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ABSTRACT

In the last decade, document store database systems have gained
more traction for storing and querying large volumes of semi-
structured data. However, the flexibility of the document stores’
data models has limited their ability to store data in a column-
major layout — making them less performant for analytical work-
loads than column store relational databases. In this paper, we pro-
pose several techniques based on piggy-backing on Log-Structured
Merge (LSM) tree events and tailored to document stores to store
data in a columnar layout. We first extend the Dremel format, a
popular on-disk columnar format for semi-structured data, to com-
ply with document stores’ flexible data model. We then introduce a
new columnar layout for organizing and storing data in LSM-based
storage. We also highlight the potential of using query compilation
techniques for document stores, where values’ types are known only
at runtime. We have implemented and evaluated our techniques
to measure their impact on storage, data ingestion, and query per-
formance in Apache AsterixDB. Our experiments show significant
performance gains, improving the query execution time by orders
of magnitude while minimally impacting ingestion performance.
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1 INTRODUCTION

In recent years, columnar storage systems have been widely adopted
in data warehouses for analytical workloads, where typical queries
access only a few fields of each tuple. By storing columns con-
tiguously as opposed to rows, column store systems only need to
read the columns involved in a query and the I/O cost becomes
significantly smaller compared to reading whole tuples [42, 51]. As
a result, open source and commercial relational column-store sys-
tems such as MonetDB [10, 54] (and the commercial version Actian
Vector [1]), and C-Store [51] (commercialized as Vertica [17]) have
gained more popularity as data warehouse solutions.

For nested data, Dremel [42] and its open source implementation
Apache Parquet [6] offer a way to store homogeneous JSON-like
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data in a columnar format. Apache Parquet has become the de facto
file format for popular big data systems such as Apache Spark and
even for “smaller” data processing libraries like Python’s Pandas.
However, storing data in a column-oriented fashion for document
store systems such as MongoDB [11], Couchbase Server [9] or,
Apache AsterixDB [2, 24, 30] is more challenging, because: (1)
Declaring a schema before loading or ingesting data is not required
in document store systems. Thus, the number of columns and their
types are determined upon data arrival. (2) Document store systems
do not prohibit a field from having two or more different types,
which adds another layer of complexity. Even though columnar
systems are orders of magnitude more performant, many users
have no choice but to use the slower yet flexible document stores.

In this paper, we show that users with such workloads can enjoy
the performance gains from storing the data in a columnar format
without sacrificing the flexibility of document stores. We achieved
this by, first, proposing several extensions to the Dremel format to
address its limitations to comply with document stores’ flexible data
model, which permits values with heterogeneous types and schema
changes. Many prominent document stores, such as MongoDB and
Couchbase Server, adopt Log-Structured Merge (LSM) trees [46]
in their storage engines for their superior write performance. LSM
lifecycle events (mainly the flush operations) allow transforming
the ingested records upon writing them to disk. Thus, we use the
techniques proposed in [22] to exploit the LSM flush operation to
infer the schema and write the records (initially in row format) as
columns using our extensions to the Dremel format.

We present a new model in our work here for storing columns
in an LSM B*-tree index. In this model, we stretch the B*-tree leaf
nodes to become mega nodes, where a leaf node occupies multiple
pages. We refer to this model as the AsterixDB Mega-Attributes
Across or AMAX for short. Despite its name, the AMAX layout
is agnostic of the columns’ structure and sees each column as a
series of bytes; hence it should only require a few modifications to
be adopted by other LSM-based document stores. In this paper, we
evaluate the AMAX layout in terms of (1) ingestion performance
and (2) query performance. In our extended version [23], we present
and evaluate a Partitioned Attributes Across (PAX)-like format [21]
called APAX, where each column occupies a contiguous region
(called a minipage) within a B*-tree’s leaf page. We omit the details
of the APAX format due to space limitations, and we refer interested
readers to [23] for more information.

The goal of continuously reducing the I/O cost in disk-based
databases is objectively justified (and is a focus of this paper). How-
ever, with the ever-growing advancements in storage technologies,
the role of CPU cost becomes even more apparent. In our evaluation,
we observe an interesting phenomenon in certain types of work-
loads, where we have been able to reduce the size of the data needed
to process a query by several factors using the AMAX format as



compared to the vector-based format (a row-major format) from
[22]. In some cases, the associated improvement to query execution
time was negligible due to increased CPU cost. The dominant factor
determining the CPU cost is the query execution model. Modern
Database Management Systems (DBMSs) have moved away from
using the traditional iterator model [34, 37] to use other execution
models (such as the batch model [48] and the materialization model
[41]) to minimize the CPU overhead. However, hand-written code
outperforms all three models [54]. Thus, code generation and query
compilation have become major contributors to the performance
gains of many data systems [4, 43, 44, 49].

In this work, We shed light on the possibility of using query
compilation techniques for document stores, where value types are
not known until runtime. We utilize the Oracle Truffle framework
(called Truffle hereafter) [53] to implement an internal language
for processing data stored in a Java-based document store. Even
though we only translate part of a query plan, our evaluations show
a tremendous improvement over AsterixDB’s existing model.

To show their benefits, we have implemented our proposed tech-
niques to store document data in a columnar format and produce a
compiled query plan in Apache AsterixDB. This enabled us to con-
duct an extensive evaluation of the AMAX format and present its
tradeoffs for different datasets. We also show the impact of utilizing
Truffle to generate and execute queries against different datasets
stored as AMAX, as well as the original schemaless row format of
AsterixDB and the recently proposed Vector-based format.

2 BACKGROUND

2.1 Apache AsterixDB

AsterixDB is a parallel semi-structured Big Data Management Sys-
tem (BDMS) that runs on large, shared-nothing, commodity com-
puting clusters. To prepare the reader, here we give a brief overview
of AsterixDB’s storage engine [25], its compiler, Algebricks [29],
and its query execution engine, Hyracks [28].

Storage Engine: AsterixDB stores its datasets’ records in primary
LSM B*-tree indexes. Newly inserted records are hash-partitioned
using their primary key(s) into distributed data partitions and in-
serted into the resulting partition’s primary LSM in-memory com-
ponent. When the in-memory component is full, the in-memory
component’s records are flushed into a new LSM on-disk compo-
nent, as shown in Figure 1a. Upon completion, the newly flushed
component is marked as valid by setting a validity bit on its meta-
data page and freeing the in-memory component to serve subse-
quent inserts. LSM on-disk components are immutable, and hence,
updates and deletes are handled by inserting new entries. A delete
operation adds an “anti-matter” entry to indicate that a record with
a specified key has been deleted. An update simply adds a new
record — including the updated value(s) — with the same key as
the original one. The newly added record then replaces the older
record. Hence, LSM-based document stores refer to this operation
as “upsert” since in-place partial updates of values in a record are
not supported. As on-disk components accumulate, the on-disk
components are periodically merged into larger components in the
background according to a configured merge policy [25, 38], which
determines when and what to merge. Deleted and older versions of
upserted records are garbage-collected during the merge operation.
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In Figure 1b, during the merge of C0 and C1 (from Figure 1a) into a
new disk-component [CO0, C1], the record with id = 0 and its cor-
responding anti-matter annihilate each other. On completion, the
older on-disk components are deleted and replaced by [CO0, C1].
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Figure 1: (a) LSM flush operation (b) LSM merge operation

Query Execution Model: To query stored data, a user can submit
a query written in SQL++ [31, 47] to AsterixDB. The query is then
translated into an optimized query plan, which is compiled into a
Hyracks job. The compiled Hyracks job is then distributed to the
query executors in all data partitions to run in parallel. Hyracks
jobs consist of operators and connectors [28], where data flows
between operators over connectors as a batch of tuples. Each batch
of tuples received by an operator is processed and then materialized
to the next operator’s buffer as a new batch.

