performance impact of different
rebalancing approaches on OLAP-style workloads, we used the
TPC-H [7] benchmark in our evaluation. We built two secondary
indexes, on Lineltem and Orders, to enable index-only plans for
certain queries. The Lineltem index contains 1_shipdate, 1_partkey,
1_suppkey, 1_extendedprice, 1_discount, and 1_quantity. The Or-
ders index contains o_orderdate, o_custkey, o_shippriority, and
o_orderpriority. The scale factor of the TPC-H benchmark was set
to 100 times the number of NCs so that the total amount of data
scales linearly as the cluster size increases. Thus, each NC stored
100GB of TPC-H raw data. The primary index was compressed
for better storage efficiency. The total storage size at each NC, in-
cluding compressed primary indexes and uncompressed secondary
indexes, was about 130GB.

Evaluated Rebalancing Approaches. We evaluated three re-
balancing approaches. The first approach that we evaluated is Aster-
ixDB’s original global rebalancing approach with hash partitioning
(called “hashing”) as the baseline. This approach simply creates a
new dataset that is hash partitioned based on the new (target) set
of nodes during rebalancing. Although hashing achieves a near
perfect load balance, it incurs a very high rebalance cost and nearly
doubles the dataset’s disk usage during rebalancing. Second, we
evaluated DynaHash, where the maximum bucket size was set at
10GB. After loading the TPC-H data, each partition always had 4
buckets. Finally, we evaluated a static bucketing approach, called
StaticHash, that always splits a dataset into 256 buckets. Here 256
was determined by considering the largest cluster size in our evalu-
ation, i.e., 16, so that each partition can have 4 buckets. The actual
number of buckets per partition ranged from 32 to 4 as the number
of nodes varied from 2 to 16. Thus, evaluating StaticHash also shows
the performance impact of the number of buckets per partition.

6.2 Ingestion Performance

We first evaluated the ingestion performance of the different rebal-
ancing approaches. We used a TPC-H client that ran on a separate

600 I hashing
I StaticHash
I~ DynaHash
4“5’ 400
£
=
Q
E 200 A
H
0 .
2 4 8 16
Number of Nodes
Figure 7: Ingestion Time
600 B hashing
[StaticHash
— DynaHash
%’ 400 A
=
=
(0]
£ 200 1
F
0 .
2 4 8 16
Number of Nodes
(a) Rebalance Time for Removing Nodes
600 B hashing
[StaticHash
a DynaHash
5‘5’ 400 -
=
2
[}
E 200 -
F
0 .
2 4 8 16
Number of Nodes

(b) Rebalance Time for Adding Nodes

Figure 8: Rebalance Time

node to ingest all TPC-H data into the AsterixDB cluster. The num-
ber of nodes of the AsterixDB cluster varied from 2 to 16.

The resulting ingestion time for each rebalancing approach under
different cluster sizes is shown in Figure 7. In general, DynaHash
incurs very a small overhead compared to the AsterixDB’s orig-
inal hashing approach. Moreover, by comparing DynaHash and
StaticHash, we see that the number of buckets per partition also has
just a small impact on the ingestion performance. When the cluster
size increases, the ingestion time of all rebalancing approaches
slightly increases because of the write stall problem of LSM-trees:

150

100

Time (Minutes)
W
(=)

0 T T T T T
0 10 20 30 40

Controlled Write Rate (krecords/s)

Figure 9: Rebalance Time with Concurrent Data Ingestion

In general, we found that data ingestion is relatively CPU-heavy in
AsterixDB due to record parsing. When a node has active merges,
its ingestion rate will slow down due to the CPU contention caused
by merges. This in turn will slow down the entire cluster because
the overall performance of a shared-nothing system is bottlenecked
by the slowest node, even though other nodes may not have ongo-
ing merges. Thus, when the number of nodes increases, the write
stall problem becomes more obvious, which increases the overall
ingestion time.

6.3 Rebalancing Performance

Next we evaluated the rebalancing performance of the alternative
rebalancing approaches, both for adding nodes and for removing
nodes. We further evaluated the impact of concurrent writes on the
rebalance performance.

