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Abstract

Research articles are being shared in increasing numbers on multiple online plat-
forms. Although the scholarly impact of these articles has been widely studied,
the online interest determined by how long the research articles are shared online
remains unclear. Being cognizant of how long a research article is mentioned on-
line could be valuable information to the researchers. In this paper, we analyzed
multiple social media platforms on which users share and/or discuss scholarly
articles. We built three clusters for papers, based on the number of yearly online
mentions having publication dates ranging from the year 1920 to 2016. Using
the online social media metrics for each of these three clusters, we built machine
learning models to predict the long-term online interest in research articles. We
addressed the prediction task with two different approaches: regression and
classification. For the regression approach, the Multi-Layer Perceptron model
performed best, and for the classification approach, the tree-based models per-
formed better than other models. We found that old articles are most evident in
the contexts of economics and industry (i.e., patents). In contrast, recently pub-
lished articles are most evident in research platforms (i.e., Mendeley) followed
by social media platforms (i.e., Twitter).
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1. Introduction

Scholarly articles are being mentioned and shared online in increasing num-
bers and on many platforms, including scholar-focused platforms such as Mende-
ley and general platforms such as Twitter and Facebook. Online metrics about
these research articles could be a valuable resource not only in determining
trends in given research domains and subdomains but also in establishing how
long discourse about these articles continues on social media platforms. If re-
search articles have a long enough lifespan on social media platforms, the result
may be that more and more online users get involved in discussing research
interests, which could, in turn, lead to more research in a given domain. For
example, at present, many people are sharing their research and opinions about
machine learning and artificial intelligence on social media platforms. This ex-
tensive sharing has the potential to interest more researchers and students in
the field and to increase the funding designated for that field. Further, accurate
estimates of how long an article will have an online interest can be expected
to be beneficial to understanding and measuring the societal impact of given
research and the public’s understanding of and interest in science.

Many research projects are executed in an ad hoc way inasmuch as they
address a specific current problem and might have less interest in the long term.
However, research that is sustainable over the long term has many benefits for
all research stakeholders. It would be interesting, therefore, to determine how
long people talk about any given research article on social media platforms.
These social media metrics have emerged to be valuable metrics in measuring
the impact of the research (Luc et al., 2021). It would be a worthwhile endeavor
to determine how long discussions about given research content endure as a way
to gauge public interest. As a lot of content related to research is shared online,
discussions of research articles on social media could vary considerably from a
matter of a few days to many years depending on numerous factors such as the
domain of the research article, the online platforms on which it was shared, and

the influence of the person or people who have shared the article. These online



metrics could turn out to be valuable resources in estimating the online lifespan
of research articles.

The majority of articles published may have a very limited lifespan, where
the effort put into the research article is not rewarded, and, more importantly,
the positive impact they could have is not realized online. It is pertinent to a
researcher to know what social media platforms play an important role in dis-
seminating the published scholarly work. Furthermore, the social media metrics
would instigate the inquisitiveness in researchers to know for how long their work
would be sustaining online. The main research question in this study is: "How
can we understand, analyze, and predict the online long-term interest in research
articles”?

Measuring the interest and impact of research through large-scale mining
of scholarly data and altmetrics is still a largely unexplored area with many
challenges and opportunities. There is a critical need to develop new approaches
to confront these challenges and harness these opportunities by creating new
metrics, building models, datasets, and software platforms that provide valuable
insights into the use of scholarly literature and its impact within and beyond the
scholarly community. In this paper, we propose to use this wealth of information
about the social and media dissemination of research as an indicator of societal
impact and to understand the online long-term interest in research, as it reflects
not only immediate interest in a research finding but also the degree to which
individuals find the work to be of sufficient interest to warrant online sharing
after months or years of being published.

This study has several practical and theoretical implications. Our findings
complement the literature of the science of science (Fortunato et al., 2018), so-
ciology of science theories (Barnes et al., 1996; Merton, 1973), research policy
(Bozeman, 2000), research impact (Penfield et al., 2014), and altmetrics (Sugi-
moto et al., 2017). Additionally, most literature on research evaluation has relied
on citations analysis (Wouters et al., 2019). To the best of our knowledge, this is
the first study that expands the idea of measuring the online long-term interest

in research by introducing new features from social media platforms and mea-



suring the online long-term interest. Thus, we extend the limited measurement
of long-term research impact, or the impact of science on science, to a societal
impact. Further, we were able to predict the lifespan of any given article using
the features from multiple social media platforms. In addition, most previous
studies relied on a limited number of papers, while this study has a large and
diverse collection.

