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ABSTRACT: Perhaps the most controversial and rare aspect of
the halogen bonding interaction is the potential of fluorine in

compounds to serve as a halogen bond donor. In this note,

we

provide clear and convincing examples of hypothetical molecules in

which fluorine is strongly halogen bonding in a metastable state.

of

particular note is a polycyclic system inspired by Selectfluor, which
has been controversially proposed to engage in halogen bonding.

B INTRODUCTION

Rational computational design has played a long and honored
role in organic chemistry. For example, seminal molecules such
as bullvalene,’ cyclobutadiene,2 and C—F"'—C fluoronium
ions’ were theoretically proposed in the literature first, laying
down an effective challenge for their later synthesis. A prime
candidate for rational computational design resides in the
realm of halogen bonding. Although it constitutes a well-
established, weakly attractive interaction for X = Cl, Br, and
especially I, it is less known for fluorine. Its occurrence is
dependent on the existence of a region of positive electrostatic
potential along the axis of an R—X bond and opposite thereto,
the so-called “o-hole”, that can interact with an appropriate
Lewis base.* Moreover, there are other broadened forms and
interpretations of halogen bonding that have come to the fore,
namely antielectrostatic’ and charge transfer based complexes.’
However, fluorine, notorious for its unique if not anomalous
behavior, is usually too electronegative to generate a significant
o-hole or other halogen bonding qualities. This result got us
thinking, is it possible to design a molecule containing a strong
halogen bond containing fluorine, thus providing an analogous
thought-provoking challenge? Our group has had a long-
standing interest in using fluorine to interact strongly with
other functional groups through forced proximity.” Using the
prototype H;N'F---NHj as a design basis, we imagined suitable
metastable candidates arising from the hypothetical in-N-
fluorination of bridgehead diazabicyclic structures such as 1,5-
diazabicyclo [3.3.3]undecane,® 1,6-diazabicyclo[4.4.4]-
tetradecane (the “Alder” diamine),” and 1,7-
diazabicyclo[5.5.5Theptadecane,'” all of which are idealized
for intrabridgehead interactions. The present state of synthetic
chemistry renders these candidates very difficult to make,
although we believe that much can be gleaned from a
calculational study.

Metrangelo et al.'' and others'> have postulated halogen
bonding in fluorine-containing structures (especially in
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crystalsm) ; however, recently, Eskandari and Lessani'* clarified
the differences between classical halogen bonding and
examples of fluorine—Lewis base interactions. The authors
proposed the term “fluorine bonding” to encompass the
electronic, energetic, and spatial differences incumbent upon a
much weaker interaction.

Several authors have proposed halogen bonding in R;N*"—F-
based complexes based on the electrophilic nature of fluorine
therein.'® However, experimental and computational studies
have shown that nonclassical hydrogen bonding (R;N*—C—
H-X (X = O, N)) is preferred to halogen bonding in such
species.16 For example, the prototype interaction in the
complex H;N*F---NH; is higher in energy compared to
competing hydrogen bonding forms. Similarly, halogen
bonding in Selectfluor (SF) and N-fluoropyridinium salts is
disfavored as well (Figure 1).

In this article, we address this timely issue through a
computational study exploring halogen bonding, e.g, in the
proposed structures 1—3, all of which are metastable with
respect to isomerization (Figure 2). In this undertaking, factors
emblematic of classic halogen bonding (X—F bond elongation,
o-hole existence, short N—F--N distance, significant bond
critical point, and Wiberg bond order) are investigated.'” In
each case, competing N*C—H--N interactions are foreclosed
through geometric effects. These proposed structures are
compared to the corresponding monoamine fluorides (4-9,
Figure 2), in which the halogen bonding interaction has been
greatly attenuated or eliminated. As the reader will see, the
strongest case of bonding is shown in structure 10, in which
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Figure 1. Speculative cases of halogen bonding and comparison of
different N-fluoropyridinium interactions.

potential candidates and controls

Figure 2. Halogen bonding molecules and controls.

fluorine is truly “trapped”. The construction of 10 was inspired
in part by the chemistry of Selectfluor, in which halogen
bonding has been controversially proposed in the recent

. 11
literature.
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B RESULTS AND DISCUSSION

To begin our study, the molecular geometries and electronic
wave functions of in-(N*)-fluoronium cation derivatives 1,5-
diazabicyclo[3.3.3]undecane, 1,6-diazabicyclo[4.4.4]-
tetradecane, and 1,7-diazabicyclo[S.5.5]heptadecane (1—3)
were fully optimized using the software package Gaussian 16,
revision C.01."* To this end, density functional theory (DFT)
model chemistries, including those with empirical dispersion
corrections, were employed. This includes the long-range
corrected wPBE functional (LC-wPBE), composed of a long-
range portion of exact exchange that imposes a nonempirically
tuned 100% contribution of the asymptotic Hartree—Fock
exchange found to be essential for accurately describing long-
range interactions, as well as a short-range wPBE approx-
imation that fulfills the exchange-hole normalization condition
for all values of w."”

