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ABSTRACT

Parallel shared-nothing datamanagement systems have beenwidely

used to exploit a cluster of machines for efficient and scalable data

processing. When a cluster needs to be dynamically scaled in or out,

data must be efficiently rebalanced. Ideally, data rebalancing should

have a low data movement cost, incur a small overhead on data

ingestion and query processing, and be performed online without

blocking reads or writes. However, existing parallel data manage-

ment systems often exhibit certain limitations and drawbacks in

terms of efficient data rebalancing.

In this paper, we introduce DynaHash, an efficient data rebal-

ancing approach that combines dynamic bucketing with extendible

hashing for shared-nothing OLAP-style parallel data management

systems. DynaHash dynamically partitions the records into a num-

ber of buckets using extendible hashing to achieve good a load

balance with small rebalancing costs. We further describe an end-

to-end implementation of the proposed approach inside an open-

source Big Data Management System (BDMS), Apache AsterixDB.

Our implementation exploits the out-of-place update design of LSM-

trees to efficiently rebalance data without blocking concurrent reads

and writes. Finally, we have conducted performance experiments

using the TPC-H benchmark and we present the results here.
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1 INTRODUCTION

The coming end of Moore’s law and the information age have led

data management systems to exploit clusters of machines to pro-

cess large amounts of data growing in an unprecedented speed. As

a result, parallel shared-nothing data management systems have

become widely used today due to their high scalability. In a parallel

shared-nothing data management system, records are partitioned

across a cluster of nodes that communicate with each other via

an interconnection network [32]. The shared-nothing parallel ar-

chitecture enables these systems to be horizontally scaled as the

number of nodes increases.

Early parallel data management systems [20, 33] generally as-

sumed that the cluster of nodes is relatively static. However, this

assumption is no longer true. It is desirable to dynamically adjust

the cluster size for a number of reasons. For example, it is econom-

ical to dynamically scale the cluster in and out as the workload
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changes, especially in the era of cloud computing. Moreover, as

the stored data accumulates over time, the cluster also needs to be

scaled out to better serve the query workloads. In order to scale

a cluster in or out, the stored records must be rebalanced so that

they can be repartitioned to the new set of nodes. Ideally, rebalance

operations should result in a near-perfect load balance, a low over-

head for regular database operations, and a small data movement

cost. Moreover, rebalancing must be performed online so that reads

and writes are not blocked.

In this paper, we focus on data rebalancing for shared-nothing

parallel data management systems for analytical (OLAP) workloads.

Even though many parallel data management systems today have

implemented various data rebalancing functionalities, the existing

implementations often exhibit certain limitations or drawbacks for

OLAP data management. Data management systems that support

OLTP workloads [2, 4, 25, 44, 73, 81] generally perform fine-grained

range partitioning to enable efficient data rebalancing. However,

this is not suitable for OLAP workloads due to the potential query

load imbalance caused by range skews. Existing parallel OLAP

systems either rely on shared-data architectures for data rebalanc-

ing [26], incur a large data movement cost [49], or block writes

during rebalancing [43].

Our Contributions. In this paper, we present DynaHash, an

efficient data rebalancing approach for OLAP-style parallel data

management system with local secondary indexes. The basic idea

of DynaHash is to dynamically partition the records into a set of

buckets using extendible hashing [39] and to move buckets for effi-

cient rebalancing. By combining extendible hashing with dynamic

bucketing, DynaHash can greatly reduce the data movement cost

with a minimal impact on data ingestion and query processing.

As the second contribution, we describe an efficient rebalancing

implementation that avoids blocking concurrent reads and writes

by exploiting the out-of-place design offered by LSM-trees [68].

The techniques used include bucketed LSM storage, lazy secondary

index cleanup, concurrency control for online rebalancing, and an

effective approach to fault tolerance and recovery. Even though

some similar techniques have been implemented by other systems,

our contribution here is to show how to integrate them together to

enable an efficient and effective rebalancing implementation.

As the last contribution, we have implemented all of the pro-

posed techniques inside Apache AsterixDB [1]. We have carried

out extensive experiments on the TPC-H benchmark [7] to evaluate

the effectiveness of the proposed techniques. The experimental

results show that the proposed rebalancing approach DynaHash

significantly reduces the rebalance cost with a small overhead on

query and ingestion performance. It should be noted that even

though our approach has been implemented for an LSM-based row

store, the design itself can be naturally generalized to column store-

based systems since these systems have generally adopted the same

out-of-place update design for their data [40, 49, 78].



The remainder of this paper is organized as follows. Section 2 dis-

cusses background information and related work. Section 3 presents

an overview of our proposed rebalancing approach. Section 4 de-

scribes how to store buckets efficiently on a single node. Section 5

presents the detailed design and implementation of the rebalance

operation. Section 6 experimentally evaluates the proposed tech-

niques. Finally, Section 7 concludes the paper.

2 BACKGROUND

2.1 Data Rebalancing

To exploit the parallelism provided by a cluster of nodes, the records

of a dataset must be distributed to each node using a partitioning

function. A partitioning function deterministically assigns each

record to a node based on its partitioning key. Example partitioning

functions include range partitioning and hash partitioning1. Range

partitioning divides the key space into a set of ranges, each of which

is assigned to a node. In contrast, hash partitioning operates on the

hashed keys to achieve better a load balance.

When the cluster needs to be scaled in or out, its datasets must be

repartitioned through a rebalance process. In general, rebalancing

has three important trade-offs, i.e., the load balance, the rebalance

cost, and the normal operation overhead. The load balancemeasures

how evenly the data is distributed across different nodes. This

directly impacts query performance, as in a shared-nothing system

the query time is bottlenecked by the slowest node. The rebalance

cost measures how much of the data needs to be accessed and

moved during rebalancing. Finally, the normal operation overhead

measures the extra overhead for normal read and write operations

in order to support the needs of the rebalance operation.