Further, the literature on altmetrics focused on a single or a few platforms
over a limited number of years. Our study reveals the popularity of research
across platforms over a long period of time. This can affect how researchers
search for or share publications online. The findings are also beneficial to re-
search stakeholders that are investigating broader research impact. Further-
more, the results would be valuable in designing new academic digital libraries
and search engines by adding new features that would allow researchers to filter
the literature based on the online long-term interest.

Given the potential usefulness of this research direction, we explored the
trajectories of research articles on multiple social media platforms where users
share research content. We also inspected how these platforms affect the online
sustainability of the research articles. For this study, we considered a com-
prehensive timeline of research articles having publication dates ranging from
1920 through 2018. We analyzed the social media metrics for these articles and
built machine learning models to predict how long a research article would last
on social media. We examined this prediction task through the lens of both
regression and classification approaches.

In summary, our contributions include: Proposing and evaluating the metric
Online Age to measure and quantify the online interest in research articles; in-
vestigating the growth in online mentions of research articles on different online
platforms for articles published from 1920 through 2018; developing machine
learning models to predict the long-term online interest in research articles and

identifying the most influential online sites that amplify this interest.



2. Related Work

2.1. Obsolescence of Research Articles

The literature includes multiple studies going back decades in which re-
searchers have considered the life and obsolescence of scholarly articles by ana-
lyzing factors relevant to measuring the impact of scholarly research that is of
interest to the public (Siravuri et al., 2018). Lariviere et al. (2008) observed
that the age of cited material has risen continuously since the mid-1960s. They
observed that the citation life cycle of an article starts with a sudden increase in
its initial years, followed by a peak, and finally by obsolescence i.e., the “decline
over time in validity or utility of information” as defined by Line and Sandison
(1974). Based on this definition of obsolescence as a relationship between use
and time, the researchers proposed two kinds of literature studies in relation to
obsolescence: (1) synchronous studies “made on records of use or bibliographic
references made at one point in time, comparing the use against the age distri-
bution of the material used or cited”, and (2) diachronous studies “that follow
the use of particular items through successive observations at different dates.”
Generally, obsolescence studies are synchronous because these are easier than
diachronous studies to conduct. For functions of a continuous variable, Egghe
(1994) defined the term rate of growth or obsolescence as an exponential func-
tion of the derivative of the log of the function. Egghe et al. (1995); Egghe (1993)
observed that the rate of obsolescence varies and that this variation can be cal-
culated as a utilization (mathematical) function. In the synchronous case, the
larger the increase in production of research articles, the larger the obsolescence.
In the diachronous (prospective) case, the opposite relation holds: the larger the
increase in production, the lower the obsolescence rate. Stinson and Lancaster
(1987) compared the synchronous and diachronous methods by analyzing both
with respect to the dates of the publications referred to in 13,734 citations and
3,669 citations in diachronous and synchronous studies, respectively, over a 19-
year period. They found that with the exception of the first two years, the

approaches yielded similar statistical measures for the obsolescence of articles.



The concept of obsolescence has been applied to literature in various fields
(Boxenbaum and Barnhill, 1984; Tsay, 2006). In a study of the obsolescence
patterns of the U.S. geoscience literature, Kohut (1974) found that traditional
fields such as paleontology and geology have an obsolescence period of over 20
years and that fast-changing fields such as solid earth geophysics have lower
obsolescence rates. Using the synchronous approach, Gupta (1998) studied the
growth and obsolescence of literature in theoretical population genetics and
found that a high rate of growth in the literature does not mean a high rate of
obsolescence for that literature; that there may not be any relationship between
the growth rate and the obsolescence rate; and that there may not be any rela-
tionship between the growth rate of literature and the half-life of that literature.
Sangam (1999) studied the obsolescence of literature in the field of psychology
and found that compared with a slower growth rate, a higher growth rate in the
literature is associated with greater obsolescence and a longer half-life. Cun-
ningham and Bocock (1995) studied the obsolescence rate of articles in computer
science subfields (networks and operating systems) and found a high obsoles-
cence rate based on the median citation rate over a four-year period. Bouabid
and Lariviere (2013) found that the life expectancy of papers published in devel-
oped countries is on average shorter than that of papers published in emerging

countries.

2.2. Citation as Impact Indicator

A standard metric used to measure scholarly impact is cited half-life, which
is defined as “measure of citation survival measuring the number of years, going
back from the current year, that covers 50% of the citations in the current year
of the journal” (Garfield, 2001). As a journal is being cited by more articles,
much of them are citing older literature. Datta et al. (2016) studied the half-life
of software engineering research topics, taking into account over 19,000 papers
from software engineering publication venues from 1975 to 2010. Obtained via
natural language processing to identify the topics covered in each paper, their

results showed that some research topics have a cited half-life of nearly 15 years.



