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Figure 1: Workflow of (a)- Hybrid Hash Join (left) and (b)- Dynamic HHJ (right)

we propose and implement various dynamic destaging (victim selec-
tion) strategies and evaluate them under different scenarios such as
different record size distributions, join attribute value distributions,
and combinations thereof. The suggested optimization techniques
and algorithm variants have been implemented in the Apache As-
terixDB system and evaluated on different storage types, including
HDD, SSD, and Amazon EBS.

The remainder of the paper is organized as follows: Section 2 pro-
vides background information on Apache AsterixDB and the work-
flow of the HHJ and Dynamic HHJ operators. Section 3 discusses
previous work related to this study. In Section 4, we discuss the
lower bound on the number of partitions to use in practice. Section
5 introduces and evaluates different partition insertion algorithms.
In Section 6, two policies for the growth of spilled partitions are
discussed and evaluated. Section 7 discusses and evaluates various
destaging partition selection policies. In Section 8, we study the per-
formance tradeoffs between single-core and multi-core execution
of Dynamic HHJ. Section 9 summarizes the paper.

2 BACKGROUND

2.1 Hybrid Hash Join

Like other hash-based join algorithms, HHJ uses hashing to stage
large inputs to reduce record comparisons during the join. HHJ has
been shown to outperform other join types in computing equijoins
of two datasets. It was designed as a hybrid version of the Grace
Hash Join and Simple Hash Join algorithms [15, 40]. All three men-
tioned hash join algorithms consist of two phases, namely "build"
and "probe". During the build phase, they partition the smaller input,
which we refer to as "build input", into disjoint subsets. Similarly,
the probe phase divides the larger input, which we refer to as "probe
input", into the same number of partitions as the build input. While
all three algorithms share a similar high-level design, they differ in
their details, making each of them suitable for a specific scenario.

Grace Hash Join partitions the build and probe inputs consec-
utively, writing each partition back to disk in a separate file. This
partitioning process continues for each partition until it fits into
memory. A hash table is created to process the join once a parti-
tion is small enough to fit in memory. Grace Hash Join performs
best when the smaller dataset is significantly larger than the main
memory.

In Simple Hash Join, records are hashed into two partitions: a
memory-resident and a disk (spilled) partition. A portion of memory
is used for a hash table to hold the memory-resident partition’s
records. Simple Hash Join performs well when memory is large
enough to hold most of the smaller dataset. In Grace Hash Join,
the idea is to use memory to divide a large amount of data into
smaller partitions that fit into memory, while Simple Hash Join
focuses on the idea of keeping some portion of data in memory to
reduce the total amount of I/O, considering that a large amount of
memory is available. In the following, we discuss the details of the
HHJ operator and compare its design with its parent algorithms.

Like Grace Hash Join, HHJ uses hash partitioning to group each
input’s records into "join-able" partitions to avoid unnecessary
record comparisons. Like Simple Hash Join, HHJ uses a portion of
memory to keep one of the partitions and its hash table in memory,
while the rest write to disk. Keeping data in memory reduces the
total amount of I/O, and utilizing a hash table lowers the number
of record comparisons.

During the build phase of HHJ, the records of the smaller input
are scanned and hash-partitioned based on the values of the join
attributes (Figure 1-(a)-1). The hash function used for partitioning
is called a "split function." The records mapped to the memory-
resident partition remain in memory (Figure 1-(a)-2), while the rest
of the partitions are written (frame by frame) to disk (Figure 1-(a)-3).
Pointers to the memory-resident partition’s records are inserted
into a hash table at the end of the build phase (Figure 1-(a)-4).

After the build phase ends, the probe phase starts by scanning
and hash-partitioning the records of the larger input. The same
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This problem is similar to the Bin-Packing problem [16, 32]. The
problem has also been widely studied in the operating system and
the DBMS literature [34, 41] for managing free disk space. This
paper will examine those algorithms and a few more for inserting
records in partitions during HHJ. The difference between our work
and disk-related studies is that in our work records will not reside
in the partitions long term, and no deletion apart from partition
spilling happens in this case.

The authors of [35] proposed a dynamic destaging scheme where
the partition written to disk is selected dynamically during exe-
cution. In [19], Graefe et al. detailed the optimization techniques
and the design of Dynamic HHJ variant in Microsoft SQL Server.
Those two studies are closely related to our work; both choose the
largest partition to be written to disk. Despite some reasoning, the
authors discuss no other options, nor do they evaluate them. Our
study defines 13 different possibilities and evaluates them under
various record sizes and join attribute value distributions.

In a concurrent study, the authors in [10] have investigated how
and when to use radix join instead of the non-partitioned hash
join in a main memory DBMS. Regarding AsterixDB [3, 8, 29], the
details of its default Dynamic HHJ can be found in [29].

4 NUMBER OF PARTITIONS

The first step in configuring the HHJ operator is to determine the
number of the partitions for partitioning the input datasets.

There are two main constraints to be considered when choosing
the number of partitions: (1) An HHJ operator needs at least two
partitions to divide the input dataset into smaller subsets. (2) Each
partition needs at least one output frame in order not to spill less
than half-full frames to disk.