Rebalancing changes the partitioning function. Depending on

how the partitioning function changes, existing rebalancing schemes

can be classified as either global or local. A global rebalancing

scheme repartitions (nearly) all records of a dataset when the clus-

ter changes. This generally leads to a near-perfect load balance and

a small normal operation overhead but a very high rebalance cost.

For example, with range partitioning, a global rebalancing scheme

can recompute the key range of each node based on the new cluster

size and then repartition all records based on the new ranges.

In contrast to global rebalancing, a local rebalancing scheme

only changes the partitioning function łlocallyž so that only a small

portion of the records, generally proportional to the affected nodes,

are moved. This reduces the rebalancing cost, but generally leads

to a worse load balance and a higher normal operation overhead.

Commonly used local rebalancing schemes include static bucketing,

dynamic bucketing, and consistent hashing [45]2. In static bucketing,

the key space is pre-partitioned to a fixed number of buckets, each

of which is assigned to a node through a directory. During rebal-

ancing, only a small number of affected buckets are moved to new

nodes, which significantly reduces the rebalance cost. Dynamic

bucketing further extends the usability of static bucketing by dy-

namically splitting or merging buckets as the dataset size grows or

shrinks. Finally, consistent hashing eliminates the overhead of the

1There could be other partitioning functions in practice, such as round-robin partition-
ing and random partitioning. However, we do not consider them here because those
partitioning functions are not deterministic.
2The range partitioning counterpart of consistent hashing is rarely used in practice
because of the potential for range skews. Thus, that scheme is not considered here.

global directory by organizing the (hashed) key space into a ring

structure and letting each node serve a key range. When a node is

added or removed, its key range is adjusted locally based on its next

neighbor node. In general, consistent hashing is more suitable for

a (large) peer-to-peer architecture since it does not require a global

directory. In contrast, dynamic bucketing works naturally with a

more centralized (master-slave) architecture where the bucket as-

signment information is managed by the master. Moreover, a global

directory also provides more flexibility for bucket assignment.

2.2 Log-Structured Merge Trees

The LSM-tree [68] is a persistent index structure optimized for

write-intensive workloads. The LSM-tree adopts an out-of-place up-

date design by always buffering writes into a memory component

and appending records to a transaction log for durability. Whenever

the memory component is full, writes are flushed to disk to form an

immutable disk component. Multiple disk components are periodi-

cally merged together to form a larger one, according a pre-defined

merge policy.

A query over an LSM-tree has to reconcile the entries with

identical keys from multiple components, as entries from newer

components override those from older components. A range query

searches all components simultaneously using a priority queue to

perform reconciliation. A point lookup query simply searches all

components from newest to oldest until the first match is found. To

speed up point lookups, a common optimization is to build Bloom

filters [19] over the sets of keys stored in disk components.

2.3 Apache AsterixDB

Apache AsterixDB [1, 13, 24] is an open-source Big Data Man-

agement System (BDMS) that aims to manage massive amounts

of semi-structured (e.g., JSON) data efficiently. AsterixDB uses a

shared-nothing parallel architecture with local secondary indexes

for OLAP-style workloads. An AsterixDB cluster contains a Clus-

ter Controller (CC) that serves as the master and multiple Node

Controllers (NCs) that perform data processing tasks. Each NC

has multiple partitions to exploit the parallelism of modern hard-

ware. A query in AsterixDB is compiled and optimized by the CC

into a Hyracks job [22] that is then executed by the NCs. To sup-

port efficient data ingestion, AsterixDB provides data feeds [42],

which are long-running jobs that efficiently ingest external data

into AsterixDB.

The records of a dataset are hash-partitioned based on their pri-

mary keys across multiple NC partitions. Each dataset partition is

managed by an LSM-based storage engine [14], including a primary

index, a primary key index, and multiple local secondary indexes.

The primary index stores records indexed by primary keys, and

the primary key index stores primary keys only. The primary key

index is built to support COUNT(*) style queries and uniqueness

checks efficiently [58] since it is much smaller than the primary

index. Secondary indexes use the composition of the secondary

key and the primary key as their index keys. AsterixDB supports

LSM-based B+-trees, R-trees, and inverted indexes using a generic

LSM-ification framework that can convert an in-place index into an

LSM-based index. Each LSM-tree uses a tiering-like merge policy
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to merge its disk components. AsterixDB uses a record-level trans-

action model to ensure that all of the indexes are kept consistent

within each partition.

AsterixDB uses a global rebalancing scheme with hash parti-

tioning. Given a cluster with N partitions, AsterixDB assigns each

record with key K to the hash(K) mod N partition. When the clus-

ter size changes, the partitioning function is recomputed so that

the records of a dataset are redistributed to the new set of nodes.

This approach leads to a near-perfect load balance with a minimum

normal operation overhead, but the rebalance cost is very high

since nearly all records need to be moved during rebalancing. In

this work, we explore alternative data rebalancing schemes to make

better trade-offs among these three costs.

2.4 Related Work

Rebalancing in Parallel Data Management Systems. Nearly

all parallel data management systems today have implemented

some form of rebalancing. Here we discuss rebalancing in some

representative systems based on the taxonomy of Section 2.1.

For OLTP-style systems, Bigtable [25] and its open-source cousin

HBase [2] use dynamic bucketing with a shared-data architecture.

Since their underlying distributed storage systems, GFS [41] for

Bigtable and HDFS [3] for HBase, already support rebalancing im-

mutable data blocks, Bigtable and HBase only need to manage their

in-memory data during rebalancing. Dynamo [31] and its open-

source cousin Cassandra [48] are shared-nothing systems that use

consistent hashing. Cassandra further introduces the concept of

virtual nodes to achieve a better load balance; the basic idea is to

let each node use multiple virtual nodes to manage multiple key

ranges. Couchbase [21] and Oracle NoSQL Database [5] are shared-

nothing systems that use static bucketing with hash partitioning.