Various factors have contributed to the increasing number of scholarly cita-
tions and the growing impact of scholarly articles in the recent past (Stacey,
2020). Barnett and Fink (2008) found that the invention of the internet in-
creased the average life (citation age) of academic citations by 6 to 8 months.
According to Sember et al. (2017), in the context of evolving technologies and
methodologies, old articles are gaining new attention as authors refer to them
in order to describe this evolution. Martin-Martin et al. (2016) verified results
published by Google Scholar showing an increase in the number of citations of
old articles published during the period 1990 to 2013. They surmised that the
recent increase in the number of citations of older articles could be attributed
to technology. They also commented that as Google is the most powerful search
engine and the most useful for scholarly purposes, Google Scholar has been a
significant factor in this growth.

There may be many underlying reasons for the trend whereby old papers
are increasingly being cited in new papers, among which may be archival value.
Oppenheim and Renn (1978) selected the most frequently cited old physics
and physical chemistry articles (published before 1930) to determine why they
continue to be cited many years after their publication date. They found that
40% of the citations of these old papers could be attributed to historical reasons,
but that 60% could be attributed to the old papers remaining relevant to current
research directions. As an extension of this work, Ahmed et al. (2004) explored
the reasons why a paper by Watson and Crick (2003) continued to be cited
frequently. Drawing on topology derived from previous research, they concluded
that the article had been cited so many times because the authors who included
it in their papers considered it important to the history of the research direction
of which it is a part, had drawn on it as important to their research, and/or had
offered criticism of it. In a study of citations of papers published between 1900
and 2006, Wallace et al. (2009) found that the citation trends were observed
during the wars because of changes in the number of papers published. The
increase in the citedness of the most recently published papers is accounted for

by the high number of references for each paper. Avramescu (1979) explained



the increased citation frequency with respect to the normal exponential decay of
older articles. Huntington et al. (2006) considered the subject, search approach,
and type of journal as possible factors in determining the age of articles cited
and found that the age of the articles varies depending on the journal.
Analyzing and predicting important publications, citations, and author co-
citations have been an active area of research (Savov et al., 2020; Bu et al.,
2020). Citation of research publications is an indicator of how scientific knowl-
edge spreads (Abramo et al., 2020; Liang et al., 2020). Stegehuis et al. (2015)
proposed quantile-based regression models to predict future citations. Their
models performed best when two variables—impact factor and early citation
counts—were used together instead of separately. Wang et al. (2013) built a
mechanistic model for the citation dynamics of papers from various journals
and disciplines. They found that all papers tend to follow the same universal
temporal pattern. In a study about the short and long-term citation windows,
Wang and Zhang (2020) stated that the normalized citation indicator may not
be reliable when a short citation window is used. To overcome this, they intro-
duced a weighting factor using a correlation coefficient between citation counts
of papers in the short citation window and in the fixed long citation window.
The weight reflects the degree of reliability of the normalized citation indicator.
Stern (2014) found that an article’s ranking can be determined by initial cita-
tions of it, which can, in turn, determine the article’s future citations. Sikdar
et al. (2017) developed a concept for a reviewer-reviewer interaction network
by studying papers from the Journal of High Energy Physics between 1997 and
2015. In the network, they considered features such as degree, clustering coef-
ficient, closeness centrality, and betweenness centrality, all of which turned out
to be strong predictors of long-term citations. Singh et al. (2017) found a neg-
ative correlation between early citations by high-impact authors and long-term
citation count. Using linear regression models on Web of Science publications,
Abramo et al. (2019) tested if the combination of a publication’s early citations
and the impact factor of the hosting journal could yield better prediction results

for long-term citation counts. They found that the importance of a Journal’s



impact factor in the combination turns out to be insignificant after two years of

publication.

2.8. Online Impact of Scholarly Articles

Numerous strategies for filtering scholarly work and assessing the impact of
research have been developed (Alhoori et al., 2018). Peer review (Bornmann,
2011), citation analysis (Moed, 2005; Azoulay et al., 2018), and article-level
assessment (McKeown et al., 2016) can all provide useful information about the
impact of scientific research in this area, but these established methods have
limitations and drawbacks (MacRoberts and MacRoberts, 1989, 1996; Seglen,
1997, 1992; Lima et al., 2013). They are time-consuming and self-limiting in
that they exclude a large number of other channels for research attention and do
not account for the holistic impact of scholarly outcomes (Piwowar, 2013; Priem
and Hemminger, 2010; Bornmann, 2014). Members of the research community
have argued that evaluating a scholarly article’s impact solely on the basis of
one metric is unlikely to provide an accurate picture of its value in this regard
(Lima et al., 2013). Alternative measures have been proposed in recent years.
For example, Neylon and Wu (2009) discovered that a variety of usage-based
metrics, such as downloads, comments, and bookmarks, can be used to assess
the impact of articles and journals, with each metric having distinct advantages
and disadvantages.