Basic Rebalancing Performance. To under the basic rebal-
ancing performance of the different rebalancing approaches, we
conducted the following experiments. We first loaded the TPC-H
datasets into an AsterixDB cluster with N nodes (N ranged from 2
to 16). We then rebalanced all datasets to N-1 nodes to measure the
time to remove one node. Finally, we rebalanced all datasets back
to N nodes to measure the time to add one node.

The rebalance times for removing and adding nodes are shown
in Figure 8. In general, both StaticHash and DynaHash substantially
reduce the rebalancing time compared with hashing for both remov-
ing and adding nodes. Moreover, both of the bucketing approaches
also have similar rebalance times, which shows that the number of
buckets per partition has a small impact on the rebalancing perfor-
mance. Interestingly, we see that hashing has different performance
trends compared with StaticHash and DynaHash. Hashing has bet-
ter rebalancing performance for adding than for removing nodes
since the rebalancing work is distributed across N nodes. When a
node is removed, however, the rebalancing work is only distributed
over N-1 nodes. In contrast, for StaticHash and DynaHash, remov-
ing a node is more efficient than adding one since the rebalancing
work for node removal is distributed across the remaining N-1
nodes. However, when a node is added, the new node becomes the
bottleneck because it receives data from all N-1 existing nodes.

Impact of Concurrent Writes. We further evaluated the im-
pact of concurrent writes on the rebalancing performance of Dyna-
Hash. In this experiment, we rebalanced the datasets from 4 nodes

6000

[hashing WM StaticHash DynaHash DynaHash-cleanup
@
2 4000
1<)
]
2
Q
& 2000 1
=

0 .
ql 92 93 g4 g5 96 q7 98 q9 ql0 qll ql12 q13 ql14 q15 q16 q17 q18 q19 q20 q21 q22
(a) Query Performance on 4 Nodes
6000 W hashing WM StaticHash DynaHash DynaHash-cleanup
'é 4000 -
1)
b}
2
Q
E 2000 1
=
0 .
ql g2 93 q4 q5 q6 q7 q8 q9 ql0qll q12 q13 q14 q15 q16 q17 q18 q19 q20 q21 g22

(b) Query Performance on 16 Nodes

Figure 10: Query Performance on Original Cluster

to 3 nodes and inserted new records into the Lineltem dataset while
rebalancing was active. The resulting rebalancing time under differ-
ent write rates is shown in Figure 9. As one can see, the rebalance
operation takes longer to finish when the write rate becomes larger.
This is expected because these concurrent writes compete for CPU
and I/O resources with the rebalancing operation. Thus, it is de-
sirable to schedule rebalance operations during off-peak hours to
minimize contention with user workloads. Moreover, as the result
shows, even under high write rates, the rebalance operation can
still be completed in a reasonable amount of time.

6.4 Query Performance

Last but not least, we evaluated the query performance of the
different rebalancing approaches, focusing on the following three
questions: First, what is the overhead of the proposed bucketed
LSM-tree structure on query performance? Second, what is the
impact on query performance of the load balance of the various
rebalancing approaches? Finally, what is the overhead due to lazy
secondary index cleanup on query performance?

To answer these questions, we designed a series of experiments as
follows. First, we evaluated the query performance on a cluster with
4 or 16 nodes without rebalancing, which helps to answer the first
question. We then rebalanced the datasets to 3 or 15 nodes so that we
can evaluate the load balance impact of the rebalancing approaches,
which answers the second question. Finally for DynaHash, we
rebalanced the datasets back to 4 or 16 nodes so that we can evaluate
the performance impact of lazy secondary index cleanup (denoted
as “DynaHash-cleanup").