Both systems set the number of buckets to a relatively high number.

Couchbase sets this number to 1024 by default, while Oracle NoSQL

Database recommends that each node (in the expected largest clus-

ter) should have 10 to 20 buckets. Minhas et al. [67] applied a similar

static bucketing approach to enable efficient scaling for VoltDB [8].

MongoDB [4], TiDB [44], WattDB [73], and CockroachDB [81] each

use range-partitioned dynamic bucketing with a very small bucket

size, e.g., 64MB. Having a large number of small buckets is suitable

for OLTP workloads since each transaction only accesses a small

number of (usually one) buckets. However, this may not be suitable

for OLAP systems since each query will often access all buckets.

Moreover, OLTP systems typically use global secondary indexes

due to the high selectivity of OLTP queries.

For OLAP-style systems, Snowflake [26] is based on a shared-

data architecture and completely relies on the underlying shared

storage system for rebalancing. Vertica [49] is a shared-nothing sys-

tem that uses global rebalancing with hash partitioning to achieve

a better load balance. By performing range partitioning on hashed

keys and carefully placing the new nodes into the cluster, Ver-

tica can reduce the rebalance cost by a constant factor [49]. Red-

shift [43] is shared-nothing and supports both global rebalancing

and static bucketing with hash partitioning. However, Redshift

does not support concurrent writes during rebalancing. Moreover,

it directly uses buckets (called łnode slicesž in Redshift) as its par-

allelism unit. This leads to an undesirable side-affect that the node

parallelism changes after rebalancing3. NashDB [65] adopts an

economics framework to automatically distribute data based on

user-provided query priorities. However, NashDB targets static

read-only workloads and does not consider the rebalancing cost.

Elastic OLTPDatabases.Due to the importance andwide adop-

tion of parallel OLTP database systems, a lot of effort has been de-

voted to making them elastic. Live migration techniques [17, 27, 37,

38, 52, 74] enable OLTP databases to be migrated without blocking

ongoing transactions. E-Store [80] uses fine-grained partitioning to

elastically scale parallel databases. Morphosys [9], Accordion [76],

and Clay [77] perform online database partitioning to reduce the

cost of distributed transactions. These research efforts all share

some similarity with our work by considering online database re-

balancing without blocking concurrent transactions. However, one

key difference is that these research efforts mainly focus on ACID

transactions, while our work focuses on how to rebalance datasets

efficiently in OLAP-style (i.e., query-oriented) systems.

Distributed Access Methods. To efficiently query data stored

in a cluster of nodes, a number of distributed access methods have

been proposed as well. The basic idea is to distribute an access

method efficiently over a cluster of nodes, potentially in a peer-to-

peer setting, to support efficient read and write operations. Exam-

ples include distributed versions of extendible hashing [36], linear

hashing [53, 55], range search trees [47, 54], B+-trees [10], and R-

trees [34, 35]. A key difference between these access methods and

our work is that we focus on rebalancing for OLAP systems rather

than on a single access method with simple key-value interfaces.

Moreover, these access method proposals have rarely been used by

today’s parallel data management systems due to their increased

complexity. Instead, modern systems generally employ a simple

partitioning approach that partitions datasets into multiple nodes.

LSM-trees. For data storage in modern systems, a large number

of improvements have been proposed to optimize the LSM-tree [68].

These improvements include optimizing write performance [18, 50,

56, 64, 66, 70, 79], supporting auto-tuning of LSM-trees [28ś30, 51,

72], optimizing query performance of LSM-trees [12, 58, 63, 69],

minimizing write stalls [15, 59, 75], exploiting large memory [16, 23,

57, 60], and extending the applicability of LSM-trees [62, 71]. We

refer readers to a recent survey [61] for a more detailed description

of these LSM-tree improvements. These LSM-tree improvements

have all focused on a single node setting. In contrast, in this work,

we focus on their role in a parallel shared-nothing architecture and

exploit the LSM-tree’s out-of-place design to support efficient data

rebalancing with concurrent reads and writes.

3 APPROACH OVERVIEW

As mentioned in Section 2.1, rebalancing involves three important

trade-offs, i.e., the load balance, the rebalance cost, and the normal

operation overhead. Our goal is to achieve good load balance with

a small rebalance cost and a low normal operation overhead. In this

section, we provide a high-level overview of DynaHash based on

the following design choices.

3 For example, consider a cluster with 4 nodes. Each node further has 4 node slices to
exploit the node parallelism. However, if the cluster is resized to 16 nodes, each node
will only have one node slice, which may negatively impact the parallelism of query
processing.
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Range Partitioning vs. Hash Partitioning. In general, range

partitioning is more suitable for OLTP systems since each trans-

action only accesses a few partitions. It also provides fine-grained

partitioning capabilities for the system to eliminate hot ranges. In

contrast, most OLAP systems prefer hash partitioning to achieve

a better load balance since many queries will access all partitions.

Thus, we choose to use hash partitioning here as well.

Global Rebalancing vs. Local Rebalancing. Although global

rebalancing schemes achieve a near-perfect load balance, they incur

a very large rebalance cost since most records have to be moved dur-

ing rebalancing. Since our goal is to reduce the rebalance cost, we

prefer to use the local rebalancing scheme. Among the three local

rebalancing schemes mentioned in Section 2.1, dynamic bucketing

dominates static bucketing by elastically adjusting the number of

buckets as data accumulates. Dynamic bucketing is also prefer-

able to consistent hashing since most parallel OLAP systems (ours

included) adopt a master-slave architecture. Based on these consid-

erations, it is a natural choice to use dynamic bucketing here.

Combining Hash Partitioning with Dynamic Bucketing.