Altmetrics have been proposed as a way to address some of the identified
gaps (Priem et al., 2012). Altmetrics, which is gaining traction in the research
community, refers to article-level metrics that have been proposed as a substitute
for or supplement to traditional metrics. The critical distinction between tradi-
tional metrics (e.g., citations) and altmetrics is that, while the former quantify
the impact of research within scholarly boundaries, the latter quantifies a va-
riety of influences both within and beyond those boundaries. Altmetrics refers
to a variety of Internet venues where scholarly works are referenced, stored,
and/or shared (Das and Mishra, 2014; Melero, 2015; Chavda and Patel, 2016).
Additionally, altmetrics can be used to quantify the impact of other scholarly



products, including datasets, software, and presentations. As a result, a growing
number of digital libraries and publishers are now including altmetrics on their
websites. Altmetrics is concerned with quantifying not only societal impact
but also scholarly impact. Recently, researchers were able to predict scholarly
citations using altmetrics (Akella et al., 2021).

The impact of research on society is increasingly being considered by re-
search communities (Samuel and Derrick, 2015; Bornmann, 2013; Shaikh and
Alhoori, 2019). Additionally, a growing amount of scholarly content is shared
and discussed on social media platforms on a daily basis (Ding et al., 2009;
Fausto et al., 2012; Freeman et al., 2020, 2019). The number of research articles
shared on these platforms is estimated to be increasing at a rate of 5-10% per
month (Adie and Roe, 2013). In general, these platforms enable researchers to
stay current on developments in their fields, as well as share and discuss their
research data and findings, as well as solicit early feedback (Shahzad and Al-
hoori, 2022). Researchers include links to these news stories on their websites as
evidence of their work’s social impact. Tonia et al. (2016) found that exposure
to social media did not have a significant effect on the articles’ impact metrics
such as downloads and citation counts. However, Allen et al. (2013) found that
sharing articles in the clinical pain sciences on social media platforms such as
Facebook, Twitter, LinkedIn, and ResearchBlogging.org led to an increase in
the number of people who viewed and/or downloaded the articles. Using social
media data to predict future citation counts, Thelwall and Nevill (2018) found
that Mendeley’s readership is an important predictive factor. Mohammadi et al.
(2020) found that Facebook scholarly mentions are not very useful for predicting
citations.

In summary, researchers have studied factors that contribute to the obso-
lescence, aging, and citation age of scholarly research. The invention of the
internet and the development of scholarly digital libraries, search engines, and
academic social platforms have increased the average lifespan of academic cita-
tions. As a result, old articles with archival value and/or that are important to

current research have started to receive more citations. The citation life cycle of
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an article usually starts with a sudden increase in its initial years, followed by a
peak, and finally by obsolescence. Studies of obsolescence have been conducted
in relation to many research fields, and researchers have provided metrics to
measure obsolescence. The study of citations reveals that articles reach their
peak in relation to the number of citations accrued within two years of publica-
tion and then a gradual decrease in the number of citations accrued takes place
thereafter. Many researchers have built models to predict the long-term cita-
tions of scholarly research. However, our study is the first to predict how long
a given article is likely to be mentioned online. We predict the online lifespan

of any given article using multiple social media platforms.

3. Data

We used a dataset from altmetric.com released in June 2018 and consisting of
online mentions of about 19 million publications. The initial data were in JSON
format, which we converted into a CSV file in order to perform model-building
tasks. Of the data, which comprised 19,406,418 records, we considered only
research articles published between 1920 and 2018, which reduced the dataset
t0 12,657,619 records (dataset A). The principal features included in our research
are provided in Table 1. The features in Table 2 relate to the time of publication
and the locations and positions (earliest or latest) of the online mentions.

All the temporal features described in Table 2 were used to generate two new
features called First Online Mention and Last Online Mention, which provide
information about the first and last online mention dates across all the platforms.
We created a new feature, Online Age, which is the difference (number of
months) between the date of the First Online Mention and the date of the
Last Online Mention. This feature provides the number of months the article
remains of interest to the online social media community.

We analyzed the articles in dataset A for three main reasons:

1. To observe the growth in the number of papers published from 1920 to
2018. The middle line (red color) in Figure 1 shows this growth on a log
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Table 1:

Descriptions of main features in the dataset.