2.2 LSM-based Tuple Compaction Framework

The flexibility of document stores is targeted for applications where
the schema can change without human intervention. However, doc-
ument stores’ flexibility is not free, as each record stores its schema
instead of storing it in a centralized catalog. In a previous work
[22], we presented a Tuple Compactor framework (implemented
in Apache AsterixDB) that addresses this issue by exploiting LSM
lifecycle events to infer the component’s schema and compact its
records using the inferred schema.

Metadata
{id: 0, name: “Kim”, age: 26}  In-memory I:SO Page /

{id: 1, name: “John", age: 22} M@
age: int

Insert £\ Flush

Tuple Compactor

In-memory Component
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Figure 2: Schema inference workflow

To illustrate, when creating a dataset in AsterixDB, each par-
tition starts with an empty dataset. During data ingestion, each
partition inserts the received records into the in-memory compo-
nent as in normal operation. When the memory component is full,
the in-memory components’ records are flushed into a new on-
disk component, during which time the tuple compactor takes this
opportunity to infer the schema and compact the flushed records.
Figure 2 depicts the workflow of the tuple compactor along with the
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Figure 3: (a) Raw JSON records and their schema (b) Dremel columnar representation (c) Extended Dremel representation

inferred schema. In the figure, we see that the tuple compactor has
inferred two fields, name and age, with the types string and integer,
respectively, from the flushed records. Upon completing the flush
operation, the inferred schema is persisted into the component’s
metadata page. Subsequent flushes follow the same workflow to
build the schema for all of the ingested records. Among the flushed
components, the schema of the latest flush is always a super-set
of all previous schemas. Thus, we only persist the most recent
component’s schema into a merged component’s metadata page.

Also in [22], we introduced the Vector-based format — a non-
recursive, compaction-friendly, physical data format for storing
semi-structured data. The vector-based format’s main idea is to sep-
arate the data values from the records’ metadata, which describes
the record’s structure. This separation enables the tuple compactor
to efficiently process the record’s metadata during the schema in-
ference and record compaction. Additionally, being non-recursive,
the vector-based format allows a record to be processed iteratively,
which is more cache-friendly than AsterixDB’s format [3].

3 A FLEXIBLE COLUMNAR FORMAT FOR
NESTED SEMI-STRUCTURED DATA

Inferring the schema and compacting schemaless semi-structured
records, using the tuple compactor framework [22], reduces their
overall storage overhead and consequently improves query execu-
tion time. However, the compacted records are still in a row-major
format, which is less than ideal for analytical workloads as com-
pared to columnar formats. The Dremel format [42] allows for
storing nested records in a columnar fashion, where atomic values
of different records are stored contiguously in chunks. However,
the Dremel (or Parquet) format still requires a fixed schema that
describes all fields to be declared a priori, and all field values must
conform to the declared fixed schema. One of the main reasons that
document stores do not support storing data in a columnar format
is the flexibility of their data model. In this section, we first present
our extensions to the Dremel format and highlight the structural
differences between the original and the extended Dremel formats.
Next, we show how our extended Dremel format adapts to schema
changes, such as adding new values and changing their types.

3.1 Extended Dremel Format:

To better explain our extensions to the Dremel format, we first
highlight the structural differences between the original Dremel
and our extended Dremel formats. Initially, we assume that the
schema is known a priori for both formats. Later in Section 3.2, we

detail how our extensions to the Dremel format allow for schema
changes. For better illustration, Figure 3a shows an example of
three JSON records about video gamers along with the structure
of their declared schema. The schema’s inner nodes represent the
nested values (objects and arrays), whereas the leaf nodes represent
the atomic values such as integers and strings. The circles (e.g., @)
under the leaf nodes corresponds to column IDs, which link the
schema to the column values in Figure 3b for the Dremel format
and in Figure 3c for the extended format. The schema describes the
JSON records’ structure, where the root has three fields id, name,
and games with the types integer, object, and array, respectively.
The name object consists of first and last name pairs, both of
which are of type string. Next is the array of objects games, which
stores information about the gamers’ owned games, namely the
games’ titles and the different versions of a game the gamers own
for different consoles. Every value (nested or atomic) in our example
is optional except for the record’s key id. The optionality of all non-
key values is synonymous with the schemaless document store
model, which is the scope of this paper. We encourage interested
readers to refer to [32, 42] for more details on the representation of
non-optional values.

The tables in Figure 3b and Figure 3c depict the columnar-striped
representation of the records’ atomic values from Figure 3a in
both formats. For Dremel, each table consists of three columns:
R, D, and Value, where R and D denote the Repetition-Level and
Definition-Level of each Value as presented in [42]. The Definition-
levels determine whether a value is present or NULL, whereas the
Repetition levels determine the start and end of a repeated value
(or array). The pairs (R:x, D:y), shown at the bottom of each table
in Figure 3b, indicate the maximum value for the repetition and
definition levels for each atomic value. For our extended Dremel
format, we also use the definition level to determine the level at
which the NULL value occurred. For repeated values, we use Array-
Delimiter-Level (AD) to mark the end of a repeated value.

Non-repeated Values: To explain, let us take column @, which
corresponds to name. first as shown in Figure 3a. In Dremel, the col-
umn has a maximum repetition level of 0 indicating a non-repeated
value (or not an array element), whereas the maximum definition
level 2 is the level of the leaf node in the schema’s tree (root (0) —
name (1) — first (2)). In the first record in Figure 3b, the definition
level for the value name. first is 2, which indicates that the path
root — name — first is present and the gamer’s first name is
"John". For the second and third records, the definition levels for
@ are 0, indicating that only root (which is at level 0) is present in
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both records but not the object name nor the atomic value first.
Note that the value ‘NULL’ is indiciated by the definition level and
not stored as a value — the shown ‘NULL’ values in Figure 3 are
for illustration. For the extended Dremel format, we do not use
repetition levels but use array delimiter levels instead. Since the
column @ corresponds to a non-repeated value, there is no maxi-
mum AD as shown in Figure 3c. Otherwise, the definition levels
in the extended Dremel format for the same column in the three
records are similar to the original Dremel format. Another differ-
ence between the original Dremel format and our extended format
appears in column @. In Dremel, the maximum definition level for
the field id is 0 — shown in Figure 3b - as it is a non-optional field.
However, in our extension, the maximum definition level (for the
same column @ shown in Figure 3c) is 1 even though the field id
is also not optional. As discussed later in Section 3.3, the id field
is the primary key for the games dataset. Therefore, the definition
levels for the primary keys are used to indicate ‘anti-matter’ tuples.

Repeated Values: For repeated values (array elements) such as
column @ in our example, the repetition levels in Dremel determine
the array starts and ends for each record. Note that for the repeated
values for column @, the maximum repetition and definition levels
are 1 and 3, respectively. The first record has only one value (0,
3, "NBA"), where the triplet (r, d, v) denotes its repetition level (r),
definition level (d), and value (v), respectively. The repetition level 0
indicates that the value "NBA" is the record’s first @ repeated value,
and the definition level 3 indicates that the value is present. The
following value (0, 2, NULL) corresponds to the second record, as
the repetition level 0 indicates that the current value is, again, the
first @repeated value. However, the definition level 2 here indicates
that the value is NULL, as it is less than the column’s maximum
definition level 3. Again, the ‘NULL’ value is not stored as a value
but indicated by the definition level. The following value (1, 3,
"NFL") is the second element of the same array, which is indicated
by repetition level 1. Whenever a value’s repetition level is greater
than zero, we know that the value is another array element other
than the first element. The last value (0, 0, NULL) indicates that the
array games itself is NULL in the last record.

In Figure 3b, the values of column @ belong to the two nested
arrays games and consoles in Figure 3a. Therefore, the maximum
repetition level for column @ is 2. Like in column @, the value (0, 4,
"PC") corresponds to the first record, as indicated by the repetition
level 0. The definition level 4 here means that the value is present
and the value is "PC". The following value (0, 4, "PC") is the first @
value for the second record, as indicated by its repetition level 0.
The next value (2, 4, "PS4") has a repetition level 2, the maximum
repetition level for the column @, which means it is the second value
of the array consoles. The following value’s (1, 4, "PS4") repetition
level 1 means it still corresponds to the same record; however, the
value marks the beginning of the record’s second consoles’ array,
which has a single element "PS4". As in @, the last value (0, 0,
NULL) again indicates that games itself is NULL in the last record.