The last choice we face is how to combine hash partitioning with

dynamic bucketing. One natural design would be to range partition

the hashed key space into multiple buckets. Though this solution

works, hashing actually provides opportunities for a more efficient

design. Since hashed keys are uniformly distributed, one can use

an extendible hashing approach [39] to partition the key space

into multiple buckets. Figure 1 shows the resulting architecture

based on this idea with one Cluster Controller (CC) and two Node

Controllers (NCs). Each NC further has two storage partitions. In

order to distribute the records of a dataset to these four partitions,

the hash key space is divided into multiple buckets. A bucket is

defined by taking the d low-order bits of the hash function, where

d is the depth of this bucket. When a bucket becomes too large,

it is split into two smaller buckets by taking one more hash bit,

which thus increments the depth [39]. A rebalance operation can

now only move some affected buckets to new partitions, which can

greatly reduce the rebalance cost.

As shown in Figure 1, we use a global directory stored at the

CC to map buckets to partitions. Each directory has a depth D,

which is the maximum number of bits used in all buckets. Thus, the

size of this directory is always 2D . Note that in Figure 1 the two

hash values 011 and 111 currently correspond to the same bucket

11. To locate where a given key K is stored, one simply needs to

look in the global directory using the D low-order bits of K ’s hash

value, where D is the depth of the global directory. During query

compilation, each query creates an immutable copy of the global

directory that is used throughout query processing. Similarly, a

data feed, i.e., a data ingestion job, also employs an immutable copy

of the global directory in order to distribute the incoming records

of a dataset to the correct NC partitions.

We further use a local directory at each partition to keep track of

the assigned buckets. To simplify bucket splits, the global directory

can be updated lazily before rebalancing is performed. For example,

in Figure 1, the bucket 00 has already been split into two buckets 000

and 100 at partition 0, but the global directory has not been updated

yet. This does not impact the correctness of the global directory

since it can still correctly route all keys to the right partitions.

Node Controller 1

Partition 0

hash depth partition

000 2 0

001 3 2

010 3 2

011 2 1

100 2 0

101 3 3

110 3 3

111 2 1

hash depth

000 3

100 3

Global Directory

Partition 1

hash depth

11 2depth: 3

Local Directory

Node Controller 2

Partition 2

hash depth

001 3

010 3

Partition 3

hash depth

101 3

110 3

Local Directory

Cluster Controller

Figure 1: Example Architecture for DynaHash

Even though the basic design in our rebalancing approach is

relatively straightforward, two key challenges must be addressed.

First, how can we store (i.e., physical organize) multiple buckets

within each partition to enable efficient rebalancing with low nor-

mal operation overheads for reads and writes? Second, how can

we efficiently rebalance buckets while supporting both concurrent

reads and writes? In the next two sections, we will detail our solu-

tions to these two challenges.

4 LSM STORAGE FOR BUCKETS

In this section, we discuss how to efficiently store multiple buckets

in each partition. For efficient rebalancing, when a bucket needs

to be moved out of a partition, it is desirable to only access the

records for this bucket. If range partitioning were used and no

secondary indexes were built, storing records in their primary key

order naturally satisfies this property since records in each bucket

would be grouped together. However, with hash partitioning, the

primary key order is no longer the same as the bucket order since

records are bucketed using hashed keys. Moreover, secondary in-

dexes also complicate this problem because their entries are ordered

by secondary keys, not primary keys.

Storage Options. In general, when hash partitioning is used,

there are three options to store buckets in each partition:

• Option 1: Store entries in their original key order in one

LSM-tree index.

• Option 2: Store entries in their bucket order in one LSM-

tree index. Within each bucket, store their entries in their

original key order.

• Option 3: Store entries in each bucket in a separate LSM-tree

index structure. Within each LSM-tree, store the entries in

the original key order.

Let us first consider the trade-offs for the primary index. Option

1 incurs no overhead on reads and writes, but it incurs a large over-

head on rebalancing since moving a bucket must scan all entries,

including those from other buckets. Options 2 and 3 both reduce the

rebalancing overhead since records within each bucket are stored

together. Moreover, Option 3 provides more flexibility for splitting
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Local

Directory

hash: 001, depth: 3

(k1, v1)

memory disk

hash: 11, depth: 2

(k2, v2)

hash: 010, depth: 3

(k4, v4)

(k3, v3)

Primary

Index

Secondary

Index (v3, k3) (v1,k1)
(v2, k2)

(v4, k4)

hash depth

001 3

010 3

011 2

111 2

Figure 2: Example Partition with a Bucketed Primary Index

and a Secondary Index

buckets and deleting buckets after rebalancing. However, Options

2 and 3 both incur some overhead on short primary index scans

since each query must search all buckets. Since short primary key-

order scans are not common in OLAP-style systems, we choose to

optimize the rebalancing performance by choosing Option 3 for the

primary index of a dataset. For secondary indexes, an important

difference is that they do not have to be accessed during rebalanc-

ing but can be rebuilt on-the-fly at their destination. In order not

to incur too much normal runtime overhead on secondary index

queries, we choose to use Option 1 for secondary indexes. Figure 2

shows an example of a dataset partition with a primary index and

a secondary index. Here we denote each record as a key-value pair,

and the secondary index is built on the value field. The primary

index uses the bucketed LSM-tree design, which is further described

below, to store buckets separately. In contrast, the secondary index

uses a traditional LSM-tree design to store all buckets together.

Bucketed LSM-tree Design. Based on these basic design de-

cisions, we introduce a bucketed LSM-tree design for efficiently

storing multiple buckets in the primary index. As shown in Figure 2,

each bucket can be viewed as a separate LSM-tree with a memory

component and multiple disk components. We use reference count-

ing for concurrency handling. That is, whenever a bucket, a memory

component, or a disk component is accessed, the reader or writer

increments a reference count so that the accessed entity cannot be

destroyed until the access completes. All flushes and merges are

performed within each bucket. All buckets are coordinated using

a local directory, as mentioned in Section 3. Note that in Figure 2,

hashes 011 and 111 correspond to the same bucket 11 with depth 2.