Feature

Description

Mendeley
CiteULike
Connotea
Twitter

Patent
Facebook
Blogs
Wikipedia
Stack Overflow

Syllabi
Policy

News
Google+
F1000
Reddit
Video

Pinterest

Peer Review

Total number of mentions of a research article on Mendeley
Total number of mentions of a research article on CiteULike
Total number of mentions of a research article on Connotea
Total number of mentions of a research article on Twitter
Total number of mentions of a research article in patents
Total number of mentions of a research article on Facebook
Total number of mentions of a research article in blogs
Total number of mentions of a research article on Wikipedia
Total number of mentions of a research article on Stack
Overflow

Total number of mentions of a research article in syllabi
Total number of mentions of a research article in policy
documents

Total number of mentions of a research article in news items
Total number of mentions of a research article on Google+
Total number of mentions of a research article on F1000
Total number of mentions of a research article on Reddit
Total number of mentions of a research article in online
videos

Total number of mentions of a research article on Pinterest

Total number of mentions of a research article in peer re-

views
Weibo Total number of mentions of a research article on Weibo
LinkedIn Total number of mentions of a research article on LinkedIn
Miscellaneous Total number of miscellaneous online mentions
scale.

2. To determine which articles to use in building our models. Of the articles
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Table 2: Temporal features.

Feature

Description

Publication date
Twitter dates
Patent dates
Facebook dates

Blog dates
Wikipedia dates

Stack Overflow dates

Syllabi dates

Policy dates

News dates

First Online Mention

Last Online Mention

Publication date of a research article

First and last mention of a research article on Twitter
First and last mention of a research article in a patent
First and last mention of a research article on Face-
book

First and last mention of a research article in blogs
First and last mention of a research article on
Wikipedia

First and last mention of a research article on Stack
Overflow

First and last mention of a research article in course
syllabi (online courses with references to research)
First and last mention of a research article in policy
documents

First and last mention of a research article on news
outlets

First online mention date of a research article across
all the platforms

Last online mention date of a research article across

all the platforms

in dataset A, 8,520,926 articles (dataset B) have online mention dates, as

shown on the log scale with the lower line (orange color) in Figure 1. The

remaining articles had no information about online mention dates in the

altmetric dataset.

3. To observe the number of online mentions of articles across the years. One

research article can have multiple online mentions. Therefore, we plotted

the number of online mentions of articles across the years, represented by
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the upper line (blue color) in Figure 1.
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Figure 1: Growth of papers published and online mentions.

In Figure 1, the orange line below the red line shows that the dataset has
some missing online dates. We observed a yearly increase in the number of
articles mentioned online. We also observed that there is a plummet for the
year 2018, as the altmetrics dataset used for the study had online mentions
up until June 2018. Figure 2 shows the number of online mentions of research
articles on various online platforms normalized using min-max scaling for all
the platforms in each publication year. We observed that in comparison to all
the other platforms, Mendeley accounts for the largest number of mentions in
all years. Syllabi account for a larger proportion of the mentions in the years
1920 to 1970 than in the other years. Patent mentions have the second largest
portion of mentions from 1970 to 2010 after Mendeley, and Twitter mentions

account for an increasing proportion from 2010 to 2018.
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Platforms
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Figure 2: Online mentions on multiple platforms across publication years.
4. Methods

An active article on social media could be an article that has been consis-
tently mentioned for an extended period of time. We tried several combinations
for the number of platforms (e.g., at least one, two, or three platforms) and
the frequency of online mention (e.g., every year or once every two years). We
found that the Online Age for some of the previous combinations was very low
or even zero in some cases. Therefore, we decided to define an active article
as an article that was mentioned every year on at least three platforms since its
first online mention up to 2018. On dataset B, we found that 242,164 articles
satisfied the previous criteria for being considered as active articles. Most of
the altmetrics for a research article are generally accrued around the time of
the research article publication. For the articles published in the latest years
in our dataset such as 2017 or 2018, the altmetrics may still be accumulating.
Therefore, for the current dataset, we considered the articles with publication
years up to 2016. For this curtailed dataset, we have 83,067 active articles.

Figure 3 summarizes our approach to measure the long-term online interest
in research articles. At first, for understanding the long-term online interest
in research articles, the natural inclination would be towards a time-series ap-

proach. However, the data that we have is not time-series data. In other words,
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we just have the altmetrics of research articles at one point in time (June 2018).
Therefore, we eliminated the possibility of a time-series approach here. Next, we
performed regression on the dataset (section 4.1). Based on the performance of
the regression models, we observed that it is difficult for a model to learn from
a dataset having a large variance in the publication years ranging from 1920
through 2016. As an alternative approach, we grouped the data into multiple
clusters based on the publication years (section 4.2) and then applied regres-
sion on each cluster (section 4.2.1). We also considered the prediction of the
long-term interest as a classification problem and built classifiers on all clusters

(section 4.2.2).