To account for the importance of long-range dispersion
forces in halogen-bonding interactions, Grimme’s empirical
“D3” dispersion corrections™ in conjunction with the Becke
and Johnson”' (BJ-damping) approach were invoked. In-
cidentally, to streamline the discussion, only trends computed
at LC-wPBE-D3(BJ)/6-311+G(d,p) are explicitly covered vide
infra, while for reference the findings computed using the long-
range-correlated functional wB97XD of Head-Gordon and co-
workers,” in addition to the hybrid meta-GGA M06-2X
functional of Truhlar and Zhao, are provided in the Supporting
Information. Overall, we observed consistency between these
functionals, and our preferred selection of LC-wPBE-D3(BJ)
derives from its proven robustness for accurately accounting
for XB-bonding interactions.”

Emerging from these computations was the striking impact
of bridging hydrocarbon scaffolding upon interatomic N---F
separation, manifesting itself in lengthening from 1.90 to 2.10
A to 2.40 A for diazabicyclic structures 1—3 (Figures 2 and 4).
Accompanying this elongation was an out-to-in oriented flip of
the Lewis basic bridgehead nitrogen lone pairs relative to the
bicyclic cage frameworks. This is clearly seen in the computed
highest occupied molecular orbitals (HOMO)s, a slight
dominance of out-N-lone pair orbital density in structure 1
vs (p-orbital type) out-in-N-lone pair density in structure 2,
finally giving way to a substantial in-N-lone pair orbital density
in structure 3.

As a point of reference, the computed molecular electrostatic
potential (MESP) surface of a subunit of these bicyclic cages,
namely, Me;N"—F, displayed the presence of an ostensive F
atom centered sigma (o) hole (V. = 84.9 kcal/mol)
interaction (Figure 3). Meanwhile, all these N---F interactions
displayed distances well-below the sum of the van der Waals
radii of two constituent nuclei, thus fulfilling at least one
criterion for XB-bonding: that is, “the interatomic distance
between X and the appropriate nucleophilic atom of Y tends to
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Figure 3. Molecular electrostatic potential (MESP) surface of
Me;N*—F on the 0.001 au isosurface computed at LC-wPBE-
D3(BJ)/6-311+G(d,p). The color codes refer to red >100, yellow
>95, green >10 kcal mol™".
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Figure S. Calculated structures for compounds 4—9.

be less than the sum of the van der Waals radii”.** What is
more, a near-perfect 180° linearity of the N—F---N atoms was
found in this trio of derivatives, which is a feature typifying XB-
bonding, viz., “the angle R—X:--Y tends to be close to 180°, i.e.,
the halogen bond acceptor Y approaches X along the extension
of the R—X bond”.

We next turned to quantum theory of atoms in molecules
(QTAIM) with a focus upon the computed (3, —1) bond
critical points (BCPs) to characterize these N---F interac-
tions.”> Notably, this approach offers a wealth of chemical
information for describing chemical bonding, conveniently
allowing atomic interactions to be classified into two main
categories: closed-shell interactions and shared interactions.
For example, noncovalent interactions, such as halogen bonds,
van der Waals interactions, and hydrogen bonds are described
as closed-shell, which typically displays a small value of py,
(electron density at the BCP) and a small positive Laplacian
Vzpbcp value. For instance, py, in modest hydrogen bonds and
van der Waals complexes is about 107> and 1073 au,”® while for
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halogen-bonded complexes, py,, values range from 0.006 au in
very weak halogen bonds to 0.05 au in moderate and strong
ones.”” In this regard, the py, and the Laplacian Vzpbcp values
at the BCPs of the N--F interactions for diazabicyclic
structures 1—3 were appreciably large for halogen bonds
(Poep = 0.0774, 0.0487, and 0.0268 au and V?p,, = 0.4685,
0.2737, and 0.1252 au), typifying them as strong noncovalent
closed-shell interactions (Figure 4).

Still working in the framework of QTAIM, we turned to the
interaction quantum atoms (IQA) method of atomic energy
analysis using the Amsterdam Density Functional (ADF)
program to shed light on the atomic energies and atomic
interactions of the N---F arrays.”® Specifically, we evaluated the
interatomic energy (Vigter(torat)) as well as the exchange
(covalent part) and classical Coulomb electrostatic contribu-
tions (ionic part) for each of the N---F arrangements (see
Supporting Information for covalent and ionic part values).
Overall, the evaluated IQA energies show the essential absence
of a N--F halogen bonding interaction in structure 1

https://doi.org/10.1021/acs.joc.2c00497
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(Vinter(total) = —0.25 keal/mol) but positive interatomic energy
values for structures 2 (Viper(tora) = 10.66 kcal/mol) and 3
(Vinter(total) = 17.05 kcal/mol), indicating the dominance of
repulsive interactions incumbent within forced frameworks.