Data Ingestion and Query Processing. A bucketed LSM-tree

provides the same set of interfaces as a traditional LSM-tree. A write

operation, including inserts, deletes, and updates, first checks the lo-

cal directory using the hash value of the key to locate which bucket

the entry belongs to and then adds the entry to that bucket. Simi-

larly, a point lookup query only searches its target bucket, located

via the local directory, to get the entry. A primary key range scan

query, however, must search all buckets. There are two approaches

to process such a range scan query. The first approach is to scan

each bucket separately. This will incur no additional overhead com-

pared to the traditional LSM-tree design, but the returned entries

hash: 11

depth: 2

memory disk

hash: 011

depth: 3

memory disk

hash: 111

depth: 3

memory disk

Figure 3: Bucket Split Example

will no longer be sorted on the primary key. The second approach

is to use a priority queue to merge-sort the returned entries from

all buckets together. This approach provides the same interface as

the traditional LSM-tree design by returning sorted results, but it

will incur a larger search overhead due to the additional merge-sort

step. To decide which approach should be used, we have introduced

an optimization rule in AsterixDB as follows. By default, the first

approach is used to avoid the merge-sort overhead. However, if the

primary key order is required by subsequent query operators, e.g.,

a user-specified order by clause or a groupby operator on a prefix of

the primary key, the second approach will be used to avoid the sub-

sequent sort overhead. Finally, it should be noted that the bucketed

LSM-tree design does not change the processing of a secondary

index query, which simply searches the secondary index to fetch a

list of primary keys and then uses them to fetch records from the

(bucketed) primary index.

Efficient Bucket Splits. When a bucket becomes too large, it

is split into two smaller buckets by using one more hash bit. A

straightforward implementation would be to build two smaller

LSM-trees based the original bucket. However, this approach not

only causes additional write amplification, but also may need to

block reads and writes for a long time. Here we describe a more

efficient bucket splitting approach to address these issues.

The pseudocode for splitting a bucket B is depicted in Algo-

rithm 1. The Split function first stops creating new component

merges for B and waits for all existing merges to finish. B’s mem-

ory component is then asynchronously flushed to disk without

blocking writes (line 5). After the flush completes, the bucket B

is locked to temporarily block new readers and writers so that B

can be safely split (lines 6 to 10). Since some writes may have en-

tered the memory component after the last asynchronous flush, B’s

memory component is now flushed synchronously to persist these

writes. It should be noted that AsterixDB uses a no-steal buffer

management policy, meaning that a memory component is only

flushed after all active writers have completed. Two new buckets

B1 and B2, whose disk components refer to the disk components of

B, are then created. An example is shown in Figure 3. For each disk

component of the splitting bucket 11, we create two new reference

disk components in buckets 011 and 111 respectively. A reference

disk component does not store any data; instead, it only points to

a real disk component. All queries accessing data through a ref-

erence disk component must perform an additional filtering step

based on the bucket’s hash value to make sure that only the entries

belonging to this bucket are accessed. Thus, the actual creation of

the new disk components of B1 and B2 are effectively postponed

until the next round of merges. Finally, a directory metadata file

that stores valid buckets is forced to disk, indicating that the split
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operation is now complete (line 9), and the old bucket B is destroyed

automatically when its reference count becomes 0. Upon recovery,

the directory metadata file is used to determine valid buckets. All

invalid (partially split) buckets will be cleaned up automatically.

Algorithm 1 Pseudo Code for Bucket Split

1: B← the bucket to be split

2: function Split(B)

3: Pause scheduling merges for B

4: Wait for B’s merges to finish

5: Asynchronously flush B’s memory component

6: Lock B

7: Synchronously flush B’s memory component

8: Create two buckets B1 and B2 that refer to B

9: Force a directory metadata file to disk

10: Unlock B

11: Resume scheduling merges for B

To simplify the synchronization with the CC, bucket splits are

performed at each partition locally without notifying the CC. In-

stead, the global directory at the CC is only refreshed when a

rebalance operation starts, as we will discuss below. This design

greatly simplifies the role of the CC since it does not have to know

about the existence of bucket splits.

5 EFFICIENT DATA REBALANCING

After considering how to store multiple buckets efficiently, we now

discuss how to efficiently rebalance data while supporting concur-

rent reads and writes. In AsterixDB, data rebalancing is triggered

by the user manually after some nodes have been added or before

some nodes are removed. In general, a rebalance operation contains

three phases, namely initialization, data movement, and finalization.

During the initialization phase, all nodes perform some preparation

tasks for subsequent data movement. The data movement phase

transfers some of the records of a dataset, including concurrent

writes, to their new partitions. Finally, during the finalization phase,

all nodes unanimously commit or abort the rebalance operation

depending on its outcome and some cleanup work is performed

as well. It should be noted that a rebalance operation may fail for

various reasons. When a rebalance operation fails, the produced

intermediate results must be cleaned up correctly. In the remainder

of this section, we discuss the three phases in detail as well as how

to handle various rebalance failures.

5.1 Initialization Phase

When a rebalance operation starts, the CC first forces a BEGIN log

record indicating that a rebalance operation has started. This is

required for correctly handling rebalance failures, as we will see in

Section 5.4. The CC further decides which buckets should be moved

to which partitions by computing a new global directory based

on the new set of nodes. In addition, all NCs must also perform

some preparation tasks in order to support concurrent updates.

The key challenge here is that AsterixDB only supports a very sim-

ple record-level transaction model. If full ACID transactions were

supported by AsterixDB, then the rebalance operation could be sim-

ply implemented using a transaction, which would automatically

provide concurrency control for reads and writes. Without ACID

transactional support, we must design a customized concurrency

control protocol.