Measuring the

long-term
~ interest
Regression on . Clustering the
complete data data
(4.1) (4.2)
Regression on Classification on
each cluster each cluster

(4.2.1) (4.2.2)

Figure 3: Our approach for measuring the long-term online interest in research articles.

4.1. Regression on Complete Data

To predict the long-term online interest in research articles, we need to
predict how long a research paper remains on social media platforms. This
could vary for different articles, from a few months to many years. To have
uniformity for all of the research articles’ online spans, we have considered the
number of months a research article is mentioned on social media platforms,
starting from its first online mention date. Using the features mentioned in
Table 1, we build regression models on active articles to predict the Online
Age. We split the dataset to 80/20 train-test ratio and used regression models
from the scikit-learn implementation (Pedregosa et al., 2011). Table 3 shows the

regression results for various models. After building some regression models, we
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observed that the models had low error measures but were poor in explaining
the variance in the dependent variable. One possible reason for such results
could be to account for the nature of the wider range of data with publication

years from 1920 to 2016.

Table 3: Evaluation of Regression models.

Model Mean Root Mean R~ Squared
Absolute Squared Error
Error (MAE) | (RMSE)
Multiple Linear | 18.30 25.01 0.29
Regression
Decision Tree 14.49 21.78 0.46
Regression
Random Forest 11.08 16.20 0.70
Regression

4.2. Clustering the data

As the regression models on the entire dataset were not able to yield satisfac-
tory results in predicting the long-term online interest, we decided to treat the
data points in the form of multiple clusters and then applied machine learning
models to achieve better results. Clustering the data could be a better approach
as it is unlikely for a single model to learn accurately from the data that spreads
over almost a hundred years.

For clustering on dataset B, we used the elbow method (Thorndike, 1953) on
the number of online mentions for each publication year. With this method, the
k-means clustering algorithm performs clustering on various k-values to yield a
plot for the variation of distances between the center of the cluster and each
point for the different values of k. For a particular k, there would not be many

variations in distance, and the plot is an elbow-like curve shape, which suggests
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the optimal number of clusters. In Figure 4, the optimal number of clusters

is shown to be three. We, therefore, built three clusters using k-means on our

data, as shown in Figure 5.
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Figure 4: Elbow method to determine the optimal k-value.
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Figure 5: Three clusters using k-means.

Table 4 shows each cluster along with its details, such as the range of pub-

lication years, the total number of research articles in the cluster, and the total
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online mentions of all articles in that cluster. An increase in the number of
records is evident from cluster 1 to cluster 3, which indicates that the number

of mentions of newer research articles online increases over time.

Table 4: Details of the clusters formed.

Cluster Range of Number Number Number
number publication of articles of online of active
years mentions articles
Cluster 1 1920-1999 1,538,350 6,588,889 4,641
Cluster 2 2000-2012 2,699,017 12,272,590 27,077
Cluster 3 2013-2016 2,998,724 25,552,821 51,349

4.2.1. Regression on the Clustered Data

In this approach, we treated the long-term interest as a regression problem
and built machine learning models that predicted for how long a research paper
remains on social media platforms. For the features mentioned in Table 1, we
applied the scaling technique using scikit-learn’s StandardScaler to normalize
the data. We then split the data into 80/20 train-test ratio, built various re-
gression models on all the clusters and predicted the Online Age. Additionally,
we used Multi-layer Perceptron regressor to check if the results improve with
Neural Networks. For the tree-based models, we applied 5-fold cross-validation
with hyperparameter tuning to get the best parameters. We also present the
feature importance for the Random Forest regression model to indicate the top

10 features in each cluster.

4.2.2. Classification on the Clustered Data

In this approach, we considered the long-term interest as a classification
problem. We calculated the median of the Online Age feature for each cluster
in terms of the number of months as shown in Table 5. We used the median as
the main criterion, as it represents the center of the data and is not susceptible

to outliers. We then built classification models with the features listed in Table
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1 for each of the three clusters in order to determine whether an article would
receive an online mention that is equal to or greater than the median of the
Online Age.

For classification, we trained and tested four algorithms using the scikit-
learn implementation on our data: Random Forest, Decision Tree, Logistic Re-
gression, and Gaussian Naive Bayes. For all the models, we performed 5-fold
cross-validation with hyperparameter tuning to obtain better results. We also
used the feature importance attribute (also known as Gini importance) of the
Random Forest model and included the ten most important features in each
cluster. We observed the performance of all clusters in terms of accuracy and

weighted average scores for precision, recall, and F1.

Table 5: The median Online Age of the clusters.