To gauge the impact of imbedded (N¥)-fluorine cation
formal charge upon interatomic N---F interactions, we also
considered neutral structures 4—6 (Figure S). This isolobal
subset of diazabicyclic analogies, akin to structures 1—3, albeit
with a net isoelectric perturbation of charge, was projected to
display attenuated N--F interactions, viz., reduced nitrogen
lone pair donation to the nearby fluoride “c-hole”. Corroborat-
ing this speculation were elongated N---F distances, Wiberg
bond index values hovering around zero, reduced electron
densities (pn,, = 0.0679, 0.03890, 0.0215), and Laplacian
values (V?py,, = 0.4463, 0.2252, 0.0969) at the (3, —1) bond
critical points. Clear from this subset of charge-neutral,
diazabicyclic structural counterparts is the importance of
formal N-fluoroammonium cation character that facilitates
fluoride o-hole features conducive for halogen bonding and
N---F interactions.

Next, to measure nitrogen lone pair participation, we
investigated diazabicyclic structures 7—9 (Figure S), wherein
one bridgehead nitrogen of structures 1—3 was swapped for a
methine carbon with an exocyclic hydrogen atom, thereby
removing any chance of XB-bonding. Indeed, we observe
elongated N---F distances and Wiberg bond indices near zero
(slightly negative), in addition to computed electron densities
(Prep = 0.0626, 0.0287) and Laplacian (V?py,, = 0.3605 and
0.1537) values at the (3, —1) BCPs localized between the
bridgehead carbon and fluorine atoms, while in compound 9 a
BCP was not present (Figure S). It is evident that preliminary
candidates 1—3 demonstrate attributes of fluorine halogen
bonding in certain cases, along with a number of counter-
indications, making the situation rather hazy.

In any event, having extracted defining elements of these
interatomic N---F interactions, we sought to secure by (in
silico) design a decidedly clear-cut example displaying intra-
bridgehead fluorine halogen bonding. Aside from the analogy
to Selectfluor, we drew upon the potential of (onium)-point
charge subarrays, structural rigidity, and electronic field effects
(EFE) to arrive at the tricationic manifold 10 as a superior
molecular scaffold for rendering fluorine-based halogen XB-
bonding.

Calculated within this designer analog is a short N--F
distance of 1.80 A - well-below the sum of the van der Waals
radii of two constituent nuclei by ~1.25 A, linked to a Wiberg
bond index of 0.0255 and a linear N—F--N alignment of
~180°. Confirming fluorine (XB-halogen) bonding as well was
a positive electronic density (pp,, = 0.1031) and Laplacian
value (Vzpbcp =0.5383) at the F(X)—N localized (3, —1) bond
critical point of 10 (Figure 6). These values are notably very
large in magnitude relative to most noncovalent interactions.

Likewise, we found a bonding situation under the lens of
IQA with a total interaction energy of —21.58 kcal/mol,
deriving from a favorable covalent part (E = —59.29 kcal/mol)
counterbalanced by an unfavorable ionic part (E = 37.71 kcal/
mol). Further, natural bond order (NBO) analysis revealed
nitrogen-to-fluorine (donor—acceptor) (e.g, ny = o*c_p =
38.85 kcal/mol) interactions summing to ~55.38 kcal/mol
(see Supporting Information). In shedding additional light on
this N—F---N interaction, we generated relief map surfaces of
Puep and the Laplacian (V?py,,) of 10 (Figure 7a). The contour
map of the Vzpbcp reveals localized regions of valence charge-
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Oy = 180.0°
Poep = 0.1031

V2ppep = 0.5383

N

Figure 6. Computed structures of 10.

laplacian relief map

rho relief map

Figure 7. (a) Laplacian of the charge density of 10. Color codes refer
to red and yellow as the most and least negative values of Vzpbcp,
respectively, whereas those to green, cyan, and blue are from the less
positive to the most positive values of V2. (b) Contour map of the
Phep highlighting regions of charge density in 10.

concentration and charge-depletion contributing to the
noncovalent N—F---N interaction. The presence of a large
“hole” surrounding the fluorine atom is indicative of a region
with electron depletion, while concentration of electron
density is denoted by the “lumps” seen on surrounding
atoms. Corroborating these trends was the relief map py,
(Figure 7b).

Furthermore, for safe measure, we have computed the
interaction energies in both the solvent and gas phases for
structure 10. From these results, we have found a favorable
E(iny value of —104.87 kcal mol™', thereby supporting the
presence of a favorable fluorine-centered halogen bond in
caged-system 10. Lastly, the calculated "N NMR spectrum of
10 (see Supporting Information) provides unique chemical
shifts and offers experimentalists data for confirmation of such
species.
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B CONCLUSION

Our investigation has identified key design features for
realizing N—F---N halogen bonding whereby fluorine serves
as a halogen bond donor. Paramount to this understanding was
the use of predictive computational tools to provide
fundamental clues for achieving fluorine-based halogen
bonding. Our design process involved, in turn, the following:
(1) identifying a potential prototype fluorine halogen bonding
interaction that has been proposed in the literature but that
suffers from competitive hydrogen bonding; (2) foreclosing
the possibility of hydrogen bonding through rigid cage
systems; (3) yielding metastable and reasonable candidates
for significant halogen bonding. The ultimate example of clear-
cut halogen bonding involving fluorine was found to be the
polycycle 10. Further studies will involve the potential
synthesis of fluorine halogen bonders; although extremely
challenging at this moment, we believe that it remains feasible.
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