

such as XML, in that it supports both ordered and unordered sibling

nodes within a single document. This uniqueness calls (1) for a

tree representation that models both types of siblings, and (2) for

a distance function that assesses the similarity of the resulting

trees. In particular, the support for unordered sibling collections

poses a computational challenge: We show that computing the

minimal difference between JSON documents is NP-hard when no

restrictions are imposed on the standard set of node edit operations,

i.e., insertion, deletion, and renaming.

We solve the problem of computing a minimal, edit-based dif-

ference between JSON documents. (1) We develop a lossless tree

representation of JSON that models both ordered and unordered

siblings. (2) We show that the edit distance in its general formu-

lation leads to non-intuitive results. We therefore restrict the edit

operations to respect the nested document structure of JSON and

propose the first edit-based distance measure for JSON documents,

called JSON Edit Distance (JEDI). The function guarantees that the

difference is minimal and the document nesting is respected.

We present an algorithm for JEDI, called QuickJEDI, which is

based on a recursive solution. Compared to previous edit distance

algorithms for related problems [59, 60], this algorithm leverages a

novel technique, the aggregate size bound, to prune the expensive

min-cost matching between sibling sets in each recursive step. This

optimization leads to runtime improvements of up to an order of

magnitude. We further propose the JSIM index that only searches

the 𝜏-range around the query document instead of scanning all

documents. JSIM is a 4-level tree and each level routes the search

into one or more branches. A new technique allows us to reduce the

𝜏-range at each level, thus reducing the total number of explored

branches. The documents returned by the index are filtered with a

highly effective upper bound based on tree sorting, for which we

improve the computational complexity from quadratic to linear.

The main contributions of this paper are:

• We show that the existing formulation of the tree edit dis-

tance can lead to non-intuitive results and is NP-hard for

JSON. To solve the problem, we introduce JSON trees, a loss-

less tree representation of JSON documents, and JEDI, the

first edit-based distance measure for JSON.

• We develop a new algorithm, QuickJEDI, for computing JEDI

in 𝑂 (𝑛2𝑑 log𝑑) time and 𝑂 (𝑛2) space for JSON trees of size

𝑛 and maximum degree 𝑑 . The algorithm leverages the new

aggregate size bound to prune expensive sibling matchings.

• To improve the performance of JSON similarity queries, we

introduce (1) a novel index called JSIM; (2) an effective upper

bound based on tree sorting, and an algorithm for computing

the bound in 𝑂 (𝑛𝜏) time and 𝑂 (𝑛 + 𝜏 log𝑛) space, which

substantially improves the previous best bound of 𝑂 (𝑛2)

time and 𝑂 (𝑛 log𝑛) space.

• Our empirical study on 22 JSON datasets suggests that our

solution scales to databases with millions of documents and

can handle large JSON trees with tens of thousands of nodes.

2 EDIT-BASED DISTANCE FOR JSON TREES

Wenow introduce a new distancemeasure that assesses theminimal

difference of two JSON documents by a given set of allowable edit

operations and a novel tree representation of JSON data. To our

best knowledge, this measure is the first distance for JSON that

respects its nested structure and provides quality guarantees, i.e.,

the difference defining the distance is guaranteed to be minimal.

The JSON Data Format. We recap the definition of the JSON data

format (cf. RFC8259 [8]). A JSON document is recursively composed

of values, arrays, and objects: (1) A value is either a literal (string,

number, boolean, or null), an object, or an array. (2) An array is an

ordered, possibly empty list of values enclosed by brackets. (3) An

object is an unordered, possibly empty collection of key-value pairs

enclosed by curly braces. The keys (called łnamesž in [8]) are string

literals that are unique within an object.

Example 1. The JSON document in Figure 1a is an object of

three key-value pairs. The keys are "title", "running time", and

"cast". The value of "cast" is an object, and the other values are

string and number literals.

2.1 JSON Tree Representation

Due to its recursive definition, JSON is hierarchically structured

and naturally represented as a tree. The specifics of transforming

a JSON document into a tree, however, are not obvious. Previous

attempts to model JSON as trees are unsuitable for distances based

on a minimal number of node edit operations because either (1) the

object and array information is not modelled [34, 46], e.g., [[’A’]]

and ’A’ are transformed to identical trees such that the structural

information is lost; or (2) arrays are modeled as objects with the

array index as a key [7, 47], which generates an error of𝑂 (𝑛) when

a single element in an array of size 𝑛 is missing . Consider two

arrays [’A’, ’B’, ’C’, ’D’] and [’B’, ’C’, ’D’]: the array

index keys of all identical elements differ due to element ’A’ that

is not present in the second array. Tree models for XML documents

are not suitable since XML is ordered by definition; although XML

has been modeled as unordered trees to capture the semantics of

data-centric XML [2], these models do not support a mix of ordered

and unordered siblings.

JSON Tree. We introduce the new concept of a JSON tree. The

constraints that we impose on JSON trees model all aspects of

JSON data and allow for a lossless transformation between JSON

documents and JSON trees.

A JSON tree 𝑇 = (𝑁, 𝐸,Λ,Ψ, <𝑆) is a tree with nodes 𝑁 and

edges 𝐸 ⊆ 𝑁 × 𝑁 . The label of node 𝑣 , Λ(𝑣), is a literal value; the

labels of array and object nodes are 𝑛𝑢𝑙𝑙 . Function Ψ assigns a type

to each node 𝑣 ∈ 𝑁 , Ψ(𝑣) ∈ {object, array, key, literal}. The

sibling order, <𝑆 , defines a strict, partial order on the nodes of a tree.

Two nodes 𝑥,𝑦 ∈ 𝑁 (𝑇) of a JSON tree are comparable, i.e., 𝑥 <𝑆 𝑦

or 𝑦 <𝑆 𝑥 , iff one of the following holds:

(1) 𝑥 and 𝑦 are children of the same array node; or

(2) there is an ancestor 𝑥 ′ of 𝑥 (including 𝑥) and an ancestor 𝑦′

of 𝑦 (including 𝑦) such that 𝑥 ′ and 𝑦′ are comparable.

In the second condition, 𝑥 <𝑆 𝑦 iff 𝑥 ′ <𝑆 𝑦′. Intuitively, the order

among the children of an array node imposes an order on the

subtrees rooted in these children; all other nodes are incomparable.

The children of an object node (i.e., key nodes) must have unique

labels among their siblings.

Session 22: Provenance and Uncertainty SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1585

{ }

𝑣11

"title" 𝑣10

"Star..." 𝑣9

"r.time" 𝑣8

125 𝑣7

"cast" 𝑣6

{ } 𝑣5

"Han" 𝑣2

"Ford"

𝑣1

"Leia" 𝑣4

"Fisher"

𝑣3

{ }

𝑤9

"cast" 𝑤4

[] 𝑤3

"Ford"

𝑤1
"Fisher"

𝑤2

"r.time" 𝑤8

125 𝑤7

"name" 𝑤6

"Star..." 𝑤5

𝑇1 𝑇2

Figure 2: JSON trees of the documents in Figure 1. Object

nodes are visualized as stars with symbol { }, array nodes as

triangles with symbol [], keys as rectangles, and literals as

ellipses with their original labels, respectively. Blue lines ś

depict the JSON editmapping, and vi,wj are node identifiers.

Transformation. A JSON document is transformed into a JSON

tree by recursively unnesting the document. Objects become nodes

of type object (label null) with key node children; a key node (la-

beled with its name) has a single child subtree that represents its

value; an array (label null) becomes an array node with the 𝑖-th

value in its list becoming the 𝑖-th child subtree defining the sibling

order <𝑆 . Literals are leaf nodes of type literal (labeled with the

respective literal value).

Example 2. Figure 2 shows the JSON tree representation of the

two documents in Figure 1.

Notation. With𝑁 (𝑇) resp. 𝐸 (𝑇), we denote the nodes resp. edges

of a JSON tree𝑇 . |𝑇 | = |𝑁 (𝑇) | is the size of𝑇 , 𝑣 ∈ 𝑇 is shorthand for

𝑣 ∈ 𝑁 (𝑇). The parent of a node 𝑣 ∈ 𝑇 is 𝑝 (𝑣), the set of its children

is 𝑐ℎ𝑑 (𝑣), the degree is 𝑑𝑒𝑔(𝑣) = |𝑐ℎ𝑑 (𝑣) |; the degree of tree 𝑇 ,

𝑑𝑒𝑔(𝑇), is the largest degree of a node in 𝑇 ; 𝑎𝑛𝑐 (𝑣) and 𝑑𝑒𝑠𝑐 (𝑣)

denote the set of ancestors resp. descendants of 𝑣 (excluding 𝑣). The

lowest common ancestor of two nodes 𝑣,𝑤 is 𝑙𝑐𝑎(𝑣,𝑤).

𝑇 [𝑣] denotes the subtree rooted in node 𝑣 . The subforest of node

𝑣 , denoted 𝐹 [𝑣], is the set of subtrees of its children, 𝑇 [𝑣𝑖], 𝑣𝑖 ∈

𝑐ℎ𝑑 (𝑣). If an order is defined on 𝑐ℎ𝑑 (𝑣), then the subforest 𝐹 [𝑣] is

ordered by the root nodes of its subtrees. We use 𝜖 to denote the

empty node, which is not part of any tree. We define 𝑇 [𝜖] to be the

empty subtree with 𝑁 (𝑇 [𝜖]) = ∅ and 𝐸 (𝑇 [𝜖]) = ∅, and 𝐹 [𝜖] = ∅ to

be the empty subforest. The postorder traversal recursively visits all

children of a node 𝑣 before visiting 𝑣 (ordered children in ascending

order and unordered children in arbitrary order; 𝑝𝑜𝑠𝑡 (𝑣) is the

position of node 𝑣 in a given postorder traversal.

2.2 JSON Edit Distance (JEDI)

Given two JSON trees, our goal is to assess their similarity. We

aim for a similarity measure that captures fine-grained differences,

allows an intuitive interpretation of the similarity value, and guaran-

tees the minimality of the similarity value. A well-known approach

that satisfies these requirements is the edit distance, which has

been applied to strings [58], trees [41], and graphs [23].

The edit distances for general, rooted, labeled trees [48, 61],

however, are not applicable to JSON trees since they can only deal

with either ordered or unordered trees, but not with a mix of the

two. In JSON trees, the order of array children must be respected,

whereas the order of object children must be ignored. Note that all

nodes in subtree𝑇 [𝑐𝑖] appear before the nodes in𝑇 [𝑐 𝑗] if 𝑐𝑖 <𝑆 𝑐 𝑗 ,

i.e., the order imposed by an array is propagated to the subtrees

rooted in the children. We are the first to define an edit distance

that can deal with both ordered and unordered siblings in a single

tree. Further, we respect the node types of JSON, e.g., a literal value

should not be aligned to a key node.

Similar to the edit distance for other data types, we define the

JSON edit distance (JEDI) as the minimum number of edit opera-

tions required to transform one tree to the other. Allowable opera-

tions include: delete node 𝑣 and connect its children to the parent

of 𝑣 ; insert a new node𝑤 between an existing node 𝑣 and a possibly

empty subset of 𝑣 ’s children; and rename the label of node 𝑣 .

JSON Edit Mapping. Following previous works, we formally de-

fine the JSON edit distance using the concept of an edit mapping.

The edit mapping aligns the nodes of the input trees,𝑇1 and𝑇2, and

must respect some constraints to be valid. The interpretation is as

follows: nodes in 𝑇1 that are not mapped are deleted, nodes in 𝑇2
that are not mapped are inserted, and nodes that are mapped are

renamed. The constraints imposed on the mapping control which

edit operations are allowable depending on the tree context; they

are discussed in detail below.

Definition 1 (JSON Edit Mapping). A mapping𝑀 ⊆ 𝑁 (𝑇1) ×

𝑁 (𝑇2) is a JSON edit mapping from 𝑇1 to 𝑇2 iff the following con-

straints hold for any node pairs (𝑣,𝑤), (𝑣 ′,𝑤 ′), (𝑣 ′′,𝑤 ′′) ∈ 𝑀 :

(1) 𝑣 = 𝑣 ′ iff𝑤 = 𝑤 ′ [one-to-one],

(2) 𝑣 is an ancestor of 𝑣 ′ iff𝑤 is an ancestor of𝑤 ′ [ancestor],

(3) 𝑡𝑦𝑝𝑒 (𝑣) = 𝑡𝑦𝑝𝑒 (𝑤) [type],

(4) if 𝑣 <𝑆 𝑣 ′ and 𝑤 is comparable to 𝑤 ′ in <𝑆 , then 𝑤 <𝑆 𝑤 ′

[array-order],

(5) 𝑙𝑐𝑎(𝑣, 𝑣 ′) is a proper ancestor of 𝑣 ′′ iff 𝑙𝑐𝑎(𝑤,𝑤 ′) is a proper

ancestor of𝑤 ′′ [document-preserving].

A mapping 𝑀 ′ ⊆ 𝑀 between two subforest 𝐹1 [𝑣] and 𝐹2 [𝑤] is an

edit mapping iff𝑀 ′ is an edit mapping from 𝑇1 [𝑣] to 𝑇2 [𝑤].

The cost of all edit operations is one except for rename: if the

labels of the mapped nodes are identical, then the cost is zero. The

cost of an edit mapping, 𝛾 (𝑀), is the total cost of all edit operations.

The edit distance is defined as the cost of the edit mapping with

the lowest cost.