In our example, we noticed that (i) the repetition levels of the
column @ is a subset of the column @’s repetition levels (redun-
dancy), as both share the same array ancestor games. The entire
repetition levels of the column @ [0, 0, 1, 0] appear in the same
order as the column @’s repetition levels [0, 0, 2, 1, 0]. Also, we
observed that (ii) all values with repetition levels greater than 0
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must have definition levels greater or equal to the array’s level.
Recall that a value with a repetition level greater than 0 indicates
another array element (i.e., not first). When the repetition level is
greater than 0, it implies that an array exists and that its length
is greater than one. Also recall that when the definition level is
smaller than an array’s level, it means that the array itself is NULL.
As a consequence, having a repetition level greater than 0 and a
definition level smaller than the array’s level would be contradic-
tory. It would mean the array exists and that its length is greater
than one, but that the array itself is NULL. Given that, the number
of bits used by Dremel for both the definition and repetition levels
is more than what is needed to represent repeated values.

For these reasons, we will adopt a different approach for repre-
senting repeated values without repetition levels. Recall (ii), which
says that the definition level of a non-first repeated value cannot
be smaller than the array’s definition level — thus, we can use such
definition level values as delimiters instead of repetition levels. Fig-
ure 3¢ shows how repeated values are represented in the extended
Dremel format. In our example, the definition levels of the values
of columns @ and @ are subsets of the original Dremel definition
levels. The additional definition levels act as array delimiters. To
illustrate, column @’s maximum array delimiter level (AD) is 0.
Thus, in the first two records, where the array games is not NULL,
their repeated values are delimited by the definition level 0. The
value that follows a delimiter indicates the start of the next array,
and the value itself is the array’s first value — except for the last re-
peated value, where the definition level 0 indicates the array games
is NULL in the last record. Note that the last value’s definition
level of 0 cannot be a delimiter since it is the first value after the
preceding delimiter.

In the case of nested arrays, as in the column @, the maximum
AD is 1, which indicates that the two delimiter values 0 and 1 are
for the outer (games) and inner (consoles) arrays, respectively. The
first value in column @ is present, as indicated by the definition
level 3, and its value is "PC". The following value is a delimiter of the
outer array games, indicated by the definition level 0. We omit the
definition level 1, the delimiter for the inner array consoles, since
the delimiter 0 also encompasses the inner delimiter 1. The next
two values are the first and second array elements of the second
record’s array consoles. The following delimiter of 1 here indicates
the end of the first consoles array ["PS4", "PC"], and the next value
marks the start of the second consoles array ["PS4"] in the same
record. The next delimiter 0 indicates the end of the repeated values
in the second record. Like in column @, the following definition
level of 0 implies that the games array is NULL in the last record.

3.2 Schema Changes:

For LSM-based document stores, one could use the approach pro-
posed in [22] to obtain the schema and use it to columnize the
values. However, a major challenge for supporting columnar for-
mats in document stores is handling their potentially heteroge-
neous values. For example, the two records {"id": 1, "age": 25}
and {"id": 2, "age": "old"} are valid records and both could be
stored in a document store. Limiting the support for storing data
in a columnar format to datasets with with fixed schemas and ho-
mogeneous values may suffice for many cases, as evidently shown
by the popularity of Parquet. However, those limitations prevent



document stores from storing their data as columns. In this section,
we address the two main challenges: (i) handling schema changes
and (ii) handling data with heterogeneous types.

In our previous work [22], we introduced union types in our
inferred schemas to represent values with heterogeneous types. Fig-
ure 4 depicts an example of two variant records with their inferred
schema. The inferred schema shows that the records have different
types for the same value name, which could be a string or an object.
Thus, we infer name’s type as a union of string and object. In the
schema, we observe that union nodes resemble a special case of
object nodes, where the keys of a union nodes’ children are their
types. For example, the union node of the field name, in the schema
shown in Figure 4, has two children, where the key “string” cor-
responds to the left child, and the key “object” corresponds to the
right child.

{ ) @ D |Value ||D |Value
" " ohn”
} name ohn ~| JOhn o
{ nome > | Amm
"name": { {1 JO)] Or:2)
"first": "Ann",  sfring m D |Value
"last": "Brown" @ firsty” Nlast 0
} string string
} [2) (3 2 | Brown
o:2)

Figure 4: Example of heterogeneous values and their schema

Based on this observation, we can columnize unions’ atomic
values by treating them as object values with one modification.
Observe that an actual value can only be of a single type in any
given record, and, hence, only a single value can be present, so the
other atomic values associated with the union should be NULLs.
To better illustrate, consider an example where the records are
inserted one after another, and the schema changes accordingly.
Columnizing the records’ values can be performed while inferring
the schema in a single pass, as in the compaction process in [22].
After inserting the first record of Figure 4, we infer that field name
is of type string, and thus we write the string value "John" with
definition level 1 as shown in column @ in Figure 4. In the following
record, the field name is an object consisting of first and last fields.
Therefore, we change the field name’s type from string to a union
type of string and object as was shown in Figure 4. Since the second
record is the first to introduce the field name as an object, we can
write NULLs in the newly inferred columns @ and @ for all
previous records. Then, we write the values "Ann" and "Brown",
with definition levels 2 in @ and @), respectively. Recall that only a
single value can be present in a union type; therefore, we write a
NULL in column @. After injecting the union node in the path root
— union — string, we do not change the definition level of column
@ from 1 to 2 for two reasons. First, union nodes are logical guides
and do not appear physically in the actual records. Therefore, we
can ignore the union node as being part of a path when setting the
definition levels even for the two newly inferred columns @ and
©. The second reason is more technical — changing the definition
levels for all previous records is not practical, as we might need to
apply the change to millions of records, were it even possible due
to the immutable nature of LSM.

When accessing a value of a union type, we need to see which
value is present (not NULL) by checking the values of the union
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type one by one. If none of the values of the union type is present,
we can conclude that the requested value is NULL. In the example
shown in Figure 4, accessing name goes as follows: First, we inspect
column @, which corresponds to the string child of the union. If
we get a NULL from @), we need to proceed to the following type,
an object with two fields, first @ and last €. In this case, we need
to inspect one of the values’ definition levels, say column @. If the
definition level is 0, we can conclude that the value name is NULL,
as the string and the object values of the union are both NULLs.
However, if the definition level is 1, we know that the parent object
is present, but the first string value is NULL. Thus, the result of
accessing the field name is an object in this case. Inspecting all the
values of a union type is not needed when the requested path is a
child of a nested type. For instance, when a user requests the value
name.last, processing column @ is sufficient to determine whether
the value is present or not. Thus, accessing the value name.last are
NULL in the first record and "Brown" in the second record.

3.3 LSM Anti-matter

In Section 2.1, we explained the process of deleting records in an
LSM-based storage engine using anti-matter entries. Anti-matter
entries are special records that contain the key of the deleted record.
To support deletes, we need to represent anti-matter tuples using
the proposed columnar representation. Figure 5 shows the columnar
representation of the component C; from Figure 1a. The definition
level for the primary key id does not indicate whether the value
is NULL or present; instead, it indicates whether the primary key
value corresponds to a record or to anti-matter. When the definition
level of a primary key value is 0, it represents an anti-matter entry,
which indicates that a record with the same primary key is deleted
(Section 2.1). When the definition level is 1, we know that it is a
non-anti-matter record. Figure 5 also shows that the anti-matter
has an entry for the column id but none of the others.