11

The resulting query times on the original cluster size (4 or 16
nodes) are shown in Figure 10. Note that on 16 nodes, StaticHash
and DynaHash are expected to have similar behavior because they
have the same number of buckets per partition. In general, both
StaticHash and DynaHash are seen to add a negligible overhead
on most TPC-H queries when compared with hashing. This shows
that bucketed LSM-trees have a negligible overhead for OLAP-style
queries. Moreover, all bucketing approaches achieve very good
scale-up because the query times remain nearly constant when both
the number of nodes and the dataset size increase. Here one minor
exception is q18, where StaticHash and DynaHash incur a small
overhead compared with hashing. The reason is that q18 performs
a groupby on the prefix of Lineltem’s primary keys, which requires
the scanned records to be ordered on the primary keys. In this case,
the bucketed LSM-tree incurs some additional overhead because it
has to merge-sort more disk components. Moreover, StaticHash also
incurs a larger overhead on q18 under 4 nodes (Figure 10a) because
it has 16 buckets per partition. Finally, we see that lazy secondary
index cleanup (DynaHash-cleanup) also has a negligible overhead
on TPC-H queries, which shows the effectiveness of this technique.
This is because with lazy secondary index cleanup, queries only
need to access some obsolete secondary index entries, and the added
processing time is very small compared to the overall query time.

The resulting query times on the resized cluster (3 or 15 nodes)
are shown in Figure 11. Since the number of buckets cannot be
divided by the number of partitions, both StaticHash and Dyna-
Hash result in some load imbalance where some partitions may
have one more bucket than others. Despite this load imbalance,

I hashing M StaticHash DynaHash
_. 6000
3
=)
3
@0, 4000 -
Q
g
= 2000
0 |
ql g2 93 q4 q5 q6 q7 q8 q9 ql0qll q12 q13 q14 q15 q16 q17 q18 q19 q20 q21 g22
(a) Query Performance on 3 Nodes
W hashing M StaticHash DynaHash
_. 6000
3
£
3
éu/ 4000 -
Q
E
&= 2000 -

ql q2 g3

g4 q5 g6 q7 g8 q9 ql0 qll ql12 ql13 q14 q15 q16 q17 q18 q19 q20 q21 q22

(b) Query Performance on 15 Nodes

Figure 11: Query Performance on Resized Cluster

both StaticHash and DynaHash only incur a very small overhead
on most TPC-H queries. This is because the load imbalance only
impacts the data scan time, while most TPC-H queries are relatively
computation heavy. However, for scan-heavy queries, such as q17,
q18, and q21, the overhead caused by a load imbalance becomes
more noticeable. For example, q17 and q18 each perform a full scan
over the Lineltem dataset to perform groupby and aggregation, and
q21 further scans the Lineltem dataset multiple times. Moreover,
as shown in Figure 11a, using more buckets per partition as in
the StaticHash approach slightly reduces the overhead of the load
imbalance for some queries, such as q21, but doing so incurs some
additional overhead for queries that require a sorted order coming
from primary index scans, such as q18.

6.5 Summary of Experimental Results

In general, our experimental results are consistent with the dis-
cussion in Section 2.1. Global rebalancing with hash partitioning
achieves the best ingestion and query performance, but results in
a very large rebalance cost. In contrast, DynaHash significantly
reduces the rebalance time with only a small overhead on the in-
gestion and query performance. The proposed bucketed LSM-tree
structure only incurs a small overhead for queries that require the
scanned records to be ordered by primary keys. Moreover, the load
imbalance caused by DynaHash mainly impacts the dataset scan
performance. Thus, overall DynaHash incurs a negligible overhead
on computation-intensive queries with a small overhead on scan-
heavy queries. By comparing StaticHash and DynaHash, it can be
seen that having more buckets per partition achieves a better load

balance, but it also leads to a larger overhead for queries that re-
quire the scanned records to be ordered on primary keys. Moreover,
DynaHash has better usability since the resulting number buckets
per partition is dynamically adjusted as the cluster and dataset size
scales, resulting in more stable performance.

7 CONCLUSION

In this paper, we have described the design and implementation of
DynaHash, an efficient data rebalancing approach that combines
dynamic bucketing with extensible hashing in Apache AsterixDB.
We first introduced a bucketed LSM-tree design for efficiently stor-
ing multiple buckets. We further described an efficient rebalancing
implementation that exploits the LSM-tree’s out-of-place update
design to support concurrent reads and writes. An experimental
evaluation using the TPC-H benchmark has shown that the pro-
posed techniques significantly reduce the rebalance cost with neg-
ligible overheads for data ingestion and query processing. In the
future, we plan to extend DynaHash to incorporate replication to
provide better availability and fault tolerance.