As such, the number of partitions for an HHJ should be chosen
from the range of:

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 = [2, #𝑜 𝑓 𝑚𝑒𝑚𝑜𝑟𝑦 𝑓 𝑟𝑎𝑚𝑒𝑠] (1)

In [40], the author offers the following equation to calculate the
number of partitions for an HHJ operator.

𝐵 =

⌈

|𝑅 | ∗ 𝐹 − |𝑀 |

|𝑀 | − 1

⌉

(2)

|R| represents the size of the build input in frames, F is a fudge
factor, |M| represents the size of the memory in frames available to
this join operator, and B is the number of disk-resident partitions.
Based on this equation, the HHJ operator will use B+1 partitions
(including a memory-resident partition) and finish in B+1 rounds.

While this equation calculates the number of partitions in a way
that minimizes the total amount of I/O and rounds in HHJ, any
inaccuracy in estimating its input parameter, |R|, can introduce
fluctuations in the performance of HHJ as the amount of available
memory varies. This is especially true when only a few partitions
are created (large memory). In this case, data is distributed among
just a few partitions, causing a high penalty for spilling a partition
as a large amount of data will be written to disk. The purpose of
this section of the paper is to provide a lower bound on the number
of partitions to prevent excessive spilling due to inaccuracy of the
provided information.

Figure 3 shows the result of a simulation study that explores
the impact of the number of partitions on the total amount of I/O

during the execution of an HHJ operator. Final result writing is
excluded from this measurement. Both the build and probe inputs
contain the same size of data for simplicity and the amount of
memory is set to 10GB in all cases. In Figure 3-(a), a fixed number
of partitions have been used for all rounds of HHJ. The black dia-
monds on each line show the number of partitions suggested by
Eq. 2 given accurate parameter values. As Figure 3-(a) shows, if
accurate input values such as input dataset sizes were provided, Eq.
2 can accurately calculate the minimum number of partitions that
minimizes the total amount of I/O for HHJ. However, if there is no
a priori information or if the provided information is inaccurate
and the build input is larger than anticipated, Eq. 2 will suggest a
smaller number of partitions than needed and cause extra I/O. As
Figure 3-(a) shows, choosing a small number of partitions can lead
to a large amount of unnecessary I/O and degrade the system’s
performance. We can, however, use Eq. 2 to calculate the number of
partitions for the subsequent rounds of HHJ as the sizes of spilled
partitions are known. Figure 3-(b) shows how using the spilled
partition sizes to calculate the number of partitions for the next
rounds of an HHJ can reduce the total amount of spilling of the
HHJ operator.

We recommend using 20 as the minimum number of partitions
instead of 2 when accurate a priori information is not available
for the HHJ operator. As Figures 3-(a) and 3-(b) show, the amount
of I/O drops dramatically before 20 partitions. By having a lower
bound of 20, each spilled partition spills no more than 5% of the
data, so the potential for significant łspilling errorž is low.

As we saw so far, choosing too few partitions leads to a handful
of large-sized partitions causing extra rounds of HHJ and a large
amount of spilling to disk. On the other hand, while using a larger
number of partitions can reduce the total amount of spilling, it can
make the join’s I/O pattern more random due to frequent writings
of partitions containing just a few frames. Fragmentation within
frames is another downside of having a very large number of parti-
tions. In [31], the authors defined an upper bound for the number
of partitions in order to reduce fragmentation and random writes
due to too many single-frame partitions. However, to the best of
our knowledge, no lower bound on the number of partitions has
been suggested to improve the performance of the HHJ algorithm.

Additionally, we have studied the impact of frame size on the
amount and pattern of I/Os happening during the execution of
the HHJ operator. Figure 3-(c) shows the impact of the number
of partitions on the amount of I/O when the frame size is set to
128KB. By comparing Figures of 3-(b) and 3-(c), we can see that
changing the size of memory frames from 32KB to 128KB does not
change the total amount of I/O occurred during the join execution.
Figures 4-(a) and 4-(b) show the percentage of writes (excluding
final result writing) that are conducted randomly when the memory
frame size is 32KB and 128KB, respectively. As these figures show,
using either 32KB or 128KB leads to a similar I/O pattern since for
each spilling the first write is random and the rest of the data is
written sequentially regardless of being a large frame or several
small frames. Lastly, a lower bound of 20 partitions does not cause
too many random I/Os since data will be written to only a few (at
most 20) files on the disk. A modest filesystem cache can turn many
of these random writes into sequential ones (Elevator Algorithm).
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Table 1: Partition Insertion Algorithm Descriptions

Algorithm Start Point Search Direction Stopping Criteria

Append(8)1 Newest frame Towards the oldest frame 8 frames checked or finding a frame with enough space
First-Fit Newest frame Towards the oldest frame Finding a frame with enough space
Best-Fit Newest frame Towards the oldest frame All frames should be checked
Next-Fit Last insertion frame Guided2 Finding a frame with enough space
First-Fit(10%)1 Newest frame Towards the oldest frame 10% ×𝑇𝑜𝑡𝑎𝑙 𝐹𝑟𝑎𝑚𝑒𝑠 checked or finding a frame with enough space
Random(10%)1 Random Random 10% ×𝑇𝑜𝑡𝑎𝑙 𝐹𝑟𝑎𝑚𝑒𝑠 checked or finding a frame with enough space

1 [28] explains how the parameter values are chosen for these algorithms.
2 Search will be towards the newest frames if the current record is larger than the previously inserted record; otherwise, it will be towards the
oldest frames.