ﬂ'/ name —,age
. TN Anti-matter 5 | valve m u
<2,"Bob”, 21>\ o0
G

Figure 5: Representing anti-matter tuples

3.4 Record Assembly:

When accessing a nested value such as the nested value name
in Figure 3b in our approach, all of its atomic values (ie.,
first and last) are stitched together to form an object (e.g.,
{"first": "John", "last": "Smith"}) using the same record assem-
bly automaton used in [42]. Also, we use the same Dremel algorithm
to assemble repeated values (arrays). However, a difference is that
we use delimiters to transition the state when constructing the
arrays instead of the repetition levels as in Dremel.

4 COLUMNAR FORMATS IN LSM INDEXES

A major feature of representing records’ values as contiguous
columns, as in our extended Dremel format, is that it allows us
to encode and possibly compress the values of each column ac-
cording to its type to reduce the overall storage footprint. The



immutability of LSM-based storage engines makes them especially
good candidates for storing encoded values, as in-place updates
are not permitted. In this work, we propose the AsterixDB Mega
Attributes Across (AMAX) layout for storing the columns in LSM-
based document stores. We have implemented and evaluated the
AMAX layout in Apaches AsterixDB, hence the name. In the fol-
lowing sections, we first briefly explain the supported techniques
used to encode the column values. Then, we detail the structure of
the AMAX layout. Next, we describe the lifecycle of writing and
reading the columns, and finally, we cover challenges related to
answering queries in AMAX with secondary indexes.

4.1 Encoding

Apache Parquet offers a rich set of encoding algorithms [12] for
different value types, including bit-packing, run-length encoding,
delta encoding, and delta strings. In this work, we use all of Par-
quet’s encoding algorithms except for dictionary encoding, which
requires additional pages to store the dictionary entries. (We leave
potential support for dictionary encoding for future work.)

4.2 AMAX Layout

The PAX (and APAX [23] for that matter) layout stores different
columns within a page, and hence in this layout, one needs to read
entire pages, regardless of which columns are needed to answer
a query. In AMAX, we instead stretch LSM B -tree leaf nodes to
become mega leaf nodes, where each one can occupy more than one
physical data page. Figure 6 illustrates the structure of the AMAX
pages in a B*-tree, where a mega leaf node consists of multiple
(6 in this case) physical pages. Each mega leaf node in the AMAX
layout starts with Page 0, which consists of three segments. The first
segment stores the page header, which contains meta-information
such as the number of columns and the relative pointers to each
megapage. The second segment stores fixed-length prefixes of the
minimum and maximum values for each column. Each minimum
and maximum prefix pair occupy 16 bytes (8-bytes each), and they
are used to filter out entire AMAX pages that do not satisfy a query
predicate (e.g., age > 20). Lastly, in the third segment, most of the
space in Page 0 is used to store the encoded primary key(s) values.

Each megapage of the AMAX layout corresponds to a single
column. Figure 6 shows the representation for the column stored in
Megapage 1. Each column stores (1) the size of the column’s values
in bytes, (2) the count of values in the column, (3) the definition
levels as in our Dremel extensions, followed by (4) the values in
the column. The megapages are ordered by their size, from largest to
smallest. In other words, a mega leaf stores the largest megapage’s
physical pages contiguously first on disk, followed by the physical
pages of the second-largest megapage, and so on. This ordering of
megapages allows for better utilization of the empty space of the
physical pages. For example, after writing Megapage 1, the physical
Page 3 in Figure 6 is mostly empty, and thus, we allow Megapage 2
to share the same physical Page 3 with Megapage 1. After writing
Megapage 2, note that Page 4 is not full. A tuning parameter (called
the empty — page — tolerance) allows the AMAX page writer to
tolerate a certain percentage of a physical page to be empty if the
next column to be written does not fit in the given empty space.
Tolerating smaller empty spaces can help to minimize the number
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of pages to be read from when retrieving a column’s values. The
content of a megapage is encoded, and specific readers and decoders
(determined by the schema) are used for interpreting their content.
Column B*Tree

Interior Nodes

Mega Leaf Nodes

[
[T
HEADER |‘

FILTERS
PKs

Page 0 | Pagel
Column Representation
| Size | Count | Def. Levels l

Page 2 Page 3 Page 4

Page 5

Values |

Figure 6: AMAX multi-page layout in a B-*tree

4.3 Writing AMAX Pages

As in [22] and summarized in Section 2.2, we exploit LSM-lifecycle
events to infer the schema and split the records in row-major format
into columns. During data ingestion, we first insert records into the
in-memory LSM component in our vector-based format. Once it is
full, the records of the in-memory component are flushed into a
new on-disk component, during which time we infer the schema of
the flushed records and also split their values into columns. Finally,
the inferred schema (e.g., Figure 3a) is persisted into the flushed
component’s metadata page as in the tuple compactor (Section 2.2).

AMAX columns can occupy one or more physical pages (mega-
pages), while the smaller columns may share a single physical page.
Initially, we do not know which columns might span into multi-
ple physical pages, so we write the values of each column into a
fixed-size temporary buffer first. Once the buffer is full, we con-
fiscate (or acquire) a page from the system’s buffer cache, which
then replaces the temporary buffer for writing the columns’ values.
Instead of allocating a memory budget for writing columns, we use
the system’s shared buffer cache as a temporary buffer provider.
(Allocating a dedicated memory budget for writing columns might
be wasteful, especially for cases where writes are not continuous,
e.g., when loading a dataset once.) As the column size increases,
we confiscate more pages from the buffer cache to accommodate
the written values of that column, and those physical pages form a
megapage. Once done, we write the megapages to disk.

Page 0 of the AMAX could also, in theory, grow to occupy multi-
ple physical pages. However, we do not permit that, as the number
of keys could then grow into hundreds of thousands. Consequently,
point-lookups would perform poorly, as we need to decode and
search for the required key; this could negatively impact both the
ingestion rate and the performance of queries with secondary in-
dexes, as we discuss later in Section 4.6. Therefore, we limit the
number of records stored in an AMAX page to 15K by default. This
specific limit was determined empirically, where we found that a
limit of 15K was not too large to affect point-lookups operations yet
not too small to impact scan-only workloads negatively. However,
one can tune this parameter per their workload needs. For example,
increasing the limit for scan-only workloads, where no secondary
indexes are declared, would improve query execution time. Tuning
the limit parameter in AMAX is synonymous with tuning Parquet’s
row-group and data page sizes [19] — for example, a smaller data
page size is more suitable for single row lookups.



4.4 Reading AMAX Pages

When a user submits a query, the compiler optimizes the query
and generates a runtime job that will access the appropriate col-
lections (or datasets in AsterixDB’s terminology) and project the
required attributes from the resulting records. The generated job
is then distributed to all partitions for parallel execution. Before
execution, each partition consults the inferred schema to deter-
mine the columns needed (i.e., AMAX megapages) for executing
the query. Then, only the physical pages that correspond to the
columns needed by the query are read. For each requested column,
an iterator goes over the columns’ values. If a query contains a
filtering predicate (e.g., WHERE age > 20), the prefixes are also used to
skip reading the entirety of the requested columns of a mega leaf
page that would not satisfy the query predicate.

When reading from an LSM index, the system reads one tuple at
a time from each component, and tuples with the same keys (e.g.,
anti-matters and actual tuples) are reconciled. Thus, deleted and
upserted records are ignored and will not appear in the final result
of the query. When reading AMAX pages, we need to (i) perform
the same reconciliation process as in the row-major layout. Also, we
need to (ii) process the in-memory component’s records, which are
still in a row-major layout. To address those two requirements, we
implement an abstracted view of a “tuple”, whether in row-major or
column-major format, resulting from reading an LSM component.