ACKNOWLEDGMENTS

This work has been supported by NSF awards CNS-1305430, IIS-
1447720, 1IS-1838248, and CNS-1925610 along with industrial sup-
port from Amazon, Google, and Microsoft and support from the
Donald Bren Foundation (via a Bren Chair).

REFERENCES

[1] 2020. AsterixDB. https://asterixdb.apache.org/.
[2] 2020. HBase. https://hbase.apache.org/.

> aw w
AL

BRI
22,20 o

[10]

(11

[12]

[13

[14

[15

[16

[17]

(18

[19

[20]

[21

[22]

[23]

[24]

[25

[26]

[
)

[28]

2020. HDFS Architecture. https://hadoop.apache.org/docs/current/hadoop-
project-dist/hadoop-hdfs/HdfsDesign.html.

2020. MongoDB. https://www.mongodb.com/.

2020. Oracle NoSQL Database Cloud Service. https://www.oracle.com/database/
nosql-cloud.html.

2020. Partition problem. https://en.wikipedia.org/wiki/Partition_problem.
2020. TPC-H. http://www.tpc.org/tpch/.

2020. VoltDB. https://www.voltdb.com/.

Michael Abebe, Brad Glasbergen, and Khuzaima Daudjee. 2020. MorphoSys:
Automatic Physical Design Metamorphosis for Distributed Database Systems.
Proc. VLDB Endow. 13, 13 (2020), 3573-3587.

Marcos K. Aguilera, Wojciech Golab, and Mehul A. Shah. 2008. A Practical
Scalable Distributed B-Tree. Proc. VLDB Endow. 1, 1 (Aug. 2008), 598—609.
Murtadha Makki Al Hubail. 2016. Data Replication and Fault Tolerance in Aster-
ixDB. Master’s thesis. UC Irvine.

Wail Y. Alkowaileet, Sattam Alsubaiee, and Michael J. Carey. 2020. An LSM-Based
Tuple Compaction Framework for Apache AsterixDB. Proc. VLDB Endow. 13, 9
(2020), 1388-1400.

Sattam Alsubaiee, Yasser Altowim, Hotham Altwaijry, Alexander Behm, Vinayak
Borkar, Yingyi Bu, Michael Carey, Inci Cetindil, Madhusudan Cheelangi, Khurram
Faraaz, Eugenia Gabrielova, Raman Grover, Zachary Heilbron, Young-Seok Kim,
Chen Li, Guanggiang Li, Ji Mahn Ok, Nicola Onose, Pouria Pirzadeh, Vassilis
Tsotras, Rares Vernica, Jian Wen, and Till Westmann. 2014. AsterixDB: A Scalable,
Open Source BDMS. Proc. VLDB Endow. 7, 14 (2014), 1905-1916.

Sattam Alsubaiee, Alexander Behm, Vinayak Borkar, Zachary Heilbron, Young-
Seok Kim, Michael J. Carey, Markus Dreseler, and Chen Li. 2014. Storage Man-
agement in AsterixDB. Proc. VLDB Endow. 7, 10 (2014), 841-852.

Oana Balmau, Florin Dinu, Willy Zwaenepoel, Karan Gupta, Ravishankar Chand-
hiramoorthi, and Diego Didona. 2019. SILK: Preventing Latency Spikes in Log-
Structured Merge Key-Value Stores. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19). 753-766.

Oana Balmau, Rachid Guerraoui, Vasileios Trigonakis, and Igor Zablotchi. 2017.
FloDB: Unlocking Memory in Persistent Key-Value Stores. In Proceedings of the
Twelfth European Conference on Computer Systems. 80-94.

Sean Barker, Yun Chi, Hyun Jin Moon, Hakan Hacigiimii, and Prashant Shenoy.
2012. "Cut Me Some Slack": Latency-Aware Live Migration for Databases. In
Proceedings of the 15th International Conference on Extending Database Technology
(EDBT ’12). 432-443.

Laurent Bindschaedler, Ashvin Goel, and Willy Zwaenepoel. 2020. Hailstorm:
Disaggregated Compute and Storage for Distributed LSM-Based Databases. In
Proceedings of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems. 301-316.

Burton H. Bloom. 1970. Space/Time Trade-Offs in Hash Coding with Allowable
Errors. Commun. ACM 13, 7 (1970), 422-426.