Example 3. Figure 2 shows a JSON edit mapping between two

JSON trees. The cost of the mapping is 5: delete nodes "Han", "Leia",

and {} from the left tree; insert [] into the right tree; rename "title"

to "name". There is no mapping with a lower cost, thus JEDI is 5.

Constraints (1) and (2) of the edit mapping ensure that the node

mapping can be interpreted as a set of edit operations. Constraint (3)

ensures that labels can only be renamed between nodes of the same

type. This prevents that nodes with identical labels but different

types (e.g., a key and a literal value may have identical labels) are

mapped at zero cost, thus ignoring their difference. Note that it is

still possible to substitute (delete and insert) a node of one type

by a node of another type, but the cost is higher than for rename.

The array-order constraint (4) uses the partial order <𝑆 defined on

JSON trees to enforce the order imposed by array nodes; children

of object nodes are not restricted and can be arbitrarily mapped.

Session 22: Provenance and Uncertainty SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1586

Document-Preserving Constraint. The recursive definition of JSON

gives rise to its nested document structure. A nested document (e.g.,

representing the cast of a movie) often is meaningful only in the

context of the enclosing document (in the example, the movie the

cast belongs to). Constraint (5), the document-preserving constraint,

forces the edit mappings to respect the nested document structure of

JSON and leads to more intuitive mappings. In particular, shortcuts

that delete the root nodes of subtrees (thus disassembling the docu-

ments they root), rearrange their nested subtrees, and recompose

the nested subtrees into new documents by inserting new subtree

roots are prevented. We illustrate the effect of this constraint in

Example 4.

{ }

"𝑙1" 𝑣1

{ } 𝑜1

"𝑎" 𝑥1 "𝑏" 𝑥2

"𝑙2" 𝑣2

{ } 𝑜2

"𝑐" 𝑥3 "𝑑" 𝑥4

{ }

"𝑚1" 𝑤1

{ } 𝑜3

"𝑎" 𝑦1 "𝑐" 𝑦3

"𝑚2" 𝑤2

{ } 𝑜4

"𝑏" 𝑦2 "𝑑" 𝑦4

𝑇1 𝑇2

Figure 3: Edit mappings with and without the document-

preserving constraint.

Example 4. Consider the schematic illustration of the two JSON

trees 𝑇1 and 𝑇2 in Figure 3. Each tree consists of two subtrees 𝑇1 [𝑣1],

𝑇1 [𝑣2] resp. 𝑇2 [𝑤1], 𝑇2 [𝑤2], which in turn are composed of an object

node and two smaller subtrees 𝑇1 [𝑥𝑖] resp. 𝑇2 [𝑦 𝑗] each, 𝑖, 𝑗 ≤ 4. The

subtree pairs 𝑇1 [𝑥𝑖] and 𝑇2 [𝑦 𝑗], 𝑖 = 𝑗 , are identical (same color in

the figure) and are all of size 𝑛. Any two subtrees 𝑇1 [𝑣𝑖] and 𝑇2 [𝑤 𝑗],

𝑖 ≠ 𝑗 , are different with an edit mapping of cost 𝑂 (𝑛).

The minimum-cost edit mapping (with document-preserving con-

straint) will delete 𝑇1 [𝑥2] and 𝑇1 [𝑥3], and insert their identical coun-

terparts 𝑇2 [𝑦2] and 𝑇2 [𝑦3] since they belong to different documents

in 𝑇2. An edit mapping that does not respect the document-preserving

constraint, however, has only cost 8: delete nodes 𝑣1, 𝑣2, 𝑜1, 𝑜2, insert 𝑜3
as parent of𝑦1, 𝑦3; 𝑜4 as parent of𝑦2, 𝑦4;𝑤1 as parent of 𝑜3; and𝑤2 as

parent of 𝑜4. Without the document-preserving constraint, rearranged

subtrees form new documents, which is not desired for JSON trees.

As a pleasant side effect, the document-preserving constraint

substantially reduces the search space for the minimal cost mapping

and allows for faster algorithms. In fact, we show that finding a

minimum JSON edit mapping that ignores the document-preserving

constraint is an NP-hard problem [30]. The proof is by reducing

the problem of exact cover by 3-sets (X3C).

Theorem 1. Without the document-preserving constraint, the

problem of computing the JSON edit distance between two JSON

trees is NP-hard.

3 AN EFFICIENT ALGORITHM FOR JEDI

Next, we introduce QuickJEDI, an efficient algorithm for comput-

ing the JSON edit distance. We first discuss a baseline solution,

analyze its performance bottlenecks, and finally propose effective

techniques to address these bottlenecks.

3.1 A Baseline Algorithm

None of the previous algorithms that computes the minimum edit

distances between trees is applicable in our scenario due to the

type and the array-order constraints in the JSON edit mapping (cf.

Definition 1). Our baseline extends two algorithms for the so-called

constrained tree edit distance. These algorithms compute minimal

edits under the document-preserving constraint (constraint (5) in

the JSON edit mapping) for ordered [59] resp. unordered trees [60].

Since a single JSON tree may include both ordered and unordered

siblings, neither of the two algorithms is applicable; also, these

algorithms deal with generic trees and do not consider node types.

We recap the solutions for the constrained tree edit distance

and show how they can be extended to compute the JSON edit

distance. Both algorithms are based on a recursive solution that is

implemented using dynamic programming.

𝑣

𝑐1 𝑐𝑖 𝑐𝑙.

𝑤

𝑐′1 𝑐′𝑗 𝑐′𝑚
.

Figure 4: Recursive decomposition of two trees; pairs of sub-

trees resp. subforests of the same color form the subprob-

lems required to compute the distance btw. T[v] and T[w].

Recursive Solution. The recursive solution decomposes two trees

𝑇1 and 𝑇2 with root nodes 𝑣 ∈ 𝑇1 and 𝑤 ∈ 𝑇2 into subtrees and

subforests as illustrated in Figure 4. The distance between𝑇1 and𝑇2
is computed from the distances between the subproblems resulting

from their decomposition. With dt(𝑣,𝑤) we denote the tree distance

between subtrees 𝑇1 [𝑣] and 𝑇2 [𝑤], and df(𝑣,𝑤) denotes the forest

distance between subforests 𝐹1 [𝑣] and 𝐹2 [𝑤]. Then, the recursive

solution is defined as follows:

df(𝜖 , 𝜖) = 0; dt(𝜖 , 𝜖) = 0

df(v, 𝜖) =
∑

c∈chd(v)
dt(c, 𝜖); dt(v, 𝜖) = df(v, 𝜖) + 𝛾 (v, 𝜖) (1)

df(𝜖 , w) =
∑

c’∈chd(w)
dt(𝜖, c’); dt(𝜖 , w) = df(𝜖 , w) + 𝛾 (𝜖 , w)

df(v, w) = min





df(𝜖 , w) + minc’∈chd(w){df(v,c’) - df(𝜖 ,c’)} (2a)

df(v, 𝜖) +minc∈chd(𝑣) {df(c, w) - df(c, 𝜖)} (2b)

Min-cost-matching (chd(v), chd(w)) (2c)

dt(v, w) = min





dt(𝜖 , w) + minc’∈chd(w){dt(v, c’) - dt(𝜖 , c’)} (3a)

dt(v, 𝜖) +minc∈chd(v){dt(c, w) - dt(c, 𝜖)} (3b)

df(v, w) + 𝛾 (v, w) (3c)

The tree distance, dt(𝑣,𝑤), is the minimum cost of three scenarios

(cf. Figure 4 and Eq. 3), each of which represents an edit operation:

(3a)𝑤 is inserted, hence the nodes in subtree 𝑇1 [𝑣] are mapped to

the nodes of one of 𝑤 ’s children 𝑇2 [𝑐
′
𝑗] (green), (3b) 𝑣 is deleted,

hence the nodes of subtree𝑇2 [𝑤] are mapped to the nodes of one of

𝑣 ’s children𝑇1 [𝑐𝑖] (red), and (3c) 𝑣 is mapped to𝑤 with rename cost

𝛾 (𝑣,𝑤), hence also the subtrees of their children are mapped (blue);

𝛾 (𝑣, 𝜖) and 𝛾 (𝜖,𝑤) denote the cost of deleting resp. inserting a node.

The cost of matching the children of nodes 𝑣 and𝑤 in scenario (3c)

Session 22: Provenance and Uncertainty SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1587

𝑐ℎ𝑑 (𝑣)
𝑐1 𝑐2 𝑐𝑖 𝑐𝑙 𝜖 𝜖

𝑐ℎ𝑑 (𝑤)
𝑐′1 𝑐′2 𝑐′𝑗 𝑐′

𝑙
𝑐′
𝑙+1

𝑐′𝑚

𝑐𝑜𝑠𝑡 (𝑐𝑖 , 𝑐
′
𝑗) = 𝑑𝑡 (𝑐𝑖 , 𝑐

′
𝑗)

Figure 5: Bipartite graph for the nodes chd(v) and chd(w).

is equivalent to their forest distance df(𝑣,𝑤). The base cases of the

recursion are shown in Eq. 1. The forest distance, df(𝑣,𝑤), (cf. Eq. 2)

is computed analogously for insertion (2a) and deletion (2b). In the

third scenario (2c), a minimum-cost matching between the subtrees

rooted in 𝑐ℎ𝑑 (𝑣) and 𝑐ℎ𝑑 (𝑤) is established.

The minimum-cost matching M is one-to-one and models the

subtrees rooted in 𝑐ℎ𝑑 (𝑣) and 𝑐ℎ𝑑 (𝑤) as nodes of a bipartite graph

(cf. Figure 5); the cost of an edge between two subtrees rooted in

𝑐𝑖 ∈ 𝑐ℎ𝑑 (𝑣) and 𝑐 ′𝑗 ∈ 𝑐ℎ𝑑 (𝑤) is their tree distance, dt(𝑐𝑖 , 𝑐
′
𝑗). In

the unordered case [60], the minimum-cost bipartite graph match-

ing, 𝑀𝐵𝑃𝑀 (𝑣,𝑤) , with cost 𝛾 (𝑀𝐵𝑃𝑀 (𝑣,𝑤)) = 𝐵𝑃𝑀 (𝑣,𝑤) must be

computed (e.g., using a min-cost max-flow algorithm [50]). In the

ordered case [59], the subtree sequence edit distance matching,

𝑀𝑆𝐸𝐷 (𝑣,𝑤) , with cost 𝛾 (𝑀𝑆𝐸𝐷 (𝑣,𝑤))=𝑆𝐸𝐷 (𝑣,𝑤) must be computed.

Adaption to JSON. In Lemma 1, we show how previous solutions

can be extended to compute JEDI between two JSON trees.

Lemma 1. Given two JSON trees 𝑇1 and 𝑇2, the recursive formulas

(1), (2), and (3), compute the JSON edit distance between 𝑇1 and 𝑇2,

𝐽𝐸𝐷𝐼 (𝑇1,𝑇2) = dt(root(𝑇1), root(𝑇2)) with the following extensions:

(1) The minimum-cost matchingM ⊆ 𝑐ℎ𝑑 (𝑣) × 𝑐ℎ𝑑 (𝑤) observes

the node type:

M =

{
𝑀𝑆𝐸𝐷 (𝑣,𝑤) if type(v) = type(w) = array

𝑀𝐵𝑃𝑀 (𝑣,𝑤) otherwise
(4)

(2) The rename cost must be redefined as follows:

𝛾 ′(𝑣,𝑤) =

{
𝛾 (𝑣,𝑤) if 𝑡𝑦𝑝𝑒 (𝑣) = 𝑡𝑦𝑝𝑒 (𝑤)

𝛾 (𝑣, 𝜖) + 𝛾 (𝜖,𝑤) otherwise
(5)

Dynamic Programming Implementation. Algorithm 1 implements

the recursive solution of Lemma 1. The results for subproblems are

stored in two matrices, dt and df, each of size (|𝑇1 | + 1) × (|𝑇2 | + 1).

The distance between subtrees 𝑇1 [𝑣] and 𝑇2 [𝑤] is stored in row

𝑣 and column 𝑤 , and we refer to the value as dt(𝑣,𝑤); similarly,

df(𝑣,𝑤) stores the distance between subforests 𝐹1 [𝑣] and 𝐹2 [𝑤].

Table 1 shows examples of a forest and a tree distance matrix.

Initialization: The first row and column of each matrix are ini-

tialized in lines 1-8. Mapping two empty trees has cost 0; for all

other nodes, the cost results from summing up the deletion resp.

insertion costs of their child subtrees, e.g., dt(𝑣6, 𝜖) = 6 (cf. Table 1)

is the cost of deleting the subtree of node "cast" in Figure 2.

Distance Computation: The algorithm processes the tree nodes

bottom-up in postorder and the distance matrices are filled row by

row.We label the three cases in Eq. 2 (forest distance) with 𝑖𝑛𝑠𝐹 (2a),

𝑑𝑒𝑙𝐹 (2b), and 𝑟𝑒𝑛𝐹 (2c); the cases in Eq. 3 (tree distance) are labeled

𝑖𝑛𝑠𝑇 (3a), 𝑑𝑒𝑙𝑇 (3b), 𝑟𝑒𝑛𝑇 (3c). Due to the postorder traversal, all

values required to compute dt(𝑣,𝑤) and df(𝑣,𝑤) are available in

the distance matrices. To compute 𝑟𝑒𝑛𝐹 , a min-cost matchingM

among the children must be established. If both 𝑣 and𝑤 are array

nodes (ordered case), the edit distance between ordered sequences

of siblings establishes the min-cost matching (line 16), in all other

cases a bipartite graph matching must be computed (line 18). The

distance between 𝑇1 and 𝑇2 results in the lower right corner of the

tree distance matrix, e.g., dt(root(𝑇1), root(𝑇2)) = 5 in Table 1.