Reconciling tuples in a row-major layout is performed simply
by ignoring the current (deleted or upserted) tuple and going to
the next one using the tuple’s offset stored on the slotted page.
Doing the same in the AMAX format means advancing the rele-
vant columns’ iterators by one step. Doing so eagerly would be
inefficient, as (i) we would need to touch multiple regions of the
memory, resulting in many cache misses, and (ii) we would need to
decode the values each time we advance a column iterator, which
could be a wasted effort as we illustrate next. Let us consider the
following query:

SELECT name, salary FROM Employee WHERE age >30

Suppose that we have three records with primary keys 1, 2, and 5
stored in an on-disk component in a columnar layout. Also, suppose
that the in-memory component has three records with the same
primary keys, i.e,, 1, 2, and 5. In this example, the records of the
in-memory component will override the records of the on-disk
component. If we advanced every column’s iterator eagerly (namely
the name, age, and salary columns’ iterators) in order to get the
next tuple, the decoding of the columns’ values would be a wasted
effort. For that reason, we only decode the primary key values
during the reconciliation process, and we count the number of
ignored records. Once actually accessed, we advance each column’s
iterator by the number of ignored records at once, ensuring that
the process of advancing the iterator is performed in batches per
column. As a consequence, none of the AMAX columns would be
decoded in our example as none were accessed.

4.5 Impact of LSM Merge Operations:

From time to time, an LSM merge operation is scheduled to compact
the on-disk components. In the AMAX layout, we need to read the
columns’ values from different components and write them again
into a newly created merged component. The order in which the
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columns’ values are written is determined by the records’ keys
from each component, and the column values that correspond to
the smallest keys are written first. Similar to the issue discussed in
Section 4.4, eagerly reading the columns’ values in each component
would result in touching different regions in memory, which would
not be cache-friendly. To remedy this issue, we employ what we call
a vertical merge. In the vertical merge, we first merge the primary
keys resulting from the different components, and we record the
sequence of the components’ IDs in memory. Then, we merge the
values of each column one-at-a-time from the different components
based on the order of the recorded component ID sequence from
merging the keys. This vertical merge of the columns ensures that
only one column is merged at a time. Thus, the number of memory
regions that we need to read from is equal to the number of merging
components instead of the number of columns times the number
of components. This approach also allows us to only read one
megapage at a time from each component instead of all megapages
(which could otherwise pressure the buffer cache).

Another issue when merging columns is the CPU cost of decod-
ing and encoding the columns’ values, especially for datasets with
large numbers of columns. In our initial experiments, this CPU cost
became more apparent during concurrent merges, peaking at 800%
on an 8-core machine, which could render the system unusable
for users who want to query their data while LSM operations are
occurring. The potential resource saturation resulting from concur-
rent merges in LSM-based storage engines is well-known [20], and
limiting the number of concurrent merges can remedy this issue.
In AsterixDB, the number of configured partitions determines the
number of CPU threads that serve a query. Therefore, we limit the
number of concurrent merges to half the number of partitions by
default to free some cores to serve users’ queries. Limiting the num-
ber of concurrent merges may stall writes and negatively impact
the ingestion rate [40], but writing the records in a columnar format
can reduce the overall storage footprint, which means less I/O. We
believe an extensive evaluation, as in [40], should be conducted to
measure those tradeoffs; however, it is beyond the scope of this
work, so we leave it for future work.

4.6 Point Lookups and Secondary Indexes

In LSM-based key-value stores, one can blindly insert new records
into the in-memory component without checking if a record with
the same key exists (to ensure the uniqueness of the primary keys),
as records with identical keys are reconciled at the query time.
However, that mechanism only applies to a primary index and not to
its associated secondary indexes. For a secondary index, in addition
to adding the new entry, we also need to clean out the old entry (if
any). Thus, a point lookup is needed to fetch the old value from the
primary index to clean the old values by adding appropriate anti-
matter entries in each secondary index. Consequently, during data
ingestion with secondary indexes, point lookups must be performed
for each newly inserted record to check if a record with an identical
key exists. If so, its old values are retrieved to maintain secondary
indexes’ correctness.

Performing point lookups against datasets stored in the AMAX
layout is more expensive than in its row-major counterparts, as we
need to decode primary keys and search for the requested value in
the AMAX layout. To alleviate the cost of point lookups for datasets



in the AMAX layout, we use a "primary key index", an additional
secondary index that stores only primary keys, to first see if a record
with an identical key exists [38, 39]. If the primary key index does
not yield any keys, we can skip accessing the primary index, as the
newly inserted key does not correspond to an older record.

When answering queries (e.g., range queries), the appropriate
secondary index is first searched, yielding the primary keys of
records that satisfy the query predicate. Then, the resulting pri-
mary keys are sorted in ascending order. Finally, point lookups are
performed using the sorted primary keys to retrieve the records
that satisfy the query predicate. Luo et al’s generalized approach
[38] exploits the ordered keys to perform these point lookups in
batches while preserving the state of the LSM cursor to reduce the
cost of subsequent point lookups. This approach allows us to read
the columns’ values in a single pass by accessing the values of the
first record with the smallest key followed by the record with the
second smallest key, etc., without the need to start over each time.

5 CODE GENERATION

In our early evaluation, we saw that the CPU cost of AsterixDB’s
query execution engine eclipsed the I/O savings when querying
some datasets stored using the AMAX format. To understand the
CPU cost, let us consider the query shown in Figure 7, which counts
the number of each game’s title owned by different gamers for the
dataset shown in Figure 3. When a user submits a query, the query
optimizer applies a set of optimization rules to the query to produce
an optimized query plan, as shown in Figure 7. After profiling such a
query, we found that (i) the materialization cost between operators
(e.g., SCAN — ASSIGN) and (ii) the cost for operators such as the
UNNEST operator, which flattens and “joins” every element of the
array games in the tuple with the tuple itself, are high whether
the data was stored as rows or columns. For datasets stored in
the AMAX format, the values are reassembled so that Hyracks
operators can operate on row-major tuples. We observed that (iii)
reassembling the values (e.g., the array games) eagerly incurred an
additional CPU overhead — making querying records in the AMAX
format sometimes slower than records in a row format.

In [44], Neumann discussed the CPU costs associated with differ-
ent execution models and proposed a solution that fuses the work
of multiple operators and replaces them with a single function call
by generating and compiling a code segment that performs the
work of the fused operators. For instance, Figure 7 shows that the
operators SCAN, ASSIGN, UNNEST, and PROJECT are replaced
with generated code, which eliminates the materialization costs of
the replaced operators — addressing the cost (i) mentioned earlier.

Before showing how the proposed solution in [44] can be used to
address costs (ii) and (iii), let us first show the process of generating
code for a query. The generated code, shown in Figure 7, is produced
by applying a rule which traverses the optimized plan, during which
each operator contributes part of the generated code [44]. The code
begins with the function run’s header, which takes two parameters
c and r, where c is a tuple cursor over the gamers dataset and r
is a field reader for the games[x].title values. The reader is pre-
configured to accept a tuple as an input and produce the value of
a requested field. Figure 7 also shows which operator in the plan
(color-coded) contributes which part of the code. First, we see the
generated code produced from the SCAN operator, which loops
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through the gamers’ tuples. Next, the ASSIGN operator contributes
the code for using the reader r to get the field games value from
the tuple. The UNNEST operator contributes the while loop to
produce the items of the array games. Finally, the code only writes
the values of title of games, as they are the only projected values
from the PROJECT operator.

Regarding the costs (ii) and (iii) in the original plan, the UNNEST
operator joins the original tuple with each element of the array
games. Then, the PROJECT operator projects only the value title
from the unnested array games and removes the joined original
tuple. In comparison, the generated code outputs only the title’s val-
ues of the array’s games - eliminating this unnecessary join, which
addresses the cost (ii). Additionally, the reader r in Figure 7 only
accesses the values in the column title (by calling r.getValue()),
which are of the scalar type string (Figure 3). Consequently, in the
AMAX format, the generated code avoids the cost of reassembling
the array games, which addresses (iii).