Computing the Global Directory. Recall from Section 4 that

buckets splits are performed at each node locally without notifying

the CC. In order to compute the new global directory, the CC con-

tacts all NCs to get their latest local directories. Moreover, bucket

splits for this dataset at each NC are disabled until the rebalance

completes. Since buckets may have different sizes, it is straightfor-

ward to show that an optimal algorithm that maximizes the load

balance is NP-hard by considering the partition problem4.

Algorithm 2 Pseudo Code for Computing New Global Directory

1: function Balance

2: for each unassigned bucket B do

3: Assign B to the least loaded partition

4: while true do

5: Pmax ← the most loaded partition

6: B ← the smallest bucket in Pmax

7: Pmin ← the least loaded partition

8: if abs((|Pmax | − |B |)−(|Pmin |+ |B |)) < |Pmax | − |Pmin |

then

9: Assign B to Pmin

10: else

11: break

To compute the new global directory efficiently, we use a greedy

algorithm as shown in Algorithm 2. To describe this algorithm,

we first introduce some useful concepts. Given a directory with

depth D and a bucket B with depth d , we define the normalized size

of the bucket B (denoted as |B |) as 2D−d . Given a partition P or a

node N , we denote |P | or |N | as the sum of the normalized size

of P ’s buckets and N ’s buckets, respectively. Given two partitions,

P1 on node N1 and P2 on node N2, P1 is said to be more loaded

than if |P1 | is larger than |P2 |, or |N1 | is larger than |N2 | if |P1 |

equals |P2 |. The Balance function first assigns the unassigned

buckets (buckets being displaced due to node removals) to the least

loaded partitions (lines 2-4). After all such buckets are assigned,

the algorithm balances the bucket assignment using a series of

iterations (lines 4-11). In each iteration, it tries to assign the smallest

bucket B from the most loaded partition Pmax to the least loaded

partition Pmin (lines 8-11). If this assignment reduces the difference

between the normalized sizes of Pmax and Pmin , the assignment is

then performed; otherwise, the algorithm terminates. It is possible

to incorporate other heuristics to define the load order among

partitions. For example, one could further consider the total storage

size of a partition, including all datasets. We leave the exploration

of this direction as future work.

Preparing for ConcurrentWrites.During the rebalance oper-

ation, which may take a relatively long time to finish, some records

may be updated by concurrent writers. For each bucket that needs

to be moved, these concurrent writes must still be applied to its old

4The goal of the partition problem is to partition a multiset S of positive integers into
two subsets S1 and S2 such that the difference between the sum of elements in S1 and
the sum of elements in S2 is minimized [6].
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Figure 4: Concurrency Control for Writes

partition since the rebalance operation may fail. Moreover, the con-

current writes must also be applied to the new partition to ensure

that there are no lost writes if the rebalance operation succeeds.

To ensure correctness with concurrent writes, we use a concur-

rency control protocol that splits all the writes of a bucket based

on the rebalance start time, as depicted in Figure 4. For all writes

that happened before the rebalance operation starts, an immutable

snapshot is created so that it can be safely scanned. For all writes

that happen after the rebalance operation starts, their log records

are replicated to the new partition so that the new partition will not

miss any writes. It should be noted that AsterixDB only supports

a very simple record-level transaction model without supporting

snapshot scans. To implement the required snapshot scan, we ex-

ploit the immutability of LSM disk components. Specifically, the

memory component of the moving bucket is flushed synchronously

during the initialization phase. Thus, the flush time is treated as the

rebalance start time, and the resulting disk components become the

immutable copy of all writes that happened before the rebalance

operation starts. To reduce the blocking of concurrent writes due to

the synchronous flush, the two-flush approach described in Algo-

rithm 1 (lines 5-7) can be used. Specifically, one can first flush the

memory component asynchronously and then use a synchronous

flush to persist the leftover writes. In this case, the rebalance start

time becomes the time of the second (synchronous) flush.

5.2 Data Movement Phase

After the initialization phase, the rebalance operation starts to move

the affected buckets to their new partitions. This involves adding

scanned records and replicated log records to both the primary in-

dex and secondary indexes at their destination partitions. Moreover,

queries must be handled properly so that they are not affected by

the rebalance operation.

Data Movement. By comparing the current global directory

and the new global directory, it is straightforward to determine the

new partition of each affected bucket. For ease of discussion, here

we first describe how to move one bucket B from its old partition

Pold to its new partition Pnew , which is then extended to moving

multiple buckets together.

Figure 5 shows the basic data movement process for a single

bucket with a primary index and one secondary index. At the old

partition, the primary index disk components of this bucket are

scanned and the log records of any concurrent writes will be repli-

cated. The scanned log records are then used to load disk compo-

nents at the new partition, and the data represented by the repli-

cated log records are inserted into the memory components. In

order to simplify concurrency control and recovery, the moved

records are always stored separately from local user writes at the

new partition. For a primary index that uses the bucketed LSM-tree

design, the received records are simply stored in a new bucket. For

Primary Index

user 

writes replicated

log records

memory

disk

disk

memory

scanned

data records

Primary Index

Old Partition

New Partition

disk

memory

user 

writes

disk

memory

user

writes

disk

memory

disk

user

writes

Secondary Index

memory

Figure 5: Data Movement Process (One Bucket): Scanned data

records are loaded into disk components and replicated log records are

inserted into memory components. These rebalance writes are stored

separately from user writes.

a secondary index that stores all buckets together, the received

records are stored into a new list of components that are kept invis-

ible to queries. This design greatly simplifies concurrency control

and recovery. These new components that store moved records will

be made invisible to queries until the rebalance completes. More-

over, in case the rebalance operation fails, these new components

can then be simply deleted to cleanup the intermediate results.