Complexity: The space complexity is dominated by the distance

matrices of size 𝑂 (|𝑇1 | |𝑇2 |). The runtime is dominated by the bi-

partite graph matching, which for a node pair 𝑣,𝑤 with degrees

𝑑𝑣 = 𝑑𝑒𝑔(𝑣) and 𝑑𝑤 = 𝑑𝑒𝑔(𝑤) is computed in time 𝑂 (𝑑𝑣 × 𝑑𝑤 ×

(𝑑𝑣 +𝑑𝑤) ×𝑙𝑜𝑔(𝑑𝑣 +𝑑𝑤)) using a min-cost max-flow algorithm [50].

For the overall algorithm (cf. Algorithm 1), the runtime complexity

is𝑂 (|𝑇1 | × |𝑇2 | × (𝑑𝑒𝑔(𝑇1) +𝑑𝑒𝑔(𝑇2)) × 𝑙𝑜𝑔(𝑑𝑒𝑔(𝑇1) +𝑑𝑒𝑔(𝑇2))) [60].

df 𝜖 𝑤1 𝑤2 . . . 𝑤6 𝑤9

𝜖 0 0 0 . . . 1 8

𝑣9 0 0 0 . . . 1 8

𝑣10 1 1 1 . . . 0 7
...

...
...

...
. . .

...
...

𝑣6 5 5 5 . . . 5 8

𝑣11 10 10 10 . . . 9 5

dt 𝜖 𝑤1 𝑤2 . . . 𝑤6 𝑤9

𝜖 0 1 1 . . . 2 9

𝑣9 1 1 1 . . . 1 8

𝑣10 2 2 2 . . . 1 8
...

...
...

...
. . .

...
...

𝑣6 6 5 5 . . . 6 8

𝑣11 11 10 10 . . . 10 5

Table 1: Forest and tree distance matrices df and dt for the

JSON trees in Figure 2.

3.2 Avoiding the Expensive Min-Cost Matching

JEDI must compute the min-cost matching between the child sub-

trees of each node pair of the input trees. This step is expensive and

dominates the overall runtime. In this section, we show that the

expensive min-cost computation can be avoided in many cases, thus

substantially improving the runtime of the distance computation.

The key idea is that the min-cost matching in Eq. (2) is the

minimum of three values. Two of them are efficient to compute,

one is the expensive matching. If we can show that the cost of the

matching is higher than one of the other two values, the exact cost

of the matching is irrelevant and the computation can be skipped.

We are the first to follow this approach. The challenge is to iden-

tify a lower bound on the min-cost matching that is both effective

and can be computed efficiently. Efficiency is crucial since the lower

bound filter will be evaluated in addition to the min-cost matching

whenever the filter cannot avoid the matching computation. The

min-cost matching is a bipartite graph matching in the unordered

case and a sequence edit distance computation in the ordered case.

Since the sequence edit distance cannot be smaller than the bipartite

graph matching cost, we focus on the bipartite graph matching.

Figure 5 illustrates the bipartite graph for the nodes 𝑐ℎ𝑑 (𝑣) and

𝑐ℎ𝑑 (𝑤). The edge cost 𝑐𝑜𝑠𝑡 (𝑐𝑖 , 𝑐
′
𝑗) between two nodes 𝑐𝑖 ∈ 𝑐ℎ𝑑 (𝑣)

and 𝑐 ′𝑗 ∈ 𝑐ℎ𝑑 (𝑤) is the tree distance between the subtrees rooted

in these nodes, dt(𝑐𝑖 , 𝑐
′
𝑗). To simplify the presentation, we assume

𝑙 = 𝑑𝑒𝑔(𝑣) < 𝑑𝑒𝑔(𝑤) =𝑚, i.e., 𝑘 =𝑚 − 𝑙 subtrees will be matched

to the empty tree. We denote the cost of the bipartite matching

between the children of two nodes 𝑣,𝑤 with 𝐵𝑃𝑀 (𝑣,𝑤).

Aggregate Size Bound. To establish a lower bound on the bi-

partite graph matching cost, we leverage the specific character-

istics of the edge costs in our scenario. Since the edge costs are

given by the respective subtree distances, we can bound the cost

Session 22: Provenance and Uncertainty SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1588

Algorithm 1: JEDI-baseline(𝑇1,𝑇2)

Input: JSON trees 𝑇1 and 𝑇2.

Result: JSON Edit Distance: JEDI(𝑇1, 𝑇2).

/* Initialization. */

1 dt(0, 0) = 0 /* Tree distance matrix of size 𝑇1 + 1 ×𝑇2 + 1. */

2 df(0, 0) = 0 /* Forest distance matrix of size 𝑇1 + 1 ×𝑇2 + 1. */

3 for 𝑣 in 𝑁 (𝑇1) do

4 df(𝑣 , 0) =
∑
𝑐∈𝑐ℎ𝑑 (𝑣) dt(𝑐 , 0)

5 dt(𝑣 , 0) = df(𝑣 , 0) + 𝛾 (𝑣, 𝜆)

6 for𝑤 in 𝑁 (𝑇2) do

7 df(0,𝑤) =
∑
𝑐’∈𝑐ℎ𝑑 (𝑤) dt(0, 𝑐’)

8 dt(0,𝑤) = df(0,𝑤) + 𝛾 (𝜆,𝑤)
/* Distance computation. */

9 for 𝑣 in 𝑁 (𝑇1) do /* In postorder. */

10 for𝑤 in 𝑁 (𝑇2) do /* In postorder. */

/* Cost for inserting node 𝑤. */

11 insF = df(0,𝑤) + min𝑐’∈𝑐ℎ𝑑 (𝑤) {df(𝑣 ,𝑐’) - df(0,𝑐’)}

12 insT = dt(0,𝑤) + min𝑐’∈𝑐ℎ𝑑 (𝑤) {dt(𝑣 ,𝑐’) - dt(0,𝑐’)}

/* Cost for deleting node 𝑣. */

13 delF = df(𝑣 , 0) + min𝑐∈𝑐ℎ𝑑 (𝑣) {df(𝑐 ,𝑤) - df(𝑐 ,0)}

14 delT = dt(𝑣 , 0) + min𝑐∈𝑐ℎ𝑑 (𝑣) {dt(𝑐 ,𝑤) - dt(𝑐 ,0)}

/* Cost for renaming node 𝑣 to node 𝑤. */

15 if type(v) == type(w) == array then

16 renF = SED(v, w)

17 else

18 renF = BPM(v, w)

19 df(𝑣 ,𝑤) = min{insF, delF, renF}

20 renT = df(𝑣 ,𝑤) + 𝛾 ’(𝑣,𝑤 ’)

21 dt(𝑣 ,𝑤) = min{insT, delT, renT}

22 return dt(𝑟𝑜𝑜𝑡 (𝑇1), 𝑟𝑜𝑜𝑡 (𝑇2))

by the size difference of the subtrees, 𝑐𝑜𝑠𝑡∗ (𝑐𝑖 , 𝑐
′
𝑗) = | (|𝑇 [𝑐𝑖] | −

|𝑇 [𝑐 ′𝑗] |) | ≤ 𝑐𝑜𝑠𝑡 (𝑐𝑖 , 𝑐
′
𝑗). A minimal matching 𝐵𝑃𝑀∗ (𝑣,𝑤) that uses

𝑐𝑜𝑠𝑡∗ (𝑐𝑖 , 𝑐
′
𝑗) cannot be more expensive than the original matching,

𝐵𝑃𝑀∗ (𝑣,𝑤) ≤ 𝐵𝑃𝑀 (𝑣,𝑤). We leverage this fact to derive a novel

lower bound based on subtree sizes. We define the sorted aggregate

size between start 𝑠 and end 𝑒 in a subforest 𝐹 [𝑣] as

𝑆𝐴𝑆 (𝑣, 𝑠, 𝑒) =

𝑒∑

𝑖=𝑠

|𝑇 [𝑐𝑖] |, 𝑐𝑖 ∈ 𝑐ℎ𝑑 (𝑣), (6)

where 𝑐𝑖 is the 𝑖-th smallest subtree in 𝐹 [𝑣] (ties broken arbitrarily).

The intuition of our bound is as follows: There exists a match-

ing with cost 𝐵𝑃𝑀 (𝑣,𝑤), 𝑑𝑒𝑔(𝑣) < 𝑑𝑒𝑔(𝑤), that matches the 𝑘 =

𝑑𝑒𝑔(𝑤) − 𝑑𝑒𝑔(𝑣) smallest subtrees to the empty tree, inducing cost

𝑆𝐴𝑆 (𝑤, 1, 𝑘). The matching cost between the remaining subtrees is

no larger than the difference of their aggregate subtree sizes.

Theorem 2 (Aggregate Size Bound). Given two JSON tree nodes

𝑣 ∈ 𝑇1,𝑤 ∈ 𝑇2. Let 𝑑𝑣 = 𝑑𝑒𝑔(𝑣), 𝑑𝑤 = 𝑑𝑒𝑔(𝑤), 𝑘 = 𝑑𝑤 − 𝑑𝑣 , and

𝑑𝑣 ≤ 𝑑𝑤 , then:

𝐵𝑃𝑀 (𝑣,𝑤) ≥ |𝑆𝐴𝑆 (𝑣, 1, 𝑑𝑣)−𝑆𝐴𝑆 (𝑤,𝑘+1, 𝑑𝑤) |+𝑆𝐴𝑆 (𝑤, 1, 𝑘).

Example 5. For the root nodes of the JSON trees in Figure 2,

𝐵𝑀𝑃 (𝑣11,𝑤9) = 5 and the aggregate size bound is 2 (𝑆𝐴𝑆 (𝑤9, 1, 𝑘) =

0 since both nodes have the same degree, i.e., 𝑘 = 0). In Figure 6,

𝑘 = 1 and the aggregate subtree bound is 9: 𝑆𝐴𝑆 (𝑤, 1, 𝑘) = 5 and

|𝑆𝐴𝑆 (𝑣, 1, 𝑑𝑣) − 𝑆𝐴𝑆 (𝑤,𝑘 + 1, 𝑑𝑤) | = 4. Note that our aggregate size

bound performs much better than a simple subtree size difference

bound, which is |𝑆𝐴𝑆 (𝑣, 1, 𝑑𝑣) − 𝑆𝐴𝑆 (𝑤, 1, 𝑑𝑤) | = 1 in this example.

𝑤

𝑐′1 𝑐′2 𝑐′3

6 5 6

5 11 17𝑣

𝑐′1 𝑐′2

8 8

8 16

Figure 6: SAS arrays for the aggregate size bound.

Efficient Computation of Aggregate Size Bound. The aggregate

size bound requires us to compute sums of subtree sizes. Since the

bound is computed 𝑂 (|𝑇1 | |𝑇2 |) times (for all pairs of parent nodes),

computing these sums is too expensive. We precompute an array

SAS𝑣 of size𝑑𝑒𝑔(𝑣) for each node 𝑣 ∈ 𝑇1 with SAS𝑣 [𝑖] = 𝑆𝐴𝑆 (𝑣, 1, 𝑖)

(cf. Eq. (6)); analogously SAS𝑤 for all𝑤 ∈ 𝑇2 is computed. Thanks

to the SAS arrays we can compute the bound in constant time:

|𝑆𝐴𝑆 (𝑣, 1, 𝑑𝑣) − 𝑆𝐴𝑆 (𝑤,𝑘 + 1, 𝑑𝑤) | + 𝑆𝐴𝑆 (𝑤, 1, 𝑘) =

|SAS𝑣 [𝑑𝑣] − SAS𝑤 [𝑑𝑤] + SAS𝑤 [𝑘] | + SAS𝑤 [𝑘] (7)

Example 6. SAS𝑤9 = [2, 4, 8] for root node𝑤9 in Figure 2. Figure 6

shows the SAS arrays for the root nodes 𝑣 and𝑤 of the example trees.

Local Greedy Lower Bound. The local greedy lower bound on

𝐵𝑃𝑀 (𝑣,𝑤) matches each node by following the lowest cost edge.

The result may violate the one-to-one requirement and therefore

may not be a valid matching. Similar bounds have been used before

(e.g., [45]). Since this bound is as expensive as the sequence edit

distance (quadratic in the node degrees as all edge costs must be

checked), it is only useful for the bipartite graph matching.

Lemma 2 (Local Greedy Lower Bound). Let𝑇1,𝑇2 be JSON trees,

𝑣 ∈ 𝑇1,𝑤 ∈ 𝑇2. Let𝐺𝑀𝑣 ⊆ 𝑐ℎ𝑑 (𝑣)×𝑐ℎ𝑑 (𝑤) map 𝑐𝑖 ∈ 𝑐ℎ𝑑 (𝑣) to some

𝑐 𝑗 ∈ 𝑐ℎ𝑑 (𝑤) such that dt(𝑐𝑖 , 𝑐 𝑗) is minimal;𝐺𝑀𝑤 ⊆ 𝑐ℎ𝑑 (𝑤)×𝑐ℎ𝑑 (𝑣)

is defined analogously:

𝐵𝑃𝑀 (𝑣,𝑤) ≥ max{𝛾 (𝐺𝑀𝑣), 𝛾 (𝐺𝑀𝑤)}

We show how to compute 𝐺𝑀𝑣 and 𝐺𝑀𝑤 with low overhead:

While we build the bipartite graph and retrieve all edge costs be-

tween the children of two nodes 𝑣,𝑤 , we maintain the minimum

cost edge for each node 𝑐𝑖 ∈ 𝑐ℎ𝑑 (𝑣) and 𝑐 ′𝑗 ∈ 𝑐ℎ𝑑 (𝑤). In a single

pass over the nodes, we get 𝐺𝑀𝑣 and 𝐺𝑀𝑤 with linear overhead.