>|SELECT title, COUNT(*)
O | FROM gamers AS g UNNEST g.games AS t
G| GROUP BY t.title AS title

[GROUP: [5t, agg_count ()] | | GROUP: [$t, agg_count ()] |

[_PROJECT:[$t.titlel | [function run(c, r) {

i while (c.hasNext()) {

[ UNNEST:[$t]<-$1 |! r.set(c.getTuple());

while(!r.endOfArray())
write(r.getValue());

[(ASSIGN: [$1] < Sg.games | |

[ ScAN:[5g]<- gamers | ‘ }
Original Plan Plan After CodeGen
Figure 7: Code generation workflow

In relational databases, the schema provides the columns’ types,
which simplifies generating a code for expressions like X + Y since
the types of both X and Y are known at compile-time (e.g., adding
two integers). However, in document stores, the types of X and Y are
known at runtime, and they may change from one tuple to another
- making the code generation process trickier. Thus, we selected
Truffle [53], a framework for implementing dynamically typed
languages (e.g., Python), to produce Truffle Abstract Syntax Trees
(AST) for a part of the query plan. Each node of the AST describes a
language operation, such as a numerical expression (e.g., arithmetic
addition) or a control flow statement (e.g., loop statement). Also,
we specify the expected behavior (called specialization in Truffle)
for each expression given its inputs. For example, we specify that
the output for adding two integers is an integer, while an integer
with a double is double. After observing a few values by executing
the AST in an interpreted mode, Truffle optimizes the AST and
generates a bytecode to run it in the Java Virtual Machine (JVM),
where the generated bytecode is optimized further to machine code

In our work to date, the code generation is a proof-of-concept
and only supports “pipelining” operators [44]. In our example, the
GROUP operator is a “pipeline-breaker”, as it requires, for instance,
performing external sorting (sort-group-by) to compute the groups
and their aggregate counts. We plan to expand our proof-of-concept
to include such operators in the future.

6 EXPERIMENTS

In this section, we evaluate an implementation of the techniques
proposed here in Apache AsterixDB. In our experiments, we first



evaluate on-disk storage size after data ingestion to measure the
potential storage savings from storing data as columns — giving the
different characteristics of different datasets. Second, we measure
the data ingestion rate to evaluate the cost of inferring the schema
and columnizing the records. Additionally, we evaluate the inges-
tion performance for an update-intensive workload to measure the
impact of maintaining secondary indexes. Finally, we evaluate and
analyze the impact of our proposed techniques on analytical query
performance, which is the main objective to improve in this work.
We evaluate the performance for storing and querying records in
different layouts, namely: (i) AsterixDB’s schemaless record format
(Open), (ii) the Vector-Based (VB) format proposed in [22], and (iii)
AMAX. Again, Open and VB are both row-major formats, whereas
AMAX is a columnar format.

Experiment Setup We conducted our experiments using a single
machine with an 8-core (Intel i9-9900K) processor and 32GB of
main memory. The machine is equipped with a 1TB NVMe SSD
storage device (Samsung 970 EVO) capable of delivering up to 3400
MB/s for sequential reads and 2500 MB/s for sequential writes. We
used AsterixDB v9.6.0 to implement and evaluate our proposed
techniques. We configured AsterixDB with a single node and eight
partitions. The eight partitions share 16GB of total allocated mem-
ory, and from this, we allocated 10GB for the system’s buffer cache
and 2GB for the in-memory component budget. The remaining 4GB
is allocated for use as temporary buffers for query operations such
as sorting and grouping as well as transforming records into AMAX
layout during data ingestion. Additionally, we used 128KB for the
on-disk data page size and 64KB for in-memory pages. Through-
out our experiments, we used AsterixDB’s page-level compression
with the Snappy [15] compression scheme to reduce the storage
footprint for all formats.

6.1 Datasets

In our evaluation, we used five different datasets (real, scaled, and
synthetic) that differ in terms of their records’ structures, sizes,
and value types. Table 1 lists and summarizes the characteristics of
the five datasets. In Table 1, # of Columns refers to the number of
inferred columns for records in the AMAX layout.

The cell dataset (provided by a telecom company) contains in-
formation about the cellphone activities of anonymized users, such
as the call duration and the cell tower used in the call. The cell
dataset is the only dataset we used that does not contain nested
values (i.e., its data is in first-normal form or 1NF), and its scalar
values’ types are a mix of strings, doubles, and integers. The sensors
dataset contains primarily numerical values that describe the sen-
sors’ connectivity and battery statuses along with their daily cap-
tured readings. In contrast, the wos dataset, as well as tweet_1
and tweet_2, consist mostly of string values. The wos dataset, an
acronym for Web of Science [7], encompasses meta-information
about published scientific articles (such as authors, abstracts, and
funding) from 1980 to 2014. The original dataset is in XML and we
converted it to JSON using an XML-to-JSON converter [18]. After
the conversion, the resulting JSON documents contain some fields
(resulting from XML elements) with heterogeneous types, specifi-
cally a union of an object and an array of objects. Thus, we used
the wos dataset to evaluate our extensions to the Dremel format
to store heterogeneous values in AMAX. Lastly, we obtained the

2093

tweet_1 and tweet_2 datasets using the Twitter API [16], where
we collected the tweets in tweet_1 from September 2020 to January
2021. The tweet_2 dataset is a sample of tweets (~ 20GB) that we
collected back in 2016, predating Twitter’s increasing the character
limit from 140 to 280. We replicated the tweet_1 dataset to have
around 200GB worth of tweets in total. Note that the records of
tweet_1 and tweet_2 differ in terms of their sizes and the numbers
of columns that they have, as shown in Table 1.

We used the tweet_2 dataset for evaluating the impact of declar-
ing secondary indexes for an update-intensive workload as we
detail later in Section 4.6. Additionally, we evaluated the impact of
answering queries using the created secondary indexes. We created
two indexes in this experiment. The first index is on the tweet
timestamp values, a set of synthetic and monotonically-increasing
values that mimics the times when users posted their tweets. We
also created a primary key index to reduce the cost of point lookups,
as discussed in Section 4.6. We chose tweet_2 for this experiment
since it has a moderate number of columns, which directly impacts
the ingestion performance, as we discuss later in Section 6.3.

Table 1: Datasets summary

cell sensors | tweet 1 wos tweet 2

Type Real | Synthetic Real Real Scaled
Size (GB) 172 212 210 277 200

# of Records 1.43B 40M 17M 48M 77.2M
Avg. Rec. Size 141B 3.8KB 5.3KB 6.2KB 2.7KB

# of Columns 7 16 933 296 275
Integer String String String

Dominant Type | Mix

6.2 Storage Size

In this experiment, we first evaluated the on-disk storage size
after ingesting the five datasets: cell, sensors, tweet_1, wos, and
tweet_2. Figure 8a shows the total on-disk size after ingesting the
five datasets using the three layouts: Open, VB, and AMAX. For
the tweet_2 dataset, the presented total size includes the sizes for
storing the two declared secondary indexes (namely the timestamp
index and the primary key index).

In the cell dataset, which is the only dataset in INF, Figure 8a
shows that the records in the two row-major layouts Open and
VB took roughly the same space; the VB layout took slightly less
space (~ 17% smaller) due to compaction [22]. However, records
in the AMAX layout were 42% and 51% and smaller compared to
the records in the Open and V B, respectively. The storage overhead
reductions in the AMAX layout are due to (i) storing no additional
information (e.g., field names), compared to Open, and (ii) the values
being encoded, which is not possible in the row-major layouts.

I Open VB

(a) Storage size (GB) (b) Ingestion time (Minutes)

Figure 8: Storage size and ingestion time



The impact of encoding in the AMAX layout is most apparent for
storing the sensors dataset, where the values’ are primarily numeric.
Figure 8a shows that the Open and V B layouts took 8.5X and 5.6X
more space as compared to the AMAX layout, respectively. This
clearly shows that the encoding of numerical values in the same
domain is superior to page-level compression alone, making the
columnar layout more suitable for numerical data.