H. Boral, W. Alexander, L. Clay, G. Copeland, S. Danforth, M. Franklin, B. Hart,
M. Smith, and P. Valduriez. 1990. Prototyping Bubba, a highly parallel database
system. IEEE Transactions on Knowledge and Data Engineering 2, 1 (1990), 4-24.
Dipti Borkar, Ravi Mayuram, Gerald Sangudi, and Michael Carey. 2016. Have Your
Data and Query It Too: From Key-Value Caching to Big Data Management. In
Proceedings of the 2016 International Conference on Management of Data (SIGMOD
’16). 239-251.

V. Borkar, M. Carey, R. Grover, N. Onose, and R. Vernica. 2011. Hyracks: A
flexible and extensible foundation for data-intensive computing. In 2011 IEEE
27th International Conference on Data Engineering. 1151-1162.

Edward Bortnikov, Anastasia Braginsky, Eshcar Hillel, Idit Keidar, and Gali Sheffi.
2018. Accordion: Better Memory Organization for LSM Key-Value Stores. Proc.
VLDB Endow. 11, 12 (2018), 1863-1875.

M. J. Carey. 2019. AsterixDB Mid-Flight: A Case Study in Building Systems in
Academia. In 2019 IEEE 35th International Conference on Data Engineering (ICDE).
1-12.

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. 2008.
Bigtable: A Distributed Storage System for Structured Data. ACM Trans. Comput.
Syst. 26, 2, Article 4 (2008), 26 pages.

Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin
Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,
Jiansheng Huang, Allison W. Lee, Ashish Motivala, Abdul Q. Munir, Steven Pelley,
Peter Povinec, Greg Rahn, Spyridon Triantafyllis, and Philipp Unterbrunner. 2016.
The Snowflake Elastic Data Warehouse. In Proceedings of the 2016 International
Conference on Management of Data (SIGMOD °16). 215-226.

Sudipto Das, Shoji Nishimura, Divyakant Agrawal, and Amr El Abbadi. 2011.
Albatross: Lightweight Elasticity in Shared Storage Databases for the Cloud Using
Live Data Migration. Proc. VLDB Endow. 4, 8 (May 2011), 494-505.

Niv Dayan, Manos Athanassoulis, and Stratos Idreos. 2017. Monkey: Optimal Nav-
igable Key-Value Store. In Proceedings of the 2017 ACM International Conference
on Management of Data. 79-94.

[29]

[30

[31

[32

(33]

(34]

[35

[36

[37

'@
&

@
20,

™~
=

[45

[46

[47

[48

[49

[50

[52

Niv Dayan and Stratos Idreos. 2018. Dostoevsky: Better Space-Time Trade-

Offs for LSM-Tree Based Key-Value Stores via Adaptive Removal of Superfluous
Merging. In Proceedings of the 2018 International Conference on Management of

Data. 505-520.

Niv Dayan and Stratos Idreos. 2019. The Log-Structured Merge-Bush & the Wacky
Continuum. In Proceedings of the 2019 International Conference on Management
of Data. 449-466.

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. 2007. Dynamo: Amazon’s Highly Available Key-Value Store.
In Proceedings of Twenty-First ACM SIGOPS Symposium on Operating Systems
Principles. 205-220.

David DeWitt and Jim Gray. 1992. Parallel Database Systems: The Future of High
Performance Database Systems. Commun. ACM 35, 6 (1992), 85-98.

D. J. DeWitt, S. Ghandeharizadeh, D. A. Schneider, A. Bricker, H. . Hsiao, and R.
Rasmussen. 1990. The Gamma database machine project. IEEE Transactions on
Knowledge and Data Engineering 2, 1 (1990), 44-62.

C. du Mouza, W. Litwin, and P. Rigaux. 2007. SD-Rtree: A Scalable Distributed
Rtree. In 2007 IEEE 23rd International Conference on Data Engineering. 296-305.
Cédric du Mouza, Witold Litwin, and Philippe Rigaux. 2009. Large-scale indexing
of spatial data in distributed repositories: the SD-Rtree. The VLDB Journal 18, 4
(2009), 933-958.