An interesting opportunity arises when 𝐺𝑀𝑣 or 𝐺𝑀𝑤 is one-to-

one: In this case, we can skip the bipartite graph matching since

𝐵𝑃𝑀 (𝑣,𝑤) = max{𝛾 (𝐺𝑀𝑣), 𝛾 (𝐺𝑀𝑤)} and we know the exact costs.

3.3 The QuickJEDI Algorithm

We present QuickJEDI, our efficient algorithm for computing the

JSON edit distance. QuickJEDI extends JEDI-baseline (Algorithm 1)

with the results in Section 3.2. While the baseline must compute the

expensive min-cost matching between the children of each node

pair (𝑣,𝑤), QuickJEDI checks the aggregate size bound (cf. Th. 2) to

assess whether the matching is required. The aggregate size bound

Session 22: Provenance and Uncertainty SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1589

is a lower bound for both types of min-cost matchings: the sequence

edit distance, 𝑆𝐸𝐷 (𝑣,𝑤), for pairs of array nodes, and the bipartite

graph matching, 𝐵𝑃𝑀 (𝑣,𝑤), which is applied otherwise. Only if

the lower bound is smaller than both 𝑖𝑛𝑠𝐹 and 𝑑𝑒𝑙𝐹 (line 2), the min-

cost matching must be computed. Before computing 𝐵𝑃𝑀 (𝑣,𝑤),

we also check the local greedy lower bound (cf. Lemma 2).

We further avoid the min-cost matching for two special cases

(omitted in Algorithm 2 for brevity): if both 𝑣 and𝑤 are key nodes,

they have only one child each (𝑐𝑣 resp. 𝑐𝑤), and 𝑟𝑒𝑛𝐹 = dt(𝑐𝑣, 𝑐𝑤).

If both 𝑣 and𝑤 are literal values, they are leaves, and 𝑟𝑒𝑛𝐹 = 0.

Algorithm 2: QuickJEDI(𝑇1,𝑇2)

Input: JSON trees 𝑇1 and 𝑇2.

Result: JSON Edit Distance: JEDI(𝑇1, 𝑇2).

/* Lines 1-14 from Algorithm 1 */

1 𝐴𝑔𝑔𝑆𝑖𝑧𝑒𝐵𝑑 = |SAS𝑣 [𝑑𝑣] −SAS𝑤 [𝑑𝑤] +SAS𝑤 [𝑘] | +SAS𝑤 [𝑘]

2 if 𝐴𝑔𝑔𝑆𝑖𝑧𝑒𝐵𝑑 < min{𝑖𝑛𝑠𝐹, 𝑑𝑒𝑙𝐹 } then

3 if type(v) == type(w) == array then

4 renF = SED(v, w)

5 else

6 𝐿𝑜𝑐𝑎𝑙𝐺𝑟𝑒𝑒𝑑𝑦𝐵𝑑 = max{𝛾 (𝐺𝑀𝑣), 𝛾 (𝐺𝑀𝑤)}

7 if 𝐿𝑜𝑐𝑎𝑙𝐺𝑟𝑒𝑒𝑑𝑦𝐵𝑑 < min{𝑖𝑛𝑠𝐹, 𝑑𝑒𝑙𝐹 } then

8 renF = BPM(v, w)
/* Lines 19-21 from Algorithm 1 */

9 return dt(𝑟𝑜𝑜𝑡 (𝑇1), 𝑟𝑜𝑜𝑡 (𝑇2))

4 THE JEDIORDER FILTER

In this section, we propose JediOrder, a highly effective upper bound

filter on the JSON edit distance. In a JSON similarity query, the upper

bound is evaluated before JEDI: if the upper bound is within the

similarity threshold 𝜏 , the expensive JEDI needs not be computed.

We discuss Wang's algorithm [55], the fastest known algorithm

that (with some adaptions to JSON trees) computes JediOrder.Wang's

algorithm is faster than JEDI (quadratic vs. cubic) and requires less

space. It turns out, however, that Wang's algorithm is still too slow

to be used as an upper bound filter. The upper bound is computed

for all tree pairs, but can only avoid the JEDI computation when

the upper bound is within the threshold 𝜏 . Whenever the upper

bound is larger than 𝜏 (including the cases when the true distance

is larger), JEDI must be computed in addition to JediOrder.

To pay off, the upper bound filter must incur very low cost

compared to the computation of the exact distance. To this end, we

develop a new algorithm, called JOFilter, that takes the similarity

threshold 𝜏 into account. JOFilter only assesses whether JediOrder

is within threshold 𝜏 (which is enough for the filter purpose) and

avoids computing the exact JediOrder value otherwise. With a

clever tree traversal that considers only relevant node pairs, we

achieve linear runtime (vs. quadratic runtime of Wang's algorithm).

4.1 Tree Sorting and Upper Bound Guarantee

JediOrder sorts the children of object nodes in a JSON document

lexicographically by their keys; recall that the keys are string liter-

als that are unique within an object. The result is an ordered JSON

tree in which all sibling collections are totally ordered (cf. Figure 7).

{ }

𝑣11

"cast" 𝑣6

{ } 𝑣5

"Han" 𝑣2

"Ford"

𝑣1

"Leia" 𝑣4

"Fisher"

𝑣3

"r.time" 𝑣8

125 𝑣7

"title" 𝑣10

"Star..." 𝑣9

{ }

𝑤9

"cast" 𝑤4

[] 𝑤3

"Ford"

𝑤1
"Fisher"

𝑤2

"name" 𝑤6

"Star..." 𝑤5

"r.time" 𝑤8

125 𝑤7

𝑇1 𝑇2

Figure 7: Sorted JSON trees from Figure 2 including the or-

dered JSON edit mapping ś, postorder numbers vi and wj,

and favorable children •.

JediOrder computes theminimal, edit-based distance between sorted

JSON trees. Thanks to the order, JediOrder does not need to com-

pute a bipartite graph matching, 𝐵𝑃𝑀 (𝑣,𝑤), between the children

of two nodes 𝑣 and𝑤 ; instead, the cheaper sequence edit distance,

𝑆𝐸𝐷 (𝑣,𝑤), is evaluated (cf. Section 3.1). Formally, JediOrder is de-

fined as the cost of the min-cost mapping that satisfies Definition 2.

Definition 2 (Ordered JSON Edit Mapping). A JSON edit

mapping𝑀 is ordered iff for any node pairs (𝑣,𝑤), (𝑣 ′,𝑤 ′) ∈ 𝑀 :

• 𝑣 is to the left1 of 𝑣 ′ iff𝑤 is to the left of𝑤 ′ [order].

Example 7. Considering the (ordered) JSON edit mappings in

Figures 2 and 7, 𝐽𝐸𝐷𝐼 (𝑇1,𝑇2) = 5 vs. 𝐽𝑒𝑑𝑖𝑂𝑟𝑑𝑒𝑟 (𝑇1,𝑇2) = 8. Due to

the lexicographical order of the key nodes in Figure 7, the node pairs

(𝑣9,𝑤5) and (𝑣10,𝑤6) violate the order constraint and are not in the

minimum-cost ordered JSON edit mapping.

The order constraint in Definition 2 subsumes the array-order in

Definition 1, thus JediOrder provides an upper bound for JEDI.

Theorem 3 (JediOrder Upper Bound). Given JSON trees 𝑇1, 𝑇2,

then 𝐽𝑒𝑑𝑖𝑂𝑟𝑑𝑒𝑟 (𝑇1,𝑇2) ≥ 𝐽𝐸𝐷𝐼 (𝑇1,𝑇2).

4.2 JediOrder Baseline: Wang's Algorithm

JediOrder is based on sorted, hence, ordered trees. As a baseline

algorithm for JediOrder, we adapt the state-of-the-art constraint

tree edit distance algorithm by Wang and Zhang [55], which runs

in 𝑂 (|𝑇1 | |𝑇2 |) time and 𝑂 (|𝑇2 | log |𝑇1 |) space, to JSON trees.

Recursive Solution: The recursive solution discussed in Section 3.1

(cf. Eq. 1-3 and Lemma 1) also holds for JediOrder. Due to the total

order among siblings, the minimum-cost matching in Eq. 2c is

always computed by the sequence edit distance (rather than the

more expensive bipartite graph matching). Zhang [59] shows the

correctness of the recursion.

Memory Efficient Implementation: Similar to Algorithm 1, Wang's

algorithm uses dynamic programming and a nested loop over all

node pairs of the input trees 𝑇1 and 𝑇2. To reduce the memory

complexity, Wang implements two key ideas: (1) The deletion and

rename costs of a node 𝑣 ∈ 𝑇1 (delF/delT and renF/renT in Algo-

rithm 1) w.r.t. all nodes 𝑤 ∈ 𝑇2 (inner loop) are computed incre-

mentally while the children of 𝑣 are processed (in the outer loop).

1𝑣 is to the left of 𝑣′ if 𝑣 is not a descendant of 𝑣′ and precedes 𝑣′ in postorder.

Session 22: Provenance and Uncertainty SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1590

The required cost arrays of size |𝑇2 | are maintained with each node

𝑣 ; they are allocated when the first child of 𝑣 is processed and are

released after processing 𝑣 . (2) The nodes of 𝑇1 (outer loop) are

processed in favorable child order, a postorder traversal that visits

the so-called favorable child (defined as the child with the largest

subtree) first and all other children in the usual left-to-right order.

This traversal guarantees that only log |𝑇1 | nodes 𝑣 ∈ 𝑇1 maintain

their cost arrays concurrently, thus reducing the memory com-

plexity from quadratic to 𝑂 (|𝑇2 | log |𝑇1 |). In Figure 7, the favorable

children of 𝑇1 are marked with an orange bullet •.

We will reuse these concepts and in addition leverage the simi-

larity threshold to evaluate the JediOrder filter in linear time.

4.3 Leveraging the Distance Threshold

In the similarity lookup scenario, we are only interested in assessing

whether JediOrder is within the similarity threshold 𝜏 . Hence, we

do not need to consider mappings𝑀𝐽𝑂 with a cost larger than 𝜏 .

On top of the two optimizations of Wang's algorithm (cf. Sec-

tion 4.2), we add a third key idea: (3) leverage the user-defined

similarity threshold 𝜏 in combination with the postorder lower

bound (cf. Lemma 3) to reduce the number of relevant node pairs.

Lemma 3 (Postorder Lower Bound [31]). Given an ordered

JSON edit mapping 𝑀𝐽𝑂 with cost 𝛾 (𝑀𝐽𝑂), for every node pair

(𝑣,𝑤) ∈ 𝑀𝐽𝑂 the following holds: |𝑝𝑜𝑠𝑡 (𝑣) − 𝑝𝑜𝑠𝑡 (𝑤) | ≤ 𝛾 (𝑀𝐽𝑂).

In similarity queries, the distance is bounded by the threshold

𝜏 . Therefore, Lemma 3 implies that there are only 2𝜏 + 1 eligible

mapping partners𝑤 ∈ 𝑇2 for a given node 𝑣 ∈ 𝑇1 such that the cost

of the overall ordered JSON edit mapping is within 𝜏 . We refer to

the eligible nodes𝑤 ∈ 𝑇2 as the 𝜏-range of a node 𝑣 ∈ 𝑇1.

Example 8. Consider the JSON trees in Figure 7 and a threshold

𝜏 = 2. Any ordered JSON edit mapping that maps 𝑣6 to a node in 𝑇2
and has a cost of at most 𝜏 must map node 𝑣6 to a node in its 𝜏-range,

i.e.,𝑤4,𝑤5,𝑤6,𝑤7, or𝑤8.

Our goal is to apply the 𝜏-range inWang’s algorithm to avoid the

nested loop over all node pairs. In particular, we strive to replace

the inner loop over all nodes of 𝑇2 by a constant 𝜏-range of 2𝜏 + 1

nodes. This has an impact on the computation of the tree, the forest,

and the sequence edit distance (SED) matrices.

In the tree and forest distance matrix, at most 2𝜏+1 cells are filled

per row. The other cells are guaranteed to exceed the threshold due

to the 𝜏-range and do not need to be computed. Whenever these

cells appear in a minimum computation, their value is considered

to be infinite. If the overall mapping cost is within the threshold,

the matrices store the correct JediOrder values. The correctness

proof for the tree and the forest distance matrix is similar to the

proof for the SED matrix, which we discuss in detail below.

We leverage the 𝜏-range also for SED, which is used to compute

the minimum-cost matching between the ordered children of two

nodes. A sequence edit matching must satisfy Definition 3.

Definition 3 (Seqence EditMatching). Matching𝑀𝑆𝐸𝐷 (𝑚,𝑛)

⊆ 𝑐ℎ𝑑 (𝑚) × 𝑐ℎ𝑑 (𝑛),𝑚 ∈ 𝑇1 and 𝑛 ∈ 𝑇2, is a sequence edit matching

iff for any pairs (𝑣,𝑤), (𝑣 ′,𝑤 ′) ∈ 𝑀𝑆𝐸𝐷 (𝑚,𝑛) the following holds:

• 𝑣 = 𝑣 ′ iff𝑤 = 𝑤 ′ [one-to-one],

• 𝑣 is to the left of 𝑣 ′ iff𝑤 is to the left of𝑤 ′ [order].