In contrast to the sensors dataset, the Twitter dataset tweet 1
contains more textual values than numerical ones. Thus, the storage
savings from the AMAX layout (as shown in Figure 8a) is negligible
compared to the VB layout, as encoding large textual values is
relatively less effective compared to numerical values. The tweet_1
records took more space in the Open layout than other layouts due
to the Open layout’s recursive structure (as detailed in [22]), where
nested values use 4-byte relative pointers for each nesting level.
Additionally, the Open layout records embed the field names for
each value, which takes more space than the other layouts.

Storing the wos dataset using the three layouts shows a similar
trend, shown in Figure 8a, as in the tweet_1 dataset, even though
the number of columns in the wos dataset is not as excessive, as
shown in Table 1. However, the average size of a record in the
wos dataset is larger than the average record size in the tweet;
dataset. The reason is that some of the values in the wos dataset are
relatively larger than the tweet_1 values. For example, the abstract
text of a publication can consist of multiple paragraphs.

For the last dataset, tweet_2, the total storage size includes the
sizes of the two declared indexes. Secondary indexes are agnostic of
the records’ layout in the primary index, and their sizes are the same
for all three layouts. Hence, the differences between the sizes for
the different layouts for tweet_2, shown in Figure 8a, correspond
to the layouts’ characteristics. For instance, the sizes of the records
in the VB and AMAX layouts are comparable, with AMAX being
slightly smaller. However, the Open layout took more space for the
reasons explained earlier.

6.3 Ingestion Performance

We next evaluated the ingestion performance for the three different
layouts using AsterixDB’s data feeds. We first evaluated the insert-
only ingestion performance of the cell, sensors, tweet_1, and wos
datasets without updates. In the second experiment, we evaluated
the ingestion performance of an update-intensive workload with
secondary indexes using the tweet_2 dataset. The latter experiment
focuses on measuring the impact of the point lookups that are
needed to maintain the correctness of the secondary indexes for
upserts and deletes; hence, this experiment stress-tests the AMAX
format for handling update-intensive workloads.

We configured AsterixDB to use a tiering merge policy with a
size ratio of 1.2 throughout the experiments. This policy merges a
sequence of components when the total size of the younger com-
ponents is 1.2 times larger than that of the oldest component in the
sequence. To measure the ingestion rate accurately, we used the fair
merge scheduler as recommended in [40], where the components
are merged on a first-come, first-served basis. We set the maximum
tolerable number of components to 5, after which a merge operation
is triggered. We limited the number of concurrent merges to reduce
CPU and memory consumption (Section 4.5) while merging AMAX
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components. Additionally, we limited the number of primary keys
in AMAX’s Page 0 to 15K for the reasons discussed in Section 4.3.

Insert-only: The cell dataset is the smallest in terms of the av-
erage record size and the dataset’s overall size, as shown in Table 1.
However, it also has the most records (1.43 billion). We see in Figure
8Db that the ingestion rate is about the same for the three layouts,
as writing to the transaction log buffer was a major bottleneck
while ingesting the high cardinality cell dataset. For this particular
dataset, we changed AsterixDB’s configuration (as detailed in our
extended version of this paper [23]) to alleviate this contention.

In the sensors dataset, in contrast to the cell dataset, the ingestion
rate varied among the different layouts as shown in Figure 8b.
Ingesting Open records took more time than records in the other
layouts due to the record construction cost of the Open layout [22].
Recall that the records of the in-memory components are in the
VB format for AMAX (as discussed in Section 4.3), and during the
flush operation, the records are transformed into a columnar layout.
Thus, the lower construction cost of the VB records [22] contributed
to the higher ingestion rate of the AMAX layout. We also observed
that the cost of transforming the records into a column-major layout
during the flush operation and the impact of decoding and encoding
the values during the merge operation were negligible.

For the tweet_1 and wos datasets, the cost of transforming the
records into columns became more apparent due to the higher
number of columns in those two datasets. Figure 8b shows the
ingestion time for the tweet_1 dataset. For the AMAX pages, most
of the time here was spent performing LSM merges, as we need
to fetch all 933 columns for each merge operation. The ingestion
performance using the AMAX layout was similar to the row-major
layout (Open) and only 25% slower than the VB layout.

The wos dataset is less extreme in terms of the number of
columns compared to the tweet_1 dataset; however, its data con-
tains large textual values (e.g., abstracts). As in the sensors dataset,
the lower per-record construction cost of the VB layout was the
main contributor to the performance gains (shown in Figure 8b) for
the AMAX layout. Additionally, the records in the Open layout took
more space to store, which means that the I/O cost of the LSM flush
and merge operations was higher compared to the other layouts.
The ingestion performance of the AMAX layout was comparable
and slightly slower than the VB.

Update-intensive: Our evaluation of the ingestion performance
for insert-only workloads using the different datasets showed that
the ingestion rate using columnar layouts, in general, was faster or
comparable to the row-major layout Open. We now discuss the per-
formance for an update-intensive workload with secondary indexes
using the dataset tweet_2. In this experiment, we randomly updated
50% of the previously ingested records either by upserting or delet-
ing them. The updates followed a uniform distribution where all
records were updated equally. Prior to ingesting the data, we cre-
ated two indexes: the first was a primary key index to minimize
the cost of point lookups of non-existent (new) keys. The second
index was on the timestamp values. Figure 8b shows tweet_2 the
ingestion time for the different layouts.

The ingestion time for records in the AMAX was ~ 35% slower
than the Open layout. Updating a record requires accessing the
primary index to fetch the old timestamp value to delete it from
the timestamp secondary index before inserting the updated value.
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Figure 9: Query execution times (Seconds)

Recall that the cost of searching for a value in a columnar layout
is higher, as the values need to be decoded before performing the
search. Thus, with 50% of the records being updated, the cost of
updating old timestamp values for the columnar layout became
higher than for the row-major layouts. This was true even though
we only needed to read the pages corresponding to the timestamp
in the AMAX layout (i.e., less I/O cost) — decoding large numbers
of timestamp values stored in AMAX megapages (a CPU cost) for
each update is high. We will soon (Section 6.4) discuss the benefit
of secondary indexes when answering queries; however, the cost
of maintaining the correctness of secondary indexes is higher for
columnar layouts. Thus, one should consider how often the index
will be utilized.

6.4 Query Performance

Next, we evaluated the performance of executing different analyti-
cal queries against the ingested datasets. We first evaluated scan
queries (i.e., without secondary indexes) with the code generation
technique against the cell, sensors, tweet_1, and wos datasets. Ta-
ble 2 summarizes the queries used for each dataset. Q1, which counts
the number of records — SELECT COUNT(x) — is executed against all
four datasets to measure the I/O cost of scanning records in the
different layouts. We executed each query six times and reported
the average execution time for the last five. Then, we show the
benefit of the code generation model (Section 5) over AsterixDB’s
original query execution model using the sensors dataset. In the
next experiment, we evaluated the performance of different queries
against the tweet_2 dataset using the created secondary indexes
on the AMAX layout with and without indexes.

Scan-based Queries: Figure 9 shows the execution times for all
queries in Table 2. The execution times for Q1 (for the datasets cell,
sensors, tweet_1, and wos) against the different layouts correlated
with their storage sizes shown in Figure 8a except for the AMAX
layout. As Q1 only counts the number of records, we only need to
count the number of primary keys on Page 0 of the AMAX layout
— thereby minimizing the I/O cost. For all datasets except for cell,
Q1 took a subsecond to finish in the AMAX layout.