Cluster Range of Median

number  publication years Online Age (months)

Cluster 1 1920-1999 16

Cluster 2 2000-2012 34

Cluster 3 2013-2016 25
5. Results

5.1. Regression Results

We built Multiple Linear Regression, Decision Tree Regression, Random
Forest Regression, and Multi-layer Perceptron Regression models for each of
the clusters. The performance of these regression models is shown in Table
6. We obtained the best parameters for tree-based models using hypermeter

tuning.

5.1.1. Regression - cluster 1
The articles in cluster 1 have publication years of 1920 to 1999. The re-
gression models built predicted the Online Age for this cluster. From Table 6,
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Table 6: The regression results of each cluster.

Model MAE | RMSE | R?
Multiple Linear Regression | 34.33 | 53.14 | 0.35
Cluster 1
Decision Tree 16.93 | 31.61 | 0.77
Random Forest 14.24 | 23.98 | 0.86
Multi-layer Perceptron 15.20 | 24.98 | 0.85
Multiple Linear Regression | 28.83 | 33.63 | 0.26
Cluster 2
Decision Tree 13.29 | 21.72 | 0.69
Random Forest 10.12 | 15.99 | 0.83
Multi-layer Perceptron 10.11 | 15.55 | 0.84
Multiple Linear Regression | 10.29 | 13.71 | 0.11
Cluster 3
Decision Tree 9.70 12.72 | 0.24
Random Forest 8.66 11.22 | 0.40
Multi-layer Perceptron 8.18 10.62 | 0.47

cluster 1, we can observe that tree-based models and Multi-Layer Perceptron
gave lower error rates than the Multiple Linear Regression model. Random
Forest and Multi-Layer Perceptron have higher R? values than other models in-
dicating that these models better explain the variance of the dependent variable
(Online Age). Figure 6 shows the ten most important features for the Random
Forest model. We can notice that the Patent counts is the single most important

feature with more than 80% of the feature importance share.

5.1.2. Regression - cluster 2

The articles in cluster 2 have publication years of 2000 to 2012. We built
regression models that predicted the Online Age for this cluster. From Table 6,
cluster 2, we can see that Random Forest and Multi-Layer Perceptron models
performed better with lower errors measures than Decision Tree and Multiple

Linear Regression. Random Forest and Multi-Layer Perceptron model better
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Figure 6: Regression - The ten most important features for cluster 1 (1920-1999).

explain the variance in the dependent variable by having an R? value of 0.83
and 0.84 respectively. Figure 7 shows the ten most important features for the
Random Forest model. We can notice that the most important feature for the
prediction is the Tweet counts followed by Patent counts. These two features

constitute approximately 80% of the feature importance share.

5.1.3. Regression - cluster 3

Cluster 3 has articles that were published in the years 2013 through 2016.
Table 6 shows the performance of the regression models to predict the Online
Age. We observed that Random Forest and Multi-Layer Perceptron models have
lower error rates and are better able to explain the variance of the dependent
variable. Figure 8 shows the ten most important features for the Random Forest
model. We found that Tweet count and Mendeley’s readership are the most
important features for the Random Forest model with approximately 40% of
the feature importance share. On comparing the results of regression models in
cluster 3 with clusters 1 and 2, we notice that cluster 3 has lower error measures

but poorly explains the variance in the dependent variable.
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Figure 7: Regression - The ten most important features for cluster 2 (2000-2012).
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Figure 8: Regression - The ten most important features for cluster 3 (2013-2016).

5.2. Classification Results

5.2.1. Classification - cluster 1
Cluster 1 comprises articles published in the period of 1920 to 1999. The

median Online Age for this cluster is 16 months. We built classification models



to predict whether the Online Age would be greater than or equal to the median.
Figure 9 shows the performance of the models. Achieving accuracy of 91%,
the Random Forest model performed the best. Figure 10 shows the ten most
important features for the Random Forest model. We observed that for cluster
1, the Patent count is the most important feature, followed by the Tweet count.
These two features accounted for approximately 55% of the feature importance
share. From Figure 2, we also noticed that for the years 1920-1970, the Syllabi
count accounted for a large proportion of online share whereas for the years

1971-2000 Patent count accounted for a large proportion.
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Figure 9: Classification - Performance of models in cluster 1 (1920-1999).
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Figure 10: Classification - The ten most important features for cluster 1 (1920-1999).
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5.2.2. Classification - cluster 2

The articles published in the period 2000 to 2012 fall under cluster 2. As
shown in Table 5, the median Online Age for this cluster is 34 months. The
Decision Tree and Random Forest classifiers performed better than the other
classifiers, with all the performance metrics having a score of 92% and 94%, re-
spectively for these two models, as shown in Figure 11. The ten most important
features for the Random Forest model of this cluster are shown in Figure 12. We
observed that the Patent count was the most important feature, accounting for

about 35% of the feature importance share, followed by Twitter and Facebook

counts.
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Figure 11: Classification - Performance of models in cluster 2 (2000-2012).