Restricting SED to the 𝜏-range results in 𝜏-restricted SED match-

ings and the corresponding 𝜏-sequence edit distance (𝜏SED).

Definition 4 (𝜏-restricted). Let𝑀𝜏𝑆𝐸𝐷 (𝑚,𝑛) ,𝑚 ∈ 𝑇1 and 𝑛 ∈

𝑇2, be a sequence edit matching. 𝑀𝜏𝑆𝐸𝐷 (𝑚,𝑛) is 𝜏-restricted iff for

any pair (𝑣,𝑤) ∈ 𝑀𝜏𝑆𝐸𝐷 (𝑚,𝑛) the following holds:

• |𝑝𝑜𝑠𝑡 (𝑣) − 𝑝𝑜𝑠𝑡 (𝑤) | ≤ 𝜏 [𝜏-range].

The cost of a minimal SED matching 𝛾 (𝑀𝑆𝐸𝐷 (𝑚,𝑛)) is identical

to the cost of a minimal 𝜏-restricted SED matching 𝛾 (𝑀𝜏𝑆𝐸𝐷 (𝑚,𝑛))

whenever the overall JediOrder value is within the threshold 𝜏 (cf.

Theorem 4). Otherwise,𝛾 (𝑀𝜏𝑆𝐸𝐷 (𝑚,𝑛)) provides an upper bound on

𝛾 (𝑀𝑆𝐸𝐷 (𝑚,𝑛)) and hence an upper bound on 𝛾 (𝑀𝐽𝑂) is computed.

However, only tree pairs with 𝛾 (𝑀𝐽𝑂) ≤ 𝜏 have to be considered

in a similarity lookup.

Theorem 4 (Exact 𝜏𝑆𝐸𝐷). If the minimal ordered JSON edit

mapping 𝑀𝐽𝑂 between 𝑇1 and 𝑇2 has a cost of 𝛾 (𝑀𝐽𝑂) ≤ 𝜏 , then

𝛾 (𝑀𝜏𝑆𝐸𝐷 (𝑚,𝑛)) = 𝛾 (𝑀𝑆𝐸𝐷 (𝑚,𝑛)) for any node pair (𝑚,𝑛) ∈ 𝑀𝐽𝑂 .

Note that 𝜏SED is superior to a simple approach that uses a

threshold on the string edit distance [44]. While 𝜏SED prunes based

on the postorder positions in the tree, the latter approach prunes

based on the position in the string/sequence. Hence, for subtrees

of size larger than one, 𝜏SED provides better pruning power than

the simple approach, and the same pruning power otherwise.

Example 9. Table 2 shows the SED matrix for the root nodes 𝑣11
and𝑤9 of the trees in Figure 7. Consider node 𝑣8 (at sequence position

2 and postorder 8) and a threshold 𝜏 = 2. The unrestricted SED

must compute all cells of the matrix. The simple threshold-based

approach for the string edit distance must compute all cells for nodes

with sequence positions 2 ± 2, i.e., all nodes 𝑤𝑐 ∈ 𝑐ℎ𝑑 (𝑤9) must be

considered. 𝜏SED, however, only computes the cells in the 𝜏-range of

the postorder positions (highlighted in green), e.g., for node 𝑣8 only

nodes with postorder positions 8±2 (𝑤6 and𝑤8) need to be considered.

chd(𝑤9)

SED 𝜖 𝑤4 𝑤6 𝑤8

ch
d
(𝑣
11
) 𝜖 0 4 6 8

𝑣6 6 4 6 8

𝑣8 8 6 6 6

𝑣10 10 8 7 8

Table 2: SED(v11,w9)matrix of the root nodes in Figure 7. For

threshold τ = 2, τSED only computes the cells highlighted in

green.

4.4 Challenges of Applying the 𝜏-Range

For the loop variables 𝑣 ∈ 𝑇1 and𝑤 ∈ 𝑇2, Wang computes row 𝑣 of

the SED(𝑝 (𝑣),𝑤) matrix (cf. Algorithm 3). This matrix has a row

for each child of 𝑝 (𝑣) and a column for each child of𝑤 .

To apply the 𝜏-range in Wang's algorithm, (1) the inner loop over

all node pairs must be restricted to the nodes in the 𝜏-range and

(2) the SED must be 𝜏-restricted. Unfortunately, extending Wang's

algorithm with the 𝜏-range (highlighted in line 2, Algorithm 3) will

lead to incorrect results. Consider the matrix of the SED(𝑣18,𝑤18)

computation between the two identical JSON trees in Figure 8 with

Session 22: Provenance and Uncertainty SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1591

Algorithm 3: Wang(𝑇1,𝑇2, 𝜏)

Input: JSON trees 𝑇1 and 𝑇2, and threshold 𝜏 .

/* Outline of SED computation in Wang's algorithm. */

1 for 𝑣 in 𝑇1 do

2 for𝑤 in 𝑇2 with |𝑝𝑜𝑠𝑡 (𝑣) − 𝑝𝑜𝑠𝑡 (𝑤) | ≤ 𝜏 do

3 for 𝑐 in 𝑐ℎ𝑑 (𝑤) do

4 Compute cell (v,c) of the SED(p(v), w) matrix.

𝑣18

𝑣2 𝑣5 𝑣17

𝑤18

𝑤2 𝑤5 𝑤17

Figure 8: Two identical JSON trees T1 and T2.

𝜏 = 2. Wang's algorithm computes row 𝑣2 while processing 𝑣2 in

the outer loop and 𝑤18 in the inner loop. However, 𝑤18 is not in

the 𝜏-range of 𝑣2; hence the node pair (𝑣2,𝑤18) is not considered

in the nested loop, and row 𝑣2 in the SED matrix is not filled.

4.5 The JOFilter Algorithm

We now present a novel algorithm, called JOFilter, that assesses

whether JediOrder is within a given threshold 𝜏 . Our solution is

able to leverage all key ideas of the space-efficient algorithm by

Wang (incremental cost computation and favorable child order,

cf. Section 4.2) and the 𝜏-range introduced in Section 4.3. In the

following, we discuss the key challenges that must be addressed

and show that JOFilter runs in𝑂 (𝑛𝜏) time and𝑂 (𝑛 + 𝜏 log𝑛) space.

Cost arrays of size 𝜏 . Similar to Wang's algorithm, we split the

auxiliary matrices into rows and store each row with the relevant

nodes 𝑣 ∈ 𝑇1. A node 𝑣 maintains the following data: row 𝑣 of

(1) the tree and (2) the forest distance matrix, denoted v.dt and

v.df, respectively; (3) the tree distance matrix row of 𝑣 ’s favorable

child, v.dtfc; finally, (4) two rows of the SED(𝑣,𝑤) matrices for

all 𝑤 ∈ 𝑇2, denoted 𝑣 .𝑠𝑒𝑑𝐿0 , and 𝑣 .𝑠𝑒𝑑𝐿1 , which are sufficient to

compute SED [27]. Due to the 𝜏-range, the size of these cost arrays

(i.e., matrix rows) can be reduced from𝑂 (|𝑇2 |) in Wang's algorithm

to 𝑂 (𝜏) in JOFilter. Summarizing, a node 𝑣 ∈ 𝑇1 stores auxiliary

data of size 𝑂 (𝜏). Moreover, the insertion (resp. deletion) costs of

node 𝑣 in the forest, tree, and SED matrices, denoted v.df𝜖 , v.dt𝜖 ,

and v.se𝑑𝜖 , are stored in global arrays of size |𝑇2 |.

Logarithmic number of active nodes. A node is called active while

the node and its auxiliary data are held in main memory. A node 𝑣

becomes active when its favorable child is processed and inactive

after 𝑣 itself was processed. The favorable child order guarantees

that at most 𝑂 (log |𝑇1 |) nodes are active at any time [55].

Applying the 𝜏-range. We apply the 𝜏-range by replacing the

inner loop over all nodes𝑤 ∈ 𝑇2 by a constant range of 2𝜏 +1 nodes.

As shown in Section 4.4, applying the 𝜏-range in Wang's algorithm

leads to incorrect results. We therefore adapt the computation order

of the values in the SED computation as shown in Algorithm 4:

only a single cell (𝑣,𝑤) of the SED(𝑝 (𝑣), 𝑝 (𝑤)) matrix is filled in

the inner loop rather than an entire matrix row. Since 𝑣 and𝑤 are

Algorithm 4: JOFilter(𝑇1,𝑇2, 𝜏)

Input: JSON trees 𝑇1 and 𝑇2, and threshold 𝜏 .

/* Outline of SED computation in the JOFilter. */

1 for 𝑣 in 𝑇1 do

2 for𝑤 in 𝑇2 with |𝑝𝑜𝑠𝑡 (𝑣) − 𝑝𝑜𝑠𝑡 (𝑤) | ≤ 𝜏 do

3 Compute cell (v,w) of the SED(p(v), p(w)) matrix.

the loop variables, we guarantee that all node pairs in the 𝜏-range

are considered in the SED computation.

Algorithm. We present the pseudocode of our solution, JOFilter,

in Algorithm 5. Note that 𝑙𝑠 (𝑣) denotes the left sibling of node 𝑣 and

a dot ’.’ accesses the data of a given node. The nodes 𝑣 ∈ 𝑇1 (outer

loop) are traversed in favorable child order, while the nodes𝑤 ∈ 𝑇2
(inner loop) are traversed in postorder. To avoid the computation

between all node pairs, we apply the 𝜏-range (cf. Lemma 3) in the

inner loop. Assuming that the rename and deletion costs are given,

we first compute the tree and forest distance between nodes 𝑣 and

𝑤 (cf. lines 4-9). In the remainder of the algorithm (cf. lines 10-28),

the deletion and rename costs for the parent of node 𝑣 are computed

incrementally. After processing all node pairs, the overall distance

is stored in the tree distance matrix line of the root node of 𝑇1,

𝑟𝑜𝑜𝑡 (𝑇1).𝑑𝑡 (𝑟𝑜𝑜𝑡 (𝑇2)). The filter only accepts a tree pair (𝑇1,𝑇2) iff

JediOrder(𝑇1,𝑇2) ≤ 𝜏 (cf. line 29).

Complexity. For each node 𝑣 ∈ 𝑇1 only 2𝜏 + 1 nodes𝑤 ∈ 𝑇2 are

considered (cf. Lemma 3). Therefore, the overall time complexity is

𝑂 (|𝑇1 |𝜏). The space complexity is dominated by the global arrays

of size𝑂 (|𝑇2 |) that store the insertion (resp. deletion) costs of node

𝑣 in the forest, tree, and SED matrices. Each active node fits in𝑂 (𝜏)

space and there are at most𝑂 (log |𝑇1 |) active nodes at any point in

time, leading to an overall space complexity of 𝑂 (|𝑇2 | + 𝜏 log |𝑇1 |).

5 JSIM: JSON SIMILARITY INDEX

We now present the JSIM index for JSON similarity queries and

discuss the use of index and filters in the similarity query context.

The input to the JSIM index over a tree database T is a query tree

𝑇𝑞 and a threshold 𝜏 , the output is a candidate set 𝐶 ⊆ T that is a

superset of the query result, 𝑅 = {𝑇𝑖 ∈ T | 𝐽𝐸𝐷𝐼 (𝑇𝑞,𝑇𝑖) ≤ 𝜏} ⊆ 𝐶 .

Existing indexing techniques for tree similarity queries [31, 49]

require ordered trees. They leverage concepts that (due to the miss-

ing order of object nodes) are not applicable to JSON, e.g., the

postorder position of nodes in the tree [31] or an order-based parti-

tioning of trees into subgraphs [49]. Sorting JSON trees does not

solve the problem: The distance between sorted trees may increase

w.r.t. JEDI such that the index fails to retrieve relevant trees.

Our JSIM index leverages a novel lower bound for JSON trees,

called JSON region bound, that is based on the position of a node in

the tree. Based on this lower bound and a node label filter, we build

an effective multi-level index that only returns trees 𝑇𝑖 ∈ T that

pass all filters. Moreover, we introduce a technique that decreases

the search threshold level by level during the index lookup. This

allows us to aggressively prune index branches at deeper index

levels.

Session 22: Provenance and Uncertainty SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1592

Algorithm 5: JOFilter(𝑇1,𝑇2, 𝜏)

Input: JSON trees 𝑇1 and 𝑇2, and threshold 𝜏 .

Result: True if JediOrder(𝑇1, 𝑇2) ≤ 𝜏 , False otherwise.