Carla Schlatter Ellis. 1983. Extendible Hashing for Concurrent Operations and
Distributed Data. In Proceedings of the 2nd ACM SIGACT-SIGMOD Symposium on
Principles of Database Systems. 106—-116.

Aaron J. Elmore, Vaibhav Arora, Rebecca Taft, Andrew Pavlo, Divyakant Agrawal,
and Amr El Abbadi. 2015. Squall: Fine-Grained Live Reconfiguration for Parti-
tioned Main Memory Databases. In Proceedings of the 2015 ACM SIGMOD Inter-
national Conference on Management of Data. 299-313.

Aaron J. Elmore, Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. 2011.
Zephyr: Live Migration in Shared Nothing Databases for Elastic Cloud Platforms.
In Proceedings of the 2011 ACM SIGMOD International Conference on Management
of Data. 301-312.

Ronald Fagin, Jurg Nievergelt, Nicholas Pippenger, and H. Raymond Strong.
1979. Extendible Hashing—a Fast Access Method for Dynamic Files. ACM Trans.
Database Syst. 4, 3 (Sept. 1979), 315-344.

Franz Firber, Sang Kyun Cha, Jirgen Primsch, Christof Bornhovd, Stefan Sigg,
and Wolfgang Lehner. 2012. SAP HANA Database: Data Management for Modern
Business Applications. SIGMOD Rec. 40, 4 (2012), 45-51.

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. 2003. The Google File
System. SIGOPS Oper. Syst. Rev. 37, 5 (2003), 29-43.

R. Grover and M. Carey. 2015. Data Ingestion in AsterixDB. In EDBT. 605-616.
Anurag Gupta, Deepak Agarwal, Derek Tan, Jakub Kulesza, Rahul Pathak, Ste-
fano Stefani, and Vidhya Srinivasan. 2015. Amazon Redshift and the Case for
Simpler Data Warehouses. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data (SIGMOD °15). 1917-1923.

Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen, Liu
Tang, Yuxing Zhou, Menglong Huang, Wan Wei, Cong Liu, Jian Zhang, Jianjun Li,
Xuelian Wu, Lingyu Song, Ruoxi Sun, Shuaipeng Yu, Lei Zhao, Nicholas Cameron,
Liquan Pei, and Xin Tang. 2020. TiDB: A Raft-Based HTAP Database. Proc. VLDB
Endow. 13, 12 (2020), 3072-3084.

David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and
Daniel Lewin. 1997. Consistent Hashing and Random Trees: Distributed Caching
Protocols for Relieving Hot Spots on the World Wide Web. In Proceedings of
the Twenty-Ninth Annual ACM Symposium on Theory of Computing (STOC 97).
654-663.

Taewoo Kim, Alexander Behm, Michael Blow, Vinayak Borkar, Yingyi Bu,
Michael J. Carey, Murtadha Hubail, Shiva Jahangiri, Jianfeng Jia, Chen Li, Chen
Luo, Ian Maxon, and Pouria Pirzadeh. 2020. Robust and efficient memory man-
agement in Apache AsterixDB. Software: Practice and Experience 50, 7 (2020),
1114-1151.

Brigitte Kr6ll and Peter Widmayer. 1994. Distributing a Search Tree among
a Growing Number of Processors. In Proceedings of the 1994 ACM SIGMOD
International Conference on Management of Data. 265-276.

Avinash Lakshman and Prashant Malik. 2010. Cassandra: A Decentralized Struc-
tured Storage System. SIGOPS Oper. Syst. Rev. 44, 2 (April 2010), 35-40.
Andrew Lamb, Matt Fuller, Ramakrishna Varadarajan, Nga Tran, Ben Vandiver,
Lyric Doshi, and Chuck Bear. 2012. The Vertica Analytic Database: C-Store 7
Years Later. Proc. VLDB Endow. 5, 12 (2012), 1790-1801.

Yongkun Li, Helen H. W. Chan, Patrick P. C. Lee, and Yinlong Xu. 2019. Enabling
Efficient Updates in KV Storage via Hashing: Design and Performance Evaluation.
ACM Trans. Storage 15, 3 (2019).