Finally, to ensure correctness, the scanned data records must be

treated as being strictly older than the replicated log records. This

is achieved by placing the loaded disk component after the disk

components storing replicated log records.

It is straightforward to extend the basic data movement process

to move multiple buckets at the same time. One can simply scan

multiple buckets at the same time and repartition them using the

new global directory so that the scanned records can be sent to

their new partitions. As an optimization, when adding multiple

buckets to a secondary index partition, the records can be added to

a single list of components instead of creating one list per bucket.

This will help to reduce the number of disk components present

after the rebalance operation completes.

Handling Concurrent Queries.As mentioned before, the data

movement process shown in Figure 5 greatly simplifies the required

concurrency control for queries. Since the moved records are stored

separately from user writes, the partially loaded buckets are invisi-

ble to queries until rebalancing completes. If a query starts before

a rebalance operation completes, the query accesses all buckets

using the old global directory. Otherwise, the query uses the new

global directory, updated by the rebalance operation, to access all

buckets. Moreover, since accessed buckets and LSM components

are reference counted, they can be accessed safely by the query

even if a rebalance operation completes in the middle of the query.
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5.3 Finalization Phase

After all data records of moving buckets have been transferred

to their new partitions, the system is ready to commit or abort

the rebalance operation depending on its outcome. It should be

noted that there could still be active log replication activities, due

to concurrent writes, at this stage. Thus, to ensure that all nodes

always reach a unanimous decision, we use a two-phase commit

protocol with a prepare phase and a commit phase.

Prepare Phase. After all data records have been moved to their

new partitions, the CC initializes the prepare phase, which will

block incoming queries and writes on the rebalancing dataset. The

CC further waits for all NCs to complete their log replication and

to flush the memory components that store rebalancing writes

to disk. If all NCs succeed in doing so, i.e., they all vote yes, the

CC enters the commit phase as discussed below. Otherwise, the

rebalance operation must be aborted and the rebalancing dataset

will be left unchanged. It should be noted that all incoming reads

and writes will be blocked during the finalization phase. However,

this blocking is expected to be very short since the CC only waits

for existing writers to complete and the number of log records

pending for replication are bounded5.

Commit Phase. Once the CC enters the commit phase, it forces

a COMMIT log record to disk indicating that the rebalance oper-

ation is committed. The CC then updates the global directory of

the rebalancing dataset and notifies all NCs to install their received

buckets and cleanup the moved buckets. To install a received bucket

at a partition, one simply needs to add (i.e., register) the loaded

disk components to the component lists of the primary index and

secondary indexes. To cleanup a moved bucket from the primary

index of a partition, the bucket can be simply removed from the

bucketed LSM-tree’s local directory so that it cannot be accessed

by all new queries. It should be noted that because of reference

counting, the actual components of this bucket will not be deleted

until the last reader exits. To cleanup a secondary index, we use

a lazy delete approach that adds the hash value and the depth of

this bucket to the metadata of each LSM component. A query then

performs an additional validation check to ignore all invalid entries

that belong to this moved bucket. Thus, the cleanup of secondary

index components is effectively postponed to the next round of

merges. All these operations, e.g., adding and removing buckets, are

made persistent by forcing metadata files to disk. After all NCs have

completed these tasks, the CC can resume query processing and

data ingestion on the rebalancing dataset. Finally, the CC produces

a DONE log record to indicate that no additional work is needed

for this rebalance operation.

Based on the two-phase commit protocol, the final outcome of

the rebalance operation is determined by whether the COMMIT

log record has been forced to disk successfully by the CC. In other

words, the rebalance operation is committed if the COMMIT log

record has been successfully forced to disk. Otherwise, the CC

simply aborts the rebalance operation and leaves the original dataset

as is. We will further discuss how to handle various rebalance

failures below.

5In AsterixDB, each sender node uses multiple log buffers to store the log records to
be replicated. Whenever a log buffer is full, it is replicated to the destination node
synchronously. Thus, the total number of pending log records is bounded by the total
log buffer size, which is usually a few MBs.
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Figure 6: Rebalance Operation Timeline

5.4 Handling Rebalance Failures

During the rebalance operation, some node(s) may potentially fail

at any time. Since node failures are expected to be rare, we sim-

ply abort the rebalance operation if some node(s) fails before the

rebalance operation commits. However, the intermediate results

produced by the rebalance operation must be cleaned up carefully

to ensure that the dataset remains in a consistent state. Here we

assume that the failed node(s) eventually recovers, i.e., no perma-

nent node failures. We plan to extend DynaHash to incorporate

replication [11] to handle permanent node failures as future work.

Before discussing how to handle various rebalance failures, we

first summarize the basic timeline of a rebalance operation, which is

shown in Figure 6. The CC first forces a BEGIN log record indicating

that the rebalance operation has started. It then requests all NCs

to move their affected buckets to new partitions. After all data

movement is done, the CC enters the prepare phase by waiting for

all NCs to complete log replication. After all NCs have successfully

prepared, the CC enters the commit phase by forcing a COMMIT

log record and notifying all NCs to commit this rebalance operation.

Finally, after all NCs have committed, the CC produces a DONE

log record indicating that the rebalance operation can be safely

forgotten. Based on this timeline, we present a case analysis to

discuss how to handle various possible rebalance failures.

Case 1: NC fails before voting łpreparedž. In this case, the

CC simply aborts the rebalance operation and asks all NCs (in-

cluding the failed NC after its recovery) to cleanup their received

buckets. Recall from Figure 5 that the received records are always

added to a separate list of components. Thus, to cleanup the received

buckets, a partition can simply delete those lists of components for

both the primary index and secondary indexes of the dataset. It

should be noted that cleaning up a received bucket is idempotent

since cleaning up a non-existent bucket can be simply treated as a

no-op. It is thus safe to cleanup a received bucket from a partition
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multiple times. After all NCs complete the cleanup task, the CC

writes a DONE log record so that this rebalance operation can be

safely forgotten.