1 for 𝑣 in 𝑇1 do /* Favorable child order */

2 p = p(v)

3 for𝑤 with |𝑝𝑜𝑠𝑡 (𝑣) − 𝑝𝑜𝑠𝑡 (𝑤) | ≤ 𝜏 do /* Postorder */

/* Cost for inserting node 𝑤. */

4 insF = w.df𝜖 + min𝑐∈𝑐ℎ𝑑 (𝑤) {v.df(c) - c.df𝜖 }

5 insT = w.dt𝜖 + min𝑐∈𝑐ℎ𝑑 (𝑤) {v.dt(c) - c.dt𝜖 }

/* Costs for deleting and renaming already computed. */

6 renF = v.sed𝐿0 (𝑤𝑡) /* 𝑤’s rightmost child 𝑤𝑡 . */

7 v.df(w) = min{insF, v.delF(w), renF}

8 renT = v.df(w) + min{𝛾 (𝑣,𝑤), 𝛾 (𝑣, 𝜆) + 𝛾 (𝜆,𝑤)}

9 v.dt(w) = min{insT, v.delT(w), renT}

/* Compute deletion and rename costs for parent. */

10 if v is favorable child then

11 p.dtfc(w) = v.dt(w)

12 p.delF(w) = v.df𝜖 + v.df(w) - v.df𝜖
13 p.delT(w) = v.dt𝜖 + v.dt(w) - v.dt𝜖
14 else

15 p.delF(w) = min{p.delF(w), p.df(0)+v.df(w)-v.df(0)}

16 p.delT(w)=min{p.delT(w), p.dt(0)+v.dt(w)-v.dt(0)}

17 if v is left-most child then

18 p.sed𝐿1 (0) = p.sed𝐿0 (0) + v.dt𝜖
19 p.sed𝐿1 (w) = min{p.sed𝐿1 (ls(w)) + w.dt𝜖 , w.sed𝜖 +

v.dt𝜖 , ls(w).sed𝜖 + v.dt(w)}

20 else if v is not favorable child then

21 p.sed𝐿1 (0) = p.sed𝐿0 (0) + v.dt𝜖
22 p.sed𝐿1 (w) = min{p.sed𝐿1 (ls(w)) + w.dt𝜖 ,

p.sed𝐿0 (w) + v.dt𝜖 , p.sed𝐿0 (ls(w)) + v.dt(w)}

23 if v is left sibling of favorable child cf then

24 p.sed𝐿0 (0) = p.sed𝐿1 (0) + p.dtfc(0)

25 for𝑤 with |𝑝𝑜𝑠𝑡 (𝑣) − 𝑝𝑜𝑠𝑡 (𝑤) | ≤ 𝜏 do

26 p.sed𝐿0 (w) = min{p.sed𝐿0 (ls(w)) + w.dt𝜖 ,

p.sed𝐿0 (w) + p.dtfc(0), p.sed𝐿0 (ls(w)) + p.dtfc(w)}

27 else

28 p.sed𝐿0 = p.sed𝐿1
29 return root(𝑇1).dt(root(𝑇2)) ≤ 𝜏

5.1 Leveraging Node Position and Labels

Wenow present the JSON region bound that is based on the ancestor

constraint of the JSON edit mapping in Definition 1. Assume that

the node pair (𝑣,𝑤) in Figure 9 is mapped; then, 𝑎𝑛𝑐 (𝑣) must be

mapped to 𝑎𝑛𝑐 (𝑤) (red), 𝑑𝑒𝑠𝑐 (𝑣) to 𝑑𝑒𝑠𝑐 (𝑤) (green), and 𝑙𝑟 (𝑣) to

𝑙𝑟 (𝑤) (blue). The left-right nodes 𝑙𝑟 (𝑣) of node 𝑣 are all nodes in𝑇𝑞
different from 𝑣 , 𝑑𝑒𝑠𝑐 (𝑣), and 𝑎𝑛𝑐 (𝑣). Intuitively, the size difference

of the individual regions imposes a lower bound on the respective

mapping cost. For example, the cost of mapping the ancestors in

Figure 9 is at least one.

Lemma 4 (JSON Region Bound). Let 𝑇1, 𝑇2 be JSON trees,𝑀 a

JSON edit mapping from 𝑇1 to 𝑇2. For a given similarity threshold 𝜏 ,

if the cost of the mapping is 𝛾 (𝑀) ≤ 𝜏 , then for each (𝑣,𝑤) ∈ 𝑀 :

| |𝑑𝑒𝑠𝑐 (𝑣) |−|𝑑𝑒𝑠𝑐 (𝑤) | |+ | |𝑎𝑛𝑐 (𝑣) |−|𝑎𝑛𝑐 (𝑤) | |+ | |𝑙𝑟 (𝑣) |−|𝑙𝑟 (𝑤) | | ≤ 𝜏 .

v

anc(v)

lr(v) lr(v)

desc(v)

𝑤

anc(w)

lr(w) lr(w)

desc(w)

Figure 9: Due to the ancestor constraint, mapping node v to

w splits the JSON tree into three regions.

Tightening the Bound. An interesting observation is that when

we knowone of the size differences in Lemma 4, e.g.,Δ = | |𝑑𝑒𝑠𝑐 (𝑣) |−

|𝑑𝑒𝑠𝑐 (𝑤) | |, we can tighten the bound for the remaining, unknown

differences: | |𝑎𝑛𝑐 (𝑣) | − |𝑎𝑛𝑐 (𝑤) | | + | |𝑙𝑟 (𝑣) | − |𝑙𝑟 (𝑤) | | ≤ 𝜏 − Δ. We

leverage this effect to prune branches in our index traversal.

Label Intersection. Awell known lower bound is based on the bag

intersection of node labels [3]. For JSON trees, we need to replace

node labels by (𝑙𝑎𝑏𝑒𝑙, 𝑡𝑦𝑝𝑒) pairs. Then, the following holds:

𝐽𝐸𝐷𝐼 (𝑇1,𝑇2) ≥ 𝑚𝑎𝑥 (|𝑁 (𝑇1) |, |𝑁 (𝑇2) |) − |𝑁 (𝑇1) ` 𝑁 (𝑇2) |. (8)

5.2 Index Structure and Lookup

We discuss the structure of the JSIM index and our lookup technique

that leverages the filters discussed in Section 5.1.

Building the Index. JSIM is a tree with four levels that store (1)

node labels, (2) descendant counts, (3) ancestor counts, and (4) left-

right node counts, respectively. Each index node is a sorted list of

entries that either points to a child node (non-leaf entry) or to a list

of indexed trees (leaf entries).

A new tree 𝑇𝑖 is inserted |𝑇𝑖 | times into the index, once for each

node. Each node adds a constant number of (at most 5) index entries.

Therefore, the overall index size is proportional to the aggregated

number of nodes of the indexed JSON trees. The insert path for a

node 𝑣 ∈ 𝑇𝑖 is determined by its label, its number of descendants,

ancestors, and left-right nodes. New values are inserted into the

respective index node, for existing values the child pointer is fol-

lowed. The process of inserting node 𝑣8 ∈ 𝑇1 from Figure 2 into the

index is highlighted in Figure 10a (green). Tree 𝑇1 is inserted with

label = "r.time", |𝑑𝑒𝑠𝑐 (𝑣8) | = 1, |𝑎𝑛𝑐 (𝑣8) | = 1, and |𝑙𝑟 (𝑣8) | = 8.

Index Lookup. The lookup for query tree𝑇𝑞 processes 𝜏 +1 nodes

𝑣 ∈ 𝑇𝑞 , and for each node proceeds in two steps: (1) Label lookup:

Follow the branch for the label of 𝑣 in the index root node. The

index lookup is limited to only 𝜏 + 1 nodes since any tree 𝑇𝑖 that

has more than 𝜏 + 1 mismatching labels with 𝑇𝑞 cannot be within

edit distance 𝜏 [31, 38]. (2) Region traversal: We leverage Lemma 4

to traverse the remaining levels. At each node, we follow all keys 𝑘

(i.e., region counts) that fall into the range given by Lemma 4, e.g.,

𝑑 = | |𝑑𝑒𝑠𝑐 (𝑣) | −𝑘 | ≤ 𝜏 at the descendant count level. Note that each

of the three size differences (which are all positive) must be within

the threshold 𝜏 . At the lower index levels, we leverage the size

difference that we know from previous levels, e.g., the threshold

for the ancestor level can be decreased to 𝜏𝑎 = 𝜏 − 𝑑 and the index

verifies all keys 𝑘𝑎 with 𝑎 = | |𝑎𝑛𝑐 (𝑣) |−𝑘𝑎 | ≤ 𝜏𝑎 . The process for the

fourth level is similar, we verify all keys 𝑘𝑙𝑟 with | |𝑙𝑟 (𝑣) | −𝑘𝑙𝑟 | ≤ 𝜏𝑙𝑟
against an even further reduced threshold 𝜏𝑙𝑟 = 𝜏𝑎 − 𝑎. All trees in

Session 22: Provenance and Uncertainty SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1593

I = label

descendants

ancestors

left-
right

... r.time ...

1 3 8

1 3 4 2 3 5

2 6 8 4 5 5 6 7

𝑇2

𝑇8

𝑇1 𝑇5

(a) Insert node 𝑣8 from Figure 2.

I = ... r.time ...

1 3 8

1 3 4 2 3 5

2 6 8 4 5 5 6 7

𝑇2

𝑇8

𝑇1 𝑇5

−𝜏 +𝜏

−𝜏𝑎 +𝜏𝑎 −𝜏𝑎 +𝜏𝑎

−𝜏𝑙𝑟 +𝜏𝑙𝑟 −𝜏𝑙𝑟 +𝜏𝑙𝑟

(b) Lookup node𝑤8 from Figure 2.

Figure 10: JSIM index: four-level inverted list.

the lists that we reach are candidates and are returned by the index.

For example, the lookup of node𝑤8 ∈ 𝑇2 (Figure 2) is illustrated in

Figure 10b (blue) and returns 𝑇2,𝑇8,𝑇1,𝑇5.

Note that a search may end before reaching a leaf node when no

trees in the 𝜏-range are found. This desirable effect is boosted by

reducing the 𝜏-range at each level.

5.3 JSON Similarity Lookups

We leverage our techniques (i.e., JSIM, JOFilter, and QuickJEDI)

to answer JSON similarity lookup queries as follows: (1) Lookup

query tree 𝑇𝑞 with threshold 𝜏 in the JSIM index to retrieve can-

didate set 𝐶 . (2) For each tree 𝑇𝑖 ∈ 𝐶 check the label intersection

lower bound in Eq. (8). (3) For the remaining candidates 𝑇𝑖 ∈ 𝐶 ′, if

𝐽𝑒𝑑𝑖𝑂𝑟𝑑𝑒𝑟 (𝑇𝑞,𝑇𝑖) ≤ 𝜏 , then𝑇𝑖 is a result pair. (4) Verify the remain-

ing candidates 𝑇𝑖 ∈ 𝐶 ′′ by computing 𝑄𝑢𝑖𝑐𝑘 𝐽𝐸𝐷𝐼 (𝑇𝑞,𝑇𝑖).

6 EXPERIMENTS

Weexperimentally evaluate our solution for JSON similarity lookups

on 22 real-world datasets in a unified C++ framework. The source

code [29] and the experimental data [28] are publicly available. The

experiments are executed single-threaded on an Intel Xeon E5-2630

v3 2.40GHz server with 16 cores and 96GB of RAM (Debian 10).

6.1 Setup

Algorithms:We evaluate various algorithmic combinations. Scan de-

notes a linear scan, JSIM denotes our index (cf. Section 5), Wang is

the state-of-the-art JediOrder algorithm, JOFilter is our JediOrder fil-

ter (Algorithm 5), Baseline refers to the JEDI-baseline (Algorithm 1)

and QuickJEDI to our optimized version (Algorithm 2).

Datasets: The evaluation is performed on a collection of 22 real-

world JSON datasets. We summarize their most important charac-

teristics: Collection sizes of up to 8.76 million JSON trees; JSON tree

sizes of up to 48𝑘 nodes; a type distribution within a JSON tree of

up to 20% objects, 10% arrays, 49% keys, and 49% literals; the degree

of object nodes is typically less than 20 with the exception of one

dataset (104); the degree of array nodes is up to 1603 values; one

dataset provides a depth of 50 (less than 14 for all other datasets).

We briefly describe the datasets used for the experiments in

Figures 11 and 12. (1) FENF [22]: FDA enforcement actions, ∼14𝑘

documents with an average of 49 nodes per document and a depth

of 3. (2) Reddit [43]: 25 Reddit articles with an average of 265 nodes

per document. This dataset provides the highest object degree of 104

children. (3) Cards [26]: ∼20𝑘 Magic cards with an average number

of 132 nodes per document. (4) StanDev [53]: question-answering

dataset, 48 documents with up to ∼18𝑘 nodes and an average of

5, 379 nodes per document. (5) Movies[40]: TV and movie ratings,

∼8.7 million documents with an average of 23 nodes per document.

(6) NBA [14]: ∼31𝑘 NBA games with an average of 977 nodes per

document. (7) Device [22]: ∼150𝑘 FDA enforcement actions with

up to 3, 264 nodes per document. (8) arXiv [52]: 1.8 million re-

search publications with an average of 53 nodes per publication. (9)

Twitter2 [51]: ∼19𝑘 tweets with an average of 195 nodes per docu-

ment. (10) DENF [22]: ∼7𝑘 FDA enforcement actions with an average

of 59 nodes per document. (11) Schema [5]: 81𝑘 JSON schemas with

up to 48𝑘 nodes per schema document. (12) SMSen [13]: ∼55𝑘 SMS

messages with an average of 81 nodes per document.

Experimental Setup: For each dataset, we perform JSON similarity

lookup queries for three different query trees and four different

thresholds. Since the runtime of the distance algorithms depends on

the tree sizes, we pick the query trees that are closest to the 25%, 50%,

and 75% quantiles of the tree sizes for each dataset (denoted 𝑇25%,

𝑇50%, and 𝑇75%). The goal of similarity lookup queries is to return

documents that are similar to the query document, hence useful

thresholds depend on the size of the query tree. We experiment with

thresholds that are 5%, 10%, 20%, and 30% of the respective query

tree size. The timeout for computing the results for all thresholds

for a given algorithm and dataset is 24 hours.