Hyeontaek Lim, David G. Andersen, and Michael Kaminsky. 2016. Towards
Accurate and Fast Evaluation of Multi-Stage Log-structured Designs. In 14th
USENIX Conference on File and Storage Technologies (FAST 16). 149-166.
Yu-Shan Lin, Shao-Kan Pi, Meng-Kai Liao, Ching Tsai, Aaron Elmore, and Shan-
Hung Wu. 2019. MgCrab: Transaction Crabbing for Live Migration in Determin-
istic Database Systems. Proc. VLDB Endow. 12, 5 (2019), 597-610.

[53

[54

[55]

[56

[57

[58]
[59]

[60]

[61]

[62]

[63

[64]

[65]

[66]

[67]

[68]

Witold Litwin, Marie-Anne Neimat, and Donovan A. Schneider. 1993. LH: Linear
Hashing for Distributed Files. In Proceedings of the 1993 ACM SIGMOD Interna-
tional Conference on Management of Data. 327-336.

Witold Litwin, Marie-Anne Neimat, and Donovan A. Schneider. 1994. RP*: A
Family of Order Preserving Scalable Distributed Data Structures. In Proceedings
of the 20th International Conference on Very Large Data Bases. 342-353.

Witold Litwin, Marie-Anna Neimat, and Donovan A. Schneider. 1996. LH*—a
Scalable, Distributed Data Structure. ACM Trans. Database Syst. 21, 4 (1996),
480-525.

Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Hariharan Gopalakrishnan,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2017. WiscKey: Sep-
arating Keys from Values in SSD-Conscious Storage. ACM Trans. Storage 13, 1
(2017).

Chen Luo. 2020. Breaking Down Memory Walls in LSM-Based Storage Systems.
In Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data. 2817-2819.

Chen Luo and Michael J. Carey. 2019. Efficient Data Ingestion and Query Process-
ing for LSM-Based Storage Systems. Proc. VLDB Endow. 12, 5 (2019), 531-543.
Chen Luo and Michael J. Carey. 2019. On Performance Stability in LSM-Based
Storage Systems. Proc. VLDB Endow. 13, 4 (2019), 449-462.

Chen Luo and Michael J. Carey. 2020. Breaking Down Memory Walls: Adaptive
Memory Management in LSM-based Storage Systems. Proc. VLDB Endow. 14, 3
(2020), 241-254.

Chen Luo and Michael J Carey. 2020. LSM-based storage techniques: a survey.
The VLDB Journal 29, 1 (2020), 393-418.

Chen Luo, Pinar Téziin, Yuanyuan Tian, Ronald Barber, Vijayshankar Raman,
and Richard Sidle. 2019. Umzi: Unified Multi-Zone Indexing for Large-Scale
HTAP. In 22nd International Conference on Extending Database Technology. 1-12.
Sigiang Luo, Subarna Chatterjee, Rafael Ketsetsidis, Niv Dayan, Wilson Qin,
and Stratos Idreos. 2020. Rosetta: A Robust Space-Time Optimized Range Filter
for Key-Value Stores. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data. 2071-2086.

Q. Mao, S. Jacobs, W. Amjad, V. Hristidis, V. J. Tsotras, and N. E. Young. 2019.
Experimental Evaluation of Bounded-Depth LSM Merge Policies. In 2019 IEEE
International Conference on Big Data (Big Data). 523-532.

Ryan Marcus, Olga Papaemmanouil, Sofiya Semenova, and Solomon Garber. 2018.
NashDB: An End-to-End Economic Method for Elastic Database Fragmentation,
Replication, and Provisioning. In Proceedings of the 2018 International Conference
on Management of Data. 1253-1267.

Fei Mei, Qiang Cao, Hong Jiang, and Jingjun Li. 2018. SifrDB: A Unified Solution
for Write-Optimized Key-Value Stores in Large Datacenter. In Proceedings of the
ACM Symposium on Cloud Computing. 477-489.

U.F. Minhas, R. Liu, A. Aboulnaga, K. Salem, J. Ng, and S. Robertson. 2012. Elastic
Scale-Out for Partition-Based Database Systems. In 2012 IEEE 28th International
Conference on Data Engineering Workshops. 281-288.

Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996. The
Log-Structured Merge-Tree (LSM-Tree). Acta Inf. 33, 4 (1996), 351-385.