Case 2: NC fails after voting łpreparedž. After the failed

NC recovers, it contacts the CC to report its presence. The NC

will further receive instructions about how to handle the pending

rebalance operation. If the rebalance operation is aborted, the NC

simply cleans up the intermediate results as in Case 1. Otherwise,

the NC performs the commit tasks as in Case 4.

Case 3: CC fails before forcing theCOMMIT log record.Af-

ter the CC recovers and sees the BEGIN log record for the rebalance

operation, it aborts the rebalance operation as in Case 1.

Case 4: NC fails before responding łcommittedž. The rebal-

ance operation is committed but the CC does not know whether

the NC has committed the rebalance operation or not. When the

NC recovers, the CC requests this NC to commit the rebalance op-

eration by adding the received buckets and cleaning up the moved

buckets. Similar to case 3, both adding the received buckets and

cleaning up the moved buckets are idempotent operations, which

means it is safe to apply these operations multiple times.

Case 5: CC fails after forcing the COMMIT log record but

not the DONE log record. In this case, the rebalance operation

is effectively committed but it is possible that some NCs have not

completed the commit tasks yet. Thus, after the CC recovers, it

notifies all NCs to add received buckets and cleanup moved buckets

as in Case 4. Finally, the CC writes a DONE log record as well.

Case 6: CC fails after the DONE log record is persisted. No

additional task needs to be performed in this case since the DONE

log record indicates that this rebalance operation has completed.

The two-phase commit protocol used in our rebalance operation

has some subtle differences from the traditional two-phase commit

protocol used in distributed transactions. For example, the CC forces

a BEGIN log record when a rebalance operation starts and NCs

always contact the CC during recovery. This is because in AsterixDB

the rebalance operation is implemented as a metadata transaction,

and only the CC can produce metadata log records. In contrast, in

traditional distributed transactions each participant can produce

log records. Because of this difference, without forcing the BEGIN

log record, the CC may not know the existence of a rebalance

operation if the entire cluster shuts down before the rebalance

operation completes. Similarly, the NC must always contact the CC

upon recovery since the NC cannot certainly know the status of

ongoing rebalance operations. (Contacting the CC upon recovery

does not involve additional overhead since the NC must register

itself with the CC for cluster management anyway.)

6 EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate the proposed rebalanc-

ing techniques in the context of Apache AsterixDB [1]. Throughout

the evaluation, we mainly focus on the three aspects of different

rebalancing approaches, namely their rebalancing performance,

ingestion performance, and query performance. In the remainder

of this section we describe the general experimental setup followed

by the detailed evaluation results.

6.1 Experimental Setup

Hardware. All experiments were performed on a cluster of nodes

with a single CC and multiple NCs on AWS. The number of NCs

ranged from 2 to 16. The CC ran on a m5.xlarge node with 4 vCPUs,

16GB ofmemory, and a 500GB elastic block store (EBS). Each NC ran

on an i3.xlarge node with 4 vCPUs, 30.5GB of memory, a 950GB SSD,

and a 500GB EBS. We configured 4 partitions on each NC to exploit

the parallelism provided bymultiple cores. The native SSDwas used

for LSM storage and the EBS was used for transactional logging.

Each NC used a thread pool with 4 threads to execute LSM flush and

merge operations. Each LSM-tree used a size-tiered merge policy

with a size ratio of 1.2 throughout the experiments, which is similar

to the one used in other systems. This policy merges a sequence of

components when the total size of the younger components is 1.2

times larger than that of the oldest component in the sequence. We

allocated 26GB of memory for the AsterixDB instance. The buffer

cache size was set at 8GB and the memory component budget was

set at 2GB. Eachmemory-intensive query operator [46], such as sort,

hash join, and hash group by, received a 128MB memory budget.

Both the disk page size and memory page size were set at 16KB.

Workload. To understand the performance impact of different

rebalancing approaches on OLAP-style workloads, we used the

TPC-H [7] benchmark in our evaluation. We built two secondary

indexes, on LineItem and Orders, to enable index-only plans for

certain queries. The LineItem index contains l_shipdate, l_partkey,

l_suppkey, l_extendedprice, l_discount, and l_quantity. The Or-

ders index contains o_orderdate, o_custkey, o_shippriority, and

o_orderpriority. The scale factor of the TPC-H benchmark was set

to 100 times the number of NCs so that the total amount of data

scales linearly as the cluster size increases. Thus, each NC stored

100GB of TPC-H raw data. The primary index was compressed

for better storage efficiency. The total storage size at each NC, in-

cluding compressed primary indexes and uncompressed secondary

indexes, was about 130GB.

Evaluated Rebalancing Approaches.We evaluated three re-

balancing approaches. The first approach that we evaluated is Aster-

ixDB’s original global rebalancing approach with hash partitioning

(called łhashingž) as the baseline. This approach simply creates a

new dataset that is hash partitioned based on the new (target) set

of nodes during rebalancing. Although hashing achieves a near

perfect load balance, it incurs a very high rebalance cost and nearly

doubles the dataset’s disk usage during rebalancing. Second, we

evaluated DynaHash, where the maximum bucket size was set at

10GB. After loading the TPC-H data, each partition always had 4

buckets. Finally, we evaluated a static bucketing approach, called

StaticHash, that always splits a dataset into 256 buckets. Here 256

was determined by considering the largest cluster size in our evalu-

ation, i.e., 16, so that each partition can have 4 buckets. The actual

number of buckets per partition ranged from 32 to 4 as the number

of nodes varied from 2 to 16. Thus, evaluating StaticHash also shows

the performance impact of the number of buckets per partition.

6.2 Ingestion Performance

We first evaluated the ingestion performance of the different rebal-

ancing approaches. We used a TPC-H client that ran on a separate
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