Evaluation: We analyze the overall runtime and the effectiveness

of the introduced bounds. Each plot in Figure 11 and 12 shows the

results of a single experiment, i.e., a given dataset and query tree

for varying thresholds on the x-axis. For example, Figure 11a shows

the results for dataset FENF and the 50% quantile query tree 𝑇50%.

Figure 11 shows the overall lookup runtimes in milliseconds for

various algorithm combinations. Figure 12 evaluates the number

of trees pruned by the individual filters as well as the number of

required verifications. The total height of a bar is the number of

documents (i.e., trees) in the dataset, the colors distinguish the

tree pairs that are pruned by the JSIM index (orange), the label

intersection (red), the upper bound (purple), and the number of

verifications (blue). The runtime and effectiveness plots are aligned,

e.g., Figures 11a and 12a result from the same experiment.

The overall experiment includes 66 dataset/query combinations.

Due to space restrictions, we provide a representative selection that

covers the most relevant phenomena (cf. Figures 11 and 12).

6.2 Results

JSIM Index vs. Dataset Scan. We measure the effectiveness of

the index by the number of returned candidates (cf. Figure 12).

Especially for small thresholds, the returned candidates are orders of

magnitude smaller than the collection size (e.g., Figure 12h and 12e).

Due to the smaller number of candidates, the index outperforms

the scan in each experiment, e.g., the index is up to five orders of

magnitude faster in Figure 11j. For larger datasets (e.g., Figure 11e),

the index is needed to answer the query within the timeout. In some

scenarios, however, applying an index without further optimiza-

tions is not enough: The Reddit dataset used for the experiment

Session 22: Provenance and Uncertainty SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1594

4 6 8 10 12 14

Threshold

101

102

103

104

R
u
n
ti

m
e
 [

in
 m

s
]

(a) FENF,𝑇50%.

20 40 60 80

Threshold

101

102

103

104

105

R
u
n
ti

m
e
 [

in
 m

s
]

(b) Reddit,𝑇75%.

10 20 30 40 50

Threshold

100

101

102

103

104

105

R
u
n
ti

m
e
 [

in
 m

s
]

(c) Cards,𝑇75%.

250 500 750 1000 1250 1500 1750

Threshold

103

104

R
u
n
ti

m
e
 [

in
 m

s
]

(d) StanDev,𝑇75%.

2 3 4 5 6 7

Threshold

0

100

101

102

103

104

R
u
n
ti

m
e
 [

in
 m

s
]

(e) Movies,𝑇25%.

50 100 150 200 250

Threshold

104

105

106

R
u
n
ti

m
e
 [

in
 m

s
]

(f) NBA,𝑇25%.

10 20 30 40 50 60

Threshold

104

R
u
n
ti

m
e
 [

in
 m

s
]

(g) Device,𝑇75%.

5 10 15

Threshold

100

101

R
u
n
ti

m
e
 [

in
 m

s
]

(h) arXiv,𝑇75%.

10 20 30 40 50

Threshold

101

102

103

104

R
u
n
ti

m
e
 [

in
 m

s
]

(i) Twitter2,𝑇50%.

4 6 8 10 12 14

Threshold

0

100

101

102

103

104

105

R
u
n
ti

m
e
 [

in
 m

s
]

(j) DENF,𝑇25%.

2 4 6 8 10

Threshold

102

103

R
u
n
ti

m
e
 [

in
 m

s
]

(k) Schema,𝑇25%.

5 10 15 20 25

Threshold

104

105

R
u
n
ti

m
e
 [

in
 m

s
]

(l) SMSen,𝑇50%.

Scan, QuickJEDI, JOFilter JSIM, Baseline JSIM, QuickJEDI JSIM, Baseline, Wang JSIM, QuickJEDI, JOFilter

Figure 11: Overall runtime: JSON similarity lookup query.

3 5 10 15

Threshold

100

101

102

103

104

#
T
r
e
e
s

(a) FENF,𝑇50%.

14 28 55 83

Threshold

100

101

#
T
r
e
e
s

(b) Reddit,𝑇75%.

9 18 35 53

Threshold

100

101

102

103

104

#
T
r
e
e
s

(c) Cards,𝑇75%.

318 635 1270 1905

Threshold

100

101

#
T
r
e
e
s

(d) StanDev,𝑇75%.

2 3 5 7

Threshold

100

101

102

103

104

105

106

#
T
r
e
e
s

(e) Movies,𝑇25%.

45 90 180 270

Threshold

100

101

102

103

104

#
T
r
e
e
s

(f) NBA,𝑇25%.

11 22 44 66

Threshold

100

101

102

103

104

105

#
T
r
e
e
s

(g) Device,𝑇75%.

3 6 11 17

Threshold

100

101

102

103

104

105

106

#
T
r
e
e
s

(h) arXiv,𝑇75%.

10 19 37 56

Threshold

100

101

102

103

104

#
T
r
e
e
s

(i) Twitter2,𝑇50%.

3 5 10 15

Threshold

100

101

102

103

#
T
r
e
e
s

(j) DENF,𝑇25%.

2 4 7 10

Threshold

100

101

102

103

104

#
T
r
e
e
s

(k) Schema,𝑇25%.

5 9 17 25

Threshold

100

101

102

103

104

#
T
r
e
e
s

(l) SMSen,𝑇50%.

Figure 12: Filter effectiveness: pruned by the ■ JSIM index, ■ label intersection, ■ upper bound, and ■ number of verifications.

in Figure 11b only contains 25 documents; however, due to its ob-

ject degree of 104, verifying even a single candidate significantly

increases the runtime. As a result, scanning Reddit with our op-

timized algorithms (Scan, QuickJEDI, JOFilter) outperforms the

index-based solution with baseline verification (JSIM, Baseline).

In some cases, when the lookup result is empty, the query is an-

swered only within the index, i.e., neither the upper bound nor the

verification are computed (e.g., Figures 12h and 12j).

Wang vs. JOFilter. Next, we compare the state-of-the-art JediOrder

algorithm (Wang) with our optimized algorithm (JOFilter). The

experimental results show the behaviour expected based on the

runtime complexities of the algorithms. The complexity of JOFil-

ter depends on the threshold. Even for larger thresholds, JOFilter

is superior to Wang due to the quadratic complexity of the latter.

We compare the runtimes of Wang (purple) and JOFilter (blue) in

Figure 11. In Figure 11a, no candidates must be verified except for

threshold 15; hence the runtime improves from JOFilter alone. We

observe the largest improvements of JOFilter in Figures 11k and 11l,

where Wang is up to an order of magnitude slower.

In many scenarios (cf. Figures 12), the upper bound identifies

most of the result set and only few trees must be verified (blue

bar). However, the upper bound is applied to each candidate and

introduces additional overhead which may increase the runtime in

cases where the upper bound is not effective (cf. Figure 11f). These

results show that an efficient verification algorithm is indispensable.

Baseline Verification vs. QuickJEDI. We also evaluated the effect

of the optimized verification algorithm QuickJEDI over the baseline

without applying the upper bound (red stars vs. orange pentagons in

Figure 11). The complexities of both algorithms heavily depend on

the degrees of the trees. QuickJEDI aims at skipping the expensive

min-cost matching computation, which substantially reduces the

runtime. Consider the measurements for threshold 55 in Figures 11b

and 12b: even though only 16 trees have to be verified, the runtime

difference between the baseline and QuickJEDI is almost two orders

of magnitude. This results from the characteristics of the Reddit

dataset, where some documents feature up to 104 unordered key-

value pairs per object. Moreover, in 4 out of the 22 datasets the

lookup terminated within the timeout only in configurations that

include QuickJEDI (e.g., Figures 11f and 11i).

Session 22: Provenance and Uncertainty SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1595

Summary. Overall, the best performance results are achieved by

combining the JSIM index, JOFilter, and QuickJEDI. This configu-

ration provides the lowest runtimes for 61 out of our total of 66

experiments and is the only one that is able to process all datasets

(e.g., Figure 11g) within 24 hours. Only in cases where the upper

bound is ineffective (cf. Figure 11f), QuickJEDI without JOFilter is

slightly better. These results are robust even when the characteris-

tics of the datasets vary, e.g., large documents (cf. Figure 11d) and

large collections (cf. Figure 11e). In 37 experiments, the query is

answered without applying a verification algorithm, i.e., the can-

didates returned by the index are equivalent to the result and are

verified by the upper bound, highlighting the filter effectiveness.

7 RELATEDWORK

JSON Tree Representations. There exist multiple tree represen-

tations of JSON documents. Bourhis et al. [7] represent keys and

the array order as edges and values as leaf nodes; the approach by

Shukla et al. [46] is similar, but keys and the array order are inner

nodes instead of edges. Similar to our approach, Klettke et al. [34]

introduce three different types of nodes (object, array, property) in

addition to the label. Spoth et al. [47] use a tree containing atomic

values at the leaves and complex values in the inner nodes. These

representations either discard the object and the array information

or encode the information in the edges of a tree; both choices are

unsuitable for node edit operations. Tree representations of XML

data (e.g., by Augsten et al. [2]) cannot be applied in the context of

JSON since XML siblings are considered to be ordered.

JSON Similarity. To the best of our knowledge, there is only one

scientific work on JSON diffs. Cao et al. [11] present an algorithm

that computes a JSON patch based on the edit operations defined

in RFC6902 [9]. In an experimental study, a comparison to four

open source solutions was performed. However, the runtime and

space complexity of the presented algorithm was not discussed.

Further, the resulting patch is not minimal and therefore unsuitable

for similarity queries. Yahia et al. [56] proposed a YAML-based

language for describing change-detection strategies on JSON data.

Diff algorithms do exist for other hierarchical data formats.

Chawathe et al. [12] present an algorithm that computes minimal

diffs for LATEX and HTML documents. The following edit operations

are considered: insert and delete leaf nodes, update the value of

any node, and subtree moves. The XML diffs by Cobena et al. [16]

consider insertions and deletions of subtrees, value updates of any

node, and moves of a node or a part of a subtree. Both approaches

operate on ordered trees and are therefore unsuitable for JSON.

JSON Schema. Most of the scientific work related to JSON deal

with schema extraction. Schemas are used as dataset descriptions

or to enable optimization techniques in database systems. Durner

et al. [18] present a solution to extract multiple local schemas for a

single dataset. The schemas are grouped based on the label sets of

the keys in a document. Baazizi et al. [4] introduce a parametric and

parallel schema inference algorithm. Klettke et al. [34] present a

schema extraction algorithm to identify structural outliers based on

structure identification graphs. While the goal of schema extraction

is different from that of similarity queries, JEDI could be used to

identify schemas for similar documents.

Tree Edit Distance. A well-known edit distance for hierarchical

data is the tree edit distance (TED). The current best algorithm for

ordered trees by Pawlik and Augsten [41] computes TED in cubic

time using quadratic memory. Computing TED for unordered trees

is NP-hard [61]. Further, TED was applied for different query types,

e.g., similarity joins [31] and top-k similarity joins [36]. However,

these techniques are not applicable for JSON since JSON trees

consist of ordered as well as unordered children. In fact, we showed

that a TED adaption for JSON results in an NP-hard problem.

Zhang introduced a constraint TED version which can be com-

puted in time 𝑂 (𝑛2) for ordered [59] and 𝑂 (|𝑇1 | · |𝑇2 | · (𝑑𝑒𝑔(𝑇1) +

𝑑𝑒𝑔(𝑇2)) · 𝑙𝑜𝑔2 (𝑑𝑒𝑔(𝑇1) + 𝑑𝑒𝑔(𝑇2))) for unordered trees [60]. Sim-

ilar to TED, both algorithms are designed for either ordered or

unordered trees. We combined both approaches to construct the

baseline JEDI algorithm. As shown in our experimental evaluation,

we introduce heuristics that decrease the runtime of JEDI often

by orders of magnitude. The ordered constraint TED algorithm by

Wang et al. [55] using 𝑂 (𝑛 log𝑛) memory was used as a baseline

algorithm for JediOrder. We introduced a novel JediOrder algorithm

that improves the complexity to be linear in time and space.

Heuristics for the Unordered Tree Edit Distance. Due to the compu-

tational complexity of the unordered TED, a number of heuristics

have been presented. Augsten et al. [2] introduced an approxima-

tion based on tree decomposition, called windowed pq-grams, that

splits a tree into a set of smaller elements which are then com-

pared to the decomposition of another tree. They experimentally

showed that windowed pq-grams outperform other tree decom-

position algorithms (binary branches [57], path shingles [10], and

valid subtrees [24]). Rather than introducing approximations, we

defined an exact and minimal JEDI distance.

8 CONCLUSION AND FUTURE WORK

In this paper, we addressed the problem of JSON similarity lookup

queries: Given a query document 𝑇𝑞 and a distance threshold 𝜏 ,

retrieve all documents from a JSON database T that are within

distance 𝜏 from the query. We proposed (a) a lossless tree repre-

sentation for JSON, (b) JEDI, the first edit-based distance for JSON

documents, (c) the efficient QuickJEDI algorithm for JEDI, (d) the

JSIM index to efficiently retrieve candidate trees for JSON similarity

queries, and (e) JediOrder, an effective upper bound on JEDI. In our

experiments, we scaled JSON similarity lookup queries to databases

with millions of documents and JSON trees with thousands of nodes.

In an ongoing effort, our solution is being integrated into Apache

AsterixDB, an open-source big data management system that uses

partitioned-parallel query processing and a JSON-like data format.