5.2.8. Classification - cluster 3

Cluster 3 consists of research articles published from 2013 to 2016. These
articles have a median Online Age of 25 months. Figure 13 shows that with
an accuracy of 73%, the Random Forest model performed better than the other
models. Figure 14 shows the ten most important features for the Random Forest
classifier: Mendeley’s readership and Tweet count constitute about 40% of the
feature importance share.

In addition to the performance metrics and feature importance, we plotted
the Receiver Operating Characteristic (ROC) curve for all three clusters, as
shown in Figure 15. We observed that for all 3 clusters the area under the curves

is slightly more for tree-based classifiers and Logistic Regression in comparison
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Figure 12: Classification - The ten most important features for cluster 2 (2000-2012).
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Figure 13: Classification - Performance of models in cluster 3 (2013-2016).

with the Naive Bayes classifier.

6. Discussion

In this experiment designed to predict the long-term interest in research ar-
ticles in terms of the number of months they last on online platforms after their
first online mention, we used the counts of online mentions for research arti-
cles on multiple online platforms as the features for building machine learning
models. We split the data pertaining to research papers published in the years
1920 to 2016 into 3 clusters based on the elbow methodology for k-means clus-
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Figure 14: Classification - The ten most important features for cluster 3 (2013-2016).

tering. For each cluster, we calculated the median Online Age, which served as
a criterion for long-term interest. We built machine learning models with 5-fold
cross-validation. For all three clusters, the Naive Bayes model performed worse
than the other models for classification. We observed that the relative impor-
tance of the online platforms for prediction differs across the clusters. Table 7
shows a summary of the most important features in each cluster.

When investigating references to articles, the use of course syllabi is not a
popular approach to evaluating research. However, we included this aspect in
our investigation. In our dataset, older articles have more influence on education
than do recently published articles. However, it is limited by our dataset, which
in terms of syllabi includes only those available on the internet. Various studies
have found that course syllabi could be useful to measure the teaching impact
of publications, especially in the humanities and social sciences (Thelwall and
Kousha, 2015; Kousha and Thelwall, 2016, 2008). Our dataset does not include
the subjects of articles that are mentioned in syllabi derived from the Open
Syllabus Project (OSP). Through a manual check on 20 random articles in the

OSP, we found that several are related to humanities and social sciences. We
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found that older articles have more impact on patents, as is evident in cluster

2.

Table 7: Summary of important platforms for prediction in each cluster.

Cluster Publication years Most important Most important

of research arti- for prediction - for prediction -
cles Regression Classification
1 1920-1999 Patent Patent and Twitter
2 2000-2012 Twitter and Patent  Patent and Twitter
3 2013-2016 Twitter and Mendeley and
Mendeley Twitter

In relation to cluster 3, we observed that Mendeley’s readership and Twitter
are important in predicting the online interest in research articles. For the
regression models, we also noticed that the Multi-Layer Perceptron did perform
better than the Random Forest model for cluster 2 and 3. We also observed that
having a smaller cluster (in terms of the range of publication years) achieved
lower errors in regression models, as can be seen in Table 6

In the current study, in order to measure the online long-term interest in re-
search articles, we used the latest online mentions of articles on online platforms
regardless of how many times those articles had been mentioned online during
the focal period. Yet a high number of mentions for a new article could imply
that it is popular, which could lead, in turn, to long-term interest even though
our current study would not recognize this fact since such a paper would be too
new to have a large half-life. This is a limitation of the current study, which we
plan to address in future work by collecting a new dataset. Another limitation
of this study is that the data that we have used is not time-series data. In the
future, we plan to collect altmetrics data at several time intervals to predict the

online long-term interest at any point in time.
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7. Conclusion and Future Work

In this study, we created models to predict the online long-term interest in
research articles on social media. We found that the number of mentions in
Patents documents, Mendeley and Twitter are the main factors in determining
the long-term online interest for an article. We observed that research articles
used in patents are usually old published articles that have been studied ex-
tensively and proven to be valid and trustworthy. Further, articles published
before a few years are more seen in online reference systems such as Mendeley.
In addition, mentions of articles were more numerous on social media platforms
such as Twitter within days to months of publication. We also observed that
of all the models tested, the Decision Tree and Random Forest performed best
in the classification approach, and Multi-Layer Perceptron performed best in
the Regression approach. In future work, we plan to use a range of prediction
categories such as short-, mid-, and long-term interest. Additionally, we intend
to include more features such as the textual features in research articles, citation
count, and the h-index of the authors and venues. Further, we will study the
differences between journals, disciplines, and countries in regard to a research

article’s lifespan.
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