The trends of the execution times for other queries using the
three layouts also varied, as shown in Figure 9a. In the cell dataset,
in contrast to Q1, Q2 requires grouping, aggregating, and sorting
to compute the query’s results, and hence, it takes more time to
execute. For the AMAX layout, in addition to the primary keys on
Page 0, Q2 accesses two more columns (the caller ID and the call
duration columns), which means that more pages were accessed
to execute Q2. Despite the additional costs, AMAX was the fastest
to execute Q2. Q3 also shows a similar trend as Q1, where the I/O
costs of the AMAX layout were the smallest.
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Table 2: Summary of the queries used in the evaluation

| * | Q1 | The number of records

=~ | Q2 | The top 10 callers with the longest call durations
S [7Q3 | The number of calls with durations > 600 seconds
» | Q2 | The maximum reading ever recorded
§ Q3 | The IDs of the top 10 sensors with maximum readings
& | Q4 | Similar to Q3, but for readings in a given a day
— | Q2 | The top 10 users who posted the longest tweets
S | Q3 | The top 10 users with the highest number of tweets that
z contain a popular hashtag
Q2 | The top 10 scientific fields with the highest number
of publications
g | Q3 | The top ten countries that co-published the most
2 with US-based institutes
Q4 | The top ten pairs of countries with the largest
number of co-published articles

For the sensors dataset, the execution times of Q1 — Q4, shown
in Figure 9b, for the AMAX records were faster. One reason is that
AMAX records took 6.5GB to store the data (Figure 8a), which is
less than the 10GB of memory allocated for the system’s buffer
cache. Thus, AsterixDB was able to cache the AMAX records in
memory and eliminate the I/O cost.

For tweet_1’s queries (Table 2), we observed an order of mag-
nitude improvement in the query performance using the AMAX
layout vs. the other layouts. VB and AMAX used comparable space
to store the tweet_1 data; however, reading only the columns in-
volved in the queries in the AMAX layout improved their execution
times significantly. For example, Q2 took 3.1 seconds to execute in
AMAX vs. 48.5 and 39.9 seconds for Open and VB, respectively.

The wos dataset is the last one used to evaluate scan-based
queries. As mentioned earlier in Section 6.1, the wos dataset con-
tains several values with heterogeneous types. We used this dataset
to evaluate the impact of querying over heterogeneous types for
the columnar layouts. Specifically, Q3 and Q4 (Table 2) access the
authors’ affiliated countries, which is stored as either an array,
for articles with multiple co-authors, or as an object, for single-
authored articles. For Q2 - Q4, AMAX improved their execution
times by at least 64% compared to the other layouts. Thus, the
AMAX layouts can efficiently handle values with heterogeneous
types, and the impact on query performance was negligible.

Code Generation: To illustrate the benefit of our proposed
code generation technique, Figure 9e execution times of running
Q1 and Q2 of the sensors dataset in the three different formats.
Q1 was faster to execute using the AMAX format, as discussed
earlier. However, for Q2-I (I stand for Interpreted), querying the



data in the AMAX format — using AsterixDB’s original execution
engine — was even slower than querying data in the VB format due
to the reassembly cost (Section 5). In contrast, when executing the
same query using the Code Generation approach (Q2-CG in Figure
9e), the execution times were improved significantly in the three
formats as a result of reducing the CPU costs discussed in Section 5.

Index-based Queries: We used the tweet_2 dataset to evalu-
ate the impact of secondary indexes on query performance for
the AMAX layout. We used a timestamp secondary index to run
range-queries with different selectivities that count the number
of non-NULL values of different columns. Each query counts the
appearances of different columns’ values (i.e., non-NULL values)
and varies the number of columns accessed to be 1, 5, and 10. The
columns were picked at random and varied in terms of their types
and sizes. Table 3 shows the execution times for index-based and
scan-based queries that access the different number of columns. As
expected, accessing more columns in the AMAX format negatively
impacts the scan-based query performance. For example, reading
ten different columns was 9.5X slower than reading a single col-
umn for the AMAX layout. Compared to the scan-based queries,
the index-based queries took less time to execute when accessing
more than one column and were less sensitive w.r.t the number of
columns. Thus, secondary indexes can accelerate queries against
records in a columnar layout and can help to minimize the impact
of reading multiple columns for AMAX-like layouts.

Table 3: Query execution times (Scan vs. Index)
Index (Selectivity %)

# of Columns | Scan

0.001% | 0.01% | 0.1% | 1.0%
1 2.080 0.021 0.066 | 0.405 | 3.487
5 14.133 | 0.033 0.079 | 0.456 | 3.917
10 25.710 | 0.047 0.097 | 0.553 | 4.636

7 RELATED WORK

Columnar layouts with dynamic schema: Storing schemaless
semi-structured data in a columnar layout has gained more interest
lately, and several approaches have been proposed to address the
issues imposed by schema changes. Delta Lake [27], a storage layer
for cloud object stores, addresses the challenges of updating and
deleting records stored in Parquet files. Delta Lake recently added
support for schema evolution; however, it still lacks support for
storing heterogeneous values, as per Parquet’s limitation. Alsubaiee
et al. proposed a patented technique [26] that exploits Parquet’s
file organization to store datasets with heterogeneous values. The
main idea of their approach is congregating records with the same
value types within a group. In this work, we proposed an extension
to Dremel to natively support union types, storing values with
different types as different columns.

In [33], the authors have proposed Json Tiles, a columnar format
for semi-structured records integrated into Umbra [45], a disk-
based column-store RDBMS. The proposed approach infers the
structure of the ingested records and materializes the common
parts of the records’ values, including heterogeneous values, as
JSON Tiles. Similarly, Sinew [52] utilizes an RDBMS (potentially a
columnar one) to store the JSON data, where JSON scalar values
are either stored physically as columns (i.e., declared in the RDBMS
schema) or virtually as key-value pairs in a separate table. However,
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our work’s objective is to natively support columnar formats for
existing LSM-based document stores.

For LSM-based document stores, Rockset [14] supports storing
values of semi-structured records in a columnar format, with the
values of a column being stored in RocksDB [13] (Rockset’s storage
engine) using a shared key prefix. Thus, a column’s values from
different records are stored contiguously on disk. When accessing a
column, Rockset will only read the required values from disk, which
minimizes the I/O cost. However, this approach does not support
encoding the column’s values (e.g., via run-length encoding).

LSM-based column stores: Most column-store databases em-
ploy a similar mechanism to LSM-based storage engines, where
newly inserted records are batched in memory and then flushed to
disk, during which time the flushed records are encoded and com-
pressed. For example, Vertica [51] and Microsoft SQL Server’s col-
umn store [35, 36] employ an LSM-like mechanism, while column-
store systems such as Apache Kudu [5] and ClickHouse [8] are
LSM-based. This work is no exception, as we share similar objec-
tives. Again, however, our focus is on nested and schemaless data.

Code generation and query compilation: Data processing
engines like Spark and DBMSs like Vector use code generation
techniques to improve performance. Most such systems utilize
strongly-typed languages for code generation, which is sufficient
for schema-ful systems. However, for schemaless systems like Mon-
goDB and Apache AsterixDB, utilizing a strongly-typed language
would require adding additional checks to ensure the types of each
processed value, which means more branches in the generated code.
The Truffle framework addresses this issue for dynamically-typed
languages such as Python and JavaScript. Recent work [50] has
proposed using the Truffle framework for code generation and
query compilation to run Language-integrated Query (LINQ) over
a dynamically-typed collection in JavaScript or R and showed that
the performance of their approach was comparable to hand-written
code. In this work, we have also used the Truffle framework, where
we generate code for parts of a query plan in Apache AsterixDB.

8 CONCLUSION

In this paper, we presented several techniques to store and query
data in a columnar format for schemaless, LSM-based document
stores. We first proposed several extensions to the Dremel format
to make storing arrays’ values more concise and to accommodate
heterogeneous data values. Next, we introduced AMAX, a columnar
layout for organizing and storing records in LSM-based document
stores. Experiments showed that the AMAX layout significantly
reduced the overall storage overhead compared to the row-major
formats. The impact of transforming records into columns during
data ingestion varied according to the structure of the ingested
records, and it was seen that the AMAX layout’s ingestion rate was
relatively faster as compared to AsterixDB’s current schemaless
format. With the proposed code generation technique, the AMAX
layout improved query performance by orders of magnitude.
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