ACKNOWLEDGMENTS

We thank Wail Alkowaileet, Daniel Kocher, Mateusz Pawlik, and

Zhihui Yang for valuable discussions. This work was supported by

the Austrian Marshall Plan Foundation, the Austrian Science Fund

(FWF): P 29859 and P 34962, the European Research Council (ERC)

under the European Union’s Horizon 2020 research and innovation

program, under grant agreement No. 695412, and the Czech Min-

istry of Education, Youth and Sports from the Czech Operational

Programme Research, Development, and Education, under grant

agreement No. CZ.02.1.01/0.0/0.0/15_003/0000421.

Session 22: Provenance and Uncertainty SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1596

REFERENCES
[1] Sattam Alsubaiee, Yasser Altowim, Hotham Altwaijry, Alexander Behm, Vinayak

Borkar, Yingyi Bu, Michael Carey, et al. 2014. AsterixDB: A Scalable, Open Source
BDMS. Proceedings of the VLDB Endowment 7, 14, 1905ś1916.

[2] Nikolaus Augsten, Michael Böhlen, Curtis Dyreson, and Johann Gamper. 2012.
Windowed pq-grams for approximate joins of data-centric XML. The VLDB
Journal 21, 4 (2012), 463ś488.

[3] Nikolaus Augsten and Michael H Böhlen. 2013. Similarity joins in relational
database systems. Vol. 5. Morgan & Claypool Publishers.

[4] Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, and Carlo Sartiani. 2019.
Parametric schema inference for massive JSON datasets. The VLDB Journal 28, 4
(2019), 497ś521.

[5] Mohamed Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo Sartiani, and
Stefanie Scherzinger. 2021. A JSON Schema Corpus. https://github.com/sdbs-
uni-p/json-schema-corpus.

[6] Dipti Borkar, Ravi Mayuram, Gerald Sangudi, and Michael Carey. 2016. Have
your data and query it too: From key-value caching to big data management. In
Proceedings of the 2016 International Conference on Management of Data. ACM,
239ś251.

[7] Pierre Bourhis, Juan L Reutter, Fernando Suárez, and Domagoj Vrgoč. 2017. JSON:
data model, query languages and schema specification. In Proceedings of the 36th
Symposium on Principles of Database Systems. 123ś135.

[8] Tim Bray. 2017. The JavaScript Object Notation (JSON) Data Interchange Format.
RFC 8259. RFC Editor. https://www.rfc-editor.org/rfc/rfc8259.txt

[9] Paul C Bryan and Mark Nottingham. 2013. JavaScript Object Notation (JSON)
Patch. RFC 6902. RFC Editor. https://www.rfc-editor.org/rfc/rfc6902.txt

[10] David Buttler. 2004. A short survey of document structure similarity algorithms.
Proceedings of the International Conference on Internet Computing 1, 3ś9.

[11] Hanyang Cao, Jean-Rémy Falleri, Xavier Blanc, and Li Zhang. 2016. JSON Patch
for Turning a Pull REST API into a Push. In International Conference on Service-
Oriented Computing. Springer, 435ś449.

[12] Sudarshan S Chawathe, Anand Rajaraman, Hector Garcia-Molina, and Jennifer
Widom. 1996. Change detection in hierarchically structured information. In
Proceedings of the 1996 International Conference on Management of Data. ACM,
493ś504.

[13] Tao Chen and Min-Yen Kan. 2013. Creating a live, public short message service
corpus: the NUS SMS corpus. Language Resources and Evaluation 47, 2 (2013),
299ś335.

[14] Mohamed L. Chouder, Stefano Rizzi, and Rachid Chalal. 2017. JSON Datasets for
Exploratory OLAP. https://doi.org/10.17632/CT8F9SKV97.1

[15] Circlecell. 2022. JSON Compare. https://jsoncompare.com/. Accessed: 2022-01-12.
[16] Gregory Cobena, Serge Abiteboul, and Amelie Marian. 2002. Detecting changes

in XML documents. In Proceedings of the 18th International Conference on Data
Engineering. IEEE, 41ś52.

[17] SQLDocs. 2021. Full Text Search. https://docs.microsoft.com/en-us/sql/relational-
databases/search/full-text-search?view=sql-server-ver15. Accessed: 2022-01-12.

[18] Dominik Durner, Viktor Leis, and Thomas Neumann. 2021. JSON Tiles: Fast Ana-
lytics on Semi-Structured Data. In Proceedings of the 2021 International Conference
on Management of Data. ACM, 445ś458.

[19] Vincent Emeakaroha, Philip Healy, Kaniz Fatema, and John Morrison. 2013.
Analysis of Data Interchange Formats for Interoperable and Efficient Data Com-
munication in Clouds. In IEEE/ACM 6th International Conference on Utility and
Cloud Computing. 393ś398.

[20] EU. 2021. EU Open Data Portal. https://data.europa.eu. Accessed: 2022-01-12.
[21] Jan P Finis, Martin Raiber, Nikolaus Augsten, Robert Brunel, Alfons Kemper, and

Franz Färber. 2013. Rws-diff: flexible and efficient change detection in hierarchical
data. In Proceedings of the 22nd ACM international conference on Information &
Knowledge Management. 339ś348.

[22] US Food and Drug Administration. 2017. FDA Enforcement Actions Dataset.
https://www.kaggle.com/fda/fda-enforcement-actions Accessed: 2022-01-12.

[23] Xinbo Gao, Bing Xiao, Dacheng Tao, and Xuelong Li. 2010. A survey of graph
edit distance. Pattern Analysis and Applications 13 (2010), 113ś129.

[24] Minos Garofalakis and Amit Kumar. 2003. Correlating XML data streams using
tree-edit distance embeddings. In Proceedings of the 22nd Symposium on Principles
of Database Systems. 143ś154.

[25] Zack Grossbart. 2021. JSON Diff. http://www.jsondiff.com. Accessed: 2022-01-12.
[26] Zachary Halpern. 2022. Magic Cards Dataset. https://mtgjson.com/api/v5/

AtomicCards.json. Accessed: 2022-01-12.
[27] Daniel S. Hirschberg. 1975. A linear space algorithm for computing maximal

common subsequences. Commun. ACM 18, 6 (1975), 341ś343.
[28] Thomas Hütter. 2021. https://github.com/DatabaseGroup/jedi-experiments: SIG-

MOD 2022. https://doi.org/10.5281/zenodo.5807299
[29] Thomas Hütter. 2022. https://github.com/DatabaseGroup/jedi-experiments: SIG-

MOD 2022. https://doi.org/10.5281/zenodo.5881864
[30] Thomas Hütter, Nikolaus Augsten, Kirsch Christoph M, Carey Michael J, and

Chen Li. 2022. JEDI: These aren't the JSON documents you're looking for...
(Extended Version*). arXiv preprint arXiv:2201.08099 (2022).

[31] Thomas Hütter, Mateusz Pawlik, Robert Löschinger, and Nikolaus Augsten. 2019.
Effective filters and linear time verification for tree similarity joins. In Proceedings
of the 35th International Conference on Data Engineering. IEEE, 854ś865.

[32] Bumsuk Jang, SeongHun Park, and Young-guk Ha. 2017. A stream-based method
to detect differences between XML documents. Journal of Information Science 43,
1 (2017), 39ś53.

[33] Taewoo Kim, Wenhai Li, Alexander Behm, Inci Cetindil, Rares Vernica, Vinayak
Borkar, Michael J Carey, and Chen Li. 2020. Similarity query support in big data
management systems. Information Systems 88 (2020), 101455.

[34] Meike Klettke, Uta Störl, and Stefanie Scherzinger. 2015. Schema extraction and
structural outlier detection for JSON-based NoSQL data stores. Datenbanksysteme
für Business, Technologie und Web (2015), 425ś444.

[35] IBM Knowledge Center. 2022. Fuzzy search. https://www.ibm.com/support/
knowledgecenter/SSEPGG_11.5.0/com.ibm.db2.luw.admin.ts.doc/doc/c0058557.
html. Accessed: 2022-01-12.

[36] Daniel Kocher and Nikolaus Augsten. 2019. A scalable index for top-k subtree sim-
ilarity queries. In Proceedings of the 2019 International Conference on Management
of Data. ACM, 1624ś1641.

[37] Erwin Leonardi and Sourav S Bhowmick. 2005. Detecting changes on unordered
XML documents using relational databases: a schema-conscious approach. In Pro-
ceedings of the 14th ACM International Conference on Information and Knowledge
Management. 509ś516.

[38] Willi Mann, Nikolaus Augsten, and Panagiotis Bouros. 2016. An empirical evalu-
ation of set similarity join techniques. Proceedings of the VLDB Endowment 9, 9,
636ś647.

[39] MongoDB. 2020. White paper: MongoDB Architecture Guide: Overview. Technical
Report. 12 pages. mongodb.com

[40] Jianmo Ni, Jiacheng Li, and Julian McAuley. 2019. Justifying Recommendations
using Distantly-Labeled Reviews and Fine-Grained Aspects. In Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing. 188ś197.

[41] Mateusz Pawlik and Nikolaus Augsten. 2016. Tree edit distance: Robust and
memory-efficient. Information Systems 56 (2016), 157ś173.

[42] PostgreSQL Documentation. 2021. Additional Supplied Modules. https://www.
postgresql.org/docs/current/pgtrgm.html. Accessed: 2022-01-12.

[43] Reddit. 2021. Reddit Dataset. https://www.reddit.com/r/science.json. Accessed:
2022-01-12.

[44] João Setubal and João Meidanis. 1997. Introduction to Computational Biology.
PWS Publishing Company.

[45] Zeyuan Shang, Yaxiao Liu, Guoliang Li, and Jianhua Feng. 2017. K-Join:
Knowledge-Aware Similarity Join. In Proceedings of the 33rd International Confer-
ence on Data Engineering. IEEE, 23ś24.

[46] Dharma Shukla, Shireesh Thota, Karthik Raman, Madhan Gajendran, Ankur
Shah, Sergii Ziuzin, Krishnan Sundaram, et al. 2015. Schema-agnostic indexing
with Azure DocumentDB. Proceedings of the VLDB Endowment 8, 12, 1668ś1679.

[47] William Spoth, Ting Xie, Oliver Kennedy, Ying Yang, Beda Hammerschmidt,
Zhen Hua Liu, and Dieter Gawlick. 2018. SchemaDrill: Interactive Semi-
Structured Schema Design. In Proceedings of the Workshop on Human-In-the-Loop
Data Analytics. 1ś7.

[48] Kuo-Chung Tai. 1979. The tree-to-tree correction problem. J. ACM 26, 3, 422ś433.
[49] Yu Tang, Yilun Cai, and Nikos Mamoulis. 2015. Scaling similarity joins over

tree-structured data. Proceedings of the VLDB Endowment 8, 11, 1130ś1141.
[50] Robert Endre Tarjan. 1983. Data structures and network algorithms. SIAM.
[51] Twitter. 2022. Twitter Developer Platform. https://developer.twitter.com/en/

docs.html Accessed: 2022-01-12.
[52] Cornell University. 2022. arXiv Dataset. https://www.kaggle.com/Cornell-

University/arxiv Accessed: 2022-01-12.
[53] Stanford University. 2019. Stanford QA Dataset. https://www.kaggle.com/

stanfordu/stanford-question-answering-dataset Accessed: 2022-01-12.
[54] US. 2021. Open Data US. https://www.data.gov. Accessed: 2022-01-12.
[55] Lusheng Wang and Kaizhong Zhang. 2008. Space efficient algorithms for ordered

tree comparison. Algorithmica 51, 3 (2008), 283ś297.
[56] Elyas Ben Hadj Yahia, Jean-Rémy Falleri, and Laurent Réveillère. 2017. Polly: A

Language-Based Approach for Custom Change Detection of Web Service Data.
In International Conference on Service-Oriented Computing. Springer, 430ś444.

[57] Rui Yang, Panos Kalnis, and Anthony KH Tung. 2005. Similarity evaluation
on tree-structured data. In Proceedings of the 2005 International Conference on
Management of Data. ACM, 754ś765.

[58] Minghe Yu, Jin Wang, Guoliang Li, Yong Zhang, Dong Deng, and Jianhua Feng.
2017. A unified framework for string similarity search with edit-distance con-
straint. The VLDB Journal 26, 2 (2017), 249ś274.

[59] Kaizhong Zhang. 1995. Algorithms for the constrained editing distance between
ordered labeled trees and related problems. Pattern recognition 28, 3 (1995),
463ś474.

[60] Kaizhong Zhang. 1996. A constrained edit distance between unordered labeled
trees. Algorithmica 15, 3 (1996), 205ś222.

[61] Kaizhong Zhang, Rick Statman, and Dennis Shasha. 1992. On the editing distance
between unordered labeled trees. Information processing letters 42, 3 (1992),
133ś139.

Session 22: Provenance and Uncertainty SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1597

	Abstract
	1 Introduction
	2 Edit-Based Distance for JSON Trees
	2.1 JSON Tree Representation
	2.2 JSON Edit Distance (JEDI)

	3 An Efficient Algorithm for JEDI
	3.1 A Baseline Algorithm
	3.2 Avoiding the Expensive Min-Cost Matching
	3.3 The QuickJEDI Algorithm

	4 The JediOrder Filter
	4.1 Tree Sorting and Upper Bound Guarantee
	4.2 JediOrder Baseline: Wang's Algorithm
	4.3 Leveraging the Distance Threshold
	4.4 Challenges of Applying the -Range
	4.5 The JOFilter Algorithm

	5 JSIM: JSON Similarity Index
	5.1 Leveraging Node Position and Labels
	5.2 Index Structure and Lookup
	5.3 JSON Similarity Lookups

	6 Experiments
	6.1 Setup
	6.2 Results

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	References