5.1 Dataset and Experiment Design

We use an updated and modified version of the Wisconsin Bench-
mark [14] data to evaluate the partition insertion algorithms. Its
attributes and datasets’ high tunability and selectivitymake theWis-
consin Benchmark’s dataset a good synthetic benchmark dataset
for evaluating and benchmarking join queries.

We use variable-length records, one of the modifications added
to the Wisconsin Benchmark data in [27], to introduce two groups
of small-sized and large-sized records with a specific ratio between
these two groups. We use what we call the 1-Large Record Coexist,
3-Large Record Coexist, and All Small Records datasets in this
study, each of which is 1 GB in size. Each memory frame is 32KB
in size. The names of 1-Large Record Coexist and 3-Large Record
Coexist come from the number of large records that can fit in one
frame. Variable-length records are used for small and large records
to represent a more realistic scenario. We consider two specific
ranges for large records (1-Large and 3-Large record coexist) to
study the impact of semi-large and extra-large record sizes fitting
in one frame to cover the two ends of the spectrum of large record
sizes. Table 2 contains the details of the datasets used.

Each experiment is conducted using an AsterixDB cluster con-
sisting of a Cluster Controller and a Node Controller with one data
partition executing on two different nodes of the same AWS type.
Each query runs in isolation and utilizes one CPU core. All instances
are chosen from US-West-2 availability zone of Amazon AWS and
have 4 vCPUs and 30.5GB of RAM. The d2.xlarge instance type was
used for the HDD experiments, while i3.xlarge and r4.xlarge were
used for the SSD and EBS experiments, respectively.

Table 2: Dataset Specifications

Dataset Small Records Large Records

1-Large Record Coexist 700 B - 1500 B 18 KB - 20 KB
3-Large Records Coexist 700 B - 1500 B 8 KB - 10 KB
All Small Records 700 B - 1500 B None

5.2 Partition Insertion Algorithms’ Evaluation

This section evaluates the performance of the described partition
insertion algorithms for fixed- and variable-sized records.

5.2.1 Small Records Experiment. In our first experiment, both
the build and probe datasets are 1GB in size and follow the All Small
Records dataset configuration. In this experiment, we are interested
in comparing the partition insertion algorithms with respect to
the average frame fullness (compactness) and the query execution
time to evaluate the efficiency of each algorithm in reaching this

degree of frame fullness. The query execution time is the time
that it took for a query to execute, excluding the time for query
compilation and result returning. Since queries were running in
an isolated setting with no other queries running concurrently, the
execution time includes zero wait time. In these experiments, we
consider different ratios of record sizes over the memory frame
size. Since memory frames and records can come in many different
sizes, the ratio of their sizes is the important factor here. Similarly,
we consider various ratios between the data and memory sizes to
study the performance trends of the various algorithms. Figure 5(a)
shows the average frame fullness as a function of the ratio of the
build dataset size to the amount of available memory. The Y-axis
starts from 80% for a better visualization. As this figure shows, all
algorithms deliver a high and similar average frame fullness when
the records are small. This is because small records can easily fit in
most frames and increase the average frame fullness by minimizing
the leftover space in each frame.

Next, we analyze the performance of the different partition in-
sertion algorithms in reaching their reported frame compactness.
Figure 5(b) exhibits the execution time of the partition insertion
algorithms for three storage types of HDD, SSD, and Amazon EBS.
We use different storage types to study the impact of the difference
in frame compactness of different partition insertion algorithms
(which can lead to differences in the amount of disk I/O) on the
execution time for each storage type.

The similarity in the size of the records makes the frames, espe-
cially the older ones, similarly full. Additionally, suppose a previous
record could not find a frame by checking all of the partition’s
frames due to similarity in record sizes. In that case, it is likely that
the next record will not fit in those frames either.

As Figure 5(b) shows, the CPU cost due to extensive searching in
Best-Fit significantly degrades its performance in all three storage
types. Random(10%) is the second-worst algorithm with a slightly
higher execution time than the others. Although Random(10%) ben-
efits from the additional stopping criteria, the high time-overhead
of the Random function and the high frequency of calling it de-
grades its performance. First-Fit is the third-worst algorithm in
our experiments. First-Fit has a higher execution time than the
algorithms with a guided search method (Next-Fit) or additional
stopping criteria. This is due to the extensive search of First-Fit.
However, the performance of First-Fit is much better than Best-Fit,
another extensive search algorithm, as First-Fit stops if it finds a
suitable frame. This "first find" strategy has a high impact, espe-
cially in this experiment, as all of the records are small and have a
good chance to fit in even a relatively full frame.
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