Mohiuddin Abdul Qader, Shiwen Cheng, and Vagelis Hristidis. 2018. A Compara-
tive Study of Secondary Indexing Techniques in LSM-Based NoSQL Databases. In
Proceedings of the 2018 International Conference on Management of Data. 551-566.
Pandian Raju, Rohan Kadekodi, Vijay Chidambaram, and Ittai Abraham. 2017.
PebblesDB: Building Key-Value Stores Using Fragmented Log-Structured Merge
Trees. In Proceedings of the 26th Symposium on Operating Systems Principles.
497-514.

Kai Ren, Qing Zheng, Joy Arulraj, and Garth Gibson. 2017. SlimDB: A Space-
Efficient Key-Value Storage Engine for Semi-Sorted Data. Proc. VLDB Endow. 10,
13 (2017), 2037-2048.

Subhadeep Sarkar, Tarikul Islam Papon, Dimitris Staratzis, and Manos Athanas-
soulis. 2020. Lethe: A Tunable Delete-Aware LSM Engine. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data. 893-908.
D. Schall and T. Héarder. 2015. Dynamic physiological partitioning on a shared-
nothing database cluster. In 2015 IEEE 31st International Conference on Data
Engineering. 1095-1106.

Oliver Schiller, Nazario Cipriani, and Bernhard Mitschang. 2013. ProRea: Live
Database Migration for Multi-Tenant RDBMS with Snapshot Isolation. In Pro-
ceedings of the 16th International Conference on Extending Database Technology.
53-64.

Russell Sears and Raghu Ramakrishnan. 2012. BLSM: A General Purpose Log
Structured Merge Tree. In Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data. 217-228.

Marco Serafini, Essam Mansour, Ashraf Aboulnaga, Kenneth Salem, Taha Rafiq,
and Umar Farooq Minhas. 2014. Accordion: Elastic Scalability for Database
Systems Supporting Distributed Transactions. Proc. VLDB Endow. 7, 12 (Aug.
2014), 1035-1046.

Marco Serafini, Rebecca Taft, Aaron J. Elmore, Andrew Pavlo, Ashraf Aboulnaga,
and Michael Stonebraker. 2016. Clay: Fine-Grained Adaptive Partitioning for
General Database Schemas. Proc. VLDB Endow. 10, 4 (Nov. 2016), 445-456.
Mike Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch Cherniack,
Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden, Elizabeth O’Neil, Pat
O’Neil, Alex Rasin, Nga Tran, and Stan Zdonik. 2005. C-Store: A Column-Oriented
DBMS. In Proceedings of the 31st International Conference on Very Large Data
Bases. 553-564.

X. Sun, J. Yu, Z. Zhou, and C. J. Xue. 2020. FPGA-based Compaction Engine
for Accelerating LSM-tree Key-Value Stores. In 2020 IEEE 36th International
Conference on Data Engineering (ICDE). 1261-1272.

Rebecca Taft, Essam Mansour, Marco Serafini, Jennie Duggan, Aaron J. Elmore,
Ashraf Aboulnaga, Andrew Pavlo, and Michael Stonebraker. 2014. E-Store: Fine-
Grained Elastic Partitioning for Distributed Transaction Processing Systems.
Proc. VLDB Endow. 8, 3 (2014), 245-256.

Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jordan Lewis,
Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin, Raphael Poss, Paul Bardea,
Amruta Ranade, Ben Darnell, Bram Gruneir, Justin Jaffray, Lucy Zhang, and Peter
Mattis. 2020. CockroachDB: The Resilient Geo-Distributed SQL Database. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management of
Data. 1493-1509.

	Abstract
	1 Introduction
	2 Background
	2.1 Data Rebalancing
	2.2 Log-Structured Merge Trees
	2.3 Apache AsterixDB
	2.4 Related Work

	3 Approach Overview
	4 LSM Storage for Buckets
	5 Efficient Data Rebalancing
	5.1 Initialization Phase
	5.2 Data Movement Phase
	5.3 Finalization Phase
	5.4 Handling Rebalance Failures

	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 Ingestion Performance
	6.3 Rebalancing Performance
	6.4 Query Performance
	6.5 Summary of Experimental Results

	7 Conclusion
	Acknowledgments